kvmgt.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777
  1. /*
  2. * KVMGT - the implementation of Intel mediated pass-through framework for KVM
  3. *
  4. * Copyright(c) 2014-2016 Intel Corporation. All rights reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the "Software"),
  8. * to deal in the Software without restriction, including without limitation
  9. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10. * and/or sell copies of the Software, and to permit persons to whom the
  11. * Software is furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice (including the next
  14. * paragraph) shall be included in all copies or substantial portions of the
  15. * Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  23. * SOFTWARE.
  24. *
  25. * Authors:
  26. * Kevin Tian <kevin.tian@intel.com>
  27. * Jike Song <jike.song@intel.com>
  28. * Xiaoguang Chen <xiaoguang.chen@intel.com>
  29. */
  30. #include <linux/init.h>
  31. #include <linux/device.h>
  32. #include <linux/mm.h>
  33. #include <linux/mmu_context.h>
  34. #include <linux/types.h>
  35. #include <linux/list.h>
  36. #include <linux/rbtree.h>
  37. #include <linux/spinlock.h>
  38. #include <linux/eventfd.h>
  39. #include <linux/uuid.h>
  40. #include <linux/kvm_host.h>
  41. #include <linux/vfio.h>
  42. #include <linux/mdev.h>
  43. #include <linux/debugfs.h>
  44. #include "i915_drv.h"
  45. #include "gvt.h"
  46. static const struct intel_gvt_ops *intel_gvt_ops;
  47. /* helper macros copied from vfio-pci */
  48. #define VFIO_PCI_OFFSET_SHIFT 40
  49. #define VFIO_PCI_OFFSET_TO_INDEX(off) (off >> VFIO_PCI_OFFSET_SHIFT)
  50. #define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
  51. #define VFIO_PCI_OFFSET_MASK (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
  52. #define OPREGION_SIGNATURE "IntelGraphicsMem"
  53. struct vfio_region;
  54. struct intel_vgpu_regops {
  55. size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
  56. size_t count, loff_t *ppos, bool iswrite);
  57. void (*release)(struct intel_vgpu *vgpu,
  58. struct vfio_region *region);
  59. };
  60. struct vfio_region {
  61. u32 type;
  62. u32 subtype;
  63. size_t size;
  64. u32 flags;
  65. const struct intel_vgpu_regops *ops;
  66. void *data;
  67. };
  68. struct kvmgt_pgfn {
  69. gfn_t gfn;
  70. struct hlist_node hnode;
  71. };
  72. struct kvmgt_guest_info {
  73. struct kvm *kvm;
  74. struct intel_vgpu *vgpu;
  75. struct kvm_page_track_notifier_node track_node;
  76. #define NR_BKT (1 << 18)
  77. struct hlist_head ptable[NR_BKT];
  78. #undef NR_BKT
  79. struct dentry *debugfs_cache_entries;
  80. };
  81. struct gvt_dma {
  82. struct intel_vgpu *vgpu;
  83. struct rb_node gfn_node;
  84. struct rb_node dma_addr_node;
  85. gfn_t gfn;
  86. dma_addr_t dma_addr;
  87. struct kref ref;
  88. };
  89. static inline bool handle_valid(unsigned long handle)
  90. {
  91. return !!(handle & ~0xff);
  92. }
  93. static int kvmgt_guest_init(struct mdev_device *mdev);
  94. static void intel_vgpu_release_work(struct work_struct *work);
  95. static bool kvmgt_guest_exit(struct kvmgt_guest_info *info);
  96. static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
  97. dma_addr_t *dma_addr)
  98. {
  99. struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
  100. struct page *page;
  101. unsigned long pfn;
  102. int ret;
  103. /* Pin the page first. */
  104. ret = vfio_pin_pages(mdev_dev(vgpu->vdev.mdev), &gfn, 1,
  105. IOMMU_READ | IOMMU_WRITE, &pfn);
  106. if (ret != 1) {
  107. gvt_vgpu_err("vfio_pin_pages failed for gfn 0x%lx: %d\n",
  108. gfn, ret);
  109. return -EINVAL;
  110. }
  111. /* Setup DMA mapping. */
  112. page = pfn_to_page(pfn);
  113. *dma_addr = dma_map_page(dev, page, 0, PAGE_SIZE,
  114. PCI_DMA_BIDIRECTIONAL);
  115. if (dma_mapping_error(dev, *dma_addr)) {
  116. gvt_vgpu_err("DMA mapping failed for gfn 0x%lx\n", gfn);
  117. vfio_unpin_pages(mdev_dev(vgpu->vdev.mdev), &gfn, 1);
  118. return -ENOMEM;
  119. }
  120. return 0;
  121. }
  122. static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
  123. dma_addr_t dma_addr)
  124. {
  125. struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
  126. int ret;
  127. dma_unmap_page(dev, dma_addr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  128. ret = vfio_unpin_pages(mdev_dev(vgpu->vdev.mdev), &gfn, 1);
  129. WARN_ON(ret != 1);
  130. }
  131. static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
  132. dma_addr_t dma_addr)
  133. {
  134. struct rb_node *node = vgpu->vdev.dma_addr_cache.rb_node;
  135. struct gvt_dma *itr;
  136. while (node) {
  137. itr = rb_entry(node, struct gvt_dma, dma_addr_node);
  138. if (dma_addr < itr->dma_addr)
  139. node = node->rb_left;
  140. else if (dma_addr > itr->dma_addr)
  141. node = node->rb_right;
  142. else
  143. return itr;
  144. }
  145. return NULL;
  146. }
  147. static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
  148. {
  149. struct rb_node *node = vgpu->vdev.gfn_cache.rb_node;
  150. struct gvt_dma *itr;
  151. while (node) {
  152. itr = rb_entry(node, struct gvt_dma, gfn_node);
  153. if (gfn < itr->gfn)
  154. node = node->rb_left;
  155. else if (gfn > itr->gfn)
  156. node = node->rb_right;
  157. else
  158. return itr;
  159. }
  160. return NULL;
  161. }
  162. static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
  163. dma_addr_t dma_addr)
  164. {
  165. struct gvt_dma *new, *itr;
  166. struct rb_node **link, *parent = NULL;
  167. new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
  168. if (!new)
  169. return -ENOMEM;
  170. new->vgpu = vgpu;
  171. new->gfn = gfn;
  172. new->dma_addr = dma_addr;
  173. kref_init(&new->ref);
  174. /* gfn_cache maps gfn to struct gvt_dma. */
  175. link = &vgpu->vdev.gfn_cache.rb_node;
  176. while (*link) {
  177. parent = *link;
  178. itr = rb_entry(parent, struct gvt_dma, gfn_node);
  179. if (gfn < itr->gfn)
  180. link = &parent->rb_left;
  181. else
  182. link = &parent->rb_right;
  183. }
  184. rb_link_node(&new->gfn_node, parent, link);
  185. rb_insert_color(&new->gfn_node, &vgpu->vdev.gfn_cache);
  186. /* dma_addr_cache maps dma addr to struct gvt_dma. */
  187. parent = NULL;
  188. link = &vgpu->vdev.dma_addr_cache.rb_node;
  189. while (*link) {
  190. parent = *link;
  191. itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
  192. if (dma_addr < itr->dma_addr)
  193. link = &parent->rb_left;
  194. else
  195. link = &parent->rb_right;
  196. }
  197. rb_link_node(&new->dma_addr_node, parent, link);
  198. rb_insert_color(&new->dma_addr_node, &vgpu->vdev.dma_addr_cache);
  199. vgpu->vdev.nr_cache_entries++;
  200. return 0;
  201. }
  202. static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
  203. struct gvt_dma *entry)
  204. {
  205. rb_erase(&entry->gfn_node, &vgpu->vdev.gfn_cache);
  206. rb_erase(&entry->dma_addr_node, &vgpu->vdev.dma_addr_cache);
  207. kfree(entry);
  208. vgpu->vdev.nr_cache_entries--;
  209. }
  210. static void gvt_cache_destroy(struct intel_vgpu *vgpu)
  211. {
  212. struct gvt_dma *dma;
  213. struct rb_node *node = NULL;
  214. for (;;) {
  215. mutex_lock(&vgpu->vdev.cache_lock);
  216. node = rb_first(&vgpu->vdev.gfn_cache);
  217. if (!node) {
  218. mutex_unlock(&vgpu->vdev.cache_lock);
  219. break;
  220. }
  221. dma = rb_entry(node, struct gvt_dma, gfn_node);
  222. gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr);
  223. __gvt_cache_remove_entry(vgpu, dma);
  224. mutex_unlock(&vgpu->vdev.cache_lock);
  225. }
  226. }
  227. static void gvt_cache_init(struct intel_vgpu *vgpu)
  228. {
  229. vgpu->vdev.gfn_cache = RB_ROOT;
  230. vgpu->vdev.dma_addr_cache = RB_ROOT;
  231. vgpu->vdev.nr_cache_entries = 0;
  232. mutex_init(&vgpu->vdev.cache_lock);
  233. }
  234. static void kvmgt_protect_table_init(struct kvmgt_guest_info *info)
  235. {
  236. hash_init(info->ptable);
  237. }
  238. static void kvmgt_protect_table_destroy(struct kvmgt_guest_info *info)
  239. {
  240. struct kvmgt_pgfn *p;
  241. struct hlist_node *tmp;
  242. int i;
  243. hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
  244. hash_del(&p->hnode);
  245. kfree(p);
  246. }
  247. }
  248. static struct kvmgt_pgfn *
  249. __kvmgt_protect_table_find(struct kvmgt_guest_info *info, gfn_t gfn)
  250. {
  251. struct kvmgt_pgfn *p, *res = NULL;
  252. hash_for_each_possible(info->ptable, p, hnode, gfn) {
  253. if (gfn == p->gfn) {
  254. res = p;
  255. break;
  256. }
  257. }
  258. return res;
  259. }
  260. static bool kvmgt_gfn_is_write_protected(struct kvmgt_guest_info *info,
  261. gfn_t gfn)
  262. {
  263. struct kvmgt_pgfn *p;
  264. p = __kvmgt_protect_table_find(info, gfn);
  265. return !!p;
  266. }
  267. static void kvmgt_protect_table_add(struct kvmgt_guest_info *info, gfn_t gfn)
  268. {
  269. struct kvmgt_pgfn *p;
  270. if (kvmgt_gfn_is_write_protected(info, gfn))
  271. return;
  272. p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
  273. if (WARN(!p, "gfn: 0x%llx\n", gfn))
  274. return;
  275. p->gfn = gfn;
  276. hash_add(info->ptable, &p->hnode, gfn);
  277. }
  278. static void kvmgt_protect_table_del(struct kvmgt_guest_info *info,
  279. gfn_t gfn)
  280. {
  281. struct kvmgt_pgfn *p;
  282. p = __kvmgt_protect_table_find(info, gfn);
  283. if (p) {
  284. hash_del(&p->hnode);
  285. kfree(p);
  286. }
  287. }
  288. static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
  289. size_t count, loff_t *ppos, bool iswrite)
  290. {
  291. unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
  292. VFIO_PCI_NUM_REGIONS;
  293. void *base = vgpu->vdev.region[i].data;
  294. loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
  295. if (pos >= vgpu->vdev.region[i].size || iswrite) {
  296. gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
  297. return -EINVAL;
  298. }
  299. count = min(count, (size_t)(vgpu->vdev.region[i].size - pos));
  300. memcpy(buf, base + pos, count);
  301. return count;
  302. }
  303. static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
  304. struct vfio_region *region)
  305. {
  306. }
  307. static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
  308. .rw = intel_vgpu_reg_rw_opregion,
  309. .release = intel_vgpu_reg_release_opregion,
  310. };
  311. static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
  312. unsigned int type, unsigned int subtype,
  313. const struct intel_vgpu_regops *ops,
  314. size_t size, u32 flags, void *data)
  315. {
  316. struct vfio_region *region;
  317. region = krealloc(vgpu->vdev.region,
  318. (vgpu->vdev.num_regions + 1) * sizeof(*region),
  319. GFP_KERNEL);
  320. if (!region)
  321. return -ENOMEM;
  322. vgpu->vdev.region = region;
  323. vgpu->vdev.region[vgpu->vdev.num_regions].type = type;
  324. vgpu->vdev.region[vgpu->vdev.num_regions].subtype = subtype;
  325. vgpu->vdev.region[vgpu->vdev.num_regions].ops = ops;
  326. vgpu->vdev.region[vgpu->vdev.num_regions].size = size;
  327. vgpu->vdev.region[vgpu->vdev.num_regions].flags = flags;
  328. vgpu->vdev.region[vgpu->vdev.num_regions].data = data;
  329. vgpu->vdev.num_regions++;
  330. return 0;
  331. }
  332. static int kvmgt_get_vfio_device(void *p_vgpu)
  333. {
  334. struct intel_vgpu *vgpu = (struct intel_vgpu *)p_vgpu;
  335. vgpu->vdev.vfio_device = vfio_device_get_from_dev(
  336. mdev_dev(vgpu->vdev.mdev));
  337. if (!vgpu->vdev.vfio_device) {
  338. gvt_vgpu_err("failed to get vfio device\n");
  339. return -ENODEV;
  340. }
  341. return 0;
  342. }
  343. static int kvmgt_set_opregion(void *p_vgpu)
  344. {
  345. struct intel_vgpu *vgpu = (struct intel_vgpu *)p_vgpu;
  346. void *base;
  347. int ret;
  348. /* Each vgpu has its own opregion, although VFIO would create another
  349. * one later. This one is used to expose opregion to VFIO. And the
  350. * other one created by VFIO later, is used by guest actually.
  351. */
  352. base = vgpu_opregion(vgpu)->va;
  353. if (!base)
  354. return -ENOMEM;
  355. if (memcmp(base, OPREGION_SIGNATURE, 16)) {
  356. memunmap(base);
  357. return -EINVAL;
  358. }
  359. ret = intel_vgpu_register_reg(vgpu,
  360. PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
  361. VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
  362. &intel_vgpu_regops_opregion, OPREGION_SIZE,
  363. VFIO_REGION_INFO_FLAG_READ, base);
  364. return ret;
  365. }
  366. static void kvmgt_put_vfio_device(void *vgpu)
  367. {
  368. if (WARN_ON(!((struct intel_vgpu *)vgpu)->vdev.vfio_device))
  369. return;
  370. vfio_device_put(((struct intel_vgpu *)vgpu)->vdev.vfio_device);
  371. }
  372. static int intel_vgpu_create(struct kobject *kobj, struct mdev_device *mdev)
  373. {
  374. struct intel_vgpu *vgpu = NULL;
  375. struct intel_vgpu_type *type;
  376. struct device *pdev;
  377. void *gvt;
  378. int ret;
  379. pdev = mdev_parent_dev(mdev);
  380. gvt = kdev_to_i915(pdev)->gvt;
  381. type = intel_gvt_ops->gvt_find_vgpu_type(gvt, kobject_name(kobj));
  382. if (!type) {
  383. gvt_vgpu_err("failed to find type %s to create\n",
  384. kobject_name(kobj));
  385. ret = -EINVAL;
  386. goto out;
  387. }
  388. vgpu = intel_gvt_ops->vgpu_create(gvt, type);
  389. if (IS_ERR_OR_NULL(vgpu)) {
  390. ret = vgpu == NULL ? -EFAULT : PTR_ERR(vgpu);
  391. gvt_err("failed to create intel vgpu: %d\n", ret);
  392. goto out;
  393. }
  394. INIT_WORK(&vgpu->vdev.release_work, intel_vgpu_release_work);
  395. vgpu->vdev.mdev = mdev;
  396. mdev_set_drvdata(mdev, vgpu);
  397. gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
  398. dev_name(mdev_dev(mdev)));
  399. ret = 0;
  400. out:
  401. return ret;
  402. }
  403. static int intel_vgpu_remove(struct mdev_device *mdev)
  404. {
  405. struct intel_vgpu *vgpu = mdev_get_drvdata(mdev);
  406. if (handle_valid(vgpu->handle))
  407. return -EBUSY;
  408. intel_gvt_ops->vgpu_destroy(vgpu);
  409. return 0;
  410. }
  411. static int intel_vgpu_iommu_notifier(struct notifier_block *nb,
  412. unsigned long action, void *data)
  413. {
  414. struct intel_vgpu *vgpu = container_of(nb,
  415. struct intel_vgpu,
  416. vdev.iommu_notifier);
  417. if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
  418. struct vfio_iommu_type1_dma_unmap *unmap = data;
  419. struct gvt_dma *entry;
  420. unsigned long iov_pfn, end_iov_pfn;
  421. iov_pfn = unmap->iova >> PAGE_SHIFT;
  422. end_iov_pfn = iov_pfn + unmap->size / PAGE_SIZE;
  423. mutex_lock(&vgpu->vdev.cache_lock);
  424. for (; iov_pfn < end_iov_pfn; iov_pfn++) {
  425. entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
  426. if (!entry)
  427. continue;
  428. gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr);
  429. __gvt_cache_remove_entry(vgpu, entry);
  430. }
  431. mutex_unlock(&vgpu->vdev.cache_lock);
  432. }
  433. return NOTIFY_OK;
  434. }
  435. static int intel_vgpu_group_notifier(struct notifier_block *nb,
  436. unsigned long action, void *data)
  437. {
  438. struct intel_vgpu *vgpu = container_of(nb,
  439. struct intel_vgpu,
  440. vdev.group_notifier);
  441. /* the only action we care about */
  442. if (action == VFIO_GROUP_NOTIFY_SET_KVM) {
  443. vgpu->vdev.kvm = data;
  444. if (!data)
  445. schedule_work(&vgpu->vdev.release_work);
  446. }
  447. return NOTIFY_OK;
  448. }
  449. static int intel_vgpu_open(struct mdev_device *mdev)
  450. {
  451. struct intel_vgpu *vgpu = mdev_get_drvdata(mdev);
  452. unsigned long events;
  453. int ret;
  454. vgpu->vdev.iommu_notifier.notifier_call = intel_vgpu_iommu_notifier;
  455. vgpu->vdev.group_notifier.notifier_call = intel_vgpu_group_notifier;
  456. events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
  457. ret = vfio_register_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY, &events,
  458. &vgpu->vdev.iommu_notifier);
  459. if (ret != 0) {
  460. gvt_vgpu_err("vfio_register_notifier for iommu failed: %d\n",
  461. ret);
  462. goto out;
  463. }
  464. events = VFIO_GROUP_NOTIFY_SET_KVM;
  465. ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY, &events,
  466. &vgpu->vdev.group_notifier);
  467. if (ret != 0) {
  468. gvt_vgpu_err("vfio_register_notifier for group failed: %d\n",
  469. ret);
  470. goto undo_iommu;
  471. }
  472. ret = kvmgt_guest_init(mdev);
  473. if (ret)
  474. goto undo_group;
  475. intel_gvt_ops->vgpu_activate(vgpu);
  476. atomic_set(&vgpu->vdev.released, 0);
  477. return ret;
  478. undo_group:
  479. vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
  480. &vgpu->vdev.group_notifier);
  481. undo_iommu:
  482. vfio_unregister_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
  483. &vgpu->vdev.iommu_notifier);
  484. out:
  485. return ret;
  486. }
  487. static void __intel_vgpu_release(struct intel_vgpu *vgpu)
  488. {
  489. struct kvmgt_guest_info *info;
  490. int ret;
  491. if (!handle_valid(vgpu->handle))
  492. return;
  493. if (atomic_cmpxchg(&vgpu->vdev.released, 0, 1))
  494. return;
  495. intel_gvt_ops->vgpu_deactivate(vgpu);
  496. ret = vfio_unregister_notifier(mdev_dev(vgpu->vdev.mdev), VFIO_IOMMU_NOTIFY,
  497. &vgpu->vdev.iommu_notifier);
  498. WARN(ret, "vfio_unregister_notifier for iommu failed: %d\n", ret);
  499. ret = vfio_unregister_notifier(mdev_dev(vgpu->vdev.mdev), VFIO_GROUP_NOTIFY,
  500. &vgpu->vdev.group_notifier);
  501. WARN(ret, "vfio_unregister_notifier for group failed: %d\n", ret);
  502. info = (struct kvmgt_guest_info *)vgpu->handle;
  503. kvmgt_guest_exit(info);
  504. vgpu->vdev.kvm = NULL;
  505. vgpu->handle = 0;
  506. }
  507. static void intel_vgpu_release(struct mdev_device *mdev)
  508. {
  509. struct intel_vgpu *vgpu = mdev_get_drvdata(mdev);
  510. __intel_vgpu_release(vgpu);
  511. }
  512. static void intel_vgpu_release_work(struct work_struct *work)
  513. {
  514. struct intel_vgpu *vgpu = container_of(work, struct intel_vgpu,
  515. vdev.release_work);
  516. __intel_vgpu_release(vgpu);
  517. }
  518. static uint64_t intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
  519. {
  520. u32 start_lo, start_hi;
  521. u32 mem_type;
  522. start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
  523. PCI_BASE_ADDRESS_MEM_MASK;
  524. mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
  525. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  526. switch (mem_type) {
  527. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  528. start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
  529. + bar + 4));
  530. break;
  531. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  532. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  533. /* 1M mem BAR treated as 32-bit BAR */
  534. default:
  535. /* mem unknown type treated as 32-bit BAR */
  536. start_hi = 0;
  537. break;
  538. }
  539. return ((u64)start_hi << 32) | start_lo;
  540. }
  541. static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, uint64_t off,
  542. void *buf, unsigned int count, bool is_write)
  543. {
  544. uint64_t bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
  545. int ret;
  546. if (is_write)
  547. ret = intel_gvt_ops->emulate_mmio_write(vgpu,
  548. bar_start + off, buf, count);
  549. else
  550. ret = intel_gvt_ops->emulate_mmio_read(vgpu,
  551. bar_start + off, buf, count);
  552. return ret;
  553. }
  554. static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, uint64_t off)
  555. {
  556. return off >= vgpu_aperture_offset(vgpu) &&
  557. off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
  558. }
  559. static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, uint64_t off,
  560. void *buf, unsigned long count, bool is_write)
  561. {
  562. void *aperture_va;
  563. if (!intel_vgpu_in_aperture(vgpu, off) ||
  564. !intel_vgpu_in_aperture(vgpu, off + count)) {
  565. gvt_vgpu_err("Invalid aperture offset %llu\n", off);
  566. return -EINVAL;
  567. }
  568. aperture_va = io_mapping_map_wc(&vgpu->gvt->dev_priv->ggtt.iomap,
  569. ALIGN_DOWN(off, PAGE_SIZE),
  570. count + offset_in_page(off));
  571. if (!aperture_va)
  572. return -EIO;
  573. if (is_write)
  574. memcpy(aperture_va + offset_in_page(off), buf, count);
  575. else
  576. memcpy(buf, aperture_va + offset_in_page(off), count);
  577. io_mapping_unmap(aperture_va);
  578. return 0;
  579. }
  580. static ssize_t intel_vgpu_rw(struct mdev_device *mdev, char *buf,
  581. size_t count, loff_t *ppos, bool is_write)
  582. {
  583. struct intel_vgpu *vgpu = mdev_get_drvdata(mdev);
  584. unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
  585. uint64_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
  586. int ret = -EINVAL;
  587. if (index >= VFIO_PCI_NUM_REGIONS + vgpu->vdev.num_regions) {
  588. gvt_vgpu_err("invalid index: %u\n", index);
  589. return -EINVAL;
  590. }
  591. switch (index) {
  592. case VFIO_PCI_CONFIG_REGION_INDEX:
  593. if (is_write)
  594. ret = intel_gvt_ops->emulate_cfg_write(vgpu, pos,
  595. buf, count);
  596. else
  597. ret = intel_gvt_ops->emulate_cfg_read(vgpu, pos,
  598. buf, count);
  599. break;
  600. case VFIO_PCI_BAR0_REGION_INDEX:
  601. ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
  602. buf, count, is_write);
  603. break;
  604. case VFIO_PCI_BAR2_REGION_INDEX:
  605. ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
  606. break;
  607. case VFIO_PCI_BAR1_REGION_INDEX:
  608. case VFIO_PCI_BAR3_REGION_INDEX:
  609. case VFIO_PCI_BAR4_REGION_INDEX:
  610. case VFIO_PCI_BAR5_REGION_INDEX:
  611. case VFIO_PCI_VGA_REGION_INDEX:
  612. case VFIO_PCI_ROM_REGION_INDEX:
  613. break;
  614. default:
  615. if (index >= VFIO_PCI_NUM_REGIONS + vgpu->vdev.num_regions)
  616. return -EINVAL;
  617. index -= VFIO_PCI_NUM_REGIONS;
  618. return vgpu->vdev.region[index].ops->rw(vgpu, buf, count,
  619. ppos, is_write);
  620. }
  621. return ret == 0 ? count : ret;
  622. }
  623. static bool gtt_entry(struct mdev_device *mdev, loff_t *ppos)
  624. {
  625. struct intel_vgpu *vgpu = mdev_get_drvdata(mdev);
  626. unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
  627. struct intel_gvt *gvt = vgpu->gvt;
  628. int offset;
  629. /* Only allow MMIO GGTT entry access */
  630. if (index != PCI_BASE_ADDRESS_0)
  631. return false;
  632. offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
  633. intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
  634. return (offset >= gvt->device_info.gtt_start_offset &&
  635. offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
  636. true : false;
  637. }
  638. static ssize_t intel_vgpu_read(struct mdev_device *mdev, char __user *buf,
  639. size_t count, loff_t *ppos)
  640. {
  641. unsigned int done = 0;
  642. int ret;
  643. while (count) {
  644. size_t filled;
  645. /* Only support GGTT entry 8 bytes read */
  646. if (count >= 8 && !(*ppos % 8) &&
  647. gtt_entry(mdev, ppos)) {
  648. u64 val;
  649. ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val),
  650. ppos, false);
  651. if (ret <= 0)
  652. goto read_err;
  653. if (copy_to_user(buf, &val, sizeof(val)))
  654. goto read_err;
  655. filled = 8;
  656. } else if (count >= 4 && !(*ppos % 4)) {
  657. u32 val;
  658. ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val),
  659. ppos, false);
  660. if (ret <= 0)
  661. goto read_err;
  662. if (copy_to_user(buf, &val, sizeof(val)))
  663. goto read_err;
  664. filled = 4;
  665. } else if (count >= 2 && !(*ppos % 2)) {
  666. u16 val;
  667. ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val),
  668. ppos, false);
  669. if (ret <= 0)
  670. goto read_err;
  671. if (copy_to_user(buf, &val, sizeof(val)))
  672. goto read_err;
  673. filled = 2;
  674. } else {
  675. u8 val;
  676. ret = intel_vgpu_rw(mdev, &val, sizeof(val), ppos,
  677. false);
  678. if (ret <= 0)
  679. goto read_err;
  680. if (copy_to_user(buf, &val, sizeof(val)))
  681. goto read_err;
  682. filled = 1;
  683. }
  684. count -= filled;
  685. done += filled;
  686. *ppos += filled;
  687. buf += filled;
  688. }
  689. return done;
  690. read_err:
  691. return -EFAULT;
  692. }
  693. static ssize_t intel_vgpu_write(struct mdev_device *mdev,
  694. const char __user *buf,
  695. size_t count, loff_t *ppos)
  696. {
  697. unsigned int done = 0;
  698. int ret;
  699. while (count) {
  700. size_t filled;
  701. /* Only support GGTT entry 8 bytes write */
  702. if (count >= 8 && !(*ppos % 8) &&
  703. gtt_entry(mdev, ppos)) {
  704. u64 val;
  705. if (copy_from_user(&val, buf, sizeof(val)))
  706. goto write_err;
  707. ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val),
  708. ppos, true);
  709. if (ret <= 0)
  710. goto write_err;
  711. filled = 8;
  712. } else if (count >= 4 && !(*ppos % 4)) {
  713. u32 val;
  714. if (copy_from_user(&val, buf, sizeof(val)))
  715. goto write_err;
  716. ret = intel_vgpu_rw(mdev, (char *)&val, sizeof(val),
  717. ppos, true);
  718. if (ret <= 0)
  719. goto write_err;
  720. filled = 4;
  721. } else if (count >= 2 && !(*ppos % 2)) {
  722. u16 val;
  723. if (copy_from_user(&val, buf, sizeof(val)))
  724. goto write_err;
  725. ret = intel_vgpu_rw(mdev, (char *)&val,
  726. sizeof(val), ppos, true);
  727. if (ret <= 0)
  728. goto write_err;
  729. filled = 2;
  730. } else {
  731. u8 val;
  732. if (copy_from_user(&val, buf, sizeof(val)))
  733. goto write_err;
  734. ret = intel_vgpu_rw(mdev, &val, sizeof(val),
  735. ppos, true);
  736. if (ret <= 0)
  737. goto write_err;
  738. filled = 1;
  739. }
  740. count -= filled;
  741. done += filled;
  742. *ppos += filled;
  743. buf += filled;
  744. }
  745. return done;
  746. write_err:
  747. return -EFAULT;
  748. }
  749. static int intel_vgpu_mmap(struct mdev_device *mdev, struct vm_area_struct *vma)
  750. {
  751. unsigned int index;
  752. u64 virtaddr;
  753. unsigned long req_size, pgoff = 0;
  754. pgprot_t pg_prot;
  755. struct intel_vgpu *vgpu = mdev_get_drvdata(mdev);
  756. index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
  757. if (index >= VFIO_PCI_ROM_REGION_INDEX)
  758. return -EINVAL;
  759. if (vma->vm_end < vma->vm_start)
  760. return -EINVAL;
  761. if ((vma->vm_flags & VM_SHARED) == 0)
  762. return -EINVAL;
  763. if (index != VFIO_PCI_BAR2_REGION_INDEX)
  764. return -EINVAL;
  765. pg_prot = vma->vm_page_prot;
  766. virtaddr = vma->vm_start;
  767. req_size = vma->vm_end - vma->vm_start;
  768. pgoff = vgpu_aperture_pa_base(vgpu) >> PAGE_SHIFT;
  769. return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
  770. }
  771. static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
  772. {
  773. if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
  774. return 1;
  775. return 0;
  776. }
  777. static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
  778. unsigned int index, unsigned int start,
  779. unsigned int count, uint32_t flags,
  780. void *data)
  781. {
  782. return 0;
  783. }
  784. static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
  785. unsigned int index, unsigned int start,
  786. unsigned int count, uint32_t flags, void *data)
  787. {
  788. return 0;
  789. }
  790. static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
  791. unsigned int index, unsigned int start, unsigned int count,
  792. uint32_t flags, void *data)
  793. {
  794. return 0;
  795. }
  796. static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
  797. unsigned int index, unsigned int start, unsigned int count,
  798. uint32_t flags, void *data)
  799. {
  800. struct eventfd_ctx *trigger;
  801. if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
  802. int fd = *(int *)data;
  803. trigger = eventfd_ctx_fdget(fd);
  804. if (IS_ERR(trigger)) {
  805. gvt_vgpu_err("eventfd_ctx_fdget failed\n");
  806. return PTR_ERR(trigger);
  807. }
  808. vgpu->vdev.msi_trigger = trigger;
  809. }
  810. return 0;
  811. }
  812. static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, uint32_t flags,
  813. unsigned int index, unsigned int start, unsigned int count,
  814. void *data)
  815. {
  816. int (*func)(struct intel_vgpu *vgpu, unsigned int index,
  817. unsigned int start, unsigned int count, uint32_t flags,
  818. void *data) = NULL;
  819. switch (index) {
  820. case VFIO_PCI_INTX_IRQ_INDEX:
  821. switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
  822. case VFIO_IRQ_SET_ACTION_MASK:
  823. func = intel_vgpu_set_intx_mask;
  824. break;
  825. case VFIO_IRQ_SET_ACTION_UNMASK:
  826. func = intel_vgpu_set_intx_unmask;
  827. break;
  828. case VFIO_IRQ_SET_ACTION_TRIGGER:
  829. func = intel_vgpu_set_intx_trigger;
  830. break;
  831. }
  832. break;
  833. case VFIO_PCI_MSI_IRQ_INDEX:
  834. switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
  835. case VFIO_IRQ_SET_ACTION_MASK:
  836. case VFIO_IRQ_SET_ACTION_UNMASK:
  837. /* XXX Need masking support exported */
  838. break;
  839. case VFIO_IRQ_SET_ACTION_TRIGGER:
  840. func = intel_vgpu_set_msi_trigger;
  841. break;
  842. }
  843. break;
  844. }
  845. if (!func)
  846. return -ENOTTY;
  847. return func(vgpu, index, start, count, flags, data);
  848. }
  849. static long intel_vgpu_ioctl(struct mdev_device *mdev, unsigned int cmd,
  850. unsigned long arg)
  851. {
  852. struct intel_vgpu *vgpu = mdev_get_drvdata(mdev);
  853. unsigned long minsz;
  854. gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
  855. if (cmd == VFIO_DEVICE_GET_INFO) {
  856. struct vfio_device_info info;
  857. minsz = offsetofend(struct vfio_device_info, num_irqs);
  858. if (copy_from_user(&info, (void __user *)arg, minsz))
  859. return -EFAULT;
  860. if (info.argsz < minsz)
  861. return -EINVAL;
  862. info.flags = VFIO_DEVICE_FLAGS_PCI;
  863. info.flags |= VFIO_DEVICE_FLAGS_RESET;
  864. info.num_regions = VFIO_PCI_NUM_REGIONS +
  865. vgpu->vdev.num_regions;
  866. info.num_irqs = VFIO_PCI_NUM_IRQS;
  867. return copy_to_user((void __user *)arg, &info, minsz) ?
  868. -EFAULT : 0;
  869. } else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
  870. struct vfio_region_info info;
  871. struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
  872. int i, ret;
  873. struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
  874. size_t size;
  875. int nr_areas = 1;
  876. int cap_type_id;
  877. minsz = offsetofend(struct vfio_region_info, offset);
  878. if (copy_from_user(&info, (void __user *)arg, minsz))
  879. return -EFAULT;
  880. if (info.argsz < minsz)
  881. return -EINVAL;
  882. switch (info.index) {
  883. case VFIO_PCI_CONFIG_REGION_INDEX:
  884. info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
  885. info.size = vgpu->gvt->device_info.cfg_space_size;
  886. info.flags = VFIO_REGION_INFO_FLAG_READ |
  887. VFIO_REGION_INFO_FLAG_WRITE;
  888. break;
  889. case VFIO_PCI_BAR0_REGION_INDEX:
  890. info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
  891. info.size = vgpu->cfg_space.bar[info.index].size;
  892. if (!info.size) {
  893. info.flags = 0;
  894. break;
  895. }
  896. info.flags = VFIO_REGION_INFO_FLAG_READ |
  897. VFIO_REGION_INFO_FLAG_WRITE;
  898. break;
  899. case VFIO_PCI_BAR1_REGION_INDEX:
  900. info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
  901. info.size = 0;
  902. info.flags = 0;
  903. break;
  904. case VFIO_PCI_BAR2_REGION_INDEX:
  905. info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
  906. info.flags = VFIO_REGION_INFO_FLAG_CAPS |
  907. VFIO_REGION_INFO_FLAG_MMAP |
  908. VFIO_REGION_INFO_FLAG_READ |
  909. VFIO_REGION_INFO_FLAG_WRITE;
  910. info.size = gvt_aperture_sz(vgpu->gvt);
  911. size = sizeof(*sparse) +
  912. (nr_areas * sizeof(*sparse->areas));
  913. sparse = kzalloc(size, GFP_KERNEL);
  914. if (!sparse)
  915. return -ENOMEM;
  916. sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
  917. sparse->header.version = 1;
  918. sparse->nr_areas = nr_areas;
  919. cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
  920. sparse->areas[0].offset =
  921. PAGE_ALIGN(vgpu_aperture_offset(vgpu));
  922. sparse->areas[0].size = vgpu_aperture_sz(vgpu);
  923. break;
  924. case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
  925. info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
  926. info.size = 0;
  927. info.flags = 0;
  928. gvt_dbg_core("get region info bar:%d\n", info.index);
  929. break;
  930. case VFIO_PCI_ROM_REGION_INDEX:
  931. case VFIO_PCI_VGA_REGION_INDEX:
  932. info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
  933. info.size = 0;
  934. info.flags = 0;
  935. gvt_dbg_core("get region info index:%d\n", info.index);
  936. break;
  937. default:
  938. {
  939. struct vfio_region_info_cap_type cap_type = {
  940. .header.id = VFIO_REGION_INFO_CAP_TYPE,
  941. .header.version = 1 };
  942. if (info.index >= VFIO_PCI_NUM_REGIONS +
  943. vgpu->vdev.num_regions)
  944. return -EINVAL;
  945. i = info.index - VFIO_PCI_NUM_REGIONS;
  946. info.offset =
  947. VFIO_PCI_INDEX_TO_OFFSET(info.index);
  948. info.size = vgpu->vdev.region[i].size;
  949. info.flags = vgpu->vdev.region[i].flags;
  950. cap_type.type = vgpu->vdev.region[i].type;
  951. cap_type.subtype = vgpu->vdev.region[i].subtype;
  952. ret = vfio_info_add_capability(&caps,
  953. &cap_type.header,
  954. sizeof(cap_type));
  955. if (ret)
  956. return ret;
  957. }
  958. }
  959. if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
  960. switch (cap_type_id) {
  961. case VFIO_REGION_INFO_CAP_SPARSE_MMAP:
  962. ret = vfio_info_add_capability(&caps,
  963. &sparse->header, sizeof(*sparse) +
  964. (sparse->nr_areas *
  965. sizeof(*sparse->areas)));
  966. kfree(sparse);
  967. if (ret)
  968. return ret;
  969. break;
  970. default:
  971. return -EINVAL;
  972. }
  973. }
  974. if (caps.size) {
  975. info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
  976. if (info.argsz < sizeof(info) + caps.size) {
  977. info.argsz = sizeof(info) + caps.size;
  978. info.cap_offset = 0;
  979. } else {
  980. vfio_info_cap_shift(&caps, sizeof(info));
  981. if (copy_to_user((void __user *)arg +
  982. sizeof(info), caps.buf,
  983. caps.size)) {
  984. kfree(caps.buf);
  985. return -EFAULT;
  986. }
  987. info.cap_offset = sizeof(info);
  988. }
  989. kfree(caps.buf);
  990. }
  991. return copy_to_user((void __user *)arg, &info, minsz) ?
  992. -EFAULT : 0;
  993. } else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
  994. struct vfio_irq_info info;
  995. minsz = offsetofend(struct vfio_irq_info, count);
  996. if (copy_from_user(&info, (void __user *)arg, minsz))
  997. return -EFAULT;
  998. if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
  999. return -EINVAL;
  1000. switch (info.index) {
  1001. case VFIO_PCI_INTX_IRQ_INDEX:
  1002. case VFIO_PCI_MSI_IRQ_INDEX:
  1003. break;
  1004. default:
  1005. return -EINVAL;
  1006. }
  1007. info.flags = VFIO_IRQ_INFO_EVENTFD;
  1008. info.count = intel_vgpu_get_irq_count(vgpu, info.index);
  1009. if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
  1010. info.flags |= (VFIO_IRQ_INFO_MASKABLE |
  1011. VFIO_IRQ_INFO_AUTOMASKED);
  1012. else
  1013. info.flags |= VFIO_IRQ_INFO_NORESIZE;
  1014. return copy_to_user((void __user *)arg, &info, minsz) ?
  1015. -EFAULT : 0;
  1016. } else if (cmd == VFIO_DEVICE_SET_IRQS) {
  1017. struct vfio_irq_set hdr;
  1018. u8 *data = NULL;
  1019. int ret = 0;
  1020. size_t data_size = 0;
  1021. minsz = offsetofend(struct vfio_irq_set, count);
  1022. if (copy_from_user(&hdr, (void __user *)arg, minsz))
  1023. return -EFAULT;
  1024. if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
  1025. int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
  1026. ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
  1027. VFIO_PCI_NUM_IRQS, &data_size);
  1028. if (ret) {
  1029. gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n");
  1030. return -EINVAL;
  1031. }
  1032. if (data_size) {
  1033. data = memdup_user((void __user *)(arg + minsz),
  1034. data_size);
  1035. if (IS_ERR(data))
  1036. return PTR_ERR(data);
  1037. }
  1038. }
  1039. ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
  1040. hdr.start, hdr.count, data);
  1041. kfree(data);
  1042. return ret;
  1043. } else if (cmd == VFIO_DEVICE_RESET) {
  1044. intel_gvt_ops->vgpu_reset(vgpu);
  1045. return 0;
  1046. } else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
  1047. struct vfio_device_gfx_plane_info dmabuf;
  1048. int ret = 0;
  1049. minsz = offsetofend(struct vfio_device_gfx_plane_info,
  1050. dmabuf_id);
  1051. if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
  1052. return -EFAULT;
  1053. if (dmabuf.argsz < minsz)
  1054. return -EINVAL;
  1055. ret = intel_gvt_ops->vgpu_query_plane(vgpu, &dmabuf);
  1056. if (ret != 0)
  1057. return ret;
  1058. return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
  1059. -EFAULT : 0;
  1060. } else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
  1061. __u32 dmabuf_id;
  1062. __s32 dmabuf_fd;
  1063. if (get_user(dmabuf_id, (__u32 __user *)arg))
  1064. return -EFAULT;
  1065. dmabuf_fd = intel_gvt_ops->vgpu_get_dmabuf(vgpu, dmabuf_id);
  1066. return dmabuf_fd;
  1067. }
  1068. return -ENOTTY;
  1069. }
  1070. static ssize_t
  1071. vgpu_id_show(struct device *dev, struct device_attribute *attr,
  1072. char *buf)
  1073. {
  1074. struct mdev_device *mdev = mdev_from_dev(dev);
  1075. if (mdev) {
  1076. struct intel_vgpu *vgpu = (struct intel_vgpu *)
  1077. mdev_get_drvdata(mdev);
  1078. return sprintf(buf, "%d\n", vgpu->id);
  1079. }
  1080. return sprintf(buf, "\n");
  1081. }
  1082. static ssize_t
  1083. hw_id_show(struct device *dev, struct device_attribute *attr,
  1084. char *buf)
  1085. {
  1086. struct mdev_device *mdev = mdev_from_dev(dev);
  1087. if (mdev) {
  1088. struct intel_vgpu *vgpu = (struct intel_vgpu *)
  1089. mdev_get_drvdata(mdev);
  1090. return sprintf(buf, "%u\n",
  1091. vgpu->submission.shadow_ctx->hw_id);
  1092. }
  1093. return sprintf(buf, "\n");
  1094. }
  1095. static DEVICE_ATTR_RO(vgpu_id);
  1096. static DEVICE_ATTR_RO(hw_id);
  1097. static struct attribute *intel_vgpu_attrs[] = {
  1098. &dev_attr_vgpu_id.attr,
  1099. &dev_attr_hw_id.attr,
  1100. NULL
  1101. };
  1102. static const struct attribute_group intel_vgpu_group = {
  1103. .name = "intel_vgpu",
  1104. .attrs = intel_vgpu_attrs,
  1105. };
  1106. static const struct attribute_group *intel_vgpu_groups[] = {
  1107. &intel_vgpu_group,
  1108. NULL,
  1109. };
  1110. static struct mdev_parent_ops intel_vgpu_ops = {
  1111. .mdev_attr_groups = intel_vgpu_groups,
  1112. .create = intel_vgpu_create,
  1113. .remove = intel_vgpu_remove,
  1114. .open = intel_vgpu_open,
  1115. .release = intel_vgpu_release,
  1116. .read = intel_vgpu_read,
  1117. .write = intel_vgpu_write,
  1118. .mmap = intel_vgpu_mmap,
  1119. .ioctl = intel_vgpu_ioctl,
  1120. };
  1121. static int kvmgt_host_init(struct device *dev, void *gvt, const void *ops)
  1122. {
  1123. struct attribute **kvm_type_attrs;
  1124. struct attribute_group **kvm_vgpu_type_groups;
  1125. intel_gvt_ops = ops;
  1126. if (!intel_gvt_ops->get_gvt_attrs(&kvm_type_attrs,
  1127. &kvm_vgpu_type_groups))
  1128. return -EFAULT;
  1129. intel_vgpu_ops.supported_type_groups = kvm_vgpu_type_groups;
  1130. return mdev_register_device(dev, &intel_vgpu_ops);
  1131. }
  1132. static void kvmgt_host_exit(struct device *dev, void *gvt)
  1133. {
  1134. mdev_unregister_device(dev);
  1135. }
  1136. static int kvmgt_page_track_add(unsigned long handle, u64 gfn)
  1137. {
  1138. struct kvmgt_guest_info *info;
  1139. struct kvm *kvm;
  1140. struct kvm_memory_slot *slot;
  1141. int idx;
  1142. if (!handle_valid(handle))
  1143. return -ESRCH;
  1144. info = (struct kvmgt_guest_info *)handle;
  1145. kvm = info->kvm;
  1146. idx = srcu_read_lock(&kvm->srcu);
  1147. slot = gfn_to_memslot(kvm, gfn);
  1148. if (!slot) {
  1149. srcu_read_unlock(&kvm->srcu, idx);
  1150. return -EINVAL;
  1151. }
  1152. spin_lock(&kvm->mmu_lock);
  1153. if (kvmgt_gfn_is_write_protected(info, gfn))
  1154. goto out;
  1155. kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
  1156. kvmgt_protect_table_add(info, gfn);
  1157. out:
  1158. spin_unlock(&kvm->mmu_lock);
  1159. srcu_read_unlock(&kvm->srcu, idx);
  1160. return 0;
  1161. }
  1162. static int kvmgt_page_track_remove(unsigned long handle, u64 gfn)
  1163. {
  1164. struct kvmgt_guest_info *info;
  1165. struct kvm *kvm;
  1166. struct kvm_memory_slot *slot;
  1167. int idx;
  1168. if (!handle_valid(handle))
  1169. return 0;
  1170. info = (struct kvmgt_guest_info *)handle;
  1171. kvm = info->kvm;
  1172. idx = srcu_read_lock(&kvm->srcu);
  1173. slot = gfn_to_memslot(kvm, gfn);
  1174. if (!slot) {
  1175. srcu_read_unlock(&kvm->srcu, idx);
  1176. return -EINVAL;
  1177. }
  1178. spin_lock(&kvm->mmu_lock);
  1179. if (!kvmgt_gfn_is_write_protected(info, gfn))
  1180. goto out;
  1181. kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
  1182. kvmgt_protect_table_del(info, gfn);
  1183. out:
  1184. spin_unlock(&kvm->mmu_lock);
  1185. srcu_read_unlock(&kvm->srcu, idx);
  1186. return 0;
  1187. }
  1188. static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1189. const u8 *val, int len,
  1190. struct kvm_page_track_notifier_node *node)
  1191. {
  1192. struct kvmgt_guest_info *info = container_of(node,
  1193. struct kvmgt_guest_info, track_node);
  1194. if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa)))
  1195. intel_gvt_ops->write_protect_handler(info->vgpu, gpa,
  1196. (void *)val, len);
  1197. }
  1198. static void kvmgt_page_track_flush_slot(struct kvm *kvm,
  1199. struct kvm_memory_slot *slot,
  1200. struct kvm_page_track_notifier_node *node)
  1201. {
  1202. int i;
  1203. gfn_t gfn;
  1204. struct kvmgt_guest_info *info = container_of(node,
  1205. struct kvmgt_guest_info, track_node);
  1206. spin_lock(&kvm->mmu_lock);
  1207. for (i = 0; i < slot->npages; i++) {
  1208. gfn = slot->base_gfn + i;
  1209. if (kvmgt_gfn_is_write_protected(info, gfn)) {
  1210. kvm_slot_page_track_remove_page(kvm, slot, gfn,
  1211. KVM_PAGE_TRACK_WRITE);
  1212. kvmgt_protect_table_del(info, gfn);
  1213. }
  1214. }
  1215. spin_unlock(&kvm->mmu_lock);
  1216. }
  1217. static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu, struct kvm *kvm)
  1218. {
  1219. struct intel_vgpu *itr;
  1220. struct kvmgt_guest_info *info;
  1221. int id;
  1222. bool ret = false;
  1223. mutex_lock(&vgpu->gvt->lock);
  1224. for_each_active_vgpu(vgpu->gvt, itr, id) {
  1225. if (!handle_valid(itr->handle))
  1226. continue;
  1227. info = (struct kvmgt_guest_info *)itr->handle;
  1228. if (kvm && kvm == info->kvm) {
  1229. ret = true;
  1230. goto out;
  1231. }
  1232. }
  1233. out:
  1234. mutex_unlock(&vgpu->gvt->lock);
  1235. return ret;
  1236. }
  1237. static int kvmgt_guest_init(struct mdev_device *mdev)
  1238. {
  1239. struct kvmgt_guest_info *info;
  1240. struct intel_vgpu *vgpu;
  1241. struct kvm *kvm;
  1242. vgpu = mdev_get_drvdata(mdev);
  1243. if (handle_valid(vgpu->handle))
  1244. return -EEXIST;
  1245. kvm = vgpu->vdev.kvm;
  1246. if (!kvm || kvm->mm != current->mm) {
  1247. gvt_vgpu_err("KVM is required to use Intel vGPU\n");
  1248. return -ESRCH;
  1249. }
  1250. if (__kvmgt_vgpu_exist(vgpu, kvm))
  1251. return -EEXIST;
  1252. info = vzalloc(sizeof(struct kvmgt_guest_info));
  1253. if (!info)
  1254. return -ENOMEM;
  1255. vgpu->handle = (unsigned long)info;
  1256. info->vgpu = vgpu;
  1257. info->kvm = kvm;
  1258. kvm_get_kvm(info->kvm);
  1259. kvmgt_protect_table_init(info);
  1260. gvt_cache_init(vgpu);
  1261. mutex_init(&vgpu->dmabuf_lock);
  1262. init_completion(&vgpu->vblank_done);
  1263. info->track_node.track_write = kvmgt_page_track_write;
  1264. info->track_node.track_flush_slot = kvmgt_page_track_flush_slot;
  1265. kvm_page_track_register_notifier(kvm, &info->track_node);
  1266. info->debugfs_cache_entries = debugfs_create_ulong(
  1267. "kvmgt_nr_cache_entries",
  1268. 0444, vgpu->debugfs,
  1269. &vgpu->vdev.nr_cache_entries);
  1270. if (!info->debugfs_cache_entries)
  1271. gvt_vgpu_err("Cannot create kvmgt debugfs entry\n");
  1272. return 0;
  1273. }
  1274. static bool kvmgt_guest_exit(struct kvmgt_guest_info *info)
  1275. {
  1276. debugfs_remove(info->debugfs_cache_entries);
  1277. kvm_page_track_unregister_notifier(info->kvm, &info->track_node);
  1278. kvm_put_kvm(info->kvm);
  1279. kvmgt_protect_table_destroy(info);
  1280. gvt_cache_destroy(info->vgpu);
  1281. vfree(info);
  1282. return true;
  1283. }
  1284. static int kvmgt_attach_vgpu(void *vgpu, unsigned long *handle)
  1285. {
  1286. /* nothing to do here */
  1287. return 0;
  1288. }
  1289. static void kvmgt_detach_vgpu(unsigned long handle)
  1290. {
  1291. /* nothing to do here */
  1292. }
  1293. static int kvmgt_inject_msi(unsigned long handle, u32 addr, u16 data)
  1294. {
  1295. struct kvmgt_guest_info *info;
  1296. struct intel_vgpu *vgpu;
  1297. if (!handle_valid(handle))
  1298. return -ESRCH;
  1299. info = (struct kvmgt_guest_info *)handle;
  1300. vgpu = info->vgpu;
  1301. if (eventfd_signal(vgpu->vdev.msi_trigger, 1) == 1)
  1302. return 0;
  1303. return -EFAULT;
  1304. }
  1305. static unsigned long kvmgt_gfn_to_pfn(unsigned long handle, unsigned long gfn)
  1306. {
  1307. struct kvmgt_guest_info *info;
  1308. kvm_pfn_t pfn;
  1309. if (!handle_valid(handle))
  1310. return INTEL_GVT_INVALID_ADDR;
  1311. info = (struct kvmgt_guest_info *)handle;
  1312. pfn = gfn_to_pfn(info->kvm, gfn);
  1313. if (is_error_noslot_pfn(pfn))
  1314. return INTEL_GVT_INVALID_ADDR;
  1315. return pfn;
  1316. }
  1317. int kvmgt_dma_map_guest_page(unsigned long handle, unsigned long gfn,
  1318. dma_addr_t *dma_addr)
  1319. {
  1320. struct kvmgt_guest_info *info;
  1321. struct intel_vgpu *vgpu;
  1322. struct gvt_dma *entry;
  1323. int ret;
  1324. if (!handle_valid(handle))
  1325. return -EINVAL;
  1326. info = (struct kvmgt_guest_info *)handle;
  1327. vgpu = info->vgpu;
  1328. mutex_lock(&info->vgpu->vdev.cache_lock);
  1329. entry = __gvt_cache_find_gfn(info->vgpu, gfn);
  1330. if (!entry) {
  1331. ret = gvt_dma_map_page(vgpu, gfn, dma_addr);
  1332. if (ret)
  1333. goto err_unlock;
  1334. ret = __gvt_cache_add(info->vgpu, gfn, *dma_addr);
  1335. if (ret)
  1336. goto err_unmap;
  1337. } else {
  1338. kref_get(&entry->ref);
  1339. *dma_addr = entry->dma_addr;
  1340. }
  1341. mutex_unlock(&info->vgpu->vdev.cache_lock);
  1342. return 0;
  1343. err_unmap:
  1344. gvt_dma_unmap_page(vgpu, gfn, *dma_addr);
  1345. err_unlock:
  1346. mutex_unlock(&info->vgpu->vdev.cache_lock);
  1347. return ret;
  1348. }
  1349. static void __gvt_dma_release(struct kref *ref)
  1350. {
  1351. struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
  1352. gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr);
  1353. __gvt_cache_remove_entry(entry->vgpu, entry);
  1354. }
  1355. void kvmgt_dma_unmap_guest_page(unsigned long handle, dma_addr_t dma_addr)
  1356. {
  1357. struct kvmgt_guest_info *info;
  1358. struct gvt_dma *entry;
  1359. if (!handle_valid(handle))
  1360. return;
  1361. info = (struct kvmgt_guest_info *)handle;
  1362. mutex_lock(&info->vgpu->vdev.cache_lock);
  1363. entry = __gvt_cache_find_dma_addr(info->vgpu, dma_addr);
  1364. if (entry)
  1365. kref_put(&entry->ref, __gvt_dma_release);
  1366. mutex_unlock(&info->vgpu->vdev.cache_lock);
  1367. }
  1368. static int kvmgt_rw_gpa(unsigned long handle, unsigned long gpa,
  1369. void *buf, unsigned long len, bool write)
  1370. {
  1371. struct kvmgt_guest_info *info;
  1372. struct kvm *kvm;
  1373. int idx, ret;
  1374. bool kthread = current->mm == NULL;
  1375. if (!handle_valid(handle))
  1376. return -ESRCH;
  1377. info = (struct kvmgt_guest_info *)handle;
  1378. kvm = info->kvm;
  1379. if (kthread)
  1380. use_mm(kvm->mm);
  1381. idx = srcu_read_lock(&kvm->srcu);
  1382. ret = write ? kvm_write_guest(kvm, gpa, buf, len) :
  1383. kvm_read_guest(kvm, gpa, buf, len);
  1384. srcu_read_unlock(&kvm->srcu, idx);
  1385. if (kthread)
  1386. unuse_mm(kvm->mm);
  1387. return ret;
  1388. }
  1389. static int kvmgt_read_gpa(unsigned long handle, unsigned long gpa,
  1390. void *buf, unsigned long len)
  1391. {
  1392. return kvmgt_rw_gpa(handle, gpa, buf, len, false);
  1393. }
  1394. static int kvmgt_write_gpa(unsigned long handle, unsigned long gpa,
  1395. void *buf, unsigned long len)
  1396. {
  1397. return kvmgt_rw_gpa(handle, gpa, buf, len, true);
  1398. }
  1399. static unsigned long kvmgt_virt_to_pfn(void *addr)
  1400. {
  1401. return PFN_DOWN(__pa(addr));
  1402. }
  1403. static bool kvmgt_is_valid_gfn(unsigned long handle, unsigned long gfn)
  1404. {
  1405. struct kvmgt_guest_info *info;
  1406. struct kvm *kvm;
  1407. if (!handle_valid(handle))
  1408. return false;
  1409. info = (struct kvmgt_guest_info *)handle;
  1410. kvm = info->kvm;
  1411. return kvm_is_visible_gfn(kvm, gfn);
  1412. }
  1413. struct intel_gvt_mpt kvmgt_mpt = {
  1414. .host_init = kvmgt_host_init,
  1415. .host_exit = kvmgt_host_exit,
  1416. .attach_vgpu = kvmgt_attach_vgpu,
  1417. .detach_vgpu = kvmgt_detach_vgpu,
  1418. .inject_msi = kvmgt_inject_msi,
  1419. .from_virt_to_mfn = kvmgt_virt_to_pfn,
  1420. .enable_page_track = kvmgt_page_track_add,
  1421. .disable_page_track = kvmgt_page_track_remove,
  1422. .read_gpa = kvmgt_read_gpa,
  1423. .write_gpa = kvmgt_write_gpa,
  1424. .gfn_to_mfn = kvmgt_gfn_to_pfn,
  1425. .dma_map_guest_page = kvmgt_dma_map_guest_page,
  1426. .dma_unmap_guest_page = kvmgt_dma_unmap_guest_page,
  1427. .set_opregion = kvmgt_set_opregion,
  1428. .get_vfio_device = kvmgt_get_vfio_device,
  1429. .put_vfio_device = kvmgt_put_vfio_device,
  1430. .is_valid_gfn = kvmgt_is_valid_gfn,
  1431. };
  1432. EXPORT_SYMBOL_GPL(kvmgt_mpt);
  1433. static int __init kvmgt_init(void)
  1434. {
  1435. return 0;
  1436. }
  1437. static void __exit kvmgt_exit(void)
  1438. {
  1439. }
  1440. module_init(kvmgt_init);
  1441. module_exit(kvmgt_exit);
  1442. MODULE_LICENSE("GPL and additional rights");
  1443. MODULE_AUTHOR("Intel Corporation");