i915_debugfs.c 135 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/debugfs.h>
  29. #include <linux/sort.h>
  30. #include <linux/sched/mm.h>
  31. #include "intel_drv.h"
  32. #include "intel_guc_submission.h"
  33. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  34. {
  35. return to_i915(node->minor->dev);
  36. }
  37. static int i915_capabilities(struct seq_file *m, void *data)
  38. {
  39. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  40. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  41. struct drm_printer p = drm_seq_file_printer(m);
  42. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  43. seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
  44. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  45. intel_device_info_dump_flags(info, &p);
  46. intel_device_info_dump_runtime(info, &p);
  47. intel_driver_caps_print(&dev_priv->caps, &p);
  48. kernel_param_lock(THIS_MODULE);
  49. i915_params_dump(&i915_modparams, &p);
  50. kernel_param_unlock(THIS_MODULE);
  51. return 0;
  52. }
  53. static char get_active_flag(struct drm_i915_gem_object *obj)
  54. {
  55. return i915_gem_object_is_active(obj) ? '*' : ' ';
  56. }
  57. static char get_pin_flag(struct drm_i915_gem_object *obj)
  58. {
  59. return obj->pin_global ? 'p' : ' ';
  60. }
  61. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  62. {
  63. switch (i915_gem_object_get_tiling(obj)) {
  64. default:
  65. case I915_TILING_NONE: return ' ';
  66. case I915_TILING_X: return 'X';
  67. case I915_TILING_Y: return 'Y';
  68. }
  69. }
  70. static char get_global_flag(struct drm_i915_gem_object *obj)
  71. {
  72. return obj->userfault_count ? 'g' : ' ';
  73. }
  74. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  75. {
  76. return obj->mm.mapping ? 'M' : ' ';
  77. }
  78. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  79. {
  80. u64 size = 0;
  81. struct i915_vma *vma;
  82. for_each_ggtt_vma(vma, obj) {
  83. if (drm_mm_node_allocated(&vma->node))
  84. size += vma->node.size;
  85. }
  86. return size;
  87. }
  88. static const char *
  89. stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
  90. {
  91. size_t x = 0;
  92. switch (page_sizes) {
  93. case 0:
  94. return "";
  95. case I915_GTT_PAGE_SIZE_4K:
  96. return "4K";
  97. case I915_GTT_PAGE_SIZE_64K:
  98. return "64K";
  99. case I915_GTT_PAGE_SIZE_2M:
  100. return "2M";
  101. default:
  102. if (!buf)
  103. return "M";
  104. if (page_sizes & I915_GTT_PAGE_SIZE_2M)
  105. x += snprintf(buf + x, len - x, "2M, ");
  106. if (page_sizes & I915_GTT_PAGE_SIZE_64K)
  107. x += snprintf(buf + x, len - x, "64K, ");
  108. if (page_sizes & I915_GTT_PAGE_SIZE_4K)
  109. x += snprintf(buf + x, len - x, "4K, ");
  110. buf[x-2] = '\0';
  111. return buf;
  112. }
  113. }
  114. static void
  115. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  116. {
  117. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  118. struct intel_engine_cs *engine;
  119. struct i915_vma *vma;
  120. unsigned int frontbuffer_bits;
  121. int pin_count = 0;
  122. lockdep_assert_held(&obj->base.dev->struct_mutex);
  123. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  124. &obj->base,
  125. get_active_flag(obj),
  126. get_pin_flag(obj),
  127. get_tiling_flag(obj),
  128. get_global_flag(obj),
  129. get_pin_mapped_flag(obj),
  130. obj->base.size / 1024,
  131. obj->read_domains,
  132. obj->write_domain,
  133. i915_cache_level_str(dev_priv, obj->cache_level),
  134. obj->mm.dirty ? " dirty" : "",
  135. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  136. if (obj->base.name)
  137. seq_printf(m, " (name: %d)", obj->base.name);
  138. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  139. if (i915_vma_is_pinned(vma))
  140. pin_count++;
  141. }
  142. seq_printf(m, " (pinned x %d)", pin_count);
  143. if (obj->pin_global)
  144. seq_printf(m, " (global)");
  145. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  146. if (!drm_mm_node_allocated(&vma->node))
  147. continue;
  148. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
  149. i915_vma_is_ggtt(vma) ? "g" : "pp",
  150. vma->node.start, vma->node.size,
  151. stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
  152. if (i915_vma_is_ggtt(vma)) {
  153. switch (vma->ggtt_view.type) {
  154. case I915_GGTT_VIEW_NORMAL:
  155. seq_puts(m, ", normal");
  156. break;
  157. case I915_GGTT_VIEW_PARTIAL:
  158. seq_printf(m, ", partial [%08llx+%x]",
  159. vma->ggtt_view.partial.offset << PAGE_SHIFT,
  160. vma->ggtt_view.partial.size << PAGE_SHIFT);
  161. break;
  162. case I915_GGTT_VIEW_ROTATED:
  163. seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
  164. vma->ggtt_view.rotated.plane[0].width,
  165. vma->ggtt_view.rotated.plane[0].height,
  166. vma->ggtt_view.rotated.plane[0].stride,
  167. vma->ggtt_view.rotated.plane[0].offset,
  168. vma->ggtt_view.rotated.plane[1].width,
  169. vma->ggtt_view.rotated.plane[1].height,
  170. vma->ggtt_view.rotated.plane[1].stride,
  171. vma->ggtt_view.rotated.plane[1].offset);
  172. break;
  173. default:
  174. MISSING_CASE(vma->ggtt_view.type);
  175. break;
  176. }
  177. }
  178. if (vma->fence)
  179. seq_printf(m, " , fence: %d%s",
  180. vma->fence->id,
  181. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  182. seq_puts(m, ")");
  183. }
  184. if (obj->stolen)
  185. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  186. engine = i915_gem_object_last_write_engine(obj);
  187. if (engine)
  188. seq_printf(m, " (%s)", engine->name);
  189. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  190. if (frontbuffer_bits)
  191. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  192. }
  193. static int obj_rank_by_stolen(const void *A, const void *B)
  194. {
  195. const struct drm_i915_gem_object *a =
  196. *(const struct drm_i915_gem_object **)A;
  197. const struct drm_i915_gem_object *b =
  198. *(const struct drm_i915_gem_object **)B;
  199. if (a->stolen->start < b->stolen->start)
  200. return -1;
  201. if (a->stolen->start > b->stolen->start)
  202. return 1;
  203. return 0;
  204. }
  205. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  206. {
  207. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  208. struct drm_device *dev = &dev_priv->drm;
  209. struct drm_i915_gem_object **objects;
  210. struct drm_i915_gem_object *obj;
  211. u64 total_obj_size, total_gtt_size;
  212. unsigned long total, count, n;
  213. int ret;
  214. total = READ_ONCE(dev_priv->mm.object_count);
  215. objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
  216. if (!objects)
  217. return -ENOMEM;
  218. ret = mutex_lock_interruptible(&dev->struct_mutex);
  219. if (ret)
  220. goto out;
  221. total_obj_size = total_gtt_size = count = 0;
  222. spin_lock(&dev_priv->mm.obj_lock);
  223. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  224. if (count == total)
  225. break;
  226. if (obj->stolen == NULL)
  227. continue;
  228. objects[count++] = obj;
  229. total_obj_size += obj->base.size;
  230. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  231. }
  232. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  233. if (count == total)
  234. break;
  235. if (obj->stolen == NULL)
  236. continue;
  237. objects[count++] = obj;
  238. total_obj_size += obj->base.size;
  239. }
  240. spin_unlock(&dev_priv->mm.obj_lock);
  241. sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
  242. seq_puts(m, "Stolen:\n");
  243. for (n = 0; n < count; n++) {
  244. seq_puts(m, " ");
  245. describe_obj(m, objects[n]);
  246. seq_putc(m, '\n');
  247. }
  248. seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
  249. count, total_obj_size, total_gtt_size);
  250. mutex_unlock(&dev->struct_mutex);
  251. out:
  252. kvfree(objects);
  253. return ret;
  254. }
  255. struct file_stats {
  256. struct drm_i915_file_private *file_priv;
  257. unsigned long count;
  258. u64 total, unbound;
  259. u64 global, shared;
  260. u64 active, inactive;
  261. };
  262. static int per_file_stats(int id, void *ptr, void *data)
  263. {
  264. struct drm_i915_gem_object *obj = ptr;
  265. struct file_stats *stats = data;
  266. struct i915_vma *vma;
  267. lockdep_assert_held(&obj->base.dev->struct_mutex);
  268. stats->count++;
  269. stats->total += obj->base.size;
  270. if (!obj->bind_count)
  271. stats->unbound += obj->base.size;
  272. if (obj->base.name || obj->base.dma_buf)
  273. stats->shared += obj->base.size;
  274. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  275. if (!drm_mm_node_allocated(&vma->node))
  276. continue;
  277. if (i915_vma_is_ggtt(vma)) {
  278. stats->global += vma->node.size;
  279. } else {
  280. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  281. if (ppgtt->base.file != stats->file_priv)
  282. continue;
  283. }
  284. if (i915_vma_is_active(vma))
  285. stats->active += vma->node.size;
  286. else
  287. stats->inactive += vma->node.size;
  288. }
  289. return 0;
  290. }
  291. #define print_file_stats(m, name, stats) do { \
  292. if (stats.count) \
  293. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  294. name, \
  295. stats.count, \
  296. stats.total, \
  297. stats.active, \
  298. stats.inactive, \
  299. stats.global, \
  300. stats.shared, \
  301. stats.unbound); \
  302. } while (0)
  303. static void print_batch_pool_stats(struct seq_file *m,
  304. struct drm_i915_private *dev_priv)
  305. {
  306. struct drm_i915_gem_object *obj;
  307. struct file_stats stats;
  308. struct intel_engine_cs *engine;
  309. enum intel_engine_id id;
  310. int j;
  311. memset(&stats, 0, sizeof(stats));
  312. for_each_engine(engine, dev_priv, id) {
  313. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  314. list_for_each_entry(obj,
  315. &engine->batch_pool.cache_list[j],
  316. batch_pool_link)
  317. per_file_stats(0, obj, &stats);
  318. }
  319. }
  320. print_file_stats(m, "[k]batch pool", stats);
  321. }
  322. static int per_file_ctx_stats(int id, void *ptr, void *data)
  323. {
  324. struct i915_gem_context *ctx = ptr;
  325. int n;
  326. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  327. if (ctx->engine[n].state)
  328. per_file_stats(0, ctx->engine[n].state->obj, data);
  329. if (ctx->engine[n].ring)
  330. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  331. }
  332. return 0;
  333. }
  334. static void print_context_stats(struct seq_file *m,
  335. struct drm_i915_private *dev_priv)
  336. {
  337. struct drm_device *dev = &dev_priv->drm;
  338. struct file_stats stats;
  339. struct drm_file *file;
  340. memset(&stats, 0, sizeof(stats));
  341. mutex_lock(&dev->struct_mutex);
  342. if (dev_priv->kernel_context)
  343. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  344. list_for_each_entry(file, &dev->filelist, lhead) {
  345. struct drm_i915_file_private *fpriv = file->driver_priv;
  346. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  347. }
  348. mutex_unlock(&dev->struct_mutex);
  349. print_file_stats(m, "[k]contexts", stats);
  350. }
  351. static int i915_gem_object_info(struct seq_file *m, void *data)
  352. {
  353. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  354. struct drm_device *dev = &dev_priv->drm;
  355. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  356. u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
  357. u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
  358. struct drm_i915_gem_object *obj;
  359. unsigned int page_sizes = 0;
  360. struct drm_file *file;
  361. char buf[80];
  362. int ret;
  363. ret = mutex_lock_interruptible(&dev->struct_mutex);
  364. if (ret)
  365. return ret;
  366. seq_printf(m, "%u objects, %llu bytes\n",
  367. dev_priv->mm.object_count,
  368. dev_priv->mm.object_memory);
  369. size = count = 0;
  370. mapped_size = mapped_count = 0;
  371. purgeable_size = purgeable_count = 0;
  372. huge_size = huge_count = 0;
  373. spin_lock(&dev_priv->mm.obj_lock);
  374. list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
  375. size += obj->base.size;
  376. ++count;
  377. if (obj->mm.madv == I915_MADV_DONTNEED) {
  378. purgeable_size += obj->base.size;
  379. ++purgeable_count;
  380. }
  381. if (obj->mm.mapping) {
  382. mapped_count++;
  383. mapped_size += obj->base.size;
  384. }
  385. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  386. huge_count++;
  387. huge_size += obj->base.size;
  388. page_sizes |= obj->mm.page_sizes.sg;
  389. }
  390. }
  391. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  392. size = count = dpy_size = dpy_count = 0;
  393. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  394. size += obj->base.size;
  395. ++count;
  396. if (obj->pin_global) {
  397. dpy_size += obj->base.size;
  398. ++dpy_count;
  399. }
  400. if (obj->mm.madv == I915_MADV_DONTNEED) {
  401. purgeable_size += obj->base.size;
  402. ++purgeable_count;
  403. }
  404. if (obj->mm.mapping) {
  405. mapped_count++;
  406. mapped_size += obj->base.size;
  407. }
  408. if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
  409. huge_count++;
  410. huge_size += obj->base.size;
  411. page_sizes |= obj->mm.page_sizes.sg;
  412. }
  413. }
  414. spin_unlock(&dev_priv->mm.obj_lock);
  415. seq_printf(m, "%u bound objects, %llu bytes\n",
  416. count, size);
  417. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  418. purgeable_count, purgeable_size);
  419. seq_printf(m, "%u mapped objects, %llu bytes\n",
  420. mapped_count, mapped_size);
  421. seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
  422. huge_count,
  423. stringify_page_sizes(page_sizes, buf, sizeof(buf)),
  424. huge_size);
  425. seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
  426. dpy_count, dpy_size);
  427. seq_printf(m, "%llu [%pa] gtt total\n",
  428. ggtt->base.total, &ggtt->mappable_end);
  429. seq_printf(m, "Supported page sizes: %s\n",
  430. stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
  431. buf, sizeof(buf)));
  432. seq_putc(m, '\n');
  433. print_batch_pool_stats(m, dev_priv);
  434. mutex_unlock(&dev->struct_mutex);
  435. mutex_lock(&dev->filelist_mutex);
  436. print_context_stats(m, dev_priv);
  437. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  438. struct file_stats stats;
  439. struct drm_i915_file_private *file_priv = file->driver_priv;
  440. struct i915_request *request;
  441. struct task_struct *task;
  442. mutex_lock(&dev->struct_mutex);
  443. memset(&stats, 0, sizeof(stats));
  444. stats.file_priv = file->driver_priv;
  445. spin_lock(&file->table_lock);
  446. idr_for_each(&file->object_idr, per_file_stats, &stats);
  447. spin_unlock(&file->table_lock);
  448. /*
  449. * Although we have a valid reference on file->pid, that does
  450. * not guarantee that the task_struct who called get_pid() is
  451. * still alive (e.g. get_pid(current) => fork() => exit()).
  452. * Therefore, we need to protect this ->comm access using RCU.
  453. */
  454. request = list_first_entry_or_null(&file_priv->mm.request_list,
  455. struct i915_request,
  456. client_link);
  457. rcu_read_lock();
  458. task = pid_task(request && request->ctx->pid ?
  459. request->ctx->pid : file->pid,
  460. PIDTYPE_PID);
  461. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  462. rcu_read_unlock();
  463. mutex_unlock(&dev->struct_mutex);
  464. }
  465. mutex_unlock(&dev->filelist_mutex);
  466. return 0;
  467. }
  468. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  469. {
  470. struct drm_info_node *node = m->private;
  471. struct drm_i915_private *dev_priv = node_to_i915(node);
  472. struct drm_device *dev = &dev_priv->drm;
  473. struct drm_i915_gem_object **objects;
  474. struct drm_i915_gem_object *obj;
  475. u64 total_obj_size, total_gtt_size;
  476. unsigned long nobject, n;
  477. int count, ret;
  478. nobject = READ_ONCE(dev_priv->mm.object_count);
  479. objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
  480. if (!objects)
  481. return -ENOMEM;
  482. ret = mutex_lock_interruptible(&dev->struct_mutex);
  483. if (ret)
  484. return ret;
  485. count = 0;
  486. spin_lock(&dev_priv->mm.obj_lock);
  487. list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
  488. objects[count++] = obj;
  489. if (count == nobject)
  490. break;
  491. }
  492. spin_unlock(&dev_priv->mm.obj_lock);
  493. total_obj_size = total_gtt_size = 0;
  494. for (n = 0; n < count; n++) {
  495. obj = objects[n];
  496. seq_puts(m, " ");
  497. describe_obj(m, obj);
  498. seq_putc(m, '\n');
  499. total_obj_size += obj->base.size;
  500. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  501. }
  502. mutex_unlock(&dev->struct_mutex);
  503. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  504. count, total_obj_size, total_gtt_size);
  505. kvfree(objects);
  506. return 0;
  507. }
  508. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  509. {
  510. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  511. struct drm_device *dev = &dev_priv->drm;
  512. struct drm_i915_gem_object *obj;
  513. struct intel_engine_cs *engine;
  514. enum intel_engine_id id;
  515. int total = 0;
  516. int ret, j;
  517. ret = mutex_lock_interruptible(&dev->struct_mutex);
  518. if (ret)
  519. return ret;
  520. for_each_engine(engine, dev_priv, id) {
  521. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  522. int count;
  523. count = 0;
  524. list_for_each_entry(obj,
  525. &engine->batch_pool.cache_list[j],
  526. batch_pool_link)
  527. count++;
  528. seq_printf(m, "%s cache[%d]: %d objects\n",
  529. engine->name, j, count);
  530. list_for_each_entry(obj,
  531. &engine->batch_pool.cache_list[j],
  532. batch_pool_link) {
  533. seq_puts(m, " ");
  534. describe_obj(m, obj);
  535. seq_putc(m, '\n');
  536. }
  537. total += count;
  538. }
  539. }
  540. seq_printf(m, "total: %d\n", total);
  541. mutex_unlock(&dev->struct_mutex);
  542. return 0;
  543. }
  544. static void gen8_display_interrupt_info(struct seq_file *m)
  545. {
  546. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  547. int pipe;
  548. for_each_pipe(dev_priv, pipe) {
  549. enum intel_display_power_domain power_domain;
  550. power_domain = POWER_DOMAIN_PIPE(pipe);
  551. if (!intel_display_power_get_if_enabled(dev_priv,
  552. power_domain)) {
  553. seq_printf(m, "Pipe %c power disabled\n",
  554. pipe_name(pipe));
  555. continue;
  556. }
  557. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  558. pipe_name(pipe),
  559. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  560. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  561. pipe_name(pipe),
  562. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  563. seq_printf(m, "Pipe %c IER:\t%08x\n",
  564. pipe_name(pipe),
  565. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  566. intel_display_power_put(dev_priv, power_domain);
  567. }
  568. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  569. I915_READ(GEN8_DE_PORT_IMR));
  570. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  571. I915_READ(GEN8_DE_PORT_IIR));
  572. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  573. I915_READ(GEN8_DE_PORT_IER));
  574. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  575. I915_READ(GEN8_DE_MISC_IMR));
  576. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  577. I915_READ(GEN8_DE_MISC_IIR));
  578. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  579. I915_READ(GEN8_DE_MISC_IER));
  580. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  581. I915_READ(GEN8_PCU_IMR));
  582. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  583. I915_READ(GEN8_PCU_IIR));
  584. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  585. I915_READ(GEN8_PCU_IER));
  586. }
  587. static int i915_interrupt_info(struct seq_file *m, void *data)
  588. {
  589. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  590. struct intel_engine_cs *engine;
  591. enum intel_engine_id id;
  592. int i, pipe;
  593. intel_runtime_pm_get(dev_priv);
  594. if (IS_CHERRYVIEW(dev_priv)) {
  595. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  596. I915_READ(GEN8_MASTER_IRQ));
  597. seq_printf(m, "Display IER:\t%08x\n",
  598. I915_READ(VLV_IER));
  599. seq_printf(m, "Display IIR:\t%08x\n",
  600. I915_READ(VLV_IIR));
  601. seq_printf(m, "Display IIR_RW:\t%08x\n",
  602. I915_READ(VLV_IIR_RW));
  603. seq_printf(m, "Display IMR:\t%08x\n",
  604. I915_READ(VLV_IMR));
  605. for_each_pipe(dev_priv, pipe) {
  606. enum intel_display_power_domain power_domain;
  607. power_domain = POWER_DOMAIN_PIPE(pipe);
  608. if (!intel_display_power_get_if_enabled(dev_priv,
  609. power_domain)) {
  610. seq_printf(m, "Pipe %c power disabled\n",
  611. pipe_name(pipe));
  612. continue;
  613. }
  614. seq_printf(m, "Pipe %c stat:\t%08x\n",
  615. pipe_name(pipe),
  616. I915_READ(PIPESTAT(pipe)));
  617. intel_display_power_put(dev_priv, power_domain);
  618. }
  619. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  620. seq_printf(m, "Port hotplug:\t%08x\n",
  621. I915_READ(PORT_HOTPLUG_EN));
  622. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  623. I915_READ(VLV_DPFLIPSTAT));
  624. seq_printf(m, "DPINVGTT:\t%08x\n",
  625. I915_READ(DPINVGTT));
  626. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  627. for (i = 0; i < 4; i++) {
  628. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  629. i, I915_READ(GEN8_GT_IMR(i)));
  630. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  631. i, I915_READ(GEN8_GT_IIR(i)));
  632. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  633. i, I915_READ(GEN8_GT_IER(i)));
  634. }
  635. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  636. I915_READ(GEN8_PCU_IMR));
  637. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  638. I915_READ(GEN8_PCU_IIR));
  639. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  640. I915_READ(GEN8_PCU_IER));
  641. } else if (INTEL_GEN(dev_priv) >= 11) {
  642. seq_printf(m, "Master Interrupt Control: %08x\n",
  643. I915_READ(GEN11_GFX_MSTR_IRQ));
  644. seq_printf(m, "Render/Copy Intr Enable: %08x\n",
  645. I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
  646. seq_printf(m, "VCS/VECS Intr Enable: %08x\n",
  647. I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
  648. seq_printf(m, "GUC/SG Intr Enable:\t %08x\n",
  649. I915_READ(GEN11_GUC_SG_INTR_ENABLE));
  650. seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
  651. I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
  652. seq_printf(m, "Crypto Intr Enable:\t %08x\n",
  653. I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
  654. seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n",
  655. I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
  656. seq_printf(m, "Display Interrupt Control:\t%08x\n",
  657. I915_READ(GEN11_DISPLAY_INT_CTL));
  658. gen8_display_interrupt_info(m);
  659. } else if (INTEL_GEN(dev_priv) >= 8) {
  660. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  661. I915_READ(GEN8_MASTER_IRQ));
  662. for (i = 0; i < 4; i++) {
  663. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  664. i, I915_READ(GEN8_GT_IMR(i)));
  665. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  666. i, I915_READ(GEN8_GT_IIR(i)));
  667. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  668. i, I915_READ(GEN8_GT_IER(i)));
  669. }
  670. gen8_display_interrupt_info(m);
  671. } else if (IS_VALLEYVIEW(dev_priv)) {
  672. seq_printf(m, "Display IER:\t%08x\n",
  673. I915_READ(VLV_IER));
  674. seq_printf(m, "Display IIR:\t%08x\n",
  675. I915_READ(VLV_IIR));
  676. seq_printf(m, "Display IIR_RW:\t%08x\n",
  677. I915_READ(VLV_IIR_RW));
  678. seq_printf(m, "Display IMR:\t%08x\n",
  679. I915_READ(VLV_IMR));
  680. for_each_pipe(dev_priv, pipe) {
  681. enum intel_display_power_domain power_domain;
  682. power_domain = POWER_DOMAIN_PIPE(pipe);
  683. if (!intel_display_power_get_if_enabled(dev_priv,
  684. power_domain)) {
  685. seq_printf(m, "Pipe %c power disabled\n",
  686. pipe_name(pipe));
  687. continue;
  688. }
  689. seq_printf(m, "Pipe %c stat:\t%08x\n",
  690. pipe_name(pipe),
  691. I915_READ(PIPESTAT(pipe)));
  692. intel_display_power_put(dev_priv, power_domain);
  693. }
  694. seq_printf(m, "Master IER:\t%08x\n",
  695. I915_READ(VLV_MASTER_IER));
  696. seq_printf(m, "Render IER:\t%08x\n",
  697. I915_READ(GTIER));
  698. seq_printf(m, "Render IIR:\t%08x\n",
  699. I915_READ(GTIIR));
  700. seq_printf(m, "Render IMR:\t%08x\n",
  701. I915_READ(GTIMR));
  702. seq_printf(m, "PM IER:\t\t%08x\n",
  703. I915_READ(GEN6_PMIER));
  704. seq_printf(m, "PM IIR:\t\t%08x\n",
  705. I915_READ(GEN6_PMIIR));
  706. seq_printf(m, "PM IMR:\t\t%08x\n",
  707. I915_READ(GEN6_PMIMR));
  708. seq_printf(m, "Port hotplug:\t%08x\n",
  709. I915_READ(PORT_HOTPLUG_EN));
  710. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  711. I915_READ(VLV_DPFLIPSTAT));
  712. seq_printf(m, "DPINVGTT:\t%08x\n",
  713. I915_READ(DPINVGTT));
  714. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  715. seq_printf(m, "Interrupt enable: %08x\n",
  716. I915_READ(IER));
  717. seq_printf(m, "Interrupt identity: %08x\n",
  718. I915_READ(IIR));
  719. seq_printf(m, "Interrupt mask: %08x\n",
  720. I915_READ(IMR));
  721. for_each_pipe(dev_priv, pipe)
  722. seq_printf(m, "Pipe %c stat: %08x\n",
  723. pipe_name(pipe),
  724. I915_READ(PIPESTAT(pipe)));
  725. } else {
  726. seq_printf(m, "North Display Interrupt enable: %08x\n",
  727. I915_READ(DEIER));
  728. seq_printf(m, "North Display Interrupt identity: %08x\n",
  729. I915_READ(DEIIR));
  730. seq_printf(m, "North Display Interrupt mask: %08x\n",
  731. I915_READ(DEIMR));
  732. seq_printf(m, "South Display Interrupt enable: %08x\n",
  733. I915_READ(SDEIER));
  734. seq_printf(m, "South Display Interrupt identity: %08x\n",
  735. I915_READ(SDEIIR));
  736. seq_printf(m, "South Display Interrupt mask: %08x\n",
  737. I915_READ(SDEIMR));
  738. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  739. I915_READ(GTIER));
  740. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  741. I915_READ(GTIIR));
  742. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  743. I915_READ(GTIMR));
  744. }
  745. if (INTEL_GEN(dev_priv) >= 11) {
  746. seq_printf(m, "RCS Intr Mask:\t %08x\n",
  747. I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
  748. seq_printf(m, "BCS Intr Mask:\t %08x\n",
  749. I915_READ(GEN11_BCS_RSVD_INTR_MASK));
  750. seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
  751. I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
  752. seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
  753. I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
  754. seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
  755. I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
  756. seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
  757. I915_READ(GEN11_GUC_SG_INTR_MASK));
  758. seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
  759. I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
  760. seq_printf(m, "Crypto Intr Mask:\t %08x\n",
  761. I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
  762. seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
  763. I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
  764. } else if (INTEL_GEN(dev_priv) >= 6) {
  765. for_each_engine(engine, dev_priv, id) {
  766. seq_printf(m,
  767. "Graphics Interrupt mask (%s): %08x\n",
  768. engine->name, I915_READ_IMR(engine));
  769. }
  770. }
  771. intel_runtime_pm_put(dev_priv);
  772. return 0;
  773. }
  774. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  775. {
  776. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  777. struct drm_device *dev = &dev_priv->drm;
  778. int i, ret;
  779. ret = mutex_lock_interruptible(&dev->struct_mutex);
  780. if (ret)
  781. return ret;
  782. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  783. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  784. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  785. seq_printf(m, "Fence %d, pin count = %d, object = ",
  786. i, dev_priv->fence_regs[i].pin_count);
  787. if (!vma)
  788. seq_puts(m, "unused");
  789. else
  790. describe_obj(m, vma->obj);
  791. seq_putc(m, '\n');
  792. }
  793. mutex_unlock(&dev->struct_mutex);
  794. return 0;
  795. }
  796. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  797. static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
  798. size_t count, loff_t *pos)
  799. {
  800. struct i915_gpu_state *error = file->private_data;
  801. struct drm_i915_error_state_buf str;
  802. ssize_t ret;
  803. loff_t tmp;
  804. if (!error)
  805. return 0;
  806. ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
  807. if (ret)
  808. return ret;
  809. ret = i915_error_state_to_str(&str, error);
  810. if (ret)
  811. goto out;
  812. tmp = 0;
  813. ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
  814. if (ret < 0)
  815. goto out;
  816. *pos = str.start + ret;
  817. out:
  818. i915_error_state_buf_release(&str);
  819. return ret;
  820. }
  821. static int gpu_state_release(struct inode *inode, struct file *file)
  822. {
  823. i915_gpu_state_put(file->private_data);
  824. return 0;
  825. }
  826. static int i915_gpu_info_open(struct inode *inode, struct file *file)
  827. {
  828. struct drm_i915_private *i915 = inode->i_private;
  829. struct i915_gpu_state *gpu;
  830. intel_runtime_pm_get(i915);
  831. gpu = i915_capture_gpu_state(i915);
  832. intel_runtime_pm_put(i915);
  833. if (!gpu)
  834. return -ENOMEM;
  835. file->private_data = gpu;
  836. return 0;
  837. }
  838. static const struct file_operations i915_gpu_info_fops = {
  839. .owner = THIS_MODULE,
  840. .open = i915_gpu_info_open,
  841. .read = gpu_state_read,
  842. .llseek = default_llseek,
  843. .release = gpu_state_release,
  844. };
  845. static ssize_t
  846. i915_error_state_write(struct file *filp,
  847. const char __user *ubuf,
  848. size_t cnt,
  849. loff_t *ppos)
  850. {
  851. struct i915_gpu_state *error = filp->private_data;
  852. if (!error)
  853. return 0;
  854. DRM_DEBUG_DRIVER("Resetting error state\n");
  855. i915_reset_error_state(error->i915);
  856. return cnt;
  857. }
  858. static int i915_error_state_open(struct inode *inode, struct file *file)
  859. {
  860. file->private_data = i915_first_error_state(inode->i_private);
  861. return 0;
  862. }
  863. static const struct file_operations i915_error_state_fops = {
  864. .owner = THIS_MODULE,
  865. .open = i915_error_state_open,
  866. .read = gpu_state_read,
  867. .write = i915_error_state_write,
  868. .llseek = default_llseek,
  869. .release = gpu_state_release,
  870. };
  871. #endif
  872. static int
  873. i915_next_seqno_set(void *data, u64 val)
  874. {
  875. struct drm_i915_private *dev_priv = data;
  876. struct drm_device *dev = &dev_priv->drm;
  877. int ret;
  878. ret = mutex_lock_interruptible(&dev->struct_mutex);
  879. if (ret)
  880. return ret;
  881. intel_runtime_pm_get(dev_priv);
  882. ret = i915_gem_set_global_seqno(dev, val);
  883. intel_runtime_pm_put(dev_priv);
  884. mutex_unlock(&dev->struct_mutex);
  885. return ret;
  886. }
  887. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  888. NULL, i915_next_seqno_set,
  889. "0x%llx\n");
  890. static int i915_frequency_info(struct seq_file *m, void *unused)
  891. {
  892. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  893. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  894. int ret = 0;
  895. intel_runtime_pm_get(dev_priv);
  896. if (IS_GEN5(dev_priv)) {
  897. u16 rgvswctl = I915_READ16(MEMSWCTL);
  898. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  899. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  900. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  901. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  902. MEMSTAT_VID_SHIFT);
  903. seq_printf(m, "Current P-state: %d\n",
  904. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  905. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  906. u32 rpmodectl, freq_sts;
  907. mutex_lock(&dev_priv->pcu_lock);
  908. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  909. seq_printf(m, "Video Turbo Mode: %s\n",
  910. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  911. seq_printf(m, "HW control enabled: %s\n",
  912. yesno(rpmodectl & GEN6_RP_ENABLE));
  913. seq_printf(m, "SW control enabled: %s\n",
  914. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  915. GEN6_RP_MEDIA_SW_MODE));
  916. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  917. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  918. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  919. seq_printf(m, "actual GPU freq: %d MHz\n",
  920. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  921. seq_printf(m, "current GPU freq: %d MHz\n",
  922. intel_gpu_freq(dev_priv, rps->cur_freq));
  923. seq_printf(m, "max GPU freq: %d MHz\n",
  924. intel_gpu_freq(dev_priv, rps->max_freq));
  925. seq_printf(m, "min GPU freq: %d MHz\n",
  926. intel_gpu_freq(dev_priv, rps->min_freq));
  927. seq_printf(m, "idle GPU freq: %d MHz\n",
  928. intel_gpu_freq(dev_priv, rps->idle_freq));
  929. seq_printf(m,
  930. "efficient (RPe) frequency: %d MHz\n",
  931. intel_gpu_freq(dev_priv, rps->efficient_freq));
  932. mutex_unlock(&dev_priv->pcu_lock);
  933. } else if (INTEL_GEN(dev_priv) >= 6) {
  934. u32 rp_state_limits;
  935. u32 gt_perf_status;
  936. u32 rp_state_cap;
  937. u32 rpmodectl, rpinclimit, rpdeclimit;
  938. u32 rpstat, cagf, reqf;
  939. u32 rpupei, rpcurup, rpprevup;
  940. u32 rpdownei, rpcurdown, rpprevdown;
  941. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  942. int max_freq;
  943. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  944. if (IS_GEN9_LP(dev_priv)) {
  945. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  946. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  947. } else {
  948. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  949. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  950. }
  951. /* RPSTAT1 is in the GT power well */
  952. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  953. reqf = I915_READ(GEN6_RPNSWREQ);
  954. if (INTEL_GEN(dev_priv) >= 9)
  955. reqf >>= 23;
  956. else {
  957. reqf &= ~GEN6_TURBO_DISABLE;
  958. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  959. reqf >>= 24;
  960. else
  961. reqf >>= 25;
  962. }
  963. reqf = intel_gpu_freq(dev_priv, reqf);
  964. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  965. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  966. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  967. rpstat = I915_READ(GEN6_RPSTAT1);
  968. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  969. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  970. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  971. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  972. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  973. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  974. cagf = intel_gpu_freq(dev_priv,
  975. intel_get_cagf(dev_priv, rpstat));
  976. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  977. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  978. pm_ier = I915_READ(GEN6_PMIER);
  979. pm_imr = I915_READ(GEN6_PMIMR);
  980. pm_isr = I915_READ(GEN6_PMISR);
  981. pm_iir = I915_READ(GEN6_PMIIR);
  982. pm_mask = I915_READ(GEN6_PMINTRMSK);
  983. } else {
  984. pm_ier = I915_READ(GEN8_GT_IER(2));
  985. pm_imr = I915_READ(GEN8_GT_IMR(2));
  986. pm_isr = I915_READ(GEN8_GT_ISR(2));
  987. pm_iir = I915_READ(GEN8_GT_IIR(2));
  988. pm_mask = I915_READ(GEN6_PMINTRMSK);
  989. }
  990. seq_printf(m, "Video Turbo Mode: %s\n",
  991. yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
  992. seq_printf(m, "HW control enabled: %s\n",
  993. yesno(rpmodectl & GEN6_RP_ENABLE));
  994. seq_printf(m, "SW control enabled: %s\n",
  995. yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
  996. GEN6_RP_MEDIA_SW_MODE));
  997. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  998. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  999. seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
  1000. rps->pm_intrmsk_mbz);
  1001. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1002. seq_printf(m, "Render p-state ratio: %d\n",
  1003. (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
  1004. seq_printf(m, "Render p-state VID: %d\n",
  1005. gt_perf_status & 0xff);
  1006. seq_printf(m, "Render p-state limit: %d\n",
  1007. rp_state_limits & 0xff);
  1008. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1009. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1010. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1011. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1012. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1013. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1014. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1015. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1016. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1017. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1018. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1019. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1020. seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
  1021. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1022. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1023. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1024. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1025. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1026. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1027. seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
  1028. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
  1029. rp_state_cap >> 16) & 0xff;
  1030. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1031. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1032. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1033. intel_gpu_freq(dev_priv, max_freq));
  1034. max_freq = (rp_state_cap & 0xff00) >> 8;
  1035. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1036. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1037. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1038. intel_gpu_freq(dev_priv, max_freq));
  1039. max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
  1040. rp_state_cap >> 0) & 0xff;
  1041. max_freq *= (IS_GEN9_BC(dev_priv) ||
  1042. IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
  1043. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1044. intel_gpu_freq(dev_priv, max_freq));
  1045. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1046. intel_gpu_freq(dev_priv, rps->max_freq));
  1047. seq_printf(m, "Current freq: %d MHz\n",
  1048. intel_gpu_freq(dev_priv, rps->cur_freq));
  1049. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1050. seq_printf(m, "Idle freq: %d MHz\n",
  1051. intel_gpu_freq(dev_priv, rps->idle_freq));
  1052. seq_printf(m, "Min freq: %d MHz\n",
  1053. intel_gpu_freq(dev_priv, rps->min_freq));
  1054. seq_printf(m, "Boost freq: %d MHz\n",
  1055. intel_gpu_freq(dev_priv, rps->boost_freq));
  1056. seq_printf(m, "Max freq: %d MHz\n",
  1057. intel_gpu_freq(dev_priv, rps->max_freq));
  1058. seq_printf(m,
  1059. "efficient (RPe) frequency: %d MHz\n",
  1060. intel_gpu_freq(dev_priv, rps->efficient_freq));
  1061. } else {
  1062. seq_puts(m, "no P-state info available\n");
  1063. }
  1064. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
  1065. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1066. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1067. intel_runtime_pm_put(dev_priv);
  1068. return ret;
  1069. }
  1070. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1071. struct seq_file *m,
  1072. struct intel_instdone *instdone)
  1073. {
  1074. int slice;
  1075. int subslice;
  1076. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1077. instdone->instdone);
  1078. if (INTEL_GEN(dev_priv) <= 3)
  1079. return;
  1080. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1081. instdone->slice_common);
  1082. if (INTEL_GEN(dev_priv) <= 6)
  1083. return;
  1084. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1085. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1086. slice, subslice, instdone->sampler[slice][subslice]);
  1087. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1088. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1089. slice, subslice, instdone->row[slice][subslice]);
  1090. }
  1091. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1092. {
  1093. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1094. struct intel_engine_cs *engine;
  1095. u64 acthd[I915_NUM_ENGINES];
  1096. u32 seqno[I915_NUM_ENGINES];
  1097. struct intel_instdone instdone;
  1098. enum intel_engine_id id;
  1099. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1100. seq_puts(m, "Wedged\n");
  1101. if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
  1102. seq_puts(m, "Reset in progress: struct_mutex backoff\n");
  1103. if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
  1104. seq_puts(m, "Reset in progress: reset handoff to waiter\n");
  1105. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1106. seq_puts(m, "Waiter holding struct mutex\n");
  1107. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1108. seq_puts(m, "struct_mutex blocked for reset\n");
  1109. if (!i915_modparams.enable_hangcheck) {
  1110. seq_puts(m, "Hangcheck disabled\n");
  1111. return 0;
  1112. }
  1113. intel_runtime_pm_get(dev_priv);
  1114. for_each_engine(engine, dev_priv, id) {
  1115. acthd[id] = intel_engine_get_active_head(engine);
  1116. seqno[id] = intel_engine_get_seqno(engine);
  1117. }
  1118. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1119. intel_runtime_pm_put(dev_priv);
  1120. if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
  1121. seq_printf(m, "Hangcheck active, timer fires in %dms\n",
  1122. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1123. jiffies));
  1124. else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
  1125. seq_puts(m, "Hangcheck active, work pending\n");
  1126. else
  1127. seq_puts(m, "Hangcheck inactive\n");
  1128. seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
  1129. for_each_engine(engine, dev_priv, id) {
  1130. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1131. struct rb_node *rb;
  1132. seq_printf(m, "%s:\n", engine->name);
  1133. seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
  1134. engine->hangcheck.seqno, seqno[id],
  1135. intel_engine_last_submit(engine),
  1136. engine->timeline->inflight_seqnos);
  1137. seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
  1138. yesno(intel_engine_has_waiter(engine)),
  1139. yesno(test_bit(engine->id,
  1140. &dev_priv->gpu_error.missed_irq_rings)),
  1141. yesno(engine->hangcheck.stalled));
  1142. spin_lock_irq(&b->rb_lock);
  1143. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1144. struct intel_wait *w = rb_entry(rb, typeof(*w), node);
  1145. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1146. w->tsk->comm, w->tsk->pid, w->seqno);
  1147. }
  1148. spin_unlock_irq(&b->rb_lock);
  1149. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1150. (long long)engine->hangcheck.acthd,
  1151. (long long)acthd[id]);
  1152. seq_printf(m, "\taction = %s(%d) %d ms ago\n",
  1153. hangcheck_action_to_str(engine->hangcheck.action),
  1154. engine->hangcheck.action,
  1155. jiffies_to_msecs(jiffies -
  1156. engine->hangcheck.action_timestamp));
  1157. if (engine->id == RCS) {
  1158. seq_puts(m, "\tinstdone read =\n");
  1159. i915_instdone_info(dev_priv, m, &instdone);
  1160. seq_puts(m, "\tinstdone accu =\n");
  1161. i915_instdone_info(dev_priv, m,
  1162. &engine->hangcheck.instdone);
  1163. }
  1164. }
  1165. return 0;
  1166. }
  1167. static int i915_reset_info(struct seq_file *m, void *unused)
  1168. {
  1169. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1170. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1171. struct intel_engine_cs *engine;
  1172. enum intel_engine_id id;
  1173. seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
  1174. for_each_engine(engine, dev_priv, id) {
  1175. seq_printf(m, "%s = %u\n", engine->name,
  1176. i915_reset_engine_count(error, engine));
  1177. }
  1178. return 0;
  1179. }
  1180. static int ironlake_drpc_info(struct seq_file *m)
  1181. {
  1182. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1183. u32 rgvmodectl, rstdbyctl;
  1184. u16 crstandvid;
  1185. rgvmodectl = I915_READ(MEMMODECTL);
  1186. rstdbyctl = I915_READ(RSTDBYCTL);
  1187. crstandvid = I915_READ16(CRSTANDVID);
  1188. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1189. seq_printf(m, "Boost freq: %d\n",
  1190. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1191. MEMMODE_BOOST_FREQ_SHIFT);
  1192. seq_printf(m, "HW control enabled: %s\n",
  1193. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1194. seq_printf(m, "SW control enabled: %s\n",
  1195. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1196. seq_printf(m, "Gated voltage change: %s\n",
  1197. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1198. seq_printf(m, "Starting frequency: P%d\n",
  1199. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1200. seq_printf(m, "Max P-state: P%d\n",
  1201. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1202. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1203. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1204. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1205. seq_printf(m, "Render standby enabled: %s\n",
  1206. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1207. seq_puts(m, "Current RS state: ");
  1208. switch (rstdbyctl & RSX_STATUS_MASK) {
  1209. case RSX_STATUS_ON:
  1210. seq_puts(m, "on\n");
  1211. break;
  1212. case RSX_STATUS_RC1:
  1213. seq_puts(m, "RC1\n");
  1214. break;
  1215. case RSX_STATUS_RC1E:
  1216. seq_puts(m, "RC1E\n");
  1217. break;
  1218. case RSX_STATUS_RS1:
  1219. seq_puts(m, "RS1\n");
  1220. break;
  1221. case RSX_STATUS_RS2:
  1222. seq_puts(m, "RS2 (RC6)\n");
  1223. break;
  1224. case RSX_STATUS_RS3:
  1225. seq_puts(m, "RC3 (RC6+)\n");
  1226. break;
  1227. default:
  1228. seq_puts(m, "unknown\n");
  1229. break;
  1230. }
  1231. return 0;
  1232. }
  1233. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1234. {
  1235. struct drm_i915_private *i915 = node_to_i915(m->private);
  1236. struct intel_uncore_forcewake_domain *fw_domain;
  1237. unsigned int tmp;
  1238. seq_printf(m, "user.bypass_count = %u\n",
  1239. i915->uncore.user_forcewake.count);
  1240. for_each_fw_domain(fw_domain, i915, tmp)
  1241. seq_printf(m, "%s.wake_count = %u\n",
  1242. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1243. READ_ONCE(fw_domain->wake_count));
  1244. return 0;
  1245. }
  1246. static void print_rc6_res(struct seq_file *m,
  1247. const char *title,
  1248. const i915_reg_t reg)
  1249. {
  1250. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1251. seq_printf(m, "%s %u (%llu us)\n",
  1252. title, I915_READ(reg),
  1253. intel_rc6_residency_us(dev_priv, reg));
  1254. }
  1255. static int vlv_drpc_info(struct seq_file *m)
  1256. {
  1257. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1258. u32 rcctl1, pw_status;
  1259. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1260. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1261. seq_printf(m, "RC6 Enabled: %s\n",
  1262. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1263. GEN6_RC_CTL_EI_MODE(1))));
  1264. seq_printf(m, "Render Power Well: %s\n",
  1265. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1266. seq_printf(m, "Media Power Well: %s\n",
  1267. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1268. print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
  1269. print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
  1270. return i915_forcewake_domains(m, NULL);
  1271. }
  1272. static int gen6_drpc_info(struct seq_file *m)
  1273. {
  1274. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1275. u32 gt_core_status, rcctl1, rc6vids = 0;
  1276. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1277. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1278. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1279. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1280. if (INTEL_GEN(dev_priv) >= 9) {
  1281. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1282. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1283. }
  1284. if (INTEL_GEN(dev_priv) <= 7) {
  1285. mutex_lock(&dev_priv->pcu_lock);
  1286. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
  1287. &rc6vids);
  1288. mutex_unlock(&dev_priv->pcu_lock);
  1289. }
  1290. seq_printf(m, "RC1e Enabled: %s\n",
  1291. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1292. seq_printf(m, "RC6 Enabled: %s\n",
  1293. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1294. if (INTEL_GEN(dev_priv) >= 9) {
  1295. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1296. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1297. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1298. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1299. }
  1300. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1301. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1302. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1303. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1304. seq_puts(m, "Current RC state: ");
  1305. switch (gt_core_status & GEN6_RCn_MASK) {
  1306. case GEN6_RC0:
  1307. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1308. seq_puts(m, "Core Power Down\n");
  1309. else
  1310. seq_puts(m, "on\n");
  1311. break;
  1312. case GEN6_RC3:
  1313. seq_puts(m, "RC3\n");
  1314. break;
  1315. case GEN6_RC6:
  1316. seq_puts(m, "RC6\n");
  1317. break;
  1318. case GEN6_RC7:
  1319. seq_puts(m, "RC7\n");
  1320. break;
  1321. default:
  1322. seq_puts(m, "Unknown\n");
  1323. break;
  1324. }
  1325. seq_printf(m, "Core Power Down: %s\n",
  1326. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1327. if (INTEL_GEN(dev_priv) >= 9) {
  1328. seq_printf(m, "Render Power Well: %s\n",
  1329. (gen9_powergate_status &
  1330. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1331. seq_printf(m, "Media Power Well: %s\n",
  1332. (gen9_powergate_status &
  1333. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1334. }
  1335. /* Not exactly sure what this is */
  1336. print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
  1337. GEN6_GT_GFX_RC6_LOCKED);
  1338. print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
  1339. print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
  1340. print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
  1341. if (INTEL_GEN(dev_priv) <= 7) {
  1342. seq_printf(m, "RC6 voltage: %dmV\n",
  1343. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1344. seq_printf(m, "RC6+ voltage: %dmV\n",
  1345. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1346. seq_printf(m, "RC6++ voltage: %dmV\n",
  1347. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1348. }
  1349. return i915_forcewake_domains(m, NULL);
  1350. }
  1351. static int i915_drpc_info(struct seq_file *m, void *unused)
  1352. {
  1353. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1354. int err;
  1355. intel_runtime_pm_get(dev_priv);
  1356. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1357. err = vlv_drpc_info(m);
  1358. else if (INTEL_GEN(dev_priv) >= 6)
  1359. err = gen6_drpc_info(m);
  1360. else
  1361. err = ironlake_drpc_info(m);
  1362. intel_runtime_pm_put(dev_priv);
  1363. return err;
  1364. }
  1365. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1366. {
  1367. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1368. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1369. dev_priv->fb_tracking.busy_bits);
  1370. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1371. dev_priv->fb_tracking.flip_bits);
  1372. return 0;
  1373. }
  1374. static int i915_fbc_status(struct seq_file *m, void *unused)
  1375. {
  1376. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1377. struct intel_fbc *fbc = &dev_priv->fbc;
  1378. if (!HAS_FBC(dev_priv))
  1379. return -ENODEV;
  1380. intel_runtime_pm_get(dev_priv);
  1381. mutex_lock(&fbc->lock);
  1382. if (intel_fbc_is_active(dev_priv))
  1383. seq_puts(m, "FBC enabled\n");
  1384. else
  1385. seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
  1386. if (fbc->work.scheduled)
  1387. seq_printf(m, "FBC worker scheduled on vblank %llu, now %llu\n",
  1388. fbc->work.scheduled_vblank,
  1389. drm_crtc_vblank_count(&fbc->crtc->base));
  1390. if (intel_fbc_is_active(dev_priv)) {
  1391. u32 mask;
  1392. if (INTEL_GEN(dev_priv) >= 8)
  1393. mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
  1394. else if (INTEL_GEN(dev_priv) >= 7)
  1395. mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
  1396. else if (INTEL_GEN(dev_priv) >= 5)
  1397. mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
  1398. else if (IS_G4X(dev_priv))
  1399. mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
  1400. else
  1401. mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
  1402. FBC_STAT_COMPRESSED);
  1403. seq_printf(m, "Compressing: %s\n", yesno(mask));
  1404. }
  1405. mutex_unlock(&fbc->lock);
  1406. intel_runtime_pm_put(dev_priv);
  1407. return 0;
  1408. }
  1409. static int i915_fbc_false_color_get(void *data, u64 *val)
  1410. {
  1411. struct drm_i915_private *dev_priv = data;
  1412. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1413. return -ENODEV;
  1414. *val = dev_priv->fbc.false_color;
  1415. return 0;
  1416. }
  1417. static int i915_fbc_false_color_set(void *data, u64 val)
  1418. {
  1419. struct drm_i915_private *dev_priv = data;
  1420. u32 reg;
  1421. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1422. return -ENODEV;
  1423. mutex_lock(&dev_priv->fbc.lock);
  1424. reg = I915_READ(ILK_DPFC_CONTROL);
  1425. dev_priv->fbc.false_color = val;
  1426. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1427. (reg | FBC_CTL_FALSE_COLOR) :
  1428. (reg & ~FBC_CTL_FALSE_COLOR));
  1429. mutex_unlock(&dev_priv->fbc.lock);
  1430. return 0;
  1431. }
  1432. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
  1433. i915_fbc_false_color_get, i915_fbc_false_color_set,
  1434. "%llu\n");
  1435. static int i915_ips_status(struct seq_file *m, void *unused)
  1436. {
  1437. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1438. if (!HAS_IPS(dev_priv))
  1439. return -ENODEV;
  1440. intel_runtime_pm_get(dev_priv);
  1441. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1442. yesno(i915_modparams.enable_ips));
  1443. if (INTEL_GEN(dev_priv) >= 8) {
  1444. seq_puts(m, "Currently: unknown\n");
  1445. } else {
  1446. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1447. seq_puts(m, "Currently: enabled\n");
  1448. else
  1449. seq_puts(m, "Currently: disabled\n");
  1450. }
  1451. intel_runtime_pm_put(dev_priv);
  1452. return 0;
  1453. }
  1454. static int i915_sr_status(struct seq_file *m, void *unused)
  1455. {
  1456. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1457. bool sr_enabled = false;
  1458. intel_runtime_pm_get(dev_priv);
  1459. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1460. if (INTEL_GEN(dev_priv) >= 9)
  1461. /* no global SR status; inspect per-plane WM */;
  1462. else if (HAS_PCH_SPLIT(dev_priv))
  1463. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1464. else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
  1465. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1466. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1467. else if (IS_I915GM(dev_priv))
  1468. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1469. else if (IS_PINEVIEW(dev_priv))
  1470. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1471. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1472. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1473. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1474. intel_runtime_pm_put(dev_priv);
  1475. seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
  1476. return 0;
  1477. }
  1478. static int i915_emon_status(struct seq_file *m, void *unused)
  1479. {
  1480. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1481. struct drm_device *dev = &dev_priv->drm;
  1482. unsigned long temp, chipset, gfx;
  1483. int ret;
  1484. if (!IS_GEN5(dev_priv))
  1485. return -ENODEV;
  1486. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1487. if (ret)
  1488. return ret;
  1489. temp = i915_mch_val(dev_priv);
  1490. chipset = i915_chipset_val(dev_priv);
  1491. gfx = i915_gfx_val(dev_priv);
  1492. mutex_unlock(&dev->struct_mutex);
  1493. seq_printf(m, "GMCH temp: %ld\n", temp);
  1494. seq_printf(m, "Chipset power: %ld\n", chipset);
  1495. seq_printf(m, "GFX power: %ld\n", gfx);
  1496. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1497. return 0;
  1498. }
  1499. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1500. {
  1501. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1502. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1503. int ret = 0;
  1504. int gpu_freq, ia_freq;
  1505. unsigned int max_gpu_freq, min_gpu_freq;
  1506. if (!HAS_LLC(dev_priv))
  1507. return -ENODEV;
  1508. intel_runtime_pm_get(dev_priv);
  1509. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  1510. if (ret)
  1511. goto out;
  1512. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  1513. /* Convert GT frequency to 50 HZ units */
  1514. min_gpu_freq = rps->min_freq_softlimit / GEN9_FREQ_SCALER;
  1515. max_gpu_freq = rps->max_freq_softlimit / GEN9_FREQ_SCALER;
  1516. } else {
  1517. min_gpu_freq = rps->min_freq_softlimit;
  1518. max_gpu_freq = rps->max_freq_softlimit;
  1519. }
  1520. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1521. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1522. ia_freq = gpu_freq;
  1523. sandybridge_pcode_read(dev_priv,
  1524. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1525. &ia_freq);
  1526. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1527. intel_gpu_freq(dev_priv, (gpu_freq *
  1528. (IS_GEN9_BC(dev_priv) ||
  1529. IS_CANNONLAKE(dev_priv) ?
  1530. GEN9_FREQ_SCALER : 1))),
  1531. ((ia_freq >> 0) & 0xff) * 100,
  1532. ((ia_freq >> 8) & 0xff) * 100);
  1533. }
  1534. mutex_unlock(&dev_priv->pcu_lock);
  1535. out:
  1536. intel_runtime_pm_put(dev_priv);
  1537. return ret;
  1538. }
  1539. static int i915_opregion(struct seq_file *m, void *unused)
  1540. {
  1541. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1542. struct drm_device *dev = &dev_priv->drm;
  1543. struct intel_opregion *opregion = &dev_priv->opregion;
  1544. int ret;
  1545. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1546. if (ret)
  1547. goto out;
  1548. if (opregion->header)
  1549. seq_write(m, opregion->header, OPREGION_SIZE);
  1550. mutex_unlock(&dev->struct_mutex);
  1551. out:
  1552. return 0;
  1553. }
  1554. static int i915_vbt(struct seq_file *m, void *unused)
  1555. {
  1556. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1557. if (opregion->vbt)
  1558. seq_write(m, opregion->vbt, opregion->vbt_size);
  1559. return 0;
  1560. }
  1561. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1562. {
  1563. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1564. struct drm_device *dev = &dev_priv->drm;
  1565. struct intel_framebuffer *fbdev_fb = NULL;
  1566. struct drm_framebuffer *drm_fb;
  1567. int ret;
  1568. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1569. if (ret)
  1570. return ret;
  1571. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1572. if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
  1573. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1574. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1575. fbdev_fb->base.width,
  1576. fbdev_fb->base.height,
  1577. fbdev_fb->base.format->depth,
  1578. fbdev_fb->base.format->cpp[0] * 8,
  1579. fbdev_fb->base.modifier,
  1580. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1581. describe_obj(m, fbdev_fb->obj);
  1582. seq_putc(m, '\n');
  1583. }
  1584. #endif
  1585. mutex_lock(&dev->mode_config.fb_lock);
  1586. drm_for_each_fb(drm_fb, dev) {
  1587. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1588. if (fb == fbdev_fb)
  1589. continue;
  1590. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1591. fb->base.width,
  1592. fb->base.height,
  1593. fb->base.format->depth,
  1594. fb->base.format->cpp[0] * 8,
  1595. fb->base.modifier,
  1596. drm_framebuffer_read_refcount(&fb->base));
  1597. describe_obj(m, fb->obj);
  1598. seq_putc(m, '\n');
  1599. }
  1600. mutex_unlock(&dev->mode_config.fb_lock);
  1601. mutex_unlock(&dev->struct_mutex);
  1602. return 0;
  1603. }
  1604. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1605. {
  1606. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
  1607. ring->space, ring->head, ring->tail);
  1608. }
  1609. static int i915_context_status(struct seq_file *m, void *unused)
  1610. {
  1611. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1612. struct drm_device *dev = &dev_priv->drm;
  1613. struct intel_engine_cs *engine;
  1614. struct i915_gem_context *ctx;
  1615. enum intel_engine_id id;
  1616. int ret;
  1617. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1618. if (ret)
  1619. return ret;
  1620. list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
  1621. seq_printf(m, "HW context %u ", ctx->hw_id);
  1622. if (ctx->pid) {
  1623. struct task_struct *task;
  1624. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1625. if (task) {
  1626. seq_printf(m, "(%s [%d]) ",
  1627. task->comm, task->pid);
  1628. put_task_struct(task);
  1629. }
  1630. } else if (IS_ERR(ctx->file_priv)) {
  1631. seq_puts(m, "(deleted) ");
  1632. } else {
  1633. seq_puts(m, "(kernel) ");
  1634. }
  1635. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1636. seq_putc(m, '\n');
  1637. for_each_engine(engine, dev_priv, id) {
  1638. struct intel_context *ce = &ctx->engine[engine->id];
  1639. seq_printf(m, "%s: ", engine->name);
  1640. if (ce->state)
  1641. describe_obj(m, ce->state->obj);
  1642. if (ce->ring)
  1643. describe_ctx_ring(m, ce->ring);
  1644. seq_putc(m, '\n');
  1645. }
  1646. seq_putc(m, '\n');
  1647. }
  1648. mutex_unlock(&dev->struct_mutex);
  1649. return 0;
  1650. }
  1651. static const char *swizzle_string(unsigned swizzle)
  1652. {
  1653. switch (swizzle) {
  1654. case I915_BIT_6_SWIZZLE_NONE:
  1655. return "none";
  1656. case I915_BIT_6_SWIZZLE_9:
  1657. return "bit9";
  1658. case I915_BIT_6_SWIZZLE_9_10:
  1659. return "bit9/bit10";
  1660. case I915_BIT_6_SWIZZLE_9_11:
  1661. return "bit9/bit11";
  1662. case I915_BIT_6_SWIZZLE_9_10_11:
  1663. return "bit9/bit10/bit11";
  1664. case I915_BIT_6_SWIZZLE_9_17:
  1665. return "bit9/bit17";
  1666. case I915_BIT_6_SWIZZLE_9_10_17:
  1667. return "bit9/bit10/bit17";
  1668. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1669. return "unknown";
  1670. }
  1671. return "bug";
  1672. }
  1673. static int i915_swizzle_info(struct seq_file *m, void *data)
  1674. {
  1675. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1676. intel_runtime_pm_get(dev_priv);
  1677. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1678. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1679. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1680. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1681. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1682. seq_printf(m, "DDC = 0x%08x\n",
  1683. I915_READ(DCC));
  1684. seq_printf(m, "DDC2 = 0x%08x\n",
  1685. I915_READ(DCC2));
  1686. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1687. I915_READ16(C0DRB3));
  1688. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1689. I915_READ16(C1DRB3));
  1690. } else if (INTEL_GEN(dev_priv) >= 6) {
  1691. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1692. I915_READ(MAD_DIMM_C0));
  1693. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1694. I915_READ(MAD_DIMM_C1));
  1695. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1696. I915_READ(MAD_DIMM_C2));
  1697. seq_printf(m, "TILECTL = 0x%08x\n",
  1698. I915_READ(TILECTL));
  1699. if (INTEL_GEN(dev_priv) >= 8)
  1700. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1701. I915_READ(GAMTARBMODE));
  1702. else
  1703. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1704. I915_READ(ARB_MODE));
  1705. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1706. I915_READ(DISP_ARB_CTL));
  1707. }
  1708. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1709. seq_puts(m, "L-shaped memory detected\n");
  1710. intel_runtime_pm_put(dev_priv);
  1711. return 0;
  1712. }
  1713. static int per_file_ctx(int id, void *ptr, void *data)
  1714. {
  1715. struct i915_gem_context *ctx = ptr;
  1716. struct seq_file *m = data;
  1717. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1718. if (!ppgtt) {
  1719. seq_printf(m, " no ppgtt for context %d\n",
  1720. ctx->user_handle);
  1721. return 0;
  1722. }
  1723. if (i915_gem_context_is_default(ctx))
  1724. seq_puts(m, " default context:\n");
  1725. else
  1726. seq_printf(m, " context %d:\n", ctx->user_handle);
  1727. ppgtt->debug_dump(ppgtt, m);
  1728. return 0;
  1729. }
  1730. static void gen8_ppgtt_info(struct seq_file *m,
  1731. struct drm_i915_private *dev_priv)
  1732. {
  1733. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1734. struct intel_engine_cs *engine;
  1735. enum intel_engine_id id;
  1736. int i;
  1737. if (!ppgtt)
  1738. return;
  1739. for_each_engine(engine, dev_priv, id) {
  1740. seq_printf(m, "%s\n", engine->name);
  1741. for (i = 0; i < 4; i++) {
  1742. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1743. pdp <<= 32;
  1744. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1745. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1746. }
  1747. }
  1748. }
  1749. static void gen6_ppgtt_info(struct seq_file *m,
  1750. struct drm_i915_private *dev_priv)
  1751. {
  1752. struct intel_engine_cs *engine;
  1753. enum intel_engine_id id;
  1754. if (IS_GEN6(dev_priv))
  1755. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1756. for_each_engine(engine, dev_priv, id) {
  1757. seq_printf(m, "%s\n", engine->name);
  1758. if (IS_GEN7(dev_priv))
  1759. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1760. I915_READ(RING_MODE_GEN7(engine)));
  1761. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1762. I915_READ(RING_PP_DIR_BASE(engine)));
  1763. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1764. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1765. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1766. I915_READ(RING_PP_DIR_DCLV(engine)));
  1767. }
  1768. if (dev_priv->mm.aliasing_ppgtt) {
  1769. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1770. seq_puts(m, "aliasing PPGTT:\n");
  1771. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1772. ppgtt->debug_dump(ppgtt, m);
  1773. }
  1774. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1775. }
  1776. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1777. {
  1778. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1779. struct drm_device *dev = &dev_priv->drm;
  1780. struct drm_file *file;
  1781. int ret;
  1782. mutex_lock(&dev->filelist_mutex);
  1783. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1784. if (ret)
  1785. goto out_unlock;
  1786. intel_runtime_pm_get(dev_priv);
  1787. if (INTEL_GEN(dev_priv) >= 8)
  1788. gen8_ppgtt_info(m, dev_priv);
  1789. else if (INTEL_GEN(dev_priv) >= 6)
  1790. gen6_ppgtt_info(m, dev_priv);
  1791. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1792. struct drm_i915_file_private *file_priv = file->driver_priv;
  1793. struct task_struct *task;
  1794. task = get_pid_task(file->pid, PIDTYPE_PID);
  1795. if (!task) {
  1796. ret = -ESRCH;
  1797. goto out_rpm;
  1798. }
  1799. seq_printf(m, "\nproc: %s\n", task->comm);
  1800. put_task_struct(task);
  1801. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1802. (void *)(unsigned long)m);
  1803. }
  1804. out_rpm:
  1805. intel_runtime_pm_put(dev_priv);
  1806. mutex_unlock(&dev->struct_mutex);
  1807. out_unlock:
  1808. mutex_unlock(&dev->filelist_mutex);
  1809. return ret;
  1810. }
  1811. static int count_irq_waiters(struct drm_i915_private *i915)
  1812. {
  1813. struct intel_engine_cs *engine;
  1814. enum intel_engine_id id;
  1815. int count = 0;
  1816. for_each_engine(engine, i915, id)
  1817. count += intel_engine_has_waiter(engine);
  1818. return count;
  1819. }
  1820. static const char *rps_power_to_str(unsigned int power)
  1821. {
  1822. static const char * const strings[] = {
  1823. [LOW_POWER] = "low power",
  1824. [BETWEEN] = "mixed",
  1825. [HIGH_POWER] = "high power",
  1826. };
  1827. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1828. return "unknown";
  1829. return strings[power];
  1830. }
  1831. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1832. {
  1833. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1834. struct drm_device *dev = &dev_priv->drm;
  1835. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  1836. struct drm_file *file;
  1837. seq_printf(m, "RPS enabled? %d\n", rps->enabled);
  1838. seq_printf(m, "GPU busy? %s [%d requests]\n",
  1839. yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
  1840. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1841. seq_printf(m, "Boosts outstanding? %d\n",
  1842. atomic_read(&rps->num_waiters));
  1843. seq_printf(m, "Frequency requested %d\n",
  1844. intel_gpu_freq(dev_priv, rps->cur_freq));
  1845. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1846. intel_gpu_freq(dev_priv, rps->min_freq),
  1847. intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
  1848. intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
  1849. intel_gpu_freq(dev_priv, rps->max_freq));
  1850. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1851. intel_gpu_freq(dev_priv, rps->idle_freq),
  1852. intel_gpu_freq(dev_priv, rps->efficient_freq),
  1853. intel_gpu_freq(dev_priv, rps->boost_freq));
  1854. mutex_lock(&dev->filelist_mutex);
  1855. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1856. struct drm_i915_file_private *file_priv = file->driver_priv;
  1857. struct task_struct *task;
  1858. rcu_read_lock();
  1859. task = pid_task(file->pid, PIDTYPE_PID);
  1860. seq_printf(m, "%s [%d]: %d boosts\n",
  1861. task ? task->comm : "<unknown>",
  1862. task ? task->pid : -1,
  1863. atomic_read(&file_priv->rps_client.boosts));
  1864. rcu_read_unlock();
  1865. }
  1866. seq_printf(m, "Kernel (anonymous) boosts: %d\n",
  1867. atomic_read(&rps->boosts));
  1868. mutex_unlock(&dev->filelist_mutex);
  1869. if (INTEL_GEN(dev_priv) >= 6 &&
  1870. rps->enabled &&
  1871. dev_priv->gt.active_requests) {
  1872. u32 rpup, rpupei;
  1873. u32 rpdown, rpdownei;
  1874. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1875. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1876. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1877. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1878. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1879. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1880. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1881. rps_power_to_str(rps->power));
  1882. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1883. rpup && rpupei ? 100 * rpup / rpupei : 0,
  1884. rps->up_threshold);
  1885. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1886. rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
  1887. rps->down_threshold);
  1888. } else {
  1889. seq_puts(m, "\nRPS Autotuning inactive\n");
  1890. }
  1891. return 0;
  1892. }
  1893. static int i915_llc(struct seq_file *m, void *data)
  1894. {
  1895. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1896. const bool edram = INTEL_GEN(dev_priv) > 8;
  1897. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1898. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1899. intel_uncore_edram_size(dev_priv)/1024/1024);
  1900. return 0;
  1901. }
  1902. static int i915_huc_load_status_info(struct seq_file *m, void *data)
  1903. {
  1904. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1905. struct drm_printer p;
  1906. if (!HAS_HUC(dev_priv))
  1907. return -ENODEV;
  1908. p = drm_seq_file_printer(m);
  1909. intel_uc_fw_dump(&dev_priv->huc.fw, &p);
  1910. intel_runtime_pm_get(dev_priv);
  1911. seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
  1912. intel_runtime_pm_put(dev_priv);
  1913. return 0;
  1914. }
  1915. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1916. {
  1917. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1918. struct drm_printer p;
  1919. u32 tmp, i;
  1920. if (!HAS_GUC(dev_priv))
  1921. return -ENODEV;
  1922. p = drm_seq_file_printer(m);
  1923. intel_uc_fw_dump(&dev_priv->guc.fw, &p);
  1924. intel_runtime_pm_get(dev_priv);
  1925. tmp = I915_READ(GUC_STATUS);
  1926. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  1927. seq_printf(m, "\tBootrom status = 0x%x\n",
  1928. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  1929. seq_printf(m, "\tuKernel status = 0x%x\n",
  1930. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  1931. seq_printf(m, "\tMIA Core status = 0x%x\n",
  1932. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  1933. seq_puts(m, "\nScratch registers:\n");
  1934. for (i = 0; i < 16; i++)
  1935. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  1936. intel_runtime_pm_put(dev_priv);
  1937. return 0;
  1938. }
  1939. static void i915_guc_log_info(struct seq_file *m,
  1940. struct drm_i915_private *dev_priv)
  1941. {
  1942. struct intel_guc *guc = &dev_priv->guc;
  1943. seq_puts(m, "\nGuC logging stats:\n");
  1944. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  1945. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  1946. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  1947. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  1948. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  1949. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  1950. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  1951. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  1952. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  1953. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  1954. guc->log.flush_interrupt_count);
  1955. seq_printf(m, "\tCapture miss count: %u\n",
  1956. guc->log.capture_miss_count);
  1957. }
  1958. static void i915_guc_client_info(struct seq_file *m,
  1959. struct drm_i915_private *dev_priv,
  1960. struct intel_guc_client *client)
  1961. {
  1962. struct intel_engine_cs *engine;
  1963. enum intel_engine_id id;
  1964. uint64_t tot = 0;
  1965. seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
  1966. client->priority, client->stage_id, client->proc_desc_offset);
  1967. seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
  1968. client->doorbell_id, client->doorbell_offset);
  1969. for_each_engine(engine, dev_priv, id) {
  1970. u64 submissions = client->submissions[id];
  1971. tot += submissions;
  1972. seq_printf(m, "\tSubmissions: %llu %s\n",
  1973. submissions, engine->name);
  1974. }
  1975. seq_printf(m, "\tTotal: %llu\n", tot);
  1976. }
  1977. static int i915_guc_info(struct seq_file *m, void *data)
  1978. {
  1979. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1980. const struct intel_guc *guc = &dev_priv->guc;
  1981. if (!USES_GUC_SUBMISSION(dev_priv))
  1982. return -ENODEV;
  1983. GEM_BUG_ON(!guc->execbuf_client);
  1984. seq_printf(m, "Doorbell map:\n");
  1985. seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
  1986. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
  1987. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
  1988. i915_guc_client_info(m, dev_priv, guc->execbuf_client);
  1989. if (guc->preempt_client) {
  1990. seq_printf(m, "\nGuC preempt client @ %p:\n",
  1991. guc->preempt_client);
  1992. i915_guc_client_info(m, dev_priv, guc->preempt_client);
  1993. }
  1994. i915_guc_log_info(m, dev_priv);
  1995. /* Add more as required ... */
  1996. return 0;
  1997. }
  1998. static int i915_guc_stage_pool(struct seq_file *m, void *data)
  1999. {
  2000. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2001. const struct intel_guc *guc = &dev_priv->guc;
  2002. struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
  2003. struct intel_guc_client *client = guc->execbuf_client;
  2004. unsigned int tmp;
  2005. int index;
  2006. if (!USES_GUC_SUBMISSION(dev_priv))
  2007. return -ENODEV;
  2008. for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
  2009. struct intel_engine_cs *engine;
  2010. if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
  2011. continue;
  2012. seq_printf(m, "GuC stage descriptor %u:\n", index);
  2013. seq_printf(m, "\tIndex: %u\n", desc->stage_id);
  2014. seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
  2015. seq_printf(m, "\tPriority: %d\n", desc->priority);
  2016. seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
  2017. seq_printf(m, "\tEngines used: 0x%x\n",
  2018. desc->engines_used);
  2019. seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
  2020. desc->db_trigger_phy,
  2021. desc->db_trigger_cpu,
  2022. desc->db_trigger_uk);
  2023. seq_printf(m, "\tProcess descriptor: 0x%x\n",
  2024. desc->process_desc);
  2025. seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
  2026. desc->wq_addr, desc->wq_size);
  2027. seq_putc(m, '\n');
  2028. for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
  2029. u32 guc_engine_id = engine->guc_id;
  2030. struct guc_execlist_context *lrc =
  2031. &desc->lrc[guc_engine_id];
  2032. seq_printf(m, "\t%s LRC:\n", engine->name);
  2033. seq_printf(m, "\t\tContext desc: 0x%x\n",
  2034. lrc->context_desc);
  2035. seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
  2036. seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
  2037. seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
  2038. seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
  2039. seq_putc(m, '\n');
  2040. }
  2041. }
  2042. return 0;
  2043. }
  2044. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2045. {
  2046. struct drm_info_node *node = m->private;
  2047. struct drm_i915_private *dev_priv = node_to_i915(node);
  2048. bool dump_load_err = !!node->info_ent->data;
  2049. struct drm_i915_gem_object *obj = NULL;
  2050. u32 *log;
  2051. int i = 0;
  2052. if (!HAS_GUC(dev_priv))
  2053. return -ENODEV;
  2054. if (dump_load_err)
  2055. obj = dev_priv->guc.load_err_log;
  2056. else if (dev_priv->guc.log.vma)
  2057. obj = dev_priv->guc.log.vma->obj;
  2058. if (!obj)
  2059. return 0;
  2060. log = i915_gem_object_pin_map(obj, I915_MAP_WC);
  2061. if (IS_ERR(log)) {
  2062. DRM_DEBUG("Failed to pin object\n");
  2063. seq_puts(m, "(log data unaccessible)\n");
  2064. return PTR_ERR(log);
  2065. }
  2066. for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
  2067. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2068. *(log + i), *(log + i + 1),
  2069. *(log + i + 2), *(log + i + 3));
  2070. seq_putc(m, '\n');
  2071. i915_gem_object_unpin_map(obj);
  2072. return 0;
  2073. }
  2074. static int i915_guc_log_control_get(void *data, u64 *val)
  2075. {
  2076. struct drm_i915_private *dev_priv = data;
  2077. if (!HAS_GUC(dev_priv))
  2078. return -ENODEV;
  2079. if (!dev_priv->guc.log.vma)
  2080. return -EINVAL;
  2081. *val = i915_modparams.guc_log_level;
  2082. return 0;
  2083. }
  2084. static int i915_guc_log_control_set(void *data, u64 val)
  2085. {
  2086. struct drm_i915_private *dev_priv = data;
  2087. if (!HAS_GUC(dev_priv))
  2088. return -ENODEV;
  2089. return intel_guc_log_control(&dev_priv->guc, val);
  2090. }
  2091. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2092. i915_guc_log_control_get, i915_guc_log_control_set,
  2093. "%lld\n");
  2094. static const char *psr2_live_status(u32 val)
  2095. {
  2096. static const char * const live_status[] = {
  2097. "IDLE",
  2098. "CAPTURE",
  2099. "CAPTURE_FS",
  2100. "SLEEP",
  2101. "BUFON_FW",
  2102. "ML_UP",
  2103. "SU_STANDBY",
  2104. "FAST_SLEEP",
  2105. "DEEP_SLEEP",
  2106. "BUF_ON",
  2107. "TG_ON"
  2108. };
  2109. val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
  2110. if (val < ARRAY_SIZE(live_status))
  2111. return live_status[val];
  2112. return "unknown";
  2113. }
  2114. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2115. {
  2116. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2117. u32 psrperf = 0;
  2118. u32 stat[3];
  2119. enum pipe pipe;
  2120. bool enabled = false;
  2121. bool sink_support;
  2122. if (!HAS_PSR(dev_priv))
  2123. return -ENODEV;
  2124. sink_support = dev_priv->psr.sink_support;
  2125. seq_printf(m, "Sink_Support: %s\n", yesno(sink_support));
  2126. if (!sink_support)
  2127. return 0;
  2128. intel_runtime_pm_get(dev_priv);
  2129. mutex_lock(&dev_priv->psr.lock);
  2130. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2131. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2132. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2133. dev_priv->psr.busy_frontbuffer_bits);
  2134. seq_printf(m, "Re-enable work scheduled: %s\n",
  2135. yesno(work_busy(&dev_priv->psr.work.work)));
  2136. if (HAS_DDI(dev_priv)) {
  2137. if (dev_priv->psr.psr2_support)
  2138. enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
  2139. else
  2140. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2141. } else {
  2142. for_each_pipe(dev_priv, pipe) {
  2143. enum transcoder cpu_transcoder =
  2144. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2145. enum intel_display_power_domain power_domain;
  2146. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2147. if (!intel_display_power_get_if_enabled(dev_priv,
  2148. power_domain))
  2149. continue;
  2150. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2151. VLV_EDP_PSR_CURR_STATE_MASK;
  2152. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2153. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2154. enabled = true;
  2155. intel_display_power_put(dev_priv, power_domain);
  2156. }
  2157. }
  2158. seq_printf(m, "Main link in standby mode: %s\n",
  2159. yesno(dev_priv->psr.link_standby));
  2160. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2161. if (!HAS_DDI(dev_priv))
  2162. for_each_pipe(dev_priv, pipe) {
  2163. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2164. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2165. seq_printf(m, " pipe %c", pipe_name(pipe));
  2166. }
  2167. seq_puts(m, "\n");
  2168. /*
  2169. * VLV/CHV PSR has no kind of performance counter
  2170. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2171. */
  2172. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2173. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2174. EDP_PSR_PERF_CNT_MASK;
  2175. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2176. }
  2177. if (dev_priv->psr.psr2_support) {
  2178. u32 psr2 = I915_READ(EDP_PSR2_STATUS);
  2179. seq_printf(m, "EDP_PSR2_STATUS: %x [%s]\n",
  2180. psr2, psr2_live_status(psr2));
  2181. }
  2182. mutex_unlock(&dev_priv->psr.lock);
  2183. intel_runtime_pm_put(dev_priv);
  2184. return 0;
  2185. }
  2186. static int i915_sink_crc(struct seq_file *m, void *data)
  2187. {
  2188. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2189. struct drm_device *dev = &dev_priv->drm;
  2190. struct intel_connector *connector;
  2191. struct drm_connector_list_iter conn_iter;
  2192. struct intel_dp *intel_dp = NULL;
  2193. struct drm_modeset_acquire_ctx ctx;
  2194. int ret;
  2195. u8 crc[6];
  2196. drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
  2197. drm_connector_list_iter_begin(dev, &conn_iter);
  2198. for_each_intel_connector_iter(connector, &conn_iter) {
  2199. struct drm_crtc *crtc;
  2200. struct drm_connector_state *state;
  2201. struct intel_crtc_state *crtc_state;
  2202. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2203. continue;
  2204. retry:
  2205. ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
  2206. if (ret)
  2207. goto err;
  2208. state = connector->base.state;
  2209. if (!state->best_encoder)
  2210. continue;
  2211. crtc = state->crtc;
  2212. ret = drm_modeset_lock(&crtc->mutex, &ctx);
  2213. if (ret)
  2214. goto err;
  2215. crtc_state = to_intel_crtc_state(crtc->state);
  2216. if (!crtc_state->base.active)
  2217. continue;
  2218. /*
  2219. * We need to wait for all crtc updates to complete, to make
  2220. * sure any pending modesets and plane updates are completed.
  2221. */
  2222. if (crtc_state->base.commit) {
  2223. ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
  2224. if (ret)
  2225. goto err;
  2226. }
  2227. intel_dp = enc_to_intel_dp(state->best_encoder);
  2228. ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
  2229. if (ret)
  2230. goto err;
  2231. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2232. crc[0], crc[1], crc[2],
  2233. crc[3], crc[4], crc[5]);
  2234. goto out;
  2235. err:
  2236. if (ret == -EDEADLK) {
  2237. ret = drm_modeset_backoff(&ctx);
  2238. if (!ret)
  2239. goto retry;
  2240. }
  2241. goto out;
  2242. }
  2243. ret = -ENODEV;
  2244. out:
  2245. drm_connector_list_iter_end(&conn_iter);
  2246. drm_modeset_drop_locks(&ctx);
  2247. drm_modeset_acquire_fini(&ctx);
  2248. return ret;
  2249. }
  2250. static int i915_energy_uJ(struct seq_file *m, void *data)
  2251. {
  2252. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2253. unsigned long long power;
  2254. u32 units;
  2255. if (INTEL_GEN(dev_priv) < 6)
  2256. return -ENODEV;
  2257. intel_runtime_pm_get(dev_priv);
  2258. if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
  2259. intel_runtime_pm_put(dev_priv);
  2260. return -ENODEV;
  2261. }
  2262. units = (power & 0x1f00) >> 8;
  2263. power = I915_READ(MCH_SECP_NRG_STTS);
  2264. power = (1000000 * power) >> units; /* convert to uJ */
  2265. intel_runtime_pm_put(dev_priv);
  2266. seq_printf(m, "%llu", power);
  2267. return 0;
  2268. }
  2269. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2270. {
  2271. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2272. struct pci_dev *pdev = dev_priv->drm.pdev;
  2273. if (!HAS_RUNTIME_PM(dev_priv))
  2274. seq_puts(m, "Runtime power management not supported\n");
  2275. seq_printf(m, "GPU idle: %s (epoch %u)\n",
  2276. yesno(!dev_priv->gt.awake), dev_priv->gt.epoch);
  2277. seq_printf(m, "IRQs disabled: %s\n",
  2278. yesno(!intel_irqs_enabled(dev_priv)));
  2279. #ifdef CONFIG_PM
  2280. seq_printf(m, "Usage count: %d\n",
  2281. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2282. #else
  2283. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2284. #endif
  2285. seq_printf(m, "PCI device power state: %s [%d]\n",
  2286. pci_power_name(pdev->current_state),
  2287. pdev->current_state);
  2288. return 0;
  2289. }
  2290. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2291. {
  2292. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2293. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2294. int i;
  2295. mutex_lock(&power_domains->lock);
  2296. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2297. for (i = 0; i < power_domains->power_well_count; i++) {
  2298. struct i915_power_well *power_well;
  2299. enum intel_display_power_domain power_domain;
  2300. power_well = &power_domains->power_wells[i];
  2301. seq_printf(m, "%-25s %d\n", power_well->name,
  2302. power_well->count);
  2303. for_each_power_domain(power_domain, power_well->domains)
  2304. seq_printf(m, " %-23s %d\n",
  2305. intel_display_power_domain_str(power_domain),
  2306. power_domains->domain_use_count[power_domain]);
  2307. }
  2308. mutex_unlock(&power_domains->lock);
  2309. return 0;
  2310. }
  2311. static int i915_dmc_info(struct seq_file *m, void *unused)
  2312. {
  2313. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2314. struct intel_csr *csr;
  2315. if (!HAS_CSR(dev_priv))
  2316. return -ENODEV;
  2317. csr = &dev_priv->csr;
  2318. intel_runtime_pm_get(dev_priv);
  2319. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2320. seq_printf(m, "path: %s\n", csr->fw_path);
  2321. if (!csr->dmc_payload)
  2322. goto out;
  2323. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2324. CSR_VERSION_MINOR(csr->version));
  2325. if (IS_KABYLAKE(dev_priv) ||
  2326. (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
  2327. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2328. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2329. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2330. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2331. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2332. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2333. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2334. }
  2335. out:
  2336. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2337. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2338. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2339. intel_runtime_pm_put(dev_priv);
  2340. return 0;
  2341. }
  2342. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2343. struct drm_display_mode *mode)
  2344. {
  2345. int i;
  2346. for (i = 0; i < tabs; i++)
  2347. seq_putc(m, '\t');
  2348. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2349. mode->base.id, mode->name,
  2350. mode->vrefresh, mode->clock,
  2351. mode->hdisplay, mode->hsync_start,
  2352. mode->hsync_end, mode->htotal,
  2353. mode->vdisplay, mode->vsync_start,
  2354. mode->vsync_end, mode->vtotal,
  2355. mode->type, mode->flags);
  2356. }
  2357. static void intel_encoder_info(struct seq_file *m,
  2358. struct intel_crtc *intel_crtc,
  2359. struct intel_encoder *intel_encoder)
  2360. {
  2361. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2362. struct drm_device *dev = &dev_priv->drm;
  2363. struct drm_crtc *crtc = &intel_crtc->base;
  2364. struct intel_connector *intel_connector;
  2365. struct drm_encoder *encoder;
  2366. encoder = &intel_encoder->base;
  2367. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2368. encoder->base.id, encoder->name);
  2369. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2370. struct drm_connector *connector = &intel_connector->base;
  2371. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2372. connector->base.id,
  2373. connector->name,
  2374. drm_get_connector_status_name(connector->status));
  2375. if (connector->status == connector_status_connected) {
  2376. struct drm_display_mode *mode = &crtc->mode;
  2377. seq_printf(m, ", mode:\n");
  2378. intel_seq_print_mode(m, 2, mode);
  2379. } else {
  2380. seq_putc(m, '\n');
  2381. }
  2382. }
  2383. }
  2384. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2385. {
  2386. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2387. struct drm_device *dev = &dev_priv->drm;
  2388. struct drm_crtc *crtc = &intel_crtc->base;
  2389. struct intel_encoder *intel_encoder;
  2390. struct drm_plane_state *plane_state = crtc->primary->state;
  2391. struct drm_framebuffer *fb = plane_state->fb;
  2392. if (fb)
  2393. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2394. fb->base.id, plane_state->src_x >> 16,
  2395. plane_state->src_y >> 16, fb->width, fb->height);
  2396. else
  2397. seq_puts(m, "\tprimary plane disabled\n");
  2398. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2399. intel_encoder_info(m, intel_crtc, intel_encoder);
  2400. }
  2401. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2402. {
  2403. struct drm_display_mode *mode = panel->fixed_mode;
  2404. seq_printf(m, "\tfixed mode:\n");
  2405. intel_seq_print_mode(m, 2, mode);
  2406. }
  2407. static void intel_dp_info(struct seq_file *m,
  2408. struct intel_connector *intel_connector)
  2409. {
  2410. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2411. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2412. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2413. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2414. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2415. intel_panel_info(m, &intel_connector->panel);
  2416. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2417. &intel_dp->aux);
  2418. }
  2419. static void intel_dp_mst_info(struct seq_file *m,
  2420. struct intel_connector *intel_connector)
  2421. {
  2422. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2423. struct intel_dp_mst_encoder *intel_mst =
  2424. enc_to_mst(&intel_encoder->base);
  2425. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2426. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2427. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2428. intel_connector->port);
  2429. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2430. }
  2431. static void intel_hdmi_info(struct seq_file *m,
  2432. struct intel_connector *intel_connector)
  2433. {
  2434. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2435. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2436. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2437. }
  2438. static void intel_lvds_info(struct seq_file *m,
  2439. struct intel_connector *intel_connector)
  2440. {
  2441. intel_panel_info(m, &intel_connector->panel);
  2442. }
  2443. static void intel_connector_info(struct seq_file *m,
  2444. struct drm_connector *connector)
  2445. {
  2446. struct intel_connector *intel_connector = to_intel_connector(connector);
  2447. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2448. struct drm_display_mode *mode;
  2449. seq_printf(m, "connector %d: type %s, status: %s\n",
  2450. connector->base.id, connector->name,
  2451. drm_get_connector_status_name(connector->status));
  2452. if (connector->status == connector_status_connected) {
  2453. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2454. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2455. connector->display_info.width_mm,
  2456. connector->display_info.height_mm);
  2457. seq_printf(m, "\tsubpixel order: %s\n",
  2458. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2459. seq_printf(m, "\tCEA rev: %d\n",
  2460. connector->display_info.cea_rev);
  2461. }
  2462. if (!intel_encoder)
  2463. return;
  2464. switch (connector->connector_type) {
  2465. case DRM_MODE_CONNECTOR_DisplayPort:
  2466. case DRM_MODE_CONNECTOR_eDP:
  2467. if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2468. intel_dp_mst_info(m, intel_connector);
  2469. else
  2470. intel_dp_info(m, intel_connector);
  2471. break;
  2472. case DRM_MODE_CONNECTOR_LVDS:
  2473. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2474. intel_lvds_info(m, intel_connector);
  2475. break;
  2476. case DRM_MODE_CONNECTOR_HDMIA:
  2477. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2478. intel_encoder->type == INTEL_OUTPUT_DDI)
  2479. intel_hdmi_info(m, intel_connector);
  2480. break;
  2481. default:
  2482. break;
  2483. }
  2484. seq_printf(m, "\tmodes:\n");
  2485. list_for_each_entry(mode, &connector->modes, head)
  2486. intel_seq_print_mode(m, 2, mode);
  2487. }
  2488. static const char *plane_type(enum drm_plane_type type)
  2489. {
  2490. switch (type) {
  2491. case DRM_PLANE_TYPE_OVERLAY:
  2492. return "OVL";
  2493. case DRM_PLANE_TYPE_PRIMARY:
  2494. return "PRI";
  2495. case DRM_PLANE_TYPE_CURSOR:
  2496. return "CUR";
  2497. /*
  2498. * Deliberately omitting default: to generate compiler warnings
  2499. * when a new drm_plane_type gets added.
  2500. */
  2501. }
  2502. return "unknown";
  2503. }
  2504. static const char *plane_rotation(unsigned int rotation)
  2505. {
  2506. static char buf[48];
  2507. /*
  2508. * According to doc only one DRM_MODE_ROTATE_ is allowed but this
  2509. * will print them all to visualize if the values are misused
  2510. */
  2511. snprintf(buf, sizeof(buf),
  2512. "%s%s%s%s%s%s(0x%08x)",
  2513. (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
  2514. (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
  2515. (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
  2516. (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
  2517. (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
  2518. (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
  2519. rotation);
  2520. return buf;
  2521. }
  2522. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2523. {
  2524. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2525. struct drm_device *dev = &dev_priv->drm;
  2526. struct intel_plane *intel_plane;
  2527. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2528. struct drm_plane_state *state;
  2529. struct drm_plane *plane = &intel_plane->base;
  2530. struct drm_format_name_buf format_name;
  2531. if (!plane->state) {
  2532. seq_puts(m, "plane->state is NULL!\n");
  2533. continue;
  2534. }
  2535. state = plane->state;
  2536. if (state->fb) {
  2537. drm_get_format_name(state->fb->format->format,
  2538. &format_name);
  2539. } else {
  2540. sprintf(format_name.str, "N/A");
  2541. }
  2542. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2543. plane->base.id,
  2544. plane_type(intel_plane->base.type),
  2545. state->crtc_x, state->crtc_y,
  2546. state->crtc_w, state->crtc_h,
  2547. (state->src_x >> 16),
  2548. ((state->src_x & 0xffff) * 15625) >> 10,
  2549. (state->src_y >> 16),
  2550. ((state->src_y & 0xffff) * 15625) >> 10,
  2551. (state->src_w >> 16),
  2552. ((state->src_w & 0xffff) * 15625) >> 10,
  2553. (state->src_h >> 16),
  2554. ((state->src_h & 0xffff) * 15625) >> 10,
  2555. format_name.str,
  2556. plane_rotation(state->rotation));
  2557. }
  2558. }
  2559. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2560. {
  2561. struct intel_crtc_state *pipe_config;
  2562. int num_scalers = intel_crtc->num_scalers;
  2563. int i;
  2564. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2565. /* Not all platformas have a scaler */
  2566. if (num_scalers) {
  2567. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2568. num_scalers,
  2569. pipe_config->scaler_state.scaler_users,
  2570. pipe_config->scaler_state.scaler_id);
  2571. for (i = 0; i < num_scalers; i++) {
  2572. struct intel_scaler *sc =
  2573. &pipe_config->scaler_state.scalers[i];
  2574. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2575. i, yesno(sc->in_use), sc->mode);
  2576. }
  2577. seq_puts(m, "\n");
  2578. } else {
  2579. seq_puts(m, "\tNo scalers available on this platform\n");
  2580. }
  2581. }
  2582. static int i915_display_info(struct seq_file *m, void *unused)
  2583. {
  2584. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2585. struct drm_device *dev = &dev_priv->drm;
  2586. struct intel_crtc *crtc;
  2587. struct drm_connector *connector;
  2588. struct drm_connector_list_iter conn_iter;
  2589. intel_runtime_pm_get(dev_priv);
  2590. seq_printf(m, "CRTC info\n");
  2591. seq_printf(m, "---------\n");
  2592. for_each_intel_crtc(dev, crtc) {
  2593. struct intel_crtc_state *pipe_config;
  2594. drm_modeset_lock(&crtc->base.mutex, NULL);
  2595. pipe_config = to_intel_crtc_state(crtc->base.state);
  2596. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2597. crtc->base.base.id, pipe_name(crtc->pipe),
  2598. yesno(pipe_config->base.active),
  2599. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2600. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2601. if (pipe_config->base.active) {
  2602. struct intel_plane *cursor =
  2603. to_intel_plane(crtc->base.cursor);
  2604. intel_crtc_info(m, crtc);
  2605. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
  2606. yesno(cursor->base.state->visible),
  2607. cursor->base.state->crtc_x,
  2608. cursor->base.state->crtc_y,
  2609. cursor->base.state->crtc_w,
  2610. cursor->base.state->crtc_h,
  2611. cursor->cursor.base);
  2612. intel_scaler_info(m, crtc);
  2613. intel_plane_info(m, crtc);
  2614. }
  2615. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2616. yesno(!crtc->cpu_fifo_underrun_disabled),
  2617. yesno(!crtc->pch_fifo_underrun_disabled));
  2618. drm_modeset_unlock(&crtc->base.mutex);
  2619. }
  2620. seq_printf(m, "\n");
  2621. seq_printf(m, "Connector info\n");
  2622. seq_printf(m, "--------------\n");
  2623. mutex_lock(&dev->mode_config.mutex);
  2624. drm_connector_list_iter_begin(dev, &conn_iter);
  2625. drm_for_each_connector_iter(connector, &conn_iter)
  2626. intel_connector_info(m, connector);
  2627. drm_connector_list_iter_end(&conn_iter);
  2628. mutex_unlock(&dev->mode_config.mutex);
  2629. intel_runtime_pm_put(dev_priv);
  2630. return 0;
  2631. }
  2632. static int i915_engine_info(struct seq_file *m, void *unused)
  2633. {
  2634. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2635. struct intel_engine_cs *engine;
  2636. enum intel_engine_id id;
  2637. struct drm_printer p;
  2638. intel_runtime_pm_get(dev_priv);
  2639. seq_printf(m, "GT awake? %s (epoch %u)\n",
  2640. yesno(dev_priv->gt.awake), dev_priv->gt.epoch);
  2641. seq_printf(m, "Global active requests: %d\n",
  2642. dev_priv->gt.active_requests);
  2643. seq_printf(m, "CS timestamp frequency: %u kHz\n",
  2644. dev_priv->info.cs_timestamp_frequency_khz);
  2645. p = drm_seq_file_printer(m);
  2646. for_each_engine(engine, dev_priv, id)
  2647. intel_engine_dump(engine, &p, "%s\n", engine->name);
  2648. intel_runtime_pm_put(dev_priv);
  2649. return 0;
  2650. }
  2651. static int i915_rcs_topology(struct seq_file *m, void *unused)
  2652. {
  2653. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2654. struct drm_printer p = drm_seq_file_printer(m);
  2655. intel_device_info_dump_topology(&INTEL_INFO(dev_priv)->sseu, &p);
  2656. return 0;
  2657. }
  2658. static int i915_shrinker_info(struct seq_file *m, void *unused)
  2659. {
  2660. struct drm_i915_private *i915 = node_to_i915(m->private);
  2661. seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
  2662. seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
  2663. return 0;
  2664. }
  2665. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2666. {
  2667. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2668. struct drm_device *dev = &dev_priv->drm;
  2669. int i;
  2670. drm_modeset_lock_all(dev);
  2671. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2672. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2673. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2674. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2675. pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
  2676. seq_printf(m, " tracked hardware state:\n");
  2677. seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
  2678. seq_printf(m, " dpll_md: 0x%08x\n",
  2679. pll->state.hw_state.dpll_md);
  2680. seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
  2681. seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
  2682. seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
  2683. }
  2684. drm_modeset_unlock_all(dev);
  2685. return 0;
  2686. }
  2687. static int i915_wa_registers(struct seq_file *m, void *unused)
  2688. {
  2689. int i;
  2690. int ret;
  2691. struct intel_engine_cs *engine;
  2692. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2693. struct drm_device *dev = &dev_priv->drm;
  2694. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2695. enum intel_engine_id id;
  2696. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2697. if (ret)
  2698. return ret;
  2699. intel_runtime_pm_get(dev_priv);
  2700. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2701. for_each_engine(engine, dev_priv, id)
  2702. seq_printf(m, "HW whitelist count for %s: %d\n",
  2703. engine->name, workarounds->hw_whitelist_count[id]);
  2704. for (i = 0; i < workarounds->count; ++i) {
  2705. i915_reg_t addr;
  2706. u32 mask, value, read;
  2707. bool ok;
  2708. addr = workarounds->reg[i].addr;
  2709. mask = workarounds->reg[i].mask;
  2710. value = workarounds->reg[i].value;
  2711. read = I915_READ(addr);
  2712. ok = (value & mask) == (read & mask);
  2713. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2714. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2715. }
  2716. intel_runtime_pm_put(dev_priv);
  2717. mutex_unlock(&dev->struct_mutex);
  2718. return 0;
  2719. }
  2720. static int i915_ipc_status_show(struct seq_file *m, void *data)
  2721. {
  2722. struct drm_i915_private *dev_priv = m->private;
  2723. seq_printf(m, "Isochronous Priority Control: %s\n",
  2724. yesno(dev_priv->ipc_enabled));
  2725. return 0;
  2726. }
  2727. static int i915_ipc_status_open(struct inode *inode, struct file *file)
  2728. {
  2729. struct drm_i915_private *dev_priv = inode->i_private;
  2730. if (!HAS_IPC(dev_priv))
  2731. return -ENODEV;
  2732. return single_open(file, i915_ipc_status_show, dev_priv);
  2733. }
  2734. static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
  2735. size_t len, loff_t *offp)
  2736. {
  2737. struct seq_file *m = file->private_data;
  2738. struct drm_i915_private *dev_priv = m->private;
  2739. int ret;
  2740. bool enable;
  2741. ret = kstrtobool_from_user(ubuf, len, &enable);
  2742. if (ret < 0)
  2743. return ret;
  2744. intel_runtime_pm_get(dev_priv);
  2745. if (!dev_priv->ipc_enabled && enable)
  2746. DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
  2747. dev_priv->wm.distrust_bios_wm = true;
  2748. dev_priv->ipc_enabled = enable;
  2749. intel_enable_ipc(dev_priv);
  2750. intel_runtime_pm_put(dev_priv);
  2751. return len;
  2752. }
  2753. static const struct file_operations i915_ipc_status_fops = {
  2754. .owner = THIS_MODULE,
  2755. .open = i915_ipc_status_open,
  2756. .read = seq_read,
  2757. .llseek = seq_lseek,
  2758. .release = single_release,
  2759. .write = i915_ipc_status_write
  2760. };
  2761. static int i915_ddb_info(struct seq_file *m, void *unused)
  2762. {
  2763. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2764. struct drm_device *dev = &dev_priv->drm;
  2765. struct skl_ddb_allocation *ddb;
  2766. struct skl_ddb_entry *entry;
  2767. enum pipe pipe;
  2768. int plane;
  2769. if (INTEL_GEN(dev_priv) < 9)
  2770. return -ENODEV;
  2771. drm_modeset_lock_all(dev);
  2772. ddb = &dev_priv->wm.skl_hw.ddb;
  2773. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2774. for_each_pipe(dev_priv, pipe) {
  2775. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2776. for_each_universal_plane(dev_priv, pipe, plane) {
  2777. entry = &ddb->plane[pipe][plane];
  2778. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2779. entry->start, entry->end,
  2780. skl_ddb_entry_size(entry));
  2781. }
  2782. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2783. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2784. entry->end, skl_ddb_entry_size(entry));
  2785. }
  2786. drm_modeset_unlock_all(dev);
  2787. return 0;
  2788. }
  2789. static void drrs_status_per_crtc(struct seq_file *m,
  2790. struct drm_device *dev,
  2791. struct intel_crtc *intel_crtc)
  2792. {
  2793. struct drm_i915_private *dev_priv = to_i915(dev);
  2794. struct i915_drrs *drrs = &dev_priv->drrs;
  2795. int vrefresh = 0;
  2796. struct drm_connector *connector;
  2797. struct drm_connector_list_iter conn_iter;
  2798. drm_connector_list_iter_begin(dev, &conn_iter);
  2799. drm_for_each_connector_iter(connector, &conn_iter) {
  2800. if (connector->state->crtc != &intel_crtc->base)
  2801. continue;
  2802. seq_printf(m, "%s:\n", connector->name);
  2803. }
  2804. drm_connector_list_iter_end(&conn_iter);
  2805. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2806. seq_puts(m, "\tVBT: DRRS_type: Static");
  2807. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2808. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2809. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2810. seq_puts(m, "\tVBT: DRRS_type: None");
  2811. else
  2812. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2813. seq_puts(m, "\n\n");
  2814. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2815. struct intel_panel *panel;
  2816. mutex_lock(&drrs->mutex);
  2817. /* DRRS Supported */
  2818. seq_puts(m, "\tDRRS Supported: Yes\n");
  2819. /* disable_drrs() will make drrs->dp NULL */
  2820. if (!drrs->dp) {
  2821. seq_puts(m, "Idleness DRRS: Disabled\n");
  2822. if (dev_priv->psr.enabled)
  2823. seq_puts(m,
  2824. "\tAs PSR is enabled, DRRS is not enabled\n");
  2825. mutex_unlock(&drrs->mutex);
  2826. return;
  2827. }
  2828. panel = &drrs->dp->attached_connector->panel;
  2829. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2830. drrs->busy_frontbuffer_bits);
  2831. seq_puts(m, "\n\t\t");
  2832. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2833. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2834. vrefresh = panel->fixed_mode->vrefresh;
  2835. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2836. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2837. vrefresh = panel->downclock_mode->vrefresh;
  2838. } else {
  2839. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2840. drrs->refresh_rate_type);
  2841. mutex_unlock(&drrs->mutex);
  2842. return;
  2843. }
  2844. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2845. seq_puts(m, "\n\t\t");
  2846. mutex_unlock(&drrs->mutex);
  2847. } else {
  2848. /* DRRS not supported. Print the VBT parameter*/
  2849. seq_puts(m, "\tDRRS Supported : No");
  2850. }
  2851. seq_puts(m, "\n");
  2852. }
  2853. static int i915_drrs_status(struct seq_file *m, void *unused)
  2854. {
  2855. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2856. struct drm_device *dev = &dev_priv->drm;
  2857. struct intel_crtc *intel_crtc;
  2858. int active_crtc_cnt = 0;
  2859. drm_modeset_lock_all(dev);
  2860. for_each_intel_crtc(dev, intel_crtc) {
  2861. if (intel_crtc->base.state->active) {
  2862. active_crtc_cnt++;
  2863. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2864. drrs_status_per_crtc(m, dev, intel_crtc);
  2865. }
  2866. }
  2867. drm_modeset_unlock_all(dev);
  2868. if (!active_crtc_cnt)
  2869. seq_puts(m, "No active crtc found\n");
  2870. return 0;
  2871. }
  2872. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2873. {
  2874. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2875. struct drm_device *dev = &dev_priv->drm;
  2876. struct intel_encoder *intel_encoder;
  2877. struct intel_digital_port *intel_dig_port;
  2878. struct drm_connector *connector;
  2879. struct drm_connector_list_iter conn_iter;
  2880. drm_connector_list_iter_begin(dev, &conn_iter);
  2881. drm_for_each_connector_iter(connector, &conn_iter) {
  2882. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  2883. continue;
  2884. intel_encoder = intel_attached_encoder(connector);
  2885. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2886. continue;
  2887. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  2888. if (!intel_dig_port->dp.can_mst)
  2889. continue;
  2890. seq_printf(m, "MST Source Port %c\n",
  2891. port_name(intel_dig_port->base.port));
  2892. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2893. }
  2894. drm_connector_list_iter_end(&conn_iter);
  2895. return 0;
  2896. }
  2897. static ssize_t i915_displayport_test_active_write(struct file *file,
  2898. const char __user *ubuf,
  2899. size_t len, loff_t *offp)
  2900. {
  2901. char *input_buffer;
  2902. int status = 0;
  2903. struct drm_device *dev;
  2904. struct drm_connector *connector;
  2905. struct drm_connector_list_iter conn_iter;
  2906. struct intel_dp *intel_dp;
  2907. int val = 0;
  2908. dev = ((struct seq_file *)file->private_data)->private;
  2909. if (len == 0)
  2910. return 0;
  2911. input_buffer = memdup_user_nul(ubuf, len);
  2912. if (IS_ERR(input_buffer))
  2913. return PTR_ERR(input_buffer);
  2914. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  2915. drm_connector_list_iter_begin(dev, &conn_iter);
  2916. drm_for_each_connector_iter(connector, &conn_iter) {
  2917. struct intel_encoder *encoder;
  2918. if (connector->connector_type !=
  2919. DRM_MODE_CONNECTOR_DisplayPort)
  2920. continue;
  2921. encoder = to_intel_encoder(connector->encoder);
  2922. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  2923. continue;
  2924. if (encoder && connector->status == connector_status_connected) {
  2925. intel_dp = enc_to_intel_dp(&encoder->base);
  2926. status = kstrtoint(input_buffer, 10, &val);
  2927. if (status < 0)
  2928. break;
  2929. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  2930. /* To prevent erroneous activation of the compliance
  2931. * testing code, only accept an actual value of 1 here
  2932. */
  2933. if (val == 1)
  2934. intel_dp->compliance.test_active = 1;
  2935. else
  2936. intel_dp->compliance.test_active = 0;
  2937. }
  2938. }
  2939. drm_connector_list_iter_end(&conn_iter);
  2940. kfree(input_buffer);
  2941. if (status < 0)
  2942. return status;
  2943. *offp += len;
  2944. return len;
  2945. }
  2946. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  2947. {
  2948. struct drm_device *dev = m->private;
  2949. struct drm_connector *connector;
  2950. struct drm_connector_list_iter conn_iter;
  2951. struct intel_dp *intel_dp;
  2952. drm_connector_list_iter_begin(dev, &conn_iter);
  2953. drm_for_each_connector_iter(connector, &conn_iter) {
  2954. struct intel_encoder *encoder;
  2955. if (connector->connector_type !=
  2956. DRM_MODE_CONNECTOR_DisplayPort)
  2957. continue;
  2958. encoder = to_intel_encoder(connector->encoder);
  2959. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  2960. continue;
  2961. if (encoder && connector->status == connector_status_connected) {
  2962. intel_dp = enc_to_intel_dp(&encoder->base);
  2963. if (intel_dp->compliance.test_active)
  2964. seq_puts(m, "1");
  2965. else
  2966. seq_puts(m, "0");
  2967. } else
  2968. seq_puts(m, "0");
  2969. }
  2970. drm_connector_list_iter_end(&conn_iter);
  2971. return 0;
  2972. }
  2973. static int i915_displayport_test_active_open(struct inode *inode,
  2974. struct file *file)
  2975. {
  2976. struct drm_i915_private *dev_priv = inode->i_private;
  2977. return single_open(file, i915_displayport_test_active_show,
  2978. &dev_priv->drm);
  2979. }
  2980. static const struct file_operations i915_displayport_test_active_fops = {
  2981. .owner = THIS_MODULE,
  2982. .open = i915_displayport_test_active_open,
  2983. .read = seq_read,
  2984. .llseek = seq_lseek,
  2985. .release = single_release,
  2986. .write = i915_displayport_test_active_write
  2987. };
  2988. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  2989. {
  2990. struct drm_device *dev = m->private;
  2991. struct drm_connector *connector;
  2992. struct drm_connector_list_iter conn_iter;
  2993. struct intel_dp *intel_dp;
  2994. drm_connector_list_iter_begin(dev, &conn_iter);
  2995. drm_for_each_connector_iter(connector, &conn_iter) {
  2996. struct intel_encoder *encoder;
  2997. if (connector->connector_type !=
  2998. DRM_MODE_CONNECTOR_DisplayPort)
  2999. continue;
  3000. encoder = to_intel_encoder(connector->encoder);
  3001. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3002. continue;
  3003. if (encoder && connector->status == connector_status_connected) {
  3004. intel_dp = enc_to_intel_dp(&encoder->base);
  3005. if (intel_dp->compliance.test_type ==
  3006. DP_TEST_LINK_EDID_READ)
  3007. seq_printf(m, "%lx",
  3008. intel_dp->compliance.test_data.edid);
  3009. else if (intel_dp->compliance.test_type ==
  3010. DP_TEST_LINK_VIDEO_PATTERN) {
  3011. seq_printf(m, "hdisplay: %d\n",
  3012. intel_dp->compliance.test_data.hdisplay);
  3013. seq_printf(m, "vdisplay: %d\n",
  3014. intel_dp->compliance.test_data.vdisplay);
  3015. seq_printf(m, "bpc: %u\n",
  3016. intel_dp->compliance.test_data.bpc);
  3017. }
  3018. } else
  3019. seq_puts(m, "0");
  3020. }
  3021. drm_connector_list_iter_end(&conn_iter);
  3022. return 0;
  3023. }
  3024. static int i915_displayport_test_data_open(struct inode *inode,
  3025. struct file *file)
  3026. {
  3027. struct drm_i915_private *dev_priv = inode->i_private;
  3028. return single_open(file, i915_displayport_test_data_show,
  3029. &dev_priv->drm);
  3030. }
  3031. static const struct file_operations i915_displayport_test_data_fops = {
  3032. .owner = THIS_MODULE,
  3033. .open = i915_displayport_test_data_open,
  3034. .read = seq_read,
  3035. .llseek = seq_lseek,
  3036. .release = single_release
  3037. };
  3038. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3039. {
  3040. struct drm_device *dev = m->private;
  3041. struct drm_connector *connector;
  3042. struct drm_connector_list_iter conn_iter;
  3043. struct intel_dp *intel_dp;
  3044. drm_connector_list_iter_begin(dev, &conn_iter);
  3045. drm_for_each_connector_iter(connector, &conn_iter) {
  3046. struct intel_encoder *encoder;
  3047. if (connector->connector_type !=
  3048. DRM_MODE_CONNECTOR_DisplayPort)
  3049. continue;
  3050. encoder = to_intel_encoder(connector->encoder);
  3051. if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
  3052. continue;
  3053. if (encoder && connector->status == connector_status_connected) {
  3054. intel_dp = enc_to_intel_dp(&encoder->base);
  3055. seq_printf(m, "%02lx", intel_dp->compliance.test_type);
  3056. } else
  3057. seq_puts(m, "0");
  3058. }
  3059. drm_connector_list_iter_end(&conn_iter);
  3060. return 0;
  3061. }
  3062. static int i915_displayport_test_type_open(struct inode *inode,
  3063. struct file *file)
  3064. {
  3065. struct drm_i915_private *dev_priv = inode->i_private;
  3066. return single_open(file, i915_displayport_test_type_show,
  3067. &dev_priv->drm);
  3068. }
  3069. static const struct file_operations i915_displayport_test_type_fops = {
  3070. .owner = THIS_MODULE,
  3071. .open = i915_displayport_test_type_open,
  3072. .read = seq_read,
  3073. .llseek = seq_lseek,
  3074. .release = single_release
  3075. };
  3076. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3077. {
  3078. struct drm_i915_private *dev_priv = m->private;
  3079. struct drm_device *dev = &dev_priv->drm;
  3080. int level;
  3081. int num_levels;
  3082. if (IS_CHERRYVIEW(dev_priv))
  3083. num_levels = 3;
  3084. else if (IS_VALLEYVIEW(dev_priv))
  3085. num_levels = 1;
  3086. else if (IS_G4X(dev_priv))
  3087. num_levels = 3;
  3088. else
  3089. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3090. drm_modeset_lock_all(dev);
  3091. for (level = 0; level < num_levels; level++) {
  3092. unsigned int latency = wm[level];
  3093. /*
  3094. * - WM1+ latency values in 0.5us units
  3095. * - latencies are in us on gen9/vlv/chv
  3096. */
  3097. if (INTEL_GEN(dev_priv) >= 9 ||
  3098. IS_VALLEYVIEW(dev_priv) ||
  3099. IS_CHERRYVIEW(dev_priv) ||
  3100. IS_G4X(dev_priv))
  3101. latency *= 10;
  3102. else if (level > 0)
  3103. latency *= 5;
  3104. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3105. level, wm[level], latency / 10, latency % 10);
  3106. }
  3107. drm_modeset_unlock_all(dev);
  3108. }
  3109. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3110. {
  3111. struct drm_i915_private *dev_priv = m->private;
  3112. const uint16_t *latencies;
  3113. if (INTEL_GEN(dev_priv) >= 9)
  3114. latencies = dev_priv->wm.skl_latency;
  3115. else
  3116. latencies = dev_priv->wm.pri_latency;
  3117. wm_latency_show(m, latencies);
  3118. return 0;
  3119. }
  3120. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3121. {
  3122. struct drm_i915_private *dev_priv = m->private;
  3123. const uint16_t *latencies;
  3124. if (INTEL_GEN(dev_priv) >= 9)
  3125. latencies = dev_priv->wm.skl_latency;
  3126. else
  3127. latencies = dev_priv->wm.spr_latency;
  3128. wm_latency_show(m, latencies);
  3129. return 0;
  3130. }
  3131. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3132. {
  3133. struct drm_i915_private *dev_priv = m->private;
  3134. const uint16_t *latencies;
  3135. if (INTEL_GEN(dev_priv) >= 9)
  3136. latencies = dev_priv->wm.skl_latency;
  3137. else
  3138. latencies = dev_priv->wm.cur_latency;
  3139. wm_latency_show(m, latencies);
  3140. return 0;
  3141. }
  3142. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3143. {
  3144. struct drm_i915_private *dev_priv = inode->i_private;
  3145. if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
  3146. return -ENODEV;
  3147. return single_open(file, pri_wm_latency_show, dev_priv);
  3148. }
  3149. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3150. {
  3151. struct drm_i915_private *dev_priv = inode->i_private;
  3152. if (HAS_GMCH_DISPLAY(dev_priv))
  3153. return -ENODEV;
  3154. return single_open(file, spr_wm_latency_show, dev_priv);
  3155. }
  3156. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3157. {
  3158. struct drm_i915_private *dev_priv = inode->i_private;
  3159. if (HAS_GMCH_DISPLAY(dev_priv))
  3160. return -ENODEV;
  3161. return single_open(file, cur_wm_latency_show, dev_priv);
  3162. }
  3163. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3164. size_t len, loff_t *offp, uint16_t wm[8])
  3165. {
  3166. struct seq_file *m = file->private_data;
  3167. struct drm_i915_private *dev_priv = m->private;
  3168. struct drm_device *dev = &dev_priv->drm;
  3169. uint16_t new[8] = { 0 };
  3170. int num_levels;
  3171. int level;
  3172. int ret;
  3173. char tmp[32];
  3174. if (IS_CHERRYVIEW(dev_priv))
  3175. num_levels = 3;
  3176. else if (IS_VALLEYVIEW(dev_priv))
  3177. num_levels = 1;
  3178. else if (IS_G4X(dev_priv))
  3179. num_levels = 3;
  3180. else
  3181. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3182. if (len >= sizeof(tmp))
  3183. return -EINVAL;
  3184. if (copy_from_user(tmp, ubuf, len))
  3185. return -EFAULT;
  3186. tmp[len] = '\0';
  3187. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3188. &new[0], &new[1], &new[2], &new[3],
  3189. &new[4], &new[5], &new[6], &new[7]);
  3190. if (ret != num_levels)
  3191. return -EINVAL;
  3192. drm_modeset_lock_all(dev);
  3193. for (level = 0; level < num_levels; level++)
  3194. wm[level] = new[level];
  3195. drm_modeset_unlock_all(dev);
  3196. return len;
  3197. }
  3198. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3199. size_t len, loff_t *offp)
  3200. {
  3201. struct seq_file *m = file->private_data;
  3202. struct drm_i915_private *dev_priv = m->private;
  3203. uint16_t *latencies;
  3204. if (INTEL_GEN(dev_priv) >= 9)
  3205. latencies = dev_priv->wm.skl_latency;
  3206. else
  3207. latencies = dev_priv->wm.pri_latency;
  3208. return wm_latency_write(file, ubuf, len, offp, latencies);
  3209. }
  3210. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3211. size_t len, loff_t *offp)
  3212. {
  3213. struct seq_file *m = file->private_data;
  3214. struct drm_i915_private *dev_priv = m->private;
  3215. uint16_t *latencies;
  3216. if (INTEL_GEN(dev_priv) >= 9)
  3217. latencies = dev_priv->wm.skl_latency;
  3218. else
  3219. latencies = dev_priv->wm.spr_latency;
  3220. return wm_latency_write(file, ubuf, len, offp, latencies);
  3221. }
  3222. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3223. size_t len, loff_t *offp)
  3224. {
  3225. struct seq_file *m = file->private_data;
  3226. struct drm_i915_private *dev_priv = m->private;
  3227. uint16_t *latencies;
  3228. if (INTEL_GEN(dev_priv) >= 9)
  3229. latencies = dev_priv->wm.skl_latency;
  3230. else
  3231. latencies = dev_priv->wm.cur_latency;
  3232. return wm_latency_write(file, ubuf, len, offp, latencies);
  3233. }
  3234. static const struct file_operations i915_pri_wm_latency_fops = {
  3235. .owner = THIS_MODULE,
  3236. .open = pri_wm_latency_open,
  3237. .read = seq_read,
  3238. .llseek = seq_lseek,
  3239. .release = single_release,
  3240. .write = pri_wm_latency_write
  3241. };
  3242. static const struct file_operations i915_spr_wm_latency_fops = {
  3243. .owner = THIS_MODULE,
  3244. .open = spr_wm_latency_open,
  3245. .read = seq_read,
  3246. .llseek = seq_lseek,
  3247. .release = single_release,
  3248. .write = spr_wm_latency_write
  3249. };
  3250. static const struct file_operations i915_cur_wm_latency_fops = {
  3251. .owner = THIS_MODULE,
  3252. .open = cur_wm_latency_open,
  3253. .read = seq_read,
  3254. .llseek = seq_lseek,
  3255. .release = single_release,
  3256. .write = cur_wm_latency_write
  3257. };
  3258. static int
  3259. i915_wedged_get(void *data, u64 *val)
  3260. {
  3261. struct drm_i915_private *dev_priv = data;
  3262. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3263. return 0;
  3264. }
  3265. static int
  3266. i915_wedged_set(void *data, u64 val)
  3267. {
  3268. struct drm_i915_private *i915 = data;
  3269. struct intel_engine_cs *engine;
  3270. unsigned int tmp;
  3271. /*
  3272. * There is no safeguard against this debugfs entry colliding
  3273. * with the hangcheck calling same i915_handle_error() in
  3274. * parallel, causing an explosion. For now we assume that the
  3275. * test harness is responsible enough not to inject gpu hangs
  3276. * while it is writing to 'i915_wedged'
  3277. */
  3278. if (i915_reset_backoff(&i915->gpu_error))
  3279. return -EAGAIN;
  3280. for_each_engine_masked(engine, i915, val, tmp) {
  3281. engine->hangcheck.seqno = intel_engine_get_seqno(engine);
  3282. engine->hangcheck.stalled = true;
  3283. }
  3284. i915_handle_error(i915, val, "Manually set wedged engine mask = %llx",
  3285. val);
  3286. wait_on_bit(&i915->gpu_error.flags,
  3287. I915_RESET_HANDOFF,
  3288. TASK_UNINTERRUPTIBLE);
  3289. return 0;
  3290. }
  3291. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3292. i915_wedged_get, i915_wedged_set,
  3293. "%llu\n");
  3294. static int
  3295. fault_irq_set(struct drm_i915_private *i915,
  3296. unsigned long *irq,
  3297. unsigned long val)
  3298. {
  3299. int err;
  3300. err = mutex_lock_interruptible(&i915->drm.struct_mutex);
  3301. if (err)
  3302. return err;
  3303. err = i915_gem_wait_for_idle(i915,
  3304. I915_WAIT_LOCKED |
  3305. I915_WAIT_INTERRUPTIBLE);
  3306. if (err)
  3307. goto err_unlock;
  3308. *irq = val;
  3309. mutex_unlock(&i915->drm.struct_mutex);
  3310. /* Flush idle worker to disarm irq */
  3311. drain_delayed_work(&i915->gt.idle_work);
  3312. return 0;
  3313. err_unlock:
  3314. mutex_unlock(&i915->drm.struct_mutex);
  3315. return err;
  3316. }
  3317. static int
  3318. i915_ring_missed_irq_get(void *data, u64 *val)
  3319. {
  3320. struct drm_i915_private *dev_priv = data;
  3321. *val = dev_priv->gpu_error.missed_irq_rings;
  3322. return 0;
  3323. }
  3324. static int
  3325. i915_ring_missed_irq_set(void *data, u64 val)
  3326. {
  3327. struct drm_i915_private *i915 = data;
  3328. return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
  3329. }
  3330. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3331. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3332. "0x%08llx\n");
  3333. static int
  3334. i915_ring_test_irq_get(void *data, u64 *val)
  3335. {
  3336. struct drm_i915_private *dev_priv = data;
  3337. *val = dev_priv->gpu_error.test_irq_rings;
  3338. return 0;
  3339. }
  3340. static int
  3341. i915_ring_test_irq_set(void *data, u64 val)
  3342. {
  3343. struct drm_i915_private *i915 = data;
  3344. val &= INTEL_INFO(i915)->ring_mask;
  3345. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3346. return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
  3347. }
  3348. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3349. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3350. "0x%08llx\n");
  3351. #define DROP_UNBOUND BIT(0)
  3352. #define DROP_BOUND BIT(1)
  3353. #define DROP_RETIRE BIT(2)
  3354. #define DROP_ACTIVE BIT(3)
  3355. #define DROP_FREED BIT(4)
  3356. #define DROP_SHRINK_ALL BIT(5)
  3357. #define DROP_IDLE BIT(6)
  3358. #define DROP_ALL (DROP_UNBOUND | \
  3359. DROP_BOUND | \
  3360. DROP_RETIRE | \
  3361. DROP_ACTIVE | \
  3362. DROP_FREED | \
  3363. DROP_SHRINK_ALL |\
  3364. DROP_IDLE)
  3365. static int
  3366. i915_drop_caches_get(void *data, u64 *val)
  3367. {
  3368. *val = DROP_ALL;
  3369. return 0;
  3370. }
  3371. static int
  3372. i915_drop_caches_set(void *data, u64 val)
  3373. {
  3374. struct drm_i915_private *dev_priv = data;
  3375. struct drm_device *dev = &dev_priv->drm;
  3376. int ret = 0;
  3377. DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
  3378. val, val & DROP_ALL);
  3379. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3380. * on ioctls on -EAGAIN. */
  3381. if (val & (DROP_ACTIVE | DROP_RETIRE)) {
  3382. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3383. if (ret)
  3384. return ret;
  3385. if (val & DROP_ACTIVE)
  3386. ret = i915_gem_wait_for_idle(dev_priv,
  3387. I915_WAIT_INTERRUPTIBLE |
  3388. I915_WAIT_LOCKED);
  3389. if (val & DROP_RETIRE)
  3390. i915_retire_requests(dev_priv);
  3391. mutex_unlock(&dev->struct_mutex);
  3392. }
  3393. fs_reclaim_acquire(GFP_KERNEL);
  3394. if (val & DROP_BOUND)
  3395. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
  3396. if (val & DROP_UNBOUND)
  3397. i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
  3398. if (val & DROP_SHRINK_ALL)
  3399. i915_gem_shrink_all(dev_priv);
  3400. fs_reclaim_release(GFP_KERNEL);
  3401. if (val & DROP_IDLE)
  3402. drain_delayed_work(&dev_priv->gt.idle_work);
  3403. if (val & DROP_FREED)
  3404. i915_gem_drain_freed_objects(dev_priv);
  3405. return ret;
  3406. }
  3407. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3408. i915_drop_caches_get, i915_drop_caches_set,
  3409. "0x%08llx\n");
  3410. static int
  3411. i915_max_freq_get(void *data, u64 *val)
  3412. {
  3413. struct drm_i915_private *dev_priv = data;
  3414. if (INTEL_GEN(dev_priv) < 6)
  3415. return -ENODEV;
  3416. *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
  3417. return 0;
  3418. }
  3419. static int
  3420. i915_max_freq_set(void *data, u64 val)
  3421. {
  3422. struct drm_i915_private *dev_priv = data;
  3423. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3424. u32 hw_max, hw_min;
  3425. int ret;
  3426. if (INTEL_GEN(dev_priv) < 6)
  3427. return -ENODEV;
  3428. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3429. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  3430. if (ret)
  3431. return ret;
  3432. /*
  3433. * Turbo will still be enabled, but won't go above the set value.
  3434. */
  3435. val = intel_freq_opcode(dev_priv, val);
  3436. hw_max = rps->max_freq;
  3437. hw_min = rps->min_freq;
  3438. if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
  3439. mutex_unlock(&dev_priv->pcu_lock);
  3440. return -EINVAL;
  3441. }
  3442. rps->max_freq_softlimit = val;
  3443. if (intel_set_rps(dev_priv, val))
  3444. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3445. mutex_unlock(&dev_priv->pcu_lock);
  3446. return 0;
  3447. }
  3448. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3449. i915_max_freq_get, i915_max_freq_set,
  3450. "%llu\n");
  3451. static int
  3452. i915_min_freq_get(void *data, u64 *val)
  3453. {
  3454. struct drm_i915_private *dev_priv = data;
  3455. if (INTEL_GEN(dev_priv) < 6)
  3456. return -ENODEV;
  3457. *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
  3458. return 0;
  3459. }
  3460. static int
  3461. i915_min_freq_set(void *data, u64 val)
  3462. {
  3463. struct drm_i915_private *dev_priv = data;
  3464. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  3465. u32 hw_max, hw_min;
  3466. int ret;
  3467. if (INTEL_GEN(dev_priv) < 6)
  3468. return -ENODEV;
  3469. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3470. ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
  3471. if (ret)
  3472. return ret;
  3473. /*
  3474. * Turbo will still be enabled, but won't go below the set value.
  3475. */
  3476. val = intel_freq_opcode(dev_priv, val);
  3477. hw_max = rps->max_freq;
  3478. hw_min = rps->min_freq;
  3479. if (val < hw_min ||
  3480. val > hw_max || val > rps->max_freq_softlimit) {
  3481. mutex_unlock(&dev_priv->pcu_lock);
  3482. return -EINVAL;
  3483. }
  3484. rps->min_freq_softlimit = val;
  3485. if (intel_set_rps(dev_priv, val))
  3486. DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
  3487. mutex_unlock(&dev_priv->pcu_lock);
  3488. return 0;
  3489. }
  3490. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3491. i915_min_freq_get, i915_min_freq_set,
  3492. "%llu\n");
  3493. static int
  3494. i915_cache_sharing_get(void *data, u64 *val)
  3495. {
  3496. struct drm_i915_private *dev_priv = data;
  3497. u32 snpcr;
  3498. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3499. return -ENODEV;
  3500. intel_runtime_pm_get(dev_priv);
  3501. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3502. intel_runtime_pm_put(dev_priv);
  3503. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3504. return 0;
  3505. }
  3506. static int
  3507. i915_cache_sharing_set(void *data, u64 val)
  3508. {
  3509. struct drm_i915_private *dev_priv = data;
  3510. u32 snpcr;
  3511. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  3512. return -ENODEV;
  3513. if (val > 3)
  3514. return -EINVAL;
  3515. intel_runtime_pm_get(dev_priv);
  3516. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3517. /* Update the cache sharing policy here as well */
  3518. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3519. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3520. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3521. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3522. intel_runtime_pm_put(dev_priv);
  3523. return 0;
  3524. }
  3525. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3526. i915_cache_sharing_get, i915_cache_sharing_set,
  3527. "%llu\n");
  3528. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  3529. struct sseu_dev_info *sseu)
  3530. {
  3531. int ss_max = 2;
  3532. int ss;
  3533. u32 sig1[ss_max], sig2[ss_max];
  3534. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3535. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3536. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3537. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3538. for (ss = 0; ss < ss_max; ss++) {
  3539. unsigned int eu_cnt;
  3540. if (sig1[ss] & CHV_SS_PG_ENABLE)
  3541. /* skip disabled subslice */
  3542. continue;
  3543. sseu->slice_mask = BIT(0);
  3544. sseu->subslice_mask[0] |= BIT(ss);
  3545. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  3546. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  3547. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  3548. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  3549. sseu->eu_total += eu_cnt;
  3550. sseu->eu_per_subslice = max_t(unsigned int,
  3551. sseu->eu_per_subslice, eu_cnt);
  3552. }
  3553. }
  3554. static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
  3555. struct sseu_dev_info *sseu)
  3556. {
  3557. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  3558. int s, ss;
  3559. u32 s_reg[info->sseu.max_slices];
  3560. u32 eu_reg[2 * info->sseu.max_subslices], eu_mask[2];
  3561. for (s = 0; s < info->sseu.max_slices; s++) {
  3562. /*
  3563. * FIXME: Valid SS Mask respects the spec and read
  3564. * only valid bits for those registers, excluding reserverd
  3565. * although this seems wrong because it would leave many
  3566. * subslices without ACK.
  3567. */
  3568. s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
  3569. GEN10_PGCTL_VALID_SS_MASK(s);
  3570. eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
  3571. eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
  3572. }
  3573. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3574. GEN9_PGCTL_SSA_EU19_ACK |
  3575. GEN9_PGCTL_SSA_EU210_ACK |
  3576. GEN9_PGCTL_SSA_EU311_ACK;
  3577. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3578. GEN9_PGCTL_SSB_EU19_ACK |
  3579. GEN9_PGCTL_SSB_EU210_ACK |
  3580. GEN9_PGCTL_SSB_EU311_ACK;
  3581. for (s = 0; s < info->sseu.max_slices; s++) {
  3582. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3583. /* skip disabled slice */
  3584. continue;
  3585. sseu->slice_mask |= BIT(s);
  3586. sseu->subslice_mask[s] = info->sseu.subslice_mask[s];
  3587. for (ss = 0; ss < info->sseu.max_subslices; ss++) {
  3588. unsigned int eu_cnt;
  3589. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3590. /* skip disabled subslice */
  3591. continue;
  3592. eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
  3593. eu_mask[ss % 2]);
  3594. sseu->eu_total += eu_cnt;
  3595. sseu->eu_per_subslice = max_t(unsigned int,
  3596. sseu->eu_per_subslice,
  3597. eu_cnt);
  3598. }
  3599. }
  3600. }
  3601. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  3602. struct sseu_dev_info *sseu)
  3603. {
  3604. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  3605. int s, ss;
  3606. u32 s_reg[info->sseu.max_slices];
  3607. u32 eu_reg[2 * info->sseu.max_subslices], eu_mask[2];
  3608. for (s = 0; s < info->sseu.max_slices; s++) {
  3609. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  3610. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  3611. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  3612. }
  3613. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  3614. GEN9_PGCTL_SSA_EU19_ACK |
  3615. GEN9_PGCTL_SSA_EU210_ACK |
  3616. GEN9_PGCTL_SSA_EU311_ACK;
  3617. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  3618. GEN9_PGCTL_SSB_EU19_ACK |
  3619. GEN9_PGCTL_SSB_EU210_ACK |
  3620. GEN9_PGCTL_SSB_EU311_ACK;
  3621. for (s = 0; s < info->sseu.max_slices; s++) {
  3622. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  3623. /* skip disabled slice */
  3624. continue;
  3625. sseu->slice_mask |= BIT(s);
  3626. if (IS_GEN9_BC(dev_priv))
  3627. sseu->subslice_mask[s] =
  3628. INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
  3629. for (ss = 0; ss < info->sseu.max_subslices; ss++) {
  3630. unsigned int eu_cnt;
  3631. if (IS_GEN9_LP(dev_priv)) {
  3632. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  3633. /* skip disabled subslice */
  3634. continue;
  3635. sseu->subslice_mask[s] |= BIT(ss);
  3636. }
  3637. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  3638. eu_mask[ss%2]);
  3639. sseu->eu_total += eu_cnt;
  3640. sseu->eu_per_subslice = max_t(unsigned int,
  3641. sseu->eu_per_subslice,
  3642. eu_cnt);
  3643. }
  3644. }
  3645. }
  3646. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  3647. struct sseu_dev_info *sseu)
  3648. {
  3649. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  3650. int s;
  3651. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  3652. if (sseu->slice_mask) {
  3653. sseu->eu_per_subslice =
  3654. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  3655. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3656. sseu->subslice_mask[s] =
  3657. INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
  3658. }
  3659. sseu->eu_total = sseu->eu_per_subslice *
  3660. sseu_subslice_total(sseu);
  3661. /* subtract fused off EU(s) from enabled slice(s) */
  3662. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3663. u8 subslice_7eu =
  3664. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  3665. sseu->eu_total -= hweight8(subslice_7eu);
  3666. }
  3667. }
  3668. }
  3669. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  3670. const struct sseu_dev_info *sseu)
  3671. {
  3672. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3673. const char *type = is_available_info ? "Available" : "Enabled";
  3674. int s;
  3675. seq_printf(m, " %s Slice Mask: %04x\n", type,
  3676. sseu->slice_mask);
  3677. seq_printf(m, " %s Slice Total: %u\n", type,
  3678. hweight8(sseu->slice_mask));
  3679. seq_printf(m, " %s Subslice Total: %u\n", type,
  3680. sseu_subslice_total(sseu));
  3681. for (s = 0; s < fls(sseu->slice_mask); s++) {
  3682. seq_printf(m, " %s Slice%i subslices: %u\n", type,
  3683. s, hweight8(sseu->subslice_mask[s]));
  3684. }
  3685. seq_printf(m, " %s EU Total: %u\n", type,
  3686. sseu->eu_total);
  3687. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  3688. sseu->eu_per_subslice);
  3689. if (!is_available_info)
  3690. return;
  3691. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  3692. if (HAS_POOLED_EU(dev_priv))
  3693. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  3694. seq_printf(m, " Has Slice Power Gating: %s\n",
  3695. yesno(sseu->has_slice_pg));
  3696. seq_printf(m, " Has Subslice Power Gating: %s\n",
  3697. yesno(sseu->has_subslice_pg));
  3698. seq_printf(m, " Has EU Power Gating: %s\n",
  3699. yesno(sseu->has_eu_pg));
  3700. }
  3701. static int i915_sseu_status(struct seq_file *m, void *unused)
  3702. {
  3703. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  3704. struct sseu_dev_info sseu;
  3705. if (INTEL_GEN(dev_priv) < 8)
  3706. return -ENODEV;
  3707. seq_puts(m, "SSEU Device Info\n");
  3708. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  3709. seq_puts(m, "SSEU Device Status\n");
  3710. memset(&sseu, 0, sizeof(sseu));
  3711. sseu.max_slices = INTEL_INFO(dev_priv)->sseu.max_slices;
  3712. sseu.max_subslices = INTEL_INFO(dev_priv)->sseu.max_subslices;
  3713. sseu.max_eus_per_subslice =
  3714. INTEL_INFO(dev_priv)->sseu.max_eus_per_subslice;
  3715. intel_runtime_pm_get(dev_priv);
  3716. if (IS_CHERRYVIEW(dev_priv)) {
  3717. cherryview_sseu_device_status(dev_priv, &sseu);
  3718. } else if (IS_BROADWELL(dev_priv)) {
  3719. broadwell_sseu_device_status(dev_priv, &sseu);
  3720. } else if (IS_GEN9(dev_priv)) {
  3721. gen9_sseu_device_status(dev_priv, &sseu);
  3722. } else if (INTEL_GEN(dev_priv) >= 10) {
  3723. gen10_sseu_device_status(dev_priv, &sseu);
  3724. }
  3725. intel_runtime_pm_put(dev_priv);
  3726. i915_print_sseu_info(m, false, &sseu);
  3727. return 0;
  3728. }
  3729. static int i915_forcewake_open(struct inode *inode, struct file *file)
  3730. {
  3731. struct drm_i915_private *i915 = inode->i_private;
  3732. if (INTEL_GEN(i915) < 6)
  3733. return 0;
  3734. intel_runtime_pm_get(i915);
  3735. intel_uncore_forcewake_user_get(i915);
  3736. return 0;
  3737. }
  3738. static int i915_forcewake_release(struct inode *inode, struct file *file)
  3739. {
  3740. struct drm_i915_private *i915 = inode->i_private;
  3741. if (INTEL_GEN(i915) < 6)
  3742. return 0;
  3743. intel_uncore_forcewake_user_put(i915);
  3744. intel_runtime_pm_put(i915);
  3745. return 0;
  3746. }
  3747. static const struct file_operations i915_forcewake_fops = {
  3748. .owner = THIS_MODULE,
  3749. .open = i915_forcewake_open,
  3750. .release = i915_forcewake_release,
  3751. };
  3752. static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
  3753. {
  3754. struct drm_i915_private *dev_priv = m->private;
  3755. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3756. seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
  3757. seq_printf(m, "Detected: %s\n",
  3758. yesno(delayed_work_pending(&hotplug->reenable_work)));
  3759. return 0;
  3760. }
  3761. static ssize_t i915_hpd_storm_ctl_write(struct file *file,
  3762. const char __user *ubuf, size_t len,
  3763. loff_t *offp)
  3764. {
  3765. struct seq_file *m = file->private_data;
  3766. struct drm_i915_private *dev_priv = m->private;
  3767. struct i915_hotplug *hotplug = &dev_priv->hotplug;
  3768. unsigned int new_threshold;
  3769. int i;
  3770. char *newline;
  3771. char tmp[16];
  3772. if (len >= sizeof(tmp))
  3773. return -EINVAL;
  3774. if (copy_from_user(tmp, ubuf, len))
  3775. return -EFAULT;
  3776. tmp[len] = '\0';
  3777. /* Strip newline, if any */
  3778. newline = strchr(tmp, '\n');
  3779. if (newline)
  3780. *newline = '\0';
  3781. if (strcmp(tmp, "reset") == 0)
  3782. new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
  3783. else if (kstrtouint(tmp, 10, &new_threshold) != 0)
  3784. return -EINVAL;
  3785. if (new_threshold > 0)
  3786. DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
  3787. new_threshold);
  3788. else
  3789. DRM_DEBUG_KMS("Disabling HPD storm detection\n");
  3790. spin_lock_irq(&dev_priv->irq_lock);
  3791. hotplug->hpd_storm_threshold = new_threshold;
  3792. /* Reset the HPD storm stats so we don't accidentally trigger a storm */
  3793. for_each_hpd_pin(i)
  3794. hotplug->stats[i].count = 0;
  3795. spin_unlock_irq(&dev_priv->irq_lock);
  3796. /* Re-enable hpd immediately if we were in an irq storm */
  3797. flush_delayed_work(&dev_priv->hotplug.reenable_work);
  3798. return len;
  3799. }
  3800. static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
  3801. {
  3802. return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
  3803. }
  3804. static const struct file_operations i915_hpd_storm_ctl_fops = {
  3805. .owner = THIS_MODULE,
  3806. .open = i915_hpd_storm_ctl_open,
  3807. .read = seq_read,
  3808. .llseek = seq_lseek,
  3809. .release = single_release,
  3810. .write = i915_hpd_storm_ctl_write
  3811. };
  3812. static int i915_drrs_ctl_set(void *data, u64 val)
  3813. {
  3814. struct drm_i915_private *dev_priv = data;
  3815. struct drm_device *dev = &dev_priv->drm;
  3816. struct intel_crtc *intel_crtc;
  3817. struct intel_encoder *encoder;
  3818. struct intel_dp *intel_dp;
  3819. if (INTEL_GEN(dev_priv) < 7)
  3820. return -ENODEV;
  3821. drm_modeset_lock_all(dev);
  3822. for_each_intel_crtc(dev, intel_crtc) {
  3823. if (!intel_crtc->base.state->active ||
  3824. !intel_crtc->config->has_drrs)
  3825. continue;
  3826. for_each_encoder_on_crtc(dev, &intel_crtc->base, encoder) {
  3827. if (encoder->type != INTEL_OUTPUT_EDP)
  3828. continue;
  3829. DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n",
  3830. val ? "en" : "dis", val);
  3831. intel_dp = enc_to_intel_dp(&encoder->base);
  3832. if (val)
  3833. intel_edp_drrs_enable(intel_dp,
  3834. intel_crtc->config);
  3835. else
  3836. intel_edp_drrs_disable(intel_dp,
  3837. intel_crtc->config);
  3838. }
  3839. }
  3840. drm_modeset_unlock_all(dev);
  3841. return 0;
  3842. }
  3843. DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n");
  3844. static const struct drm_info_list i915_debugfs_list[] = {
  3845. {"i915_capabilities", i915_capabilities, 0},
  3846. {"i915_gem_objects", i915_gem_object_info, 0},
  3847. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  3848. {"i915_gem_stolen", i915_gem_stolen_list_info },
  3849. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  3850. {"i915_gem_interrupt", i915_interrupt_info, 0},
  3851. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  3852. {"i915_guc_info", i915_guc_info, 0},
  3853. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  3854. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  3855. {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
  3856. {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
  3857. {"i915_huc_load_status", i915_huc_load_status_info, 0},
  3858. {"i915_frequency_info", i915_frequency_info, 0},
  3859. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  3860. {"i915_reset_info", i915_reset_info, 0},
  3861. {"i915_drpc_info", i915_drpc_info, 0},
  3862. {"i915_emon_status", i915_emon_status, 0},
  3863. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  3864. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  3865. {"i915_fbc_status", i915_fbc_status, 0},
  3866. {"i915_ips_status", i915_ips_status, 0},
  3867. {"i915_sr_status", i915_sr_status, 0},
  3868. {"i915_opregion", i915_opregion, 0},
  3869. {"i915_vbt", i915_vbt, 0},
  3870. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  3871. {"i915_context_status", i915_context_status, 0},
  3872. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  3873. {"i915_swizzle_info", i915_swizzle_info, 0},
  3874. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  3875. {"i915_llc", i915_llc, 0},
  3876. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  3877. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  3878. {"i915_energy_uJ", i915_energy_uJ, 0},
  3879. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  3880. {"i915_power_domain_info", i915_power_domain_info, 0},
  3881. {"i915_dmc_info", i915_dmc_info, 0},
  3882. {"i915_display_info", i915_display_info, 0},
  3883. {"i915_engine_info", i915_engine_info, 0},
  3884. {"i915_rcs_topology", i915_rcs_topology, 0},
  3885. {"i915_shrinker_info", i915_shrinker_info, 0},
  3886. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  3887. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  3888. {"i915_wa_registers", i915_wa_registers, 0},
  3889. {"i915_ddb_info", i915_ddb_info, 0},
  3890. {"i915_sseu_status", i915_sseu_status, 0},
  3891. {"i915_drrs_status", i915_drrs_status, 0},
  3892. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  3893. };
  3894. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  3895. static const struct i915_debugfs_files {
  3896. const char *name;
  3897. const struct file_operations *fops;
  3898. } i915_debugfs_files[] = {
  3899. {"i915_wedged", &i915_wedged_fops},
  3900. {"i915_max_freq", &i915_max_freq_fops},
  3901. {"i915_min_freq", &i915_min_freq_fops},
  3902. {"i915_cache_sharing", &i915_cache_sharing_fops},
  3903. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  3904. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  3905. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  3906. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  3907. {"i915_error_state", &i915_error_state_fops},
  3908. {"i915_gpu_info", &i915_gpu_info_fops},
  3909. #endif
  3910. {"i915_next_seqno", &i915_next_seqno_fops},
  3911. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  3912. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  3913. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  3914. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  3915. {"i915_fbc_false_color", &i915_fbc_false_color_fops},
  3916. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  3917. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  3918. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  3919. {"i915_guc_log_control", &i915_guc_log_control_fops},
  3920. {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
  3921. {"i915_ipc_status", &i915_ipc_status_fops},
  3922. {"i915_drrs_ctl", &i915_drrs_ctl_fops}
  3923. };
  3924. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  3925. {
  3926. struct drm_minor *minor = dev_priv->drm.primary;
  3927. struct dentry *ent;
  3928. int ret, i;
  3929. ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
  3930. minor->debugfs_root, to_i915(minor->dev),
  3931. &i915_forcewake_fops);
  3932. if (!ent)
  3933. return -ENOMEM;
  3934. ret = intel_pipe_crc_create(minor);
  3935. if (ret)
  3936. return ret;
  3937. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  3938. ent = debugfs_create_file(i915_debugfs_files[i].name,
  3939. S_IRUGO | S_IWUSR,
  3940. minor->debugfs_root,
  3941. to_i915(minor->dev),
  3942. i915_debugfs_files[i].fops);
  3943. if (!ent)
  3944. return -ENOMEM;
  3945. }
  3946. return drm_debugfs_create_files(i915_debugfs_list,
  3947. I915_DEBUGFS_ENTRIES,
  3948. minor->debugfs_root, minor);
  3949. }
  3950. struct dpcd_block {
  3951. /* DPCD dump start address. */
  3952. unsigned int offset;
  3953. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  3954. unsigned int end;
  3955. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  3956. size_t size;
  3957. /* Only valid for eDP. */
  3958. bool edp;
  3959. };
  3960. static const struct dpcd_block i915_dpcd_debug[] = {
  3961. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  3962. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  3963. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  3964. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  3965. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  3966. { .offset = DP_SET_POWER },
  3967. { .offset = DP_EDP_DPCD_REV },
  3968. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  3969. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  3970. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  3971. };
  3972. static int i915_dpcd_show(struct seq_file *m, void *data)
  3973. {
  3974. struct drm_connector *connector = m->private;
  3975. struct intel_dp *intel_dp =
  3976. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  3977. uint8_t buf[16];
  3978. ssize_t err;
  3979. int i;
  3980. if (connector->status != connector_status_connected)
  3981. return -ENODEV;
  3982. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  3983. const struct dpcd_block *b = &i915_dpcd_debug[i];
  3984. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  3985. if (b->edp &&
  3986. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  3987. continue;
  3988. /* low tech for now */
  3989. if (WARN_ON(size > sizeof(buf)))
  3990. continue;
  3991. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  3992. if (err <= 0) {
  3993. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  3994. size, b->offset, err);
  3995. continue;
  3996. }
  3997. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  3998. }
  3999. return 0;
  4000. }
  4001. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4002. {
  4003. return single_open(file, i915_dpcd_show, inode->i_private);
  4004. }
  4005. static const struct file_operations i915_dpcd_fops = {
  4006. .owner = THIS_MODULE,
  4007. .open = i915_dpcd_open,
  4008. .read = seq_read,
  4009. .llseek = seq_lseek,
  4010. .release = single_release,
  4011. };
  4012. static int i915_panel_show(struct seq_file *m, void *data)
  4013. {
  4014. struct drm_connector *connector = m->private;
  4015. struct intel_dp *intel_dp =
  4016. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4017. if (connector->status != connector_status_connected)
  4018. return -ENODEV;
  4019. seq_printf(m, "Panel power up delay: %d\n",
  4020. intel_dp->panel_power_up_delay);
  4021. seq_printf(m, "Panel power down delay: %d\n",
  4022. intel_dp->panel_power_down_delay);
  4023. seq_printf(m, "Backlight on delay: %d\n",
  4024. intel_dp->backlight_on_delay);
  4025. seq_printf(m, "Backlight off delay: %d\n",
  4026. intel_dp->backlight_off_delay);
  4027. return 0;
  4028. }
  4029. static int i915_panel_open(struct inode *inode, struct file *file)
  4030. {
  4031. return single_open(file, i915_panel_show, inode->i_private);
  4032. }
  4033. static const struct file_operations i915_panel_fops = {
  4034. .owner = THIS_MODULE,
  4035. .open = i915_panel_open,
  4036. .read = seq_read,
  4037. .llseek = seq_lseek,
  4038. .release = single_release,
  4039. };
  4040. /**
  4041. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4042. * @connector: pointer to a registered drm_connector
  4043. *
  4044. * Cleanup will be done by drm_connector_unregister() through a call to
  4045. * drm_debugfs_connector_remove().
  4046. *
  4047. * Returns 0 on success, negative error codes on error.
  4048. */
  4049. int i915_debugfs_connector_add(struct drm_connector *connector)
  4050. {
  4051. struct dentry *root = connector->debugfs_entry;
  4052. /* The connector must have been registered beforehands. */
  4053. if (!root)
  4054. return -ENODEV;
  4055. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4056. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4057. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4058. connector, &i915_dpcd_fops);
  4059. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4060. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4061. connector, &i915_panel_fops);
  4062. return 0;
  4063. }