scheduler.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441
  1. /*
  2. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Authors:
  24. * Zhi Wang <zhi.a.wang@intel.com>
  25. *
  26. * Contributors:
  27. * Ping Gao <ping.a.gao@intel.com>
  28. * Tina Zhang <tina.zhang@intel.com>
  29. * Chanbin Du <changbin.du@intel.com>
  30. * Min He <min.he@intel.com>
  31. * Bing Niu <bing.niu@intel.com>
  32. * Zhenyu Wang <zhenyuw@linux.intel.com>
  33. *
  34. */
  35. #include <linux/kthread.h>
  36. #include "i915_drv.h"
  37. #include "gvt.h"
  38. #define RING_CTX_OFF(x) \
  39. offsetof(struct execlist_ring_context, x)
  40. static void set_context_pdp_root_pointer(
  41. struct execlist_ring_context *ring_context,
  42. u32 pdp[8])
  43. {
  44. struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
  45. int i;
  46. for (i = 0; i < 8; i++)
  47. pdp_pair[i].val = pdp[7 - i];
  48. }
  49. static void update_shadow_pdps(struct intel_vgpu_workload *workload)
  50. {
  51. struct intel_vgpu *vgpu = workload->vgpu;
  52. int ring_id = workload->ring_id;
  53. struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
  54. struct drm_i915_gem_object *ctx_obj =
  55. shadow_ctx->engine[ring_id].state->obj;
  56. struct execlist_ring_context *shadow_ring_context;
  57. struct page *page;
  58. if (WARN_ON(!workload->shadow_mm))
  59. return;
  60. if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
  61. return;
  62. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  63. shadow_ring_context = kmap(page);
  64. set_context_pdp_root_pointer(shadow_ring_context,
  65. (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
  66. kunmap(page);
  67. }
  68. /*
  69. * when populating shadow ctx from guest, we should not overrride oa related
  70. * registers, so that they will not be overlapped by guest oa configs. Thus
  71. * made it possible to capture oa data from host for both host and guests.
  72. */
  73. static void sr_oa_regs(struct intel_vgpu_workload *workload,
  74. u32 *reg_state, bool save)
  75. {
  76. struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
  77. u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
  78. u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
  79. int i = 0;
  80. u32 flex_mmio[] = {
  81. i915_mmio_reg_offset(EU_PERF_CNTL0),
  82. i915_mmio_reg_offset(EU_PERF_CNTL1),
  83. i915_mmio_reg_offset(EU_PERF_CNTL2),
  84. i915_mmio_reg_offset(EU_PERF_CNTL3),
  85. i915_mmio_reg_offset(EU_PERF_CNTL4),
  86. i915_mmio_reg_offset(EU_PERF_CNTL5),
  87. i915_mmio_reg_offset(EU_PERF_CNTL6),
  88. };
  89. if (!workload || !reg_state || workload->ring_id != RCS)
  90. return;
  91. if (save) {
  92. workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
  93. for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
  94. u32 state_offset = ctx_flexeu0 + i * 2;
  95. workload->flex_mmio[i] = reg_state[state_offset + 1];
  96. }
  97. } else {
  98. reg_state[ctx_oactxctrl] =
  99. i915_mmio_reg_offset(GEN8_OACTXCONTROL);
  100. reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
  101. for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
  102. u32 state_offset = ctx_flexeu0 + i * 2;
  103. u32 mmio = flex_mmio[i];
  104. reg_state[state_offset] = mmio;
  105. reg_state[state_offset + 1] = workload->flex_mmio[i];
  106. }
  107. }
  108. }
  109. static int populate_shadow_context(struct intel_vgpu_workload *workload)
  110. {
  111. struct intel_vgpu *vgpu = workload->vgpu;
  112. struct intel_gvt *gvt = vgpu->gvt;
  113. int ring_id = workload->ring_id;
  114. struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
  115. struct drm_i915_gem_object *ctx_obj =
  116. shadow_ctx->engine[ring_id].state->obj;
  117. struct execlist_ring_context *shadow_ring_context;
  118. struct page *page;
  119. void *dst;
  120. unsigned long context_gpa, context_page_num;
  121. int i;
  122. gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
  123. workload->ctx_desc.lrca);
  124. context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
  125. context_page_num = context_page_num >> PAGE_SHIFT;
  126. if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
  127. context_page_num = 19;
  128. i = 2;
  129. while (i < context_page_num) {
  130. context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
  131. (u32)((workload->ctx_desc.lrca + i) <<
  132. I915_GTT_PAGE_SHIFT));
  133. if (context_gpa == INTEL_GVT_INVALID_ADDR) {
  134. gvt_vgpu_err("Invalid guest context descriptor\n");
  135. return -EFAULT;
  136. }
  137. page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
  138. dst = kmap(page);
  139. intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
  140. I915_GTT_PAGE_SIZE);
  141. kunmap(page);
  142. i++;
  143. }
  144. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  145. shadow_ring_context = kmap(page);
  146. sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
  147. #define COPY_REG(name) \
  148. intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
  149. + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
  150. #define COPY_REG_MASKED(name) {\
  151. intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
  152. + RING_CTX_OFF(name.val),\
  153. &shadow_ring_context->name.val, 4);\
  154. shadow_ring_context->name.val |= 0xffff << 16;\
  155. }
  156. COPY_REG_MASKED(ctx_ctrl);
  157. COPY_REG(ctx_timestamp);
  158. if (ring_id == RCS) {
  159. COPY_REG(bb_per_ctx_ptr);
  160. COPY_REG(rcs_indirect_ctx);
  161. COPY_REG(rcs_indirect_ctx_offset);
  162. }
  163. #undef COPY_REG
  164. #undef COPY_REG_MASKED
  165. intel_gvt_hypervisor_read_gpa(vgpu,
  166. workload->ring_context_gpa +
  167. sizeof(*shadow_ring_context),
  168. (void *)shadow_ring_context +
  169. sizeof(*shadow_ring_context),
  170. I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
  171. sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
  172. kunmap(page);
  173. return 0;
  174. }
  175. static inline bool is_gvt_request(struct i915_request *req)
  176. {
  177. return i915_gem_context_force_single_submission(req->ctx);
  178. }
  179. static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
  180. {
  181. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  182. u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
  183. i915_reg_t reg;
  184. reg = RING_INSTDONE(ring_base);
  185. vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
  186. reg = RING_ACTHD(ring_base);
  187. vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
  188. reg = RING_ACTHD_UDW(ring_base);
  189. vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
  190. }
  191. static int shadow_context_status_change(struct notifier_block *nb,
  192. unsigned long action, void *data)
  193. {
  194. struct i915_request *req = data;
  195. struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
  196. shadow_ctx_notifier_block[req->engine->id]);
  197. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  198. enum intel_engine_id ring_id = req->engine->id;
  199. struct intel_vgpu_workload *workload;
  200. unsigned long flags;
  201. if (!is_gvt_request(req)) {
  202. spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
  203. if (action == INTEL_CONTEXT_SCHEDULE_IN &&
  204. scheduler->engine_owner[ring_id]) {
  205. /* Switch ring from vGPU to host. */
  206. intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
  207. NULL, ring_id);
  208. scheduler->engine_owner[ring_id] = NULL;
  209. }
  210. spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
  211. return NOTIFY_OK;
  212. }
  213. workload = scheduler->current_workload[ring_id];
  214. if (unlikely(!workload))
  215. return NOTIFY_OK;
  216. switch (action) {
  217. case INTEL_CONTEXT_SCHEDULE_IN:
  218. spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
  219. if (workload->vgpu != scheduler->engine_owner[ring_id]) {
  220. /* Switch ring from host to vGPU or vGPU to vGPU. */
  221. intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
  222. workload->vgpu, ring_id);
  223. scheduler->engine_owner[ring_id] = workload->vgpu;
  224. } else
  225. gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
  226. ring_id, workload->vgpu->id);
  227. spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
  228. atomic_set(&workload->shadow_ctx_active, 1);
  229. break;
  230. case INTEL_CONTEXT_SCHEDULE_OUT:
  231. save_ring_hw_state(workload->vgpu, ring_id);
  232. atomic_set(&workload->shadow_ctx_active, 0);
  233. break;
  234. case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
  235. save_ring_hw_state(workload->vgpu, ring_id);
  236. break;
  237. default:
  238. WARN_ON(1);
  239. return NOTIFY_OK;
  240. }
  241. wake_up(&workload->shadow_ctx_status_wq);
  242. return NOTIFY_OK;
  243. }
  244. static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
  245. struct intel_engine_cs *engine)
  246. {
  247. struct intel_context *ce = &ctx->engine[engine->id];
  248. u64 desc = 0;
  249. desc = ce->lrc_desc;
  250. /* Update bits 0-11 of the context descriptor which includes flags
  251. * like GEN8_CTX_* cached in desc_template
  252. */
  253. desc &= U64_MAX << 12;
  254. desc |= ctx->desc_template & ((1ULL << 12) - 1);
  255. ce->lrc_desc = desc;
  256. }
  257. static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
  258. {
  259. struct intel_vgpu *vgpu = workload->vgpu;
  260. void *shadow_ring_buffer_va;
  261. u32 *cs;
  262. struct i915_request *req = workload->req;
  263. if (IS_KABYLAKE(req->i915) &&
  264. is_inhibit_context(req->ctx, req->engine->id))
  265. intel_vgpu_restore_inhibit_context(vgpu, req);
  266. /* allocate shadow ring buffer */
  267. cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
  268. if (IS_ERR(cs)) {
  269. gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
  270. workload->rb_len);
  271. return PTR_ERR(cs);
  272. }
  273. shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
  274. /* get shadow ring buffer va */
  275. workload->shadow_ring_buffer_va = cs;
  276. memcpy(cs, shadow_ring_buffer_va,
  277. workload->rb_len);
  278. cs += workload->rb_len / sizeof(u32);
  279. intel_ring_advance(workload->req, cs);
  280. return 0;
  281. }
  282. static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  283. {
  284. if (!wa_ctx->indirect_ctx.obj)
  285. return;
  286. i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
  287. i915_gem_object_put(wa_ctx->indirect_ctx.obj);
  288. }
  289. /**
  290. * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
  291. * shadow it as well, include ringbuffer,wa_ctx and ctx.
  292. * @workload: an abstract entity for each execlist submission.
  293. *
  294. * This function is called before the workload submitting to i915, to make
  295. * sure the content of the workload is valid.
  296. */
  297. int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
  298. {
  299. struct intel_vgpu *vgpu = workload->vgpu;
  300. struct intel_vgpu_submission *s = &vgpu->submission;
  301. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  302. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  303. int ring_id = workload->ring_id;
  304. struct intel_engine_cs *engine = dev_priv->engine[ring_id];
  305. struct intel_ring *ring;
  306. int ret;
  307. lockdep_assert_held(&dev_priv->drm.struct_mutex);
  308. if (workload->shadowed)
  309. return 0;
  310. shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
  311. shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
  312. GEN8_CTX_ADDRESSING_MODE_SHIFT;
  313. if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
  314. shadow_context_descriptor_update(shadow_ctx,
  315. dev_priv->engine[ring_id]);
  316. ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
  317. if (ret)
  318. goto err_scan;
  319. if ((workload->ring_id == RCS) &&
  320. (workload->wa_ctx.indirect_ctx.size != 0)) {
  321. ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
  322. if (ret)
  323. goto err_scan;
  324. }
  325. /* pin shadow context by gvt even the shadow context will be pinned
  326. * when i915 alloc request. That is because gvt will update the guest
  327. * context from shadow context when workload is completed, and at that
  328. * moment, i915 may already unpined the shadow context to make the
  329. * shadow_ctx pages invalid. So gvt need to pin itself. After update
  330. * the guest context, gvt can unpin the shadow_ctx safely.
  331. */
  332. ring = engine->context_pin(engine, shadow_ctx);
  333. if (IS_ERR(ring)) {
  334. ret = PTR_ERR(ring);
  335. gvt_vgpu_err("fail to pin shadow context\n");
  336. goto err_shadow;
  337. }
  338. ret = populate_shadow_context(workload);
  339. if (ret)
  340. goto err_unpin;
  341. workload->shadowed = true;
  342. return 0;
  343. err_unpin:
  344. engine->context_unpin(engine, shadow_ctx);
  345. err_shadow:
  346. release_shadow_wa_ctx(&workload->wa_ctx);
  347. err_scan:
  348. return ret;
  349. }
  350. static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
  351. {
  352. int ring_id = workload->ring_id;
  353. struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
  354. struct intel_engine_cs *engine = dev_priv->engine[ring_id];
  355. struct i915_request *rq;
  356. struct intel_vgpu *vgpu = workload->vgpu;
  357. struct intel_vgpu_submission *s = &vgpu->submission;
  358. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  359. int ret;
  360. rq = i915_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
  361. if (IS_ERR(rq)) {
  362. gvt_vgpu_err("fail to allocate gem request\n");
  363. ret = PTR_ERR(rq);
  364. goto err_unpin;
  365. }
  366. gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
  367. workload->req = i915_request_get(rq);
  368. ret = copy_workload_to_ring_buffer(workload);
  369. if (ret)
  370. goto err_unpin;
  371. return 0;
  372. err_unpin:
  373. engine->context_unpin(engine, shadow_ctx);
  374. release_shadow_wa_ctx(&workload->wa_ctx);
  375. return ret;
  376. }
  377. static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
  378. static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
  379. {
  380. struct intel_gvt *gvt = workload->vgpu->gvt;
  381. const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
  382. struct intel_vgpu_shadow_bb *bb;
  383. int ret;
  384. list_for_each_entry(bb, &workload->shadow_bb, list) {
  385. bb->vma = i915_gem_object_ggtt_pin(bb->obj, NULL, 0, 0, 0);
  386. if (IS_ERR(bb->vma)) {
  387. ret = PTR_ERR(bb->vma);
  388. goto err;
  389. }
  390. /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
  391. * is only updated into ring_scan_buffer, not real ring address
  392. * allocated in later copy_workload_to_ring_buffer. pls be noted
  393. * shadow_ring_buffer_va is now pointed to real ring buffer va
  394. * in copy_workload_to_ring_buffer.
  395. */
  396. if (bb->bb_offset)
  397. bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
  398. + bb->bb_offset;
  399. /* relocate shadow batch buffer */
  400. bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
  401. if (gmadr_bytes == 8)
  402. bb->bb_start_cmd_va[2] = 0;
  403. /* No one is going to touch shadow bb from now on. */
  404. if (bb->clflush & CLFLUSH_AFTER) {
  405. drm_clflush_virt_range(bb->va, bb->obj->base.size);
  406. bb->clflush &= ~CLFLUSH_AFTER;
  407. }
  408. ret = i915_gem_object_set_to_gtt_domain(bb->obj, false);
  409. if (ret)
  410. goto err;
  411. i915_gem_obj_finish_shmem_access(bb->obj);
  412. bb->accessing = false;
  413. i915_vma_move_to_active(bb->vma, workload->req, 0);
  414. }
  415. return 0;
  416. err:
  417. release_shadow_batch_buffer(workload);
  418. return ret;
  419. }
  420. static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  421. {
  422. struct intel_vgpu_workload *workload = container_of(wa_ctx,
  423. struct intel_vgpu_workload,
  424. wa_ctx);
  425. int ring_id = workload->ring_id;
  426. struct intel_vgpu_submission *s = &workload->vgpu->submission;
  427. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  428. struct drm_i915_gem_object *ctx_obj =
  429. shadow_ctx->engine[ring_id].state->obj;
  430. struct execlist_ring_context *shadow_ring_context;
  431. struct page *page;
  432. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  433. shadow_ring_context = kmap_atomic(page);
  434. shadow_ring_context->bb_per_ctx_ptr.val =
  435. (shadow_ring_context->bb_per_ctx_ptr.val &
  436. (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
  437. shadow_ring_context->rcs_indirect_ctx.val =
  438. (shadow_ring_context->rcs_indirect_ctx.val &
  439. (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
  440. kunmap_atomic(shadow_ring_context);
  441. return 0;
  442. }
  443. static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  444. {
  445. struct i915_vma *vma;
  446. unsigned char *per_ctx_va =
  447. (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
  448. wa_ctx->indirect_ctx.size;
  449. if (wa_ctx->indirect_ctx.size == 0)
  450. return 0;
  451. vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
  452. 0, CACHELINE_BYTES, 0);
  453. if (IS_ERR(vma))
  454. return PTR_ERR(vma);
  455. /* FIXME: we are not tracking our pinned VMA leaving it
  456. * up to the core to fix up the stray pin_count upon
  457. * free.
  458. */
  459. wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
  460. wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
  461. memset(per_ctx_va, 0, CACHELINE_BYTES);
  462. update_wa_ctx_2_shadow_ctx(wa_ctx);
  463. return 0;
  464. }
  465. static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
  466. {
  467. struct intel_vgpu *vgpu = workload->vgpu;
  468. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  469. struct intel_vgpu_shadow_bb *bb, *pos;
  470. if (list_empty(&workload->shadow_bb))
  471. return;
  472. bb = list_first_entry(&workload->shadow_bb,
  473. struct intel_vgpu_shadow_bb, list);
  474. mutex_lock(&dev_priv->drm.struct_mutex);
  475. list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
  476. if (bb->obj) {
  477. if (bb->accessing)
  478. i915_gem_obj_finish_shmem_access(bb->obj);
  479. if (bb->va && !IS_ERR(bb->va))
  480. i915_gem_object_unpin_map(bb->obj);
  481. if (bb->vma && !IS_ERR(bb->vma)) {
  482. i915_vma_unpin(bb->vma);
  483. i915_vma_close(bb->vma);
  484. }
  485. __i915_gem_object_release_unless_active(bb->obj);
  486. }
  487. list_del(&bb->list);
  488. kfree(bb);
  489. }
  490. mutex_unlock(&dev_priv->drm.struct_mutex);
  491. }
  492. static int prepare_workload(struct intel_vgpu_workload *workload)
  493. {
  494. struct intel_vgpu *vgpu = workload->vgpu;
  495. int ret = 0;
  496. ret = intel_vgpu_pin_mm(workload->shadow_mm);
  497. if (ret) {
  498. gvt_vgpu_err("fail to vgpu pin mm\n");
  499. return ret;
  500. }
  501. update_shadow_pdps(workload);
  502. ret = intel_vgpu_sync_oos_pages(workload->vgpu);
  503. if (ret) {
  504. gvt_vgpu_err("fail to vgpu sync oos pages\n");
  505. goto err_unpin_mm;
  506. }
  507. ret = intel_vgpu_flush_post_shadow(workload->vgpu);
  508. if (ret) {
  509. gvt_vgpu_err("fail to flush post shadow\n");
  510. goto err_unpin_mm;
  511. }
  512. ret = intel_gvt_generate_request(workload);
  513. if (ret) {
  514. gvt_vgpu_err("fail to generate request\n");
  515. goto err_unpin_mm;
  516. }
  517. ret = prepare_shadow_batch_buffer(workload);
  518. if (ret) {
  519. gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
  520. goto err_unpin_mm;
  521. }
  522. ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
  523. if (ret) {
  524. gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
  525. goto err_shadow_batch;
  526. }
  527. if (workload->prepare) {
  528. ret = workload->prepare(workload);
  529. if (ret)
  530. goto err_shadow_wa_ctx;
  531. }
  532. return 0;
  533. err_shadow_wa_ctx:
  534. release_shadow_wa_ctx(&workload->wa_ctx);
  535. err_shadow_batch:
  536. release_shadow_batch_buffer(workload);
  537. err_unpin_mm:
  538. intel_vgpu_unpin_mm(workload->shadow_mm);
  539. return ret;
  540. }
  541. static int dispatch_workload(struct intel_vgpu_workload *workload)
  542. {
  543. struct intel_vgpu *vgpu = workload->vgpu;
  544. struct intel_vgpu_submission *s = &vgpu->submission;
  545. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  546. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  547. int ring_id = workload->ring_id;
  548. struct intel_engine_cs *engine = dev_priv->engine[ring_id];
  549. int ret = 0;
  550. gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
  551. ring_id, workload);
  552. mutex_lock(&dev_priv->drm.struct_mutex);
  553. ret = intel_gvt_scan_and_shadow_workload(workload);
  554. if (ret)
  555. goto out;
  556. ret = prepare_workload(workload);
  557. if (ret) {
  558. engine->context_unpin(engine, shadow_ctx);
  559. goto out;
  560. }
  561. out:
  562. if (ret)
  563. workload->status = ret;
  564. if (!IS_ERR_OR_NULL(workload->req)) {
  565. gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
  566. ring_id, workload->req);
  567. i915_request_add(workload->req);
  568. workload->dispatched = true;
  569. }
  570. mutex_unlock(&dev_priv->drm.struct_mutex);
  571. return ret;
  572. }
  573. static struct intel_vgpu_workload *pick_next_workload(
  574. struct intel_gvt *gvt, int ring_id)
  575. {
  576. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  577. struct intel_vgpu_workload *workload = NULL;
  578. mutex_lock(&gvt->lock);
  579. /*
  580. * no current vgpu / will be scheduled out / no workload
  581. * bail out
  582. */
  583. if (!scheduler->current_vgpu) {
  584. gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
  585. goto out;
  586. }
  587. if (scheduler->need_reschedule) {
  588. gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
  589. goto out;
  590. }
  591. if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
  592. goto out;
  593. /*
  594. * still have current workload, maybe the workload disptacher
  595. * fail to submit it for some reason, resubmit it.
  596. */
  597. if (scheduler->current_workload[ring_id]) {
  598. workload = scheduler->current_workload[ring_id];
  599. gvt_dbg_sched("ring id %d still have current workload %p\n",
  600. ring_id, workload);
  601. goto out;
  602. }
  603. /*
  604. * pick a workload as current workload
  605. * once current workload is set, schedule policy routines
  606. * will wait the current workload is finished when trying to
  607. * schedule out a vgpu.
  608. */
  609. scheduler->current_workload[ring_id] = container_of(
  610. workload_q_head(scheduler->current_vgpu, ring_id)->next,
  611. struct intel_vgpu_workload, list);
  612. workload = scheduler->current_workload[ring_id];
  613. gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
  614. atomic_inc(&workload->vgpu->submission.running_workload_num);
  615. out:
  616. mutex_unlock(&gvt->lock);
  617. return workload;
  618. }
  619. static void update_guest_context(struct intel_vgpu_workload *workload)
  620. {
  621. struct intel_vgpu *vgpu = workload->vgpu;
  622. struct intel_gvt *gvt = vgpu->gvt;
  623. struct intel_vgpu_submission *s = &vgpu->submission;
  624. struct i915_gem_context *shadow_ctx = s->shadow_ctx;
  625. int ring_id = workload->ring_id;
  626. struct drm_i915_gem_object *ctx_obj =
  627. shadow_ctx->engine[ring_id].state->obj;
  628. struct execlist_ring_context *shadow_ring_context;
  629. struct page *page;
  630. void *src;
  631. unsigned long context_gpa, context_page_num;
  632. int i;
  633. gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
  634. workload->ctx_desc.lrca);
  635. context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
  636. context_page_num = context_page_num >> PAGE_SHIFT;
  637. if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
  638. context_page_num = 19;
  639. i = 2;
  640. while (i < context_page_num) {
  641. context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
  642. (u32)((workload->ctx_desc.lrca + i) <<
  643. I915_GTT_PAGE_SHIFT));
  644. if (context_gpa == INTEL_GVT_INVALID_ADDR) {
  645. gvt_vgpu_err("invalid guest context descriptor\n");
  646. return;
  647. }
  648. page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
  649. src = kmap(page);
  650. intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
  651. I915_GTT_PAGE_SIZE);
  652. kunmap(page);
  653. i++;
  654. }
  655. intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
  656. RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
  657. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  658. shadow_ring_context = kmap(page);
  659. #define COPY_REG(name) \
  660. intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
  661. RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
  662. COPY_REG(ctx_ctrl);
  663. COPY_REG(ctx_timestamp);
  664. #undef COPY_REG
  665. intel_gvt_hypervisor_write_gpa(vgpu,
  666. workload->ring_context_gpa +
  667. sizeof(*shadow_ring_context),
  668. (void *)shadow_ring_context +
  669. sizeof(*shadow_ring_context),
  670. I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
  671. kunmap(page);
  672. }
  673. static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
  674. {
  675. struct intel_vgpu_submission *s = &vgpu->submission;
  676. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  677. struct intel_engine_cs *engine;
  678. struct intel_vgpu_workload *pos, *n;
  679. unsigned int tmp;
  680. /* free the unsubmited workloads in the queues. */
  681. for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
  682. list_for_each_entry_safe(pos, n,
  683. &s->workload_q_head[engine->id], list) {
  684. list_del_init(&pos->list);
  685. intel_vgpu_destroy_workload(pos);
  686. }
  687. clear_bit(engine->id, s->shadow_ctx_desc_updated);
  688. }
  689. }
  690. static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
  691. {
  692. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  693. struct intel_vgpu_workload *workload =
  694. scheduler->current_workload[ring_id];
  695. struct intel_vgpu *vgpu = workload->vgpu;
  696. struct intel_vgpu_submission *s = &vgpu->submission;
  697. int event;
  698. mutex_lock(&gvt->lock);
  699. /* For the workload w/ request, needs to wait for the context
  700. * switch to make sure request is completed.
  701. * For the workload w/o request, directly complete the workload.
  702. */
  703. if (workload->req) {
  704. struct drm_i915_private *dev_priv =
  705. workload->vgpu->gvt->dev_priv;
  706. struct intel_engine_cs *engine =
  707. dev_priv->engine[workload->ring_id];
  708. wait_event(workload->shadow_ctx_status_wq,
  709. !atomic_read(&workload->shadow_ctx_active));
  710. /* If this request caused GPU hang, req->fence.error will
  711. * be set to -EIO. Use -EIO to set workload status so
  712. * that when this request caused GPU hang, didn't trigger
  713. * context switch interrupt to guest.
  714. */
  715. if (likely(workload->status == -EINPROGRESS)) {
  716. if (workload->req->fence.error == -EIO)
  717. workload->status = -EIO;
  718. else
  719. workload->status = 0;
  720. }
  721. i915_request_put(fetch_and_zero(&workload->req));
  722. if (!workload->status && !(vgpu->resetting_eng &
  723. ENGINE_MASK(ring_id))) {
  724. update_guest_context(workload);
  725. for_each_set_bit(event, workload->pending_events,
  726. INTEL_GVT_EVENT_MAX)
  727. intel_vgpu_trigger_virtual_event(vgpu, event);
  728. }
  729. mutex_lock(&dev_priv->drm.struct_mutex);
  730. /* unpin shadow ctx as the shadow_ctx update is done */
  731. engine->context_unpin(engine, s->shadow_ctx);
  732. mutex_unlock(&dev_priv->drm.struct_mutex);
  733. }
  734. gvt_dbg_sched("ring id %d complete workload %p status %d\n",
  735. ring_id, workload, workload->status);
  736. scheduler->current_workload[ring_id] = NULL;
  737. list_del_init(&workload->list);
  738. if (!workload->status) {
  739. release_shadow_batch_buffer(workload);
  740. release_shadow_wa_ctx(&workload->wa_ctx);
  741. }
  742. if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
  743. /* if workload->status is not successful means HW GPU
  744. * has occurred GPU hang or something wrong with i915/GVT,
  745. * and GVT won't inject context switch interrupt to guest.
  746. * So this error is a vGPU hang actually to the guest.
  747. * According to this we should emunlate a vGPU hang. If
  748. * there are pending workloads which are already submitted
  749. * from guest, we should clean them up like HW GPU does.
  750. *
  751. * if it is in middle of engine resetting, the pending
  752. * workloads won't be submitted to HW GPU and will be
  753. * cleaned up during the resetting process later, so doing
  754. * the workload clean up here doesn't have any impact.
  755. **/
  756. clean_workloads(vgpu, ENGINE_MASK(ring_id));
  757. }
  758. workload->complete(workload);
  759. atomic_dec(&s->running_workload_num);
  760. wake_up(&scheduler->workload_complete_wq);
  761. if (gvt->scheduler.need_reschedule)
  762. intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
  763. mutex_unlock(&gvt->lock);
  764. }
  765. struct workload_thread_param {
  766. struct intel_gvt *gvt;
  767. int ring_id;
  768. };
  769. static int workload_thread(void *priv)
  770. {
  771. struct workload_thread_param *p = (struct workload_thread_param *)priv;
  772. struct intel_gvt *gvt = p->gvt;
  773. int ring_id = p->ring_id;
  774. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  775. struct intel_vgpu_workload *workload = NULL;
  776. struct intel_vgpu *vgpu = NULL;
  777. int ret;
  778. bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
  779. || IS_KABYLAKE(gvt->dev_priv);
  780. DEFINE_WAIT_FUNC(wait, woken_wake_function);
  781. kfree(p);
  782. gvt_dbg_core("workload thread for ring %d started\n", ring_id);
  783. while (!kthread_should_stop()) {
  784. add_wait_queue(&scheduler->waitq[ring_id], &wait);
  785. do {
  786. workload = pick_next_workload(gvt, ring_id);
  787. if (workload)
  788. break;
  789. wait_woken(&wait, TASK_INTERRUPTIBLE,
  790. MAX_SCHEDULE_TIMEOUT);
  791. } while (!kthread_should_stop());
  792. remove_wait_queue(&scheduler->waitq[ring_id], &wait);
  793. if (!workload)
  794. break;
  795. gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
  796. workload->ring_id, workload,
  797. workload->vgpu->id);
  798. intel_runtime_pm_get(gvt->dev_priv);
  799. gvt_dbg_sched("ring id %d will dispatch workload %p\n",
  800. workload->ring_id, workload);
  801. if (need_force_wake)
  802. intel_uncore_forcewake_get(gvt->dev_priv,
  803. FORCEWAKE_ALL);
  804. mutex_lock(&gvt->lock);
  805. ret = dispatch_workload(workload);
  806. mutex_unlock(&gvt->lock);
  807. if (ret) {
  808. vgpu = workload->vgpu;
  809. gvt_vgpu_err("fail to dispatch workload, skip\n");
  810. goto complete;
  811. }
  812. gvt_dbg_sched("ring id %d wait workload %p\n",
  813. workload->ring_id, workload);
  814. i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
  815. complete:
  816. gvt_dbg_sched("will complete workload %p, status: %d\n",
  817. workload, workload->status);
  818. complete_current_workload(gvt, ring_id);
  819. if (need_force_wake)
  820. intel_uncore_forcewake_put(gvt->dev_priv,
  821. FORCEWAKE_ALL);
  822. intel_runtime_pm_put(gvt->dev_priv);
  823. if (ret && (vgpu_is_vm_unhealthy(ret)))
  824. enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
  825. }
  826. return 0;
  827. }
  828. void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
  829. {
  830. struct intel_vgpu_submission *s = &vgpu->submission;
  831. struct intel_gvt *gvt = vgpu->gvt;
  832. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  833. if (atomic_read(&s->running_workload_num)) {
  834. gvt_dbg_sched("wait vgpu idle\n");
  835. wait_event(scheduler->workload_complete_wq,
  836. !atomic_read(&s->running_workload_num));
  837. }
  838. }
  839. void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
  840. {
  841. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  842. struct intel_engine_cs *engine;
  843. enum intel_engine_id i;
  844. gvt_dbg_core("clean workload scheduler\n");
  845. for_each_engine(engine, gvt->dev_priv, i) {
  846. atomic_notifier_chain_unregister(
  847. &engine->context_status_notifier,
  848. &gvt->shadow_ctx_notifier_block[i]);
  849. kthread_stop(scheduler->thread[i]);
  850. }
  851. }
  852. int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
  853. {
  854. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  855. struct workload_thread_param *param = NULL;
  856. struct intel_engine_cs *engine;
  857. enum intel_engine_id i;
  858. int ret;
  859. gvt_dbg_core("init workload scheduler\n");
  860. init_waitqueue_head(&scheduler->workload_complete_wq);
  861. for_each_engine(engine, gvt->dev_priv, i) {
  862. init_waitqueue_head(&scheduler->waitq[i]);
  863. param = kzalloc(sizeof(*param), GFP_KERNEL);
  864. if (!param) {
  865. ret = -ENOMEM;
  866. goto err;
  867. }
  868. param->gvt = gvt;
  869. param->ring_id = i;
  870. scheduler->thread[i] = kthread_run(workload_thread, param,
  871. "gvt workload %d", i);
  872. if (IS_ERR(scheduler->thread[i])) {
  873. gvt_err("fail to create workload thread\n");
  874. ret = PTR_ERR(scheduler->thread[i]);
  875. goto err;
  876. }
  877. gvt->shadow_ctx_notifier_block[i].notifier_call =
  878. shadow_context_status_change;
  879. atomic_notifier_chain_register(&engine->context_status_notifier,
  880. &gvt->shadow_ctx_notifier_block[i]);
  881. }
  882. return 0;
  883. err:
  884. intel_gvt_clean_workload_scheduler(gvt);
  885. kfree(param);
  886. param = NULL;
  887. return ret;
  888. }
  889. /**
  890. * intel_vgpu_clean_submission - free submission-related resource for vGPU
  891. * @vgpu: a vGPU
  892. *
  893. * This function is called when a vGPU is being destroyed.
  894. *
  895. */
  896. void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
  897. {
  898. struct intel_vgpu_submission *s = &vgpu->submission;
  899. intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
  900. i915_gem_context_put(s->shadow_ctx);
  901. kmem_cache_destroy(s->workloads);
  902. }
  903. /**
  904. * intel_vgpu_reset_submission - reset submission-related resource for vGPU
  905. * @vgpu: a vGPU
  906. * @engine_mask: engines expected to be reset
  907. *
  908. * This function is called when a vGPU is being destroyed.
  909. *
  910. */
  911. void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
  912. unsigned long engine_mask)
  913. {
  914. struct intel_vgpu_submission *s = &vgpu->submission;
  915. if (!s->active)
  916. return;
  917. clean_workloads(vgpu, engine_mask);
  918. s->ops->reset(vgpu, engine_mask);
  919. }
  920. /**
  921. * intel_vgpu_setup_submission - setup submission-related resource for vGPU
  922. * @vgpu: a vGPU
  923. *
  924. * This function is called when a vGPU is being created.
  925. *
  926. * Returns:
  927. * Zero on success, negative error code if failed.
  928. *
  929. */
  930. int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
  931. {
  932. struct intel_vgpu_submission *s = &vgpu->submission;
  933. enum intel_engine_id i;
  934. struct intel_engine_cs *engine;
  935. int ret;
  936. s->shadow_ctx = i915_gem_context_create_gvt(
  937. &vgpu->gvt->dev_priv->drm);
  938. if (IS_ERR(s->shadow_ctx))
  939. return PTR_ERR(s->shadow_ctx);
  940. if (HAS_LOGICAL_RING_PREEMPTION(vgpu->gvt->dev_priv))
  941. s->shadow_ctx->priority = INT_MAX;
  942. bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
  943. s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
  944. sizeof(struct intel_vgpu_workload), 0,
  945. SLAB_HWCACHE_ALIGN,
  946. offsetof(struct intel_vgpu_workload, rb_tail),
  947. sizeof_field(struct intel_vgpu_workload, rb_tail),
  948. NULL);
  949. if (!s->workloads) {
  950. ret = -ENOMEM;
  951. goto out_shadow_ctx;
  952. }
  953. for_each_engine(engine, vgpu->gvt->dev_priv, i)
  954. INIT_LIST_HEAD(&s->workload_q_head[i]);
  955. atomic_set(&s->running_workload_num, 0);
  956. bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
  957. return 0;
  958. out_shadow_ctx:
  959. i915_gem_context_put(s->shadow_ctx);
  960. return ret;
  961. }
  962. /**
  963. * intel_vgpu_select_submission_ops - select virtual submission interface
  964. * @vgpu: a vGPU
  965. * @interface: expected vGPU virtual submission interface
  966. *
  967. * This function is called when guest configures submission interface.
  968. *
  969. * Returns:
  970. * Zero on success, negative error code if failed.
  971. *
  972. */
  973. int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
  974. unsigned long engine_mask,
  975. unsigned int interface)
  976. {
  977. struct intel_vgpu_submission *s = &vgpu->submission;
  978. const struct intel_vgpu_submission_ops *ops[] = {
  979. [INTEL_VGPU_EXECLIST_SUBMISSION] =
  980. &intel_vgpu_execlist_submission_ops,
  981. };
  982. int ret;
  983. if (WARN_ON(interface >= ARRAY_SIZE(ops)))
  984. return -EINVAL;
  985. if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
  986. return -EINVAL;
  987. if (s->active)
  988. s->ops->clean(vgpu, engine_mask);
  989. if (interface == 0) {
  990. s->ops = NULL;
  991. s->virtual_submission_interface = 0;
  992. s->active = false;
  993. gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
  994. return 0;
  995. }
  996. ret = ops[interface]->init(vgpu, engine_mask);
  997. if (ret)
  998. return ret;
  999. s->ops = ops[interface];
  1000. s->virtual_submission_interface = interface;
  1001. s->active = true;
  1002. gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
  1003. vgpu->id, s->ops->name);
  1004. return 0;
  1005. }
  1006. /**
  1007. * intel_vgpu_destroy_workload - destroy a vGPU workload
  1008. * @vgpu: a vGPU
  1009. *
  1010. * This function is called when destroy a vGPU workload.
  1011. *
  1012. */
  1013. void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
  1014. {
  1015. struct intel_vgpu_submission *s = &workload->vgpu->submission;
  1016. if (workload->shadow_mm)
  1017. intel_vgpu_mm_put(workload->shadow_mm);
  1018. kmem_cache_free(s->workloads, workload);
  1019. }
  1020. static struct intel_vgpu_workload *
  1021. alloc_workload(struct intel_vgpu *vgpu)
  1022. {
  1023. struct intel_vgpu_submission *s = &vgpu->submission;
  1024. struct intel_vgpu_workload *workload;
  1025. workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
  1026. if (!workload)
  1027. return ERR_PTR(-ENOMEM);
  1028. INIT_LIST_HEAD(&workload->list);
  1029. INIT_LIST_HEAD(&workload->shadow_bb);
  1030. init_waitqueue_head(&workload->shadow_ctx_status_wq);
  1031. atomic_set(&workload->shadow_ctx_active, 0);
  1032. workload->status = -EINPROGRESS;
  1033. workload->shadowed = false;
  1034. workload->vgpu = vgpu;
  1035. return workload;
  1036. }
  1037. #define RING_CTX_OFF(x) \
  1038. offsetof(struct execlist_ring_context, x)
  1039. static void read_guest_pdps(struct intel_vgpu *vgpu,
  1040. u64 ring_context_gpa, u32 pdp[8])
  1041. {
  1042. u64 gpa;
  1043. int i;
  1044. gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
  1045. for (i = 0; i < 8; i++)
  1046. intel_gvt_hypervisor_read_gpa(vgpu,
  1047. gpa + i * 8, &pdp[7 - i], 4);
  1048. }
  1049. static int prepare_mm(struct intel_vgpu_workload *workload)
  1050. {
  1051. struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
  1052. struct intel_vgpu_mm *mm;
  1053. struct intel_vgpu *vgpu = workload->vgpu;
  1054. intel_gvt_gtt_type_t root_entry_type;
  1055. u64 pdps[GVT_RING_CTX_NR_PDPS];
  1056. switch (desc->addressing_mode) {
  1057. case 1: /* legacy 32-bit */
  1058. root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
  1059. break;
  1060. case 3: /* legacy 64-bit */
  1061. root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
  1062. break;
  1063. default:
  1064. gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
  1065. return -EINVAL;
  1066. }
  1067. read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
  1068. mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
  1069. if (IS_ERR(mm))
  1070. return PTR_ERR(mm);
  1071. workload->shadow_mm = mm;
  1072. return 0;
  1073. }
  1074. #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
  1075. ((a)->lrca == (b)->lrca))
  1076. #define get_last_workload(q) \
  1077. (list_empty(q) ? NULL : container_of(q->prev, \
  1078. struct intel_vgpu_workload, list))
  1079. /**
  1080. * intel_vgpu_create_workload - create a vGPU workload
  1081. * @vgpu: a vGPU
  1082. * @desc: a guest context descriptor
  1083. *
  1084. * This function is called when creating a vGPU workload.
  1085. *
  1086. * Returns:
  1087. * struct intel_vgpu_workload * on success, negative error code in
  1088. * pointer if failed.
  1089. *
  1090. */
  1091. struct intel_vgpu_workload *
  1092. intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
  1093. struct execlist_ctx_descriptor_format *desc)
  1094. {
  1095. struct intel_vgpu_submission *s = &vgpu->submission;
  1096. struct list_head *q = workload_q_head(vgpu, ring_id);
  1097. struct intel_vgpu_workload *last_workload = get_last_workload(q);
  1098. struct intel_vgpu_workload *workload = NULL;
  1099. struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
  1100. u64 ring_context_gpa;
  1101. u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
  1102. int ret;
  1103. ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
  1104. (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
  1105. if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
  1106. gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
  1107. return ERR_PTR(-EINVAL);
  1108. }
  1109. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1110. RING_CTX_OFF(ring_header.val), &head, 4);
  1111. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1112. RING_CTX_OFF(ring_tail.val), &tail, 4);
  1113. head &= RB_HEAD_OFF_MASK;
  1114. tail &= RB_TAIL_OFF_MASK;
  1115. if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
  1116. gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
  1117. gvt_dbg_el("ctx head %x real head %lx\n", head,
  1118. last_workload->rb_tail);
  1119. /*
  1120. * cannot use guest context head pointer here,
  1121. * as it might not be updated at this time
  1122. */
  1123. head = last_workload->rb_tail;
  1124. }
  1125. gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
  1126. /* record some ring buffer register values for scan and shadow */
  1127. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1128. RING_CTX_OFF(rb_start.val), &start, 4);
  1129. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1130. RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
  1131. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1132. RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
  1133. workload = alloc_workload(vgpu);
  1134. if (IS_ERR(workload))
  1135. return workload;
  1136. workload->ring_id = ring_id;
  1137. workload->ctx_desc = *desc;
  1138. workload->ring_context_gpa = ring_context_gpa;
  1139. workload->rb_head = head;
  1140. workload->rb_tail = tail;
  1141. workload->rb_start = start;
  1142. workload->rb_ctl = ctl;
  1143. if (ring_id == RCS) {
  1144. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1145. RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
  1146. intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
  1147. RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
  1148. workload->wa_ctx.indirect_ctx.guest_gma =
  1149. indirect_ctx & INDIRECT_CTX_ADDR_MASK;
  1150. workload->wa_ctx.indirect_ctx.size =
  1151. (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
  1152. CACHELINE_BYTES;
  1153. workload->wa_ctx.per_ctx.guest_gma =
  1154. per_ctx & PER_CTX_ADDR_MASK;
  1155. workload->wa_ctx.per_ctx.valid = per_ctx & 1;
  1156. }
  1157. gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
  1158. workload, ring_id, head, tail, start, ctl);
  1159. ret = prepare_mm(workload);
  1160. if (ret) {
  1161. kmem_cache_free(s->workloads, workload);
  1162. return ERR_PTR(ret);
  1163. }
  1164. /* Only scan and shadow the first workload in the queue
  1165. * as there is only one pre-allocated buf-obj for shadow.
  1166. */
  1167. if (list_empty(workload_q_head(vgpu, ring_id))) {
  1168. intel_runtime_pm_get(dev_priv);
  1169. mutex_lock(&dev_priv->drm.struct_mutex);
  1170. ret = intel_gvt_scan_and_shadow_workload(workload);
  1171. mutex_unlock(&dev_priv->drm.struct_mutex);
  1172. intel_runtime_pm_put(dev_priv);
  1173. }
  1174. if (ret && (vgpu_is_vm_unhealthy(ret))) {
  1175. enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
  1176. intel_vgpu_destroy_workload(workload);
  1177. return ERR_PTR(ret);
  1178. }
  1179. return workload;
  1180. }
  1181. /**
  1182. * intel_vgpu_queue_workload - Qeue a vGPU workload
  1183. * @workload: the workload to queue in
  1184. */
  1185. void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
  1186. {
  1187. list_add_tail(&workload->list,
  1188. workload_q_head(workload->vgpu, workload->ring_id));
  1189. intel_gvt_kick_schedule(workload->vgpu->gvt);
  1190. wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
  1191. }