sched_policy.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. /*
  2. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Authors:
  24. * Anhua Xu
  25. * Kevin Tian <kevin.tian@intel.com>
  26. *
  27. * Contributors:
  28. * Min He <min.he@intel.com>
  29. * Bing Niu <bing.niu@intel.com>
  30. * Zhi Wang <zhi.a.wang@intel.com>
  31. *
  32. */
  33. #include "i915_drv.h"
  34. #include "gvt.h"
  35. static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
  36. {
  37. enum intel_engine_id i;
  38. struct intel_engine_cs *engine;
  39. for_each_engine(engine, vgpu->gvt->dev_priv, i) {
  40. if (!list_empty(workload_q_head(vgpu, i)))
  41. return true;
  42. }
  43. return false;
  44. }
  45. struct vgpu_sched_data {
  46. struct list_head lru_list;
  47. struct intel_vgpu *vgpu;
  48. bool active;
  49. ktime_t sched_in_time;
  50. ktime_t sched_out_time;
  51. ktime_t sched_time;
  52. ktime_t left_ts;
  53. ktime_t allocated_ts;
  54. struct vgpu_sched_ctl sched_ctl;
  55. };
  56. struct gvt_sched_data {
  57. struct intel_gvt *gvt;
  58. struct hrtimer timer;
  59. unsigned long period;
  60. struct list_head lru_runq_head;
  61. };
  62. static void vgpu_update_timeslice(struct intel_vgpu *pre_vgpu)
  63. {
  64. ktime_t delta_ts;
  65. struct vgpu_sched_data *vgpu_data = pre_vgpu->sched_data;
  66. delta_ts = vgpu_data->sched_out_time - vgpu_data->sched_in_time;
  67. vgpu_data->sched_time += delta_ts;
  68. vgpu_data->left_ts -= delta_ts;
  69. }
  70. #define GVT_TS_BALANCE_PERIOD_MS 100
  71. #define GVT_TS_BALANCE_STAGE_NUM 10
  72. static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
  73. {
  74. struct vgpu_sched_data *vgpu_data;
  75. struct list_head *pos;
  76. static uint64_t stage_check;
  77. int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
  78. /* The timeslice accumulation reset at stage 0, which is
  79. * allocated again without adding previous debt.
  80. */
  81. if (stage == 0) {
  82. int total_weight = 0;
  83. ktime_t fair_timeslice;
  84. list_for_each(pos, &sched_data->lru_runq_head) {
  85. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  86. total_weight += vgpu_data->sched_ctl.weight;
  87. }
  88. list_for_each(pos, &sched_data->lru_runq_head) {
  89. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  90. fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS),
  91. total_weight) * vgpu_data->sched_ctl.weight;
  92. vgpu_data->allocated_ts = fair_timeslice;
  93. vgpu_data->left_ts = vgpu_data->allocated_ts;
  94. }
  95. } else {
  96. list_for_each(pos, &sched_data->lru_runq_head) {
  97. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  98. /* timeslice for next 100ms should add the left/debt
  99. * slice of previous stages.
  100. */
  101. vgpu_data->left_ts += vgpu_data->allocated_ts;
  102. }
  103. }
  104. }
  105. static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
  106. {
  107. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  108. enum intel_engine_id i;
  109. struct intel_engine_cs *engine;
  110. struct vgpu_sched_data *vgpu_data;
  111. ktime_t cur_time;
  112. /* no need to schedule if next_vgpu is the same with current_vgpu,
  113. * let scheduler chose next_vgpu again by setting it to NULL.
  114. */
  115. if (scheduler->next_vgpu == scheduler->current_vgpu) {
  116. scheduler->next_vgpu = NULL;
  117. return;
  118. }
  119. /*
  120. * after the flag is set, workload dispatch thread will
  121. * stop dispatching workload for current vgpu
  122. */
  123. scheduler->need_reschedule = true;
  124. /* still have uncompleted workload? */
  125. for_each_engine(engine, gvt->dev_priv, i) {
  126. if (scheduler->current_workload[i])
  127. return;
  128. }
  129. cur_time = ktime_get();
  130. if (scheduler->current_vgpu) {
  131. vgpu_data = scheduler->current_vgpu->sched_data;
  132. vgpu_data->sched_out_time = cur_time;
  133. vgpu_update_timeslice(scheduler->current_vgpu);
  134. }
  135. vgpu_data = scheduler->next_vgpu->sched_data;
  136. vgpu_data->sched_in_time = cur_time;
  137. /* switch current vgpu */
  138. scheduler->current_vgpu = scheduler->next_vgpu;
  139. scheduler->next_vgpu = NULL;
  140. scheduler->need_reschedule = false;
  141. /* wake up workload dispatch thread */
  142. for_each_engine(engine, gvt->dev_priv, i)
  143. wake_up(&scheduler->waitq[i]);
  144. }
  145. static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
  146. {
  147. struct vgpu_sched_data *vgpu_data;
  148. struct intel_vgpu *vgpu = NULL;
  149. struct list_head *head = &sched_data->lru_runq_head;
  150. struct list_head *pos;
  151. /* search a vgpu with pending workload */
  152. list_for_each(pos, head) {
  153. vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
  154. if (!vgpu_has_pending_workload(vgpu_data->vgpu))
  155. continue;
  156. /* Return the vGPU only if it has time slice left */
  157. if (vgpu_data->left_ts > 0) {
  158. vgpu = vgpu_data->vgpu;
  159. break;
  160. }
  161. }
  162. return vgpu;
  163. }
  164. /* in nanosecond */
  165. #define GVT_DEFAULT_TIME_SLICE 1000000
  166. static void tbs_sched_func(struct gvt_sched_data *sched_data)
  167. {
  168. struct intel_gvt *gvt = sched_data->gvt;
  169. struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
  170. struct vgpu_sched_data *vgpu_data;
  171. struct intel_vgpu *vgpu = NULL;
  172. /* no active vgpu or has already had a target */
  173. if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
  174. goto out;
  175. vgpu = find_busy_vgpu(sched_data);
  176. if (vgpu) {
  177. scheduler->next_vgpu = vgpu;
  178. /* Move the last used vGPU to the tail of lru_list */
  179. vgpu_data = vgpu->sched_data;
  180. list_del_init(&vgpu_data->lru_list);
  181. list_add_tail(&vgpu_data->lru_list,
  182. &sched_data->lru_runq_head);
  183. } else {
  184. scheduler->next_vgpu = gvt->idle_vgpu;
  185. }
  186. out:
  187. if (scheduler->next_vgpu)
  188. try_to_schedule_next_vgpu(gvt);
  189. }
  190. void intel_gvt_schedule(struct intel_gvt *gvt)
  191. {
  192. struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
  193. static uint64_t timer_check;
  194. mutex_lock(&gvt->lock);
  195. if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED,
  196. (void *)&gvt->service_request)) {
  197. if (!(timer_check++ % GVT_TS_BALANCE_PERIOD_MS))
  198. gvt_balance_timeslice(sched_data);
  199. }
  200. clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request);
  201. tbs_sched_func(sched_data);
  202. mutex_unlock(&gvt->lock);
  203. }
  204. static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
  205. {
  206. struct gvt_sched_data *data;
  207. data = container_of(timer_data, struct gvt_sched_data, timer);
  208. intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
  209. hrtimer_add_expires_ns(&data->timer, data->period);
  210. return HRTIMER_RESTART;
  211. }
  212. static int tbs_sched_init(struct intel_gvt *gvt)
  213. {
  214. struct intel_gvt_workload_scheduler *scheduler =
  215. &gvt->scheduler;
  216. struct gvt_sched_data *data;
  217. data = kzalloc(sizeof(*data), GFP_KERNEL);
  218. if (!data)
  219. return -ENOMEM;
  220. INIT_LIST_HEAD(&data->lru_runq_head);
  221. hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  222. data->timer.function = tbs_timer_fn;
  223. data->period = GVT_DEFAULT_TIME_SLICE;
  224. data->gvt = gvt;
  225. scheduler->sched_data = data;
  226. return 0;
  227. }
  228. static void tbs_sched_clean(struct intel_gvt *gvt)
  229. {
  230. struct intel_gvt_workload_scheduler *scheduler =
  231. &gvt->scheduler;
  232. struct gvt_sched_data *data = scheduler->sched_data;
  233. hrtimer_cancel(&data->timer);
  234. kfree(data);
  235. scheduler->sched_data = NULL;
  236. }
  237. static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
  238. {
  239. struct vgpu_sched_data *data;
  240. data = kzalloc(sizeof(*data), GFP_KERNEL);
  241. if (!data)
  242. return -ENOMEM;
  243. data->sched_ctl.weight = vgpu->sched_ctl.weight;
  244. data->vgpu = vgpu;
  245. INIT_LIST_HEAD(&data->lru_list);
  246. vgpu->sched_data = data;
  247. return 0;
  248. }
  249. static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
  250. {
  251. struct intel_gvt *gvt = vgpu->gvt;
  252. struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
  253. kfree(vgpu->sched_data);
  254. vgpu->sched_data = NULL;
  255. /* this vgpu id has been removed */
  256. if (idr_is_empty(&gvt->vgpu_idr))
  257. hrtimer_cancel(&sched_data->timer);
  258. }
  259. static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
  260. {
  261. struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
  262. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  263. if (!list_empty(&vgpu_data->lru_list))
  264. return;
  265. list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head);
  266. if (!hrtimer_active(&sched_data->timer))
  267. hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
  268. sched_data->period), HRTIMER_MODE_ABS);
  269. vgpu_data->active = true;
  270. }
  271. static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
  272. {
  273. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  274. list_del_init(&vgpu_data->lru_list);
  275. vgpu_data->active = false;
  276. }
  277. static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
  278. .init = tbs_sched_init,
  279. .clean = tbs_sched_clean,
  280. .init_vgpu = tbs_sched_init_vgpu,
  281. .clean_vgpu = tbs_sched_clean_vgpu,
  282. .start_schedule = tbs_sched_start_schedule,
  283. .stop_schedule = tbs_sched_stop_schedule,
  284. };
  285. int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
  286. {
  287. gvt->scheduler.sched_ops = &tbs_schedule_ops;
  288. return gvt->scheduler.sched_ops->init(gvt);
  289. }
  290. void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
  291. {
  292. gvt->scheduler.sched_ops->clean(gvt);
  293. }
  294. int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
  295. {
  296. return vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
  297. }
  298. void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
  299. {
  300. vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
  301. }
  302. void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
  303. {
  304. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  305. if (!vgpu_data->active) {
  306. gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
  307. vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
  308. }
  309. }
  310. void intel_gvt_kick_schedule(struct intel_gvt *gvt)
  311. {
  312. intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
  313. }
  314. void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
  315. {
  316. struct intel_gvt_workload_scheduler *scheduler =
  317. &vgpu->gvt->scheduler;
  318. int ring_id;
  319. struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
  320. if (!vgpu_data->active)
  321. return;
  322. gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
  323. scheduler->sched_ops->stop_schedule(vgpu);
  324. if (scheduler->next_vgpu == vgpu)
  325. scheduler->next_vgpu = NULL;
  326. if (scheduler->current_vgpu == vgpu) {
  327. /* stop workload dispatching */
  328. scheduler->need_reschedule = true;
  329. scheduler->current_vgpu = NULL;
  330. }
  331. spin_lock_bh(&scheduler->mmio_context_lock);
  332. for (ring_id = 0; ring_id < I915_NUM_ENGINES; ring_id++) {
  333. if (scheduler->engine_owner[ring_id] == vgpu) {
  334. intel_gvt_switch_mmio(vgpu, NULL, ring_id);
  335. scheduler->engine_owner[ring_id] = NULL;
  336. }
  337. }
  338. spin_unlock_bh(&scheduler->mmio_context_lock);
  339. }