stm32-mdma.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682
  1. /*
  2. *
  3. * Copyright (C) STMicroelectronics SA 2017
  4. * Author(s): M'boumba Cedric Madianga <cedric.madianga@gmail.com>
  5. * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
  6. *
  7. * License terms: GPL V2.0.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License version 2 as published by
  11. * the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
  16. * details.
  17. *
  18. * Driver for STM32 MDMA controller
  19. *
  20. * Inspired by stm32-dma.c and dma-jz4780.c
  21. *
  22. */
  23. #include <linux/clk.h>
  24. #include <linux/delay.h>
  25. #include <linux/dmaengine.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/dmapool.h>
  28. #include <linux/err.h>
  29. #include <linux/init.h>
  30. #include <linux/iopoll.h>
  31. #include <linux/jiffies.h>
  32. #include <linux/list.h>
  33. #include <linux/log2.h>
  34. #include <linux/module.h>
  35. #include <linux/of.h>
  36. #include <linux/of_device.h>
  37. #include <linux/of_dma.h>
  38. #include <linux/platform_device.h>
  39. #include <linux/reset.h>
  40. #include <linux/slab.h>
  41. #include "virt-dma.h"
  42. /* MDMA Generic getter/setter */
  43. #define STM32_MDMA_SHIFT(n) (ffs(n) - 1)
  44. #define STM32_MDMA_SET(n, mask) (((n) << STM32_MDMA_SHIFT(mask)) & \
  45. (mask))
  46. #define STM32_MDMA_GET(n, mask) (((n) & (mask)) >> \
  47. STM32_MDMA_SHIFT(mask))
  48. #define STM32_MDMA_GISR0 0x0000 /* MDMA Int Status Reg 1 */
  49. #define STM32_MDMA_GISR1 0x0004 /* MDMA Int Status Reg 2 */
  50. /* MDMA Channel x interrupt/status register */
  51. #define STM32_MDMA_CISR(x) (0x40 + 0x40 * (x)) /* x = 0..62 */
  52. #define STM32_MDMA_CISR_CRQA BIT(16)
  53. #define STM32_MDMA_CISR_TCIF BIT(4)
  54. #define STM32_MDMA_CISR_BTIF BIT(3)
  55. #define STM32_MDMA_CISR_BRTIF BIT(2)
  56. #define STM32_MDMA_CISR_CTCIF BIT(1)
  57. #define STM32_MDMA_CISR_TEIF BIT(0)
  58. /* MDMA Channel x interrupt flag clear register */
  59. #define STM32_MDMA_CIFCR(x) (0x44 + 0x40 * (x))
  60. #define STM32_MDMA_CIFCR_CLTCIF BIT(4)
  61. #define STM32_MDMA_CIFCR_CBTIF BIT(3)
  62. #define STM32_MDMA_CIFCR_CBRTIF BIT(2)
  63. #define STM32_MDMA_CIFCR_CCTCIF BIT(1)
  64. #define STM32_MDMA_CIFCR_CTEIF BIT(0)
  65. #define STM32_MDMA_CIFCR_CLEAR_ALL (STM32_MDMA_CIFCR_CLTCIF \
  66. | STM32_MDMA_CIFCR_CBTIF \
  67. | STM32_MDMA_CIFCR_CBRTIF \
  68. | STM32_MDMA_CIFCR_CCTCIF \
  69. | STM32_MDMA_CIFCR_CTEIF)
  70. /* MDMA Channel x error status register */
  71. #define STM32_MDMA_CESR(x) (0x48 + 0x40 * (x))
  72. #define STM32_MDMA_CESR_BSE BIT(11)
  73. #define STM32_MDMA_CESR_ASR BIT(10)
  74. #define STM32_MDMA_CESR_TEMD BIT(9)
  75. #define STM32_MDMA_CESR_TELD BIT(8)
  76. #define STM32_MDMA_CESR_TED BIT(7)
  77. #define STM32_MDMA_CESR_TEA_MASK GENMASK(6, 0)
  78. /* MDMA Channel x control register */
  79. #define STM32_MDMA_CCR(x) (0x4C + 0x40 * (x))
  80. #define STM32_MDMA_CCR_SWRQ BIT(16)
  81. #define STM32_MDMA_CCR_WEX BIT(14)
  82. #define STM32_MDMA_CCR_HEX BIT(13)
  83. #define STM32_MDMA_CCR_BEX BIT(12)
  84. #define STM32_MDMA_CCR_PL_MASK GENMASK(7, 6)
  85. #define STM32_MDMA_CCR_PL(n) STM32_MDMA_SET(n, \
  86. STM32_MDMA_CCR_PL_MASK)
  87. #define STM32_MDMA_CCR_TCIE BIT(5)
  88. #define STM32_MDMA_CCR_BTIE BIT(4)
  89. #define STM32_MDMA_CCR_BRTIE BIT(3)
  90. #define STM32_MDMA_CCR_CTCIE BIT(2)
  91. #define STM32_MDMA_CCR_TEIE BIT(1)
  92. #define STM32_MDMA_CCR_EN BIT(0)
  93. #define STM32_MDMA_CCR_IRQ_MASK (STM32_MDMA_CCR_TCIE \
  94. | STM32_MDMA_CCR_BTIE \
  95. | STM32_MDMA_CCR_BRTIE \
  96. | STM32_MDMA_CCR_CTCIE \
  97. | STM32_MDMA_CCR_TEIE)
  98. /* MDMA Channel x transfer configuration register */
  99. #define STM32_MDMA_CTCR(x) (0x50 + 0x40 * (x))
  100. #define STM32_MDMA_CTCR_BWM BIT(31)
  101. #define STM32_MDMA_CTCR_SWRM BIT(30)
  102. #define STM32_MDMA_CTCR_TRGM_MSK GENMASK(29, 28)
  103. #define STM32_MDMA_CTCR_TRGM(n) STM32_MDMA_SET((n), \
  104. STM32_MDMA_CTCR_TRGM_MSK)
  105. #define STM32_MDMA_CTCR_TRGM_GET(n) STM32_MDMA_GET((n), \
  106. STM32_MDMA_CTCR_TRGM_MSK)
  107. #define STM32_MDMA_CTCR_PAM_MASK GENMASK(27, 26)
  108. #define STM32_MDMA_CTCR_PAM(n) STM32_MDMA_SET(n, \
  109. STM32_MDMA_CTCR_PAM_MASK)
  110. #define STM32_MDMA_CTCR_PKE BIT(25)
  111. #define STM32_MDMA_CTCR_TLEN_MSK GENMASK(24, 18)
  112. #define STM32_MDMA_CTCR_TLEN(n) STM32_MDMA_SET((n), \
  113. STM32_MDMA_CTCR_TLEN_MSK)
  114. #define STM32_MDMA_CTCR_TLEN_GET(n) STM32_MDMA_GET((n), \
  115. STM32_MDMA_CTCR_TLEN_MSK)
  116. #define STM32_MDMA_CTCR_LEN2_MSK GENMASK(25, 18)
  117. #define STM32_MDMA_CTCR_LEN2(n) STM32_MDMA_SET((n), \
  118. STM32_MDMA_CTCR_LEN2_MSK)
  119. #define STM32_MDMA_CTCR_LEN2_GET(n) STM32_MDMA_GET((n), \
  120. STM32_MDMA_CTCR_LEN2_MSK)
  121. #define STM32_MDMA_CTCR_DBURST_MASK GENMASK(17, 15)
  122. #define STM32_MDMA_CTCR_DBURST(n) STM32_MDMA_SET(n, \
  123. STM32_MDMA_CTCR_DBURST_MASK)
  124. #define STM32_MDMA_CTCR_SBURST_MASK GENMASK(14, 12)
  125. #define STM32_MDMA_CTCR_SBURST(n) STM32_MDMA_SET(n, \
  126. STM32_MDMA_CTCR_SBURST_MASK)
  127. #define STM32_MDMA_CTCR_DINCOS_MASK GENMASK(11, 10)
  128. #define STM32_MDMA_CTCR_DINCOS(n) STM32_MDMA_SET((n), \
  129. STM32_MDMA_CTCR_DINCOS_MASK)
  130. #define STM32_MDMA_CTCR_SINCOS_MASK GENMASK(9, 8)
  131. #define STM32_MDMA_CTCR_SINCOS(n) STM32_MDMA_SET((n), \
  132. STM32_MDMA_CTCR_SINCOS_MASK)
  133. #define STM32_MDMA_CTCR_DSIZE_MASK GENMASK(7, 6)
  134. #define STM32_MDMA_CTCR_DSIZE(n) STM32_MDMA_SET(n, \
  135. STM32_MDMA_CTCR_DSIZE_MASK)
  136. #define STM32_MDMA_CTCR_SSIZE_MASK GENMASK(5, 4)
  137. #define STM32_MDMA_CTCR_SSIZE(n) STM32_MDMA_SET(n, \
  138. STM32_MDMA_CTCR_SSIZE_MASK)
  139. #define STM32_MDMA_CTCR_DINC_MASK GENMASK(3, 2)
  140. #define STM32_MDMA_CTCR_DINC(n) STM32_MDMA_SET((n), \
  141. STM32_MDMA_CTCR_DINC_MASK)
  142. #define STM32_MDMA_CTCR_SINC_MASK GENMASK(1, 0)
  143. #define STM32_MDMA_CTCR_SINC(n) STM32_MDMA_SET((n), \
  144. STM32_MDMA_CTCR_SINC_MASK)
  145. #define STM32_MDMA_CTCR_CFG_MASK (STM32_MDMA_CTCR_SINC_MASK \
  146. | STM32_MDMA_CTCR_DINC_MASK \
  147. | STM32_MDMA_CTCR_SINCOS_MASK \
  148. | STM32_MDMA_CTCR_DINCOS_MASK \
  149. | STM32_MDMA_CTCR_LEN2_MSK \
  150. | STM32_MDMA_CTCR_TRGM_MSK)
  151. /* MDMA Channel x block number of data register */
  152. #define STM32_MDMA_CBNDTR(x) (0x54 + 0x40 * (x))
  153. #define STM32_MDMA_CBNDTR_BRC_MK GENMASK(31, 20)
  154. #define STM32_MDMA_CBNDTR_BRC(n) STM32_MDMA_SET(n, \
  155. STM32_MDMA_CBNDTR_BRC_MK)
  156. #define STM32_MDMA_CBNDTR_BRC_GET(n) STM32_MDMA_GET((n), \
  157. STM32_MDMA_CBNDTR_BRC_MK)
  158. #define STM32_MDMA_CBNDTR_BRDUM BIT(19)
  159. #define STM32_MDMA_CBNDTR_BRSUM BIT(18)
  160. #define STM32_MDMA_CBNDTR_BNDT_MASK GENMASK(16, 0)
  161. #define STM32_MDMA_CBNDTR_BNDT(n) STM32_MDMA_SET(n, \
  162. STM32_MDMA_CBNDTR_BNDT_MASK)
  163. /* MDMA Channel x source address register */
  164. #define STM32_MDMA_CSAR(x) (0x58 + 0x40 * (x))
  165. /* MDMA Channel x destination address register */
  166. #define STM32_MDMA_CDAR(x) (0x5C + 0x40 * (x))
  167. /* MDMA Channel x block repeat address update register */
  168. #define STM32_MDMA_CBRUR(x) (0x60 + 0x40 * (x))
  169. #define STM32_MDMA_CBRUR_DUV_MASK GENMASK(31, 16)
  170. #define STM32_MDMA_CBRUR_DUV(n) STM32_MDMA_SET(n, \
  171. STM32_MDMA_CBRUR_DUV_MASK)
  172. #define STM32_MDMA_CBRUR_SUV_MASK GENMASK(15, 0)
  173. #define STM32_MDMA_CBRUR_SUV(n) STM32_MDMA_SET(n, \
  174. STM32_MDMA_CBRUR_SUV_MASK)
  175. /* MDMA Channel x link address register */
  176. #define STM32_MDMA_CLAR(x) (0x64 + 0x40 * (x))
  177. /* MDMA Channel x trigger and bus selection register */
  178. #define STM32_MDMA_CTBR(x) (0x68 + 0x40 * (x))
  179. #define STM32_MDMA_CTBR_DBUS BIT(17)
  180. #define STM32_MDMA_CTBR_SBUS BIT(16)
  181. #define STM32_MDMA_CTBR_TSEL_MASK GENMASK(7, 0)
  182. #define STM32_MDMA_CTBR_TSEL(n) STM32_MDMA_SET(n, \
  183. STM32_MDMA_CTBR_TSEL_MASK)
  184. /* MDMA Channel x mask address register */
  185. #define STM32_MDMA_CMAR(x) (0x70 + 0x40 * (x))
  186. /* MDMA Channel x mask data register */
  187. #define STM32_MDMA_CMDR(x) (0x74 + 0x40 * (x))
  188. #define STM32_MDMA_MAX_BUF_LEN 128
  189. #define STM32_MDMA_MAX_BLOCK_LEN 65536
  190. #define STM32_MDMA_MAX_CHANNELS 63
  191. #define STM32_MDMA_MAX_REQUESTS 256
  192. #define STM32_MDMA_MAX_BURST 128
  193. #define STM32_MDMA_VERY_HIGH_PRIORITY 0x11
  194. enum stm32_mdma_trigger_mode {
  195. STM32_MDMA_BUFFER,
  196. STM32_MDMA_BLOCK,
  197. STM32_MDMA_BLOCK_REP,
  198. STM32_MDMA_LINKED_LIST,
  199. };
  200. enum stm32_mdma_width {
  201. STM32_MDMA_BYTE,
  202. STM32_MDMA_HALF_WORD,
  203. STM32_MDMA_WORD,
  204. STM32_MDMA_DOUBLE_WORD,
  205. };
  206. enum stm32_mdma_inc_mode {
  207. STM32_MDMA_FIXED = 0,
  208. STM32_MDMA_INC = 2,
  209. STM32_MDMA_DEC = 3,
  210. };
  211. struct stm32_mdma_chan_config {
  212. u32 request;
  213. u32 priority_level;
  214. u32 transfer_config;
  215. u32 mask_addr;
  216. u32 mask_data;
  217. };
  218. struct stm32_mdma_hwdesc {
  219. u32 ctcr;
  220. u32 cbndtr;
  221. u32 csar;
  222. u32 cdar;
  223. u32 cbrur;
  224. u32 clar;
  225. u32 ctbr;
  226. u32 dummy;
  227. u32 cmar;
  228. u32 cmdr;
  229. } __aligned(64);
  230. struct stm32_mdma_desc {
  231. struct virt_dma_desc vdesc;
  232. u32 ccr;
  233. struct stm32_mdma_hwdesc *hwdesc;
  234. dma_addr_t hwdesc_phys;
  235. bool cyclic;
  236. u32 count;
  237. };
  238. struct stm32_mdma_chan {
  239. struct virt_dma_chan vchan;
  240. struct dma_pool *desc_pool;
  241. u32 id;
  242. struct stm32_mdma_desc *desc;
  243. u32 curr_hwdesc;
  244. struct dma_slave_config dma_config;
  245. struct stm32_mdma_chan_config chan_config;
  246. bool busy;
  247. u32 mem_burst;
  248. u32 mem_width;
  249. };
  250. struct stm32_mdma_device {
  251. struct dma_device ddev;
  252. void __iomem *base;
  253. struct clk *clk;
  254. int irq;
  255. struct reset_control *rst;
  256. u32 nr_channels;
  257. u32 nr_requests;
  258. u32 nr_ahb_addr_masks;
  259. struct stm32_mdma_chan chan[STM32_MDMA_MAX_CHANNELS];
  260. u32 ahb_addr_masks[];
  261. };
  262. static struct stm32_mdma_device *stm32_mdma_get_dev(
  263. struct stm32_mdma_chan *chan)
  264. {
  265. return container_of(chan->vchan.chan.device, struct stm32_mdma_device,
  266. ddev);
  267. }
  268. static struct stm32_mdma_chan *to_stm32_mdma_chan(struct dma_chan *c)
  269. {
  270. return container_of(c, struct stm32_mdma_chan, vchan.chan);
  271. }
  272. static struct stm32_mdma_desc *to_stm32_mdma_desc(struct virt_dma_desc *vdesc)
  273. {
  274. return container_of(vdesc, struct stm32_mdma_desc, vdesc);
  275. }
  276. static struct device *chan2dev(struct stm32_mdma_chan *chan)
  277. {
  278. return &chan->vchan.chan.dev->device;
  279. }
  280. static struct device *mdma2dev(struct stm32_mdma_device *mdma_dev)
  281. {
  282. return mdma_dev->ddev.dev;
  283. }
  284. static u32 stm32_mdma_read(struct stm32_mdma_device *dmadev, u32 reg)
  285. {
  286. return readl_relaxed(dmadev->base + reg);
  287. }
  288. static void stm32_mdma_write(struct stm32_mdma_device *dmadev, u32 reg, u32 val)
  289. {
  290. writel_relaxed(val, dmadev->base + reg);
  291. }
  292. static void stm32_mdma_set_bits(struct stm32_mdma_device *dmadev, u32 reg,
  293. u32 mask)
  294. {
  295. void __iomem *addr = dmadev->base + reg;
  296. writel_relaxed(readl_relaxed(addr) | mask, addr);
  297. }
  298. static void stm32_mdma_clr_bits(struct stm32_mdma_device *dmadev, u32 reg,
  299. u32 mask)
  300. {
  301. void __iomem *addr = dmadev->base + reg;
  302. writel_relaxed(readl_relaxed(addr) & ~mask, addr);
  303. }
  304. static struct stm32_mdma_desc *stm32_mdma_alloc_desc(
  305. struct stm32_mdma_chan *chan, u32 count)
  306. {
  307. struct stm32_mdma_desc *desc;
  308. desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
  309. if (!desc)
  310. return NULL;
  311. desc->hwdesc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT,
  312. &desc->hwdesc_phys);
  313. if (!desc->hwdesc) {
  314. dev_err(chan2dev(chan), "Failed to allocate descriptor\n");
  315. kfree(desc);
  316. return NULL;
  317. }
  318. desc->count = count;
  319. return desc;
  320. }
  321. static void stm32_mdma_desc_free(struct virt_dma_desc *vdesc)
  322. {
  323. struct stm32_mdma_desc *desc = to_stm32_mdma_desc(vdesc);
  324. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(vdesc->tx.chan);
  325. dma_pool_free(chan->desc_pool, desc->hwdesc, desc->hwdesc_phys);
  326. kfree(desc);
  327. }
  328. static int stm32_mdma_get_width(struct stm32_mdma_chan *chan,
  329. enum dma_slave_buswidth width)
  330. {
  331. switch (width) {
  332. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  333. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  334. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  335. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  336. return ffs(width) - 1;
  337. default:
  338. dev_err(chan2dev(chan), "Dma bus width %i not supported\n",
  339. width);
  340. return -EINVAL;
  341. }
  342. }
  343. static enum dma_slave_buswidth stm32_mdma_get_max_width(dma_addr_t addr,
  344. u32 buf_len, u32 tlen)
  345. {
  346. enum dma_slave_buswidth max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
  347. for (max_width = DMA_SLAVE_BUSWIDTH_8_BYTES;
  348. max_width > DMA_SLAVE_BUSWIDTH_1_BYTE;
  349. max_width >>= 1) {
  350. /*
  351. * Address and buffer length both have to be aligned on
  352. * bus width
  353. */
  354. if ((((buf_len | addr) & (max_width - 1)) == 0) &&
  355. tlen >= max_width)
  356. break;
  357. }
  358. return max_width;
  359. }
  360. static u32 stm32_mdma_get_best_burst(u32 buf_len, u32 tlen, u32 max_burst,
  361. enum dma_slave_buswidth width)
  362. {
  363. u32 best_burst = max_burst;
  364. u32 burst_len = best_burst * width;
  365. while ((burst_len > 0) && (tlen % burst_len)) {
  366. best_burst = best_burst >> 1;
  367. burst_len = best_burst * width;
  368. }
  369. return (best_burst > 0) ? best_burst : 1;
  370. }
  371. static int stm32_mdma_disable_chan(struct stm32_mdma_chan *chan)
  372. {
  373. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  374. u32 ccr, cisr, id, reg;
  375. int ret;
  376. id = chan->id;
  377. reg = STM32_MDMA_CCR(id);
  378. /* Disable interrupts */
  379. stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_IRQ_MASK);
  380. ccr = stm32_mdma_read(dmadev, reg);
  381. if (ccr & STM32_MDMA_CCR_EN) {
  382. stm32_mdma_clr_bits(dmadev, reg, STM32_MDMA_CCR_EN);
  383. /* Ensure that any ongoing transfer has been completed */
  384. ret = readl_relaxed_poll_timeout_atomic(
  385. dmadev->base + STM32_MDMA_CISR(id), cisr,
  386. (cisr & STM32_MDMA_CISR_CTCIF), 10, 1000);
  387. if (ret) {
  388. dev_err(chan2dev(chan), "%s: timeout!\n", __func__);
  389. return -EBUSY;
  390. }
  391. }
  392. return 0;
  393. }
  394. static void stm32_mdma_stop(struct stm32_mdma_chan *chan)
  395. {
  396. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  397. u32 status;
  398. int ret;
  399. /* Disable DMA */
  400. ret = stm32_mdma_disable_chan(chan);
  401. if (ret < 0)
  402. return;
  403. /* Clear interrupt status if it is there */
  404. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
  405. if (status) {
  406. dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
  407. __func__, status);
  408. stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
  409. }
  410. chan->busy = false;
  411. }
  412. static void stm32_mdma_set_bus(struct stm32_mdma_device *dmadev, u32 *ctbr,
  413. u32 ctbr_mask, u32 src_addr)
  414. {
  415. u32 mask;
  416. int i;
  417. /* Check if memory device is on AHB or AXI */
  418. *ctbr &= ~ctbr_mask;
  419. mask = src_addr & 0xF0000000;
  420. for (i = 0; i < dmadev->nr_ahb_addr_masks; i++) {
  421. if (mask == dmadev->ahb_addr_masks[i]) {
  422. *ctbr |= ctbr_mask;
  423. break;
  424. }
  425. }
  426. }
  427. static int stm32_mdma_set_xfer_param(struct stm32_mdma_chan *chan,
  428. enum dma_transfer_direction direction,
  429. u32 *mdma_ccr, u32 *mdma_ctcr,
  430. u32 *mdma_ctbr, dma_addr_t addr,
  431. u32 buf_len)
  432. {
  433. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  434. struct stm32_mdma_chan_config *chan_config = &chan->chan_config;
  435. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  436. phys_addr_t src_addr, dst_addr;
  437. int src_bus_width, dst_bus_width;
  438. u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
  439. u32 ccr, ctcr, ctbr, tlen;
  440. src_addr_width = chan->dma_config.src_addr_width;
  441. dst_addr_width = chan->dma_config.dst_addr_width;
  442. src_maxburst = chan->dma_config.src_maxburst;
  443. dst_maxburst = chan->dma_config.dst_maxburst;
  444. ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
  445. ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
  446. ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
  447. /* Enable HW request mode */
  448. ctcr &= ~STM32_MDMA_CTCR_SWRM;
  449. /* Set DINC, SINC, DINCOS, SINCOS, TRGM and TLEN retrieve from DT */
  450. ctcr &= ~STM32_MDMA_CTCR_CFG_MASK;
  451. ctcr |= chan_config->transfer_config & STM32_MDMA_CTCR_CFG_MASK;
  452. /*
  453. * For buffer transfer length (TLEN) we have to set
  454. * the number of bytes - 1 in CTCR register
  455. */
  456. tlen = STM32_MDMA_CTCR_LEN2_GET(ctcr);
  457. ctcr &= ~STM32_MDMA_CTCR_LEN2_MSK;
  458. ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
  459. /* Disable Pack Enable */
  460. ctcr &= ~STM32_MDMA_CTCR_PKE;
  461. /* Check burst size constraints */
  462. if (src_maxburst * src_addr_width > STM32_MDMA_MAX_BURST ||
  463. dst_maxburst * dst_addr_width > STM32_MDMA_MAX_BURST) {
  464. dev_err(chan2dev(chan),
  465. "burst size * bus width higher than %d bytes\n",
  466. STM32_MDMA_MAX_BURST);
  467. return -EINVAL;
  468. }
  469. if ((!is_power_of_2(src_maxburst) && src_maxburst > 0) ||
  470. (!is_power_of_2(dst_maxburst) && dst_maxburst > 0)) {
  471. dev_err(chan2dev(chan), "burst size must be a power of 2\n");
  472. return -EINVAL;
  473. }
  474. /*
  475. * Configure channel control:
  476. * - Clear SW request as in this case this is a HW one
  477. * - Clear WEX, HEX and BEX bits
  478. * - Set priority level
  479. */
  480. ccr &= ~(STM32_MDMA_CCR_SWRQ | STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
  481. STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK);
  482. ccr |= STM32_MDMA_CCR_PL(chan_config->priority_level);
  483. /* Configure Trigger selection */
  484. ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
  485. ctbr |= STM32_MDMA_CTBR_TSEL(chan_config->request);
  486. switch (direction) {
  487. case DMA_MEM_TO_DEV:
  488. dst_addr = chan->dma_config.dst_addr;
  489. /* Set device data size */
  490. dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
  491. if (dst_bus_width < 0)
  492. return dst_bus_width;
  493. ctcr &= ~STM32_MDMA_CTCR_DSIZE_MASK;
  494. ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width);
  495. /* Set device burst value */
  496. dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  497. dst_maxburst,
  498. dst_addr_width);
  499. chan->mem_burst = dst_best_burst;
  500. ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
  501. ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
  502. /* Set memory data size */
  503. src_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
  504. chan->mem_width = src_addr_width;
  505. src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
  506. if (src_bus_width < 0)
  507. return src_bus_width;
  508. ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK |
  509. STM32_MDMA_CTCR_SINCOS_MASK;
  510. ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width) |
  511. STM32_MDMA_CTCR_SINCOS(src_bus_width);
  512. /* Set memory burst value */
  513. src_maxburst = STM32_MDMA_MAX_BUF_LEN / src_addr_width;
  514. src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  515. src_maxburst,
  516. src_addr_width);
  517. chan->mem_burst = src_best_burst;
  518. ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
  519. ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
  520. /* Select bus */
  521. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
  522. dst_addr);
  523. if (dst_bus_width != src_bus_width)
  524. ctcr |= STM32_MDMA_CTCR_PKE;
  525. /* Set destination address */
  526. stm32_mdma_write(dmadev, STM32_MDMA_CDAR(chan->id), dst_addr);
  527. break;
  528. case DMA_DEV_TO_MEM:
  529. src_addr = chan->dma_config.src_addr;
  530. /* Set device data size */
  531. src_bus_width = stm32_mdma_get_width(chan, src_addr_width);
  532. if (src_bus_width < 0)
  533. return src_bus_width;
  534. ctcr &= ~STM32_MDMA_CTCR_SSIZE_MASK;
  535. ctcr |= STM32_MDMA_CTCR_SSIZE(src_bus_width);
  536. /* Set device burst value */
  537. src_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  538. src_maxburst,
  539. src_addr_width);
  540. ctcr &= ~STM32_MDMA_CTCR_SBURST_MASK;
  541. ctcr |= STM32_MDMA_CTCR_SBURST((ilog2(src_best_burst)));
  542. /* Set memory data size */
  543. dst_addr_width = stm32_mdma_get_max_width(addr, buf_len, tlen);
  544. chan->mem_width = dst_addr_width;
  545. dst_bus_width = stm32_mdma_get_width(chan, dst_addr_width);
  546. if (dst_bus_width < 0)
  547. return dst_bus_width;
  548. ctcr &= ~(STM32_MDMA_CTCR_DSIZE_MASK |
  549. STM32_MDMA_CTCR_DINCOS_MASK);
  550. ctcr |= STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
  551. STM32_MDMA_CTCR_DINCOS(dst_bus_width);
  552. /* Set memory burst value */
  553. dst_maxburst = STM32_MDMA_MAX_BUF_LEN / dst_addr_width;
  554. dst_best_burst = stm32_mdma_get_best_burst(buf_len, tlen,
  555. dst_maxburst,
  556. dst_addr_width);
  557. ctcr &= ~STM32_MDMA_CTCR_DBURST_MASK;
  558. ctcr |= STM32_MDMA_CTCR_DBURST((ilog2(dst_best_burst)));
  559. /* Select bus */
  560. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
  561. src_addr);
  562. if (dst_bus_width != src_bus_width)
  563. ctcr |= STM32_MDMA_CTCR_PKE;
  564. /* Set source address */
  565. stm32_mdma_write(dmadev, STM32_MDMA_CSAR(chan->id), src_addr);
  566. break;
  567. default:
  568. dev_err(chan2dev(chan), "Dma direction is not supported\n");
  569. return -EINVAL;
  570. }
  571. *mdma_ccr = ccr;
  572. *mdma_ctcr = ctcr;
  573. *mdma_ctbr = ctbr;
  574. return 0;
  575. }
  576. static void stm32_mdma_dump_hwdesc(struct stm32_mdma_chan *chan,
  577. struct stm32_mdma_hwdesc *hwdesc)
  578. {
  579. dev_dbg(chan2dev(chan), "hwdesc: 0x%p\n", hwdesc);
  580. dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n", hwdesc->ctcr);
  581. dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n", hwdesc->cbndtr);
  582. dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n", hwdesc->csar);
  583. dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n", hwdesc->cdar);
  584. dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n", hwdesc->cbrur);
  585. dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n", hwdesc->clar);
  586. dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n", hwdesc->ctbr);
  587. dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n", hwdesc->cmar);
  588. dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n\n", hwdesc->cmdr);
  589. }
  590. static void stm32_mdma_setup_hwdesc(struct stm32_mdma_chan *chan,
  591. struct stm32_mdma_desc *desc,
  592. enum dma_transfer_direction dir, u32 count,
  593. dma_addr_t src_addr, dma_addr_t dst_addr,
  594. u32 len, u32 ctcr, u32 ctbr, bool is_last,
  595. bool is_first, bool is_cyclic)
  596. {
  597. struct stm32_mdma_chan_config *config = &chan->chan_config;
  598. struct stm32_mdma_hwdesc *hwdesc;
  599. u32 next = count + 1;
  600. hwdesc = &desc->hwdesc[count];
  601. hwdesc->ctcr = ctcr;
  602. hwdesc->cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK |
  603. STM32_MDMA_CBNDTR_BRDUM |
  604. STM32_MDMA_CBNDTR_BRSUM |
  605. STM32_MDMA_CBNDTR_BNDT_MASK);
  606. hwdesc->cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
  607. hwdesc->csar = src_addr;
  608. hwdesc->cdar = dst_addr;
  609. hwdesc->cbrur = 0;
  610. hwdesc->clar = desc->hwdesc_phys + next * sizeof(*hwdesc);
  611. hwdesc->ctbr = ctbr;
  612. hwdesc->cmar = config->mask_addr;
  613. hwdesc->cmdr = config->mask_data;
  614. if (is_last) {
  615. if (is_cyclic)
  616. hwdesc->clar = desc->hwdesc_phys;
  617. else
  618. hwdesc->clar = 0;
  619. }
  620. stm32_mdma_dump_hwdesc(chan, hwdesc);
  621. }
  622. static int stm32_mdma_setup_xfer(struct stm32_mdma_chan *chan,
  623. struct stm32_mdma_desc *desc,
  624. struct scatterlist *sgl, u32 sg_len,
  625. enum dma_transfer_direction direction)
  626. {
  627. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  628. struct dma_slave_config *dma_config = &chan->dma_config;
  629. struct scatterlist *sg;
  630. dma_addr_t src_addr, dst_addr;
  631. u32 ccr, ctcr, ctbr;
  632. int i, ret = 0;
  633. for_each_sg(sgl, sg, sg_len, i) {
  634. if (sg_dma_len(sg) > STM32_MDMA_MAX_BLOCK_LEN) {
  635. dev_err(chan2dev(chan), "Invalid block len\n");
  636. return -EINVAL;
  637. }
  638. if (direction == DMA_MEM_TO_DEV) {
  639. src_addr = sg_dma_address(sg);
  640. dst_addr = dma_config->dst_addr;
  641. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
  642. &ctcr, &ctbr, src_addr,
  643. sg_dma_len(sg));
  644. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
  645. src_addr);
  646. } else {
  647. src_addr = dma_config->src_addr;
  648. dst_addr = sg_dma_address(sg);
  649. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr,
  650. &ctcr, &ctbr, dst_addr,
  651. sg_dma_len(sg));
  652. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
  653. dst_addr);
  654. }
  655. if (ret < 0)
  656. return ret;
  657. stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
  658. dst_addr, sg_dma_len(sg), ctcr, ctbr,
  659. i == sg_len - 1, i == 0, false);
  660. }
  661. /* Enable interrupts */
  662. ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
  663. ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE;
  664. if (sg_len > 1)
  665. ccr |= STM32_MDMA_CCR_BTIE;
  666. desc->ccr = ccr;
  667. return 0;
  668. }
  669. static struct dma_async_tx_descriptor *
  670. stm32_mdma_prep_slave_sg(struct dma_chan *c, struct scatterlist *sgl,
  671. u32 sg_len, enum dma_transfer_direction direction,
  672. unsigned long flags, void *context)
  673. {
  674. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  675. struct stm32_mdma_desc *desc;
  676. int ret;
  677. /*
  678. * Once DMA is in setup cyclic mode the channel we cannot assign this
  679. * channel anymore. The DMA channel needs to be aborted or terminated
  680. * for allowing another request.
  681. */
  682. if (chan->desc && chan->desc->cyclic) {
  683. dev_err(chan2dev(chan),
  684. "Request not allowed when dma in cyclic mode\n");
  685. return NULL;
  686. }
  687. desc = stm32_mdma_alloc_desc(chan, sg_len);
  688. if (!desc)
  689. return NULL;
  690. ret = stm32_mdma_setup_xfer(chan, desc, sgl, sg_len, direction);
  691. if (ret < 0)
  692. goto xfer_setup_err;
  693. desc->cyclic = false;
  694. return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
  695. xfer_setup_err:
  696. dma_pool_free(chan->desc_pool, &desc->hwdesc, desc->hwdesc_phys);
  697. kfree(desc);
  698. return NULL;
  699. }
  700. static struct dma_async_tx_descriptor *
  701. stm32_mdma_prep_dma_cyclic(struct dma_chan *c, dma_addr_t buf_addr,
  702. size_t buf_len, size_t period_len,
  703. enum dma_transfer_direction direction,
  704. unsigned long flags)
  705. {
  706. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  707. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  708. struct dma_slave_config *dma_config = &chan->dma_config;
  709. struct stm32_mdma_desc *desc;
  710. dma_addr_t src_addr, dst_addr;
  711. u32 ccr, ctcr, ctbr, count;
  712. int i, ret;
  713. /*
  714. * Once DMA is in setup cyclic mode the channel we cannot assign this
  715. * channel anymore. The DMA channel needs to be aborted or terminated
  716. * for allowing another request.
  717. */
  718. if (chan->desc && chan->desc->cyclic) {
  719. dev_err(chan2dev(chan),
  720. "Request not allowed when dma in cyclic mode\n");
  721. return NULL;
  722. }
  723. if (!buf_len || !period_len || period_len > STM32_MDMA_MAX_BLOCK_LEN) {
  724. dev_err(chan2dev(chan), "Invalid buffer/period len\n");
  725. return NULL;
  726. }
  727. if (buf_len % period_len) {
  728. dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
  729. return NULL;
  730. }
  731. count = buf_len / period_len;
  732. desc = stm32_mdma_alloc_desc(chan, count);
  733. if (!desc)
  734. return NULL;
  735. /* Select bus */
  736. if (direction == DMA_MEM_TO_DEV) {
  737. src_addr = buf_addr;
  738. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
  739. &ctbr, src_addr, period_len);
  740. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS,
  741. src_addr);
  742. } else {
  743. dst_addr = buf_addr;
  744. ret = stm32_mdma_set_xfer_param(chan, direction, &ccr, &ctcr,
  745. &ctbr, dst_addr, period_len);
  746. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS,
  747. dst_addr);
  748. }
  749. if (ret < 0)
  750. goto xfer_setup_err;
  751. /* Enable interrupts */
  752. ccr &= ~STM32_MDMA_CCR_IRQ_MASK;
  753. ccr |= STM32_MDMA_CCR_TEIE | STM32_MDMA_CCR_CTCIE | STM32_MDMA_CCR_BTIE;
  754. desc->ccr = ccr;
  755. /* Configure hwdesc list */
  756. for (i = 0; i < count; i++) {
  757. if (direction == DMA_MEM_TO_DEV) {
  758. src_addr = buf_addr + i * period_len;
  759. dst_addr = dma_config->dst_addr;
  760. } else {
  761. src_addr = dma_config->src_addr;
  762. dst_addr = buf_addr + i * period_len;
  763. }
  764. stm32_mdma_setup_hwdesc(chan, desc, direction, i, src_addr,
  765. dst_addr, period_len, ctcr, ctbr,
  766. i == count - 1, i == 0, true);
  767. }
  768. desc->cyclic = true;
  769. return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
  770. xfer_setup_err:
  771. dma_pool_free(chan->desc_pool, &desc->hwdesc, desc->hwdesc_phys);
  772. kfree(desc);
  773. return NULL;
  774. }
  775. static struct dma_async_tx_descriptor *
  776. stm32_mdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest, dma_addr_t src,
  777. size_t len, unsigned long flags)
  778. {
  779. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  780. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  781. enum dma_slave_buswidth max_width;
  782. struct stm32_mdma_desc *desc;
  783. struct stm32_mdma_hwdesc *hwdesc;
  784. u32 ccr, ctcr, ctbr, cbndtr, count, max_burst, mdma_burst;
  785. u32 best_burst, tlen;
  786. size_t xfer_count, offset;
  787. int src_bus_width, dst_bus_width;
  788. int i;
  789. /*
  790. * Once DMA is in setup cyclic mode the channel we cannot assign this
  791. * channel anymore. The DMA channel needs to be aborted or terminated
  792. * to allow another request
  793. */
  794. if (chan->desc && chan->desc->cyclic) {
  795. dev_err(chan2dev(chan),
  796. "Request not allowed when dma in cyclic mode\n");
  797. return NULL;
  798. }
  799. count = DIV_ROUND_UP(len, STM32_MDMA_MAX_BLOCK_LEN);
  800. desc = stm32_mdma_alloc_desc(chan, count);
  801. if (!desc)
  802. return NULL;
  803. ccr = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
  804. ctcr = stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id));
  805. ctbr = stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id));
  806. cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
  807. /* Enable sw req, some interrupts and clear other bits */
  808. ccr &= ~(STM32_MDMA_CCR_WEX | STM32_MDMA_CCR_HEX |
  809. STM32_MDMA_CCR_BEX | STM32_MDMA_CCR_PL_MASK |
  810. STM32_MDMA_CCR_IRQ_MASK);
  811. ccr |= STM32_MDMA_CCR_TEIE;
  812. /* Enable SW request mode, dest/src inc and clear other bits */
  813. ctcr &= ~(STM32_MDMA_CTCR_BWM | STM32_MDMA_CTCR_TRGM_MSK |
  814. STM32_MDMA_CTCR_PAM_MASK | STM32_MDMA_CTCR_PKE |
  815. STM32_MDMA_CTCR_TLEN_MSK | STM32_MDMA_CTCR_DBURST_MASK |
  816. STM32_MDMA_CTCR_SBURST_MASK | STM32_MDMA_CTCR_DINCOS_MASK |
  817. STM32_MDMA_CTCR_SINCOS_MASK | STM32_MDMA_CTCR_DSIZE_MASK |
  818. STM32_MDMA_CTCR_SSIZE_MASK | STM32_MDMA_CTCR_DINC_MASK |
  819. STM32_MDMA_CTCR_SINC_MASK);
  820. ctcr |= STM32_MDMA_CTCR_SWRM | STM32_MDMA_CTCR_SINC(STM32_MDMA_INC) |
  821. STM32_MDMA_CTCR_DINC(STM32_MDMA_INC);
  822. /* Reset HW request */
  823. ctbr &= ~STM32_MDMA_CTBR_TSEL_MASK;
  824. /* Select bus */
  825. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_SBUS, src);
  826. stm32_mdma_set_bus(dmadev, &ctbr, STM32_MDMA_CTBR_DBUS, dest);
  827. /* Clear CBNDTR registers */
  828. cbndtr &= ~(STM32_MDMA_CBNDTR_BRC_MK | STM32_MDMA_CBNDTR_BRDUM |
  829. STM32_MDMA_CBNDTR_BRSUM | STM32_MDMA_CBNDTR_BNDT_MASK);
  830. if (len <= STM32_MDMA_MAX_BLOCK_LEN) {
  831. cbndtr |= STM32_MDMA_CBNDTR_BNDT(len);
  832. if (len <= STM32_MDMA_MAX_BUF_LEN) {
  833. /* Setup a buffer transfer */
  834. ccr |= STM32_MDMA_CCR_TCIE | STM32_MDMA_CCR_CTCIE;
  835. ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BUFFER);
  836. } else {
  837. /* Setup a block transfer */
  838. ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
  839. ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_BLOCK);
  840. }
  841. tlen = STM32_MDMA_MAX_BUF_LEN;
  842. ctcr |= STM32_MDMA_CTCR_TLEN((tlen - 1));
  843. /* Set source best burst size */
  844. max_width = stm32_mdma_get_max_width(src, len, tlen);
  845. src_bus_width = stm32_mdma_get_width(chan, max_width);
  846. max_burst = tlen / max_width;
  847. best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
  848. max_width);
  849. mdma_burst = ilog2(best_burst);
  850. ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
  851. STM32_MDMA_CTCR_SSIZE(src_bus_width) |
  852. STM32_MDMA_CTCR_SINCOS(src_bus_width);
  853. /* Set destination best burst size */
  854. max_width = stm32_mdma_get_max_width(dest, len, tlen);
  855. dst_bus_width = stm32_mdma_get_width(chan, max_width);
  856. max_burst = tlen / max_width;
  857. best_burst = stm32_mdma_get_best_burst(len, tlen, max_burst,
  858. max_width);
  859. mdma_burst = ilog2(best_burst);
  860. ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
  861. STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
  862. STM32_MDMA_CTCR_DINCOS(dst_bus_width);
  863. if (dst_bus_width != src_bus_width)
  864. ctcr |= STM32_MDMA_CTCR_PKE;
  865. /* Prepare hardware descriptor */
  866. hwdesc = desc->hwdesc;
  867. hwdesc->ctcr = ctcr;
  868. hwdesc->cbndtr = cbndtr;
  869. hwdesc->csar = src;
  870. hwdesc->cdar = dest;
  871. hwdesc->cbrur = 0;
  872. hwdesc->clar = 0;
  873. hwdesc->ctbr = ctbr;
  874. hwdesc->cmar = 0;
  875. hwdesc->cmdr = 0;
  876. stm32_mdma_dump_hwdesc(chan, hwdesc);
  877. } else {
  878. /* Setup a LLI transfer */
  879. ctcr |= STM32_MDMA_CTCR_TRGM(STM32_MDMA_LINKED_LIST) |
  880. STM32_MDMA_CTCR_TLEN((STM32_MDMA_MAX_BUF_LEN - 1));
  881. ccr |= STM32_MDMA_CCR_BTIE | STM32_MDMA_CCR_CTCIE;
  882. tlen = STM32_MDMA_MAX_BUF_LEN;
  883. for (i = 0, offset = 0; offset < len;
  884. i++, offset += xfer_count) {
  885. xfer_count = min_t(size_t, len - offset,
  886. STM32_MDMA_MAX_BLOCK_LEN);
  887. /* Set source best burst size */
  888. max_width = stm32_mdma_get_max_width(src, len, tlen);
  889. src_bus_width = stm32_mdma_get_width(chan, max_width);
  890. max_burst = tlen / max_width;
  891. best_burst = stm32_mdma_get_best_burst(len, tlen,
  892. max_burst,
  893. max_width);
  894. mdma_burst = ilog2(best_burst);
  895. ctcr |= STM32_MDMA_CTCR_SBURST(mdma_burst) |
  896. STM32_MDMA_CTCR_SSIZE(src_bus_width) |
  897. STM32_MDMA_CTCR_SINCOS(src_bus_width);
  898. /* Set destination best burst size */
  899. max_width = stm32_mdma_get_max_width(dest, len, tlen);
  900. dst_bus_width = stm32_mdma_get_width(chan, max_width);
  901. max_burst = tlen / max_width;
  902. best_burst = stm32_mdma_get_best_burst(len, tlen,
  903. max_burst,
  904. max_width);
  905. mdma_burst = ilog2(best_burst);
  906. ctcr |= STM32_MDMA_CTCR_DBURST(mdma_burst) |
  907. STM32_MDMA_CTCR_DSIZE(dst_bus_width) |
  908. STM32_MDMA_CTCR_DINCOS(dst_bus_width);
  909. if (dst_bus_width != src_bus_width)
  910. ctcr |= STM32_MDMA_CTCR_PKE;
  911. /* Prepare hardware descriptor */
  912. stm32_mdma_setup_hwdesc(chan, desc, DMA_MEM_TO_MEM, i,
  913. src + offset, dest + offset,
  914. xfer_count, ctcr, ctbr,
  915. i == count - 1, i == 0, false);
  916. }
  917. }
  918. desc->ccr = ccr;
  919. desc->cyclic = false;
  920. return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
  921. }
  922. static void stm32_mdma_dump_reg(struct stm32_mdma_chan *chan)
  923. {
  924. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  925. dev_dbg(chan2dev(chan), "CCR: 0x%08x\n",
  926. stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id)));
  927. dev_dbg(chan2dev(chan), "CTCR: 0x%08x\n",
  928. stm32_mdma_read(dmadev, STM32_MDMA_CTCR(chan->id)));
  929. dev_dbg(chan2dev(chan), "CBNDTR: 0x%08x\n",
  930. stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id)));
  931. dev_dbg(chan2dev(chan), "CSAR: 0x%08x\n",
  932. stm32_mdma_read(dmadev, STM32_MDMA_CSAR(chan->id)));
  933. dev_dbg(chan2dev(chan), "CDAR: 0x%08x\n",
  934. stm32_mdma_read(dmadev, STM32_MDMA_CDAR(chan->id)));
  935. dev_dbg(chan2dev(chan), "CBRUR: 0x%08x\n",
  936. stm32_mdma_read(dmadev, STM32_MDMA_CBRUR(chan->id)));
  937. dev_dbg(chan2dev(chan), "CLAR: 0x%08x\n",
  938. stm32_mdma_read(dmadev, STM32_MDMA_CLAR(chan->id)));
  939. dev_dbg(chan2dev(chan), "CTBR: 0x%08x\n",
  940. stm32_mdma_read(dmadev, STM32_MDMA_CTBR(chan->id)));
  941. dev_dbg(chan2dev(chan), "CMAR: 0x%08x\n",
  942. stm32_mdma_read(dmadev, STM32_MDMA_CMAR(chan->id)));
  943. dev_dbg(chan2dev(chan), "CMDR: 0x%08x\n",
  944. stm32_mdma_read(dmadev, STM32_MDMA_CMDR(chan->id)));
  945. }
  946. static void stm32_mdma_start_transfer(struct stm32_mdma_chan *chan)
  947. {
  948. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  949. struct virt_dma_desc *vdesc;
  950. struct stm32_mdma_hwdesc *hwdesc;
  951. u32 id = chan->id;
  952. u32 status, reg;
  953. vdesc = vchan_next_desc(&chan->vchan);
  954. if (!vdesc) {
  955. chan->desc = NULL;
  956. return;
  957. }
  958. chan->desc = to_stm32_mdma_desc(vdesc);
  959. hwdesc = chan->desc->hwdesc;
  960. chan->curr_hwdesc = 0;
  961. stm32_mdma_write(dmadev, STM32_MDMA_CCR(id), chan->desc->ccr);
  962. stm32_mdma_write(dmadev, STM32_MDMA_CTCR(id), hwdesc->ctcr);
  963. stm32_mdma_write(dmadev, STM32_MDMA_CBNDTR(id), hwdesc->cbndtr);
  964. stm32_mdma_write(dmadev, STM32_MDMA_CSAR(id), hwdesc->csar);
  965. stm32_mdma_write(dmadev, STM32_MDMA_CDAR(id), hwdesc->cdar);
  966. stm32_mdma_write(dmadev, STM32_MDMA_CBRUR(id), hwdesc->cbrur);
  967. stm32_mdma_write(dmadev, STM32_MDMA_CLAR(id), hwdesc->clar);
  968. stm32_mdma_write(dmadev, STM32_MDMA_CTBR(id), hwdesc->ctbr);
  969. stm32_mdma_write(dmadev, STM32_MDMA_CMAR(id), hwdesc->cmar);
  970. stm32_mdma_write(dmadev, STM32_MDMA_CMDR(id), hwdesc->cmdr);
  971. /* Clear interrupt status if it is there */
  972. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(id));
  973. if (status)
  974. stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(id), status);
  975. stm32_mdma_dump_reg(chan);
  976. /* Start DMA */
  977. stm32_mdma_set_bits(dmadev, STM32_MDMA_CCR(id), STM32_MDMA_CCR_EN);
  978. /* Set SW request in case of MEM2MEM transfer */
  979. if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM) {
  980. reg = STM32_MDMA_CCR(id);
  981. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
  982. }
  983. chan->busy = true;
  984. dev_dbg(chan2dev(chan), "vchan %p: started\n", &chan->vchan);
  985. }
  986. static void stm32_mdma_issue_pending(struct dma_chan *c)
  987. {
  988. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  989. unsigned long flags;
  990. spin_lock_irqsave(&chan->vchan.lock, flags);
  991. if (!vchan_issue_pending(&chan->vchan))
  992. goto end;
  993. dev_dbg(chan2dev(chan), "vchan %p: issued\n", &chan->vchan);
  994. if (!chan->desc && !chan->busy)
  995. stm32_mdma_start_transfer(chan);
  996. end:
  997. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  998. }
  999. static int stm32_mdma_pause(struct dma_chan *c)
  1000. {
  1001. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1002. unsigned long flags;
  1003. int ret;
  1004. spin_lock_irqsave(&chan->vchan.lock, flags);
  1005. ret = stm32_mdma_disable_chan(chan);
  1006. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1007. if (!ret)
  1008. dev_dbg(chan2dev(chan), "vchan %p: pause\n", &chan->vchan);
  1009. return ret;
  1010. }
  1011. static int stm32_mdma_resume(struct dma_chan *c)
  1012. {
  1013. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1014. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1015. struct stm32_mdma_hwdesc *hwdesc;
  1016. unsigned long flags;
  1017. u32 status, reg;
  1018. hwdesc = &chan->desc->hwdesc[chan->curr_hwdesc];
  1019. spin_lock_irqsave(&chan->vchan.lock, flags);
  1020. /* Re-configure control register */
  1021. stm32_mdma_write(dmadev, STM32_MDMA_CCR(chan->id), chan->desc->ccr);
  1022. /* Clear interrupt status if it is there */
  1023. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
  1024. if (status)
  1025. stm32_mdma_set_bits(dmadev, STM32_MDMA_CIFCR(chan->id), status);
  1026. stm32_mdma_dump_reg(chan);
  1027. /* Re-start DMA */
  1028. reg = STM32_MDMA_CCR(chan->id);
  1029. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_EN);
  1030. /* Set SW request in case of MEM2MEM transfer */
  1031. if (hwdesc->ctcr & STM32_MDMA_CTCR_SWRM)
  1032. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CCR_SWRQ);
  1033. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1034. dev_dbg(chan2dev(chan), "vchan %p: resume\n", &chan->vchan);
  1035. return 0;
  1036. }
  1037. static int stm32_mdma_terminate_all(struct dma_chan *c)
  1038. {
  1039. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1040. unsigned long flags;
  1041. LIST_HEAD(head);
  1042. spin_lock_irqsave(&chan->vchan.lock, flags);
  1043. if (chan->busy) {
  1044. stm32_mdma_stop(chan);
  1045. chan->desc = NULL;
  1046. }
  1047. vchan_get_all_descriptors(&chan->vchan, &head);
  1048. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1049. vchan_dma_desc_free_list(&chan->vchan, &head);
  1050. return 0;
  1051. }
  1052. static void stm32_mdma_synchronize(struct dma_chan *c)
  1053. {
  1054. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1055. vchan_synchronize(&chan->vchan);
  1056. }
  1057. static int stm32_mdma_slave_config(struct dma_chan *c,
  1058. struct dma_slave_config *config)
  1059. {
  1060. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1061. memcpy(&chan->dma_config, config, sizeof(*config));
  1062. return 0;
  1063. }
  1064. static size_t stm32_mdma_desc_residue(struct stm32_mdma_chan *chan,
  1065. struct stm32_mdma_desc *desc,
  1066. u32 curr_hwdesc)
  1067. {
  1068. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1069. u32 cbndtr, residue, modulo, burst_size;
  1070. int i;
  1071. residue = 0;
  1072. for (i = curr_hwdesc + 1; i < desc->count; i++) {
  1073. struct stm32_mdma_hwdesc *hwdesc = &desc->hwdesc[i];
  1074. residue += STM32_MDMA_CBNDTR_BNDT(hwdesc->cbndtr);
  1075. }
  1076. cbndtr = stm32_mdma_read(dmadev, STM32_MDMA_CBNDTR(chan->id));
  1077. residue += cbndtr & STM32_MDMA_CBNDTR_BNDT_MASK;
  1078. if (!chan->mem_burst)
  1079. return residue;
  1080. burst_size = chan->mem_burst * chan->mem_width;
  1081. modulo = residue % burst_size;
  1082. if (modulo)
  1083. residue = residue - modulo + burst_size;
  1084. return residue;
  1085. }
  1086. static enum dma_status stm32_mdma_tx_status(struct dma_chan *c,
  1087. dma_cookie_t cookie,
  1088. struct dma_tx_state *state)
  1089. {
  1090. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1091. struct virt_dma_desc *vdesc;
  1092. enum dma_status status;
  1093. unsigned long flags;
  1094. u32 residue = 0;
  1095. status = dma_cookie_status(c, cookie, state);
  1096. if ((status == DMA_COMPLETE) || (!state))
  1097. return status;
  1098. spin_lock_irqsave(&chan->vchan.lock, flags);
  1099. vdesc = vchan_find_desc(&chan->vchan, cookie);
  1100. if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
  1101. residue = stm32_mdma_desc_residue(chan, chan->desc,
  1102. chan->curr_hwdesc);
  1103. else if (vdesc)
  1104. residue = stm32_mdma_desc_residue(chan,
  1105. to_stm32_mdma_desc(vdesc), 0);
  1106. dma_set_residue(state, residue);
  1107. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1108. return status;
  1109. }
  1110. static void stm32_mdma_xfer_end(struct stm32_mdma_chan *chan)
  1111. {
  1112. list_del(&chan->desc->vdesc.node);
  1113. vchan_cookie_complete(&chan->desc->vdesc);
  1114. chan->desc = NULL;
  1115. chan->busy = false;
  1116. /* Start the next transfer if this driver has a next desc */
  1117. stm32_mdma_start_transfer(chan);
  1118. }
  1119. static irqreturn_t stm32_mdma_irq_handler(int irq, void *devid)
  1120. {
  1121. struct stm32_mdma_device *dmadev = devid;
  1122. struct stm32_mdma_chan *chan = devid;
  1123. u32 reg, id, ien, status, flag;
  1124. /* Find out which channel generates the interrupt */
  1125. status = readl_relaxed(dmadev->base + STM32_MDMA_GISR0);
  1126. if (status) {
  1127. id = __ffs(status);
  1128. } else {
  1129. status = readl_relaxed(dmadev->base + STM32_MDMA_GISR1);
  1130. if (!status) {
  1131. dev_dbg(mdma2dev(dmadev), "spurious it\n");
  1132. return IRQ_NONE;
  1133. }
  1134. id = __ffs(status);
  1135. /*
  1136. * As GISR0 provides status for channel id from 0 to 31,
  1137. * so GISR1 provides status for channel id from 32 to 62
  1138. */
  1139. id += 32;
  1140. }
  1141. chan = &dmadev->chan[id];
  1142. if (!chan) {
  1143. dev_err(chan2dev(chan), "MDMA channel not initialized\n");
  1144. goto exit;
  1145. }
  1146. /* Handle interrupt for the channel */
  1147. spin_lock(&chan->vchan.lock);
  1148. status = stm32_mdma_read(dmadev, STM32_MDMA_CISR(chan->id));
  1149. ien = stm32_mdma_read(dmadev, STM32_MDMA_CCR(chan->id));
  1150. ien &= STM32_MDMA_CCR_IRQ_MASK;
  1151. ien >>= 1;
  1152. if (!(status & ien)) {
  1153. spin_unlock(&chan->vchan.lock);
  1154. dev_dbg(chan2dev(chan),
  1155. "spurious it (status=0x%04x, ien=0x%04x)\n",
  1156. status, ien);
  1157. return IRQ_NONE;
  1158. }
  1159. flag = __ffs(status & ien);
  1160. reg = STM32_MDMA_CIFCR(chan->id);
  1161. switch (1 << flag) {
  1162. case STM32_MDMA_CISR_TEIF:
  1163. id = chan->id;
  1164. status = readl_relaxed(dmadev->base + STM32_MDMA_CESR(id));
  1165. dev_err(chan2dev(chan), "Transfer Err: stat=0x%08x\n", status);
  1166. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CTEIF);
  1167. break;
  1168. case STM32_MDMA_CISR_CTCIF:
  1169. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CCTCIF);
  1170. stm32_mdma_xfer_end(chan);
  1171. break;
  1172. case STM32_MDMA_CISR_BRTIF:
  1173. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBRTIF);
  1174. break;
  1175. case STM32_MDMA_CISR_BTIF:
  1176. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CBTIF);
  1177. chan->curr_hwdesc++;
  1178. if (chan->desc && chan->desc->cyclic) {
  1179. if (chan->curr_hwdesc == chan->desc->count)
  1180. chan->curr_hwdesc = 0;
  1181. vchan_cyclic_callback(&chan->desc->vdesc);
  1182. }
  1183. break;
  1184. case STM32_MDMA_CISR_TCIF:
  1185. stm32_mdma_set_bits(dmadev, reg, STM32_MDMA_CIFCR_CLTCIF);
  1186. break;
  1187. default:
  1188. dev_err(chan2dev(chan), "it %d unhandled (status=0x%04x)\n",
  1189. 1 << flag, status);
  1190. }
  1191. spin_unlock(&chan->vchan.lock);
  1192. exit:
  1193. return IRQ_HANDLED;
  1194. }
  1195. static int stm32_mdma_alloc_chan_resources(struct dma_chan *c)
  1196. {
  1197. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1198. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1199. int ret;
  1200. chan->desc_pool = dmam_pool_create(dev_name(&c->dev->device),
  1201. c->device->dev,
  1202. sizeof(struct stm32_mdma_hwdesc),
  1203. __alignof__(struct stm32_mdma_hwdesc),
  1204. 0);
  1205. if (!chan->desc_pool) {
  1206. dev_err(chan2dev(chan), "failed to allocate descriptor pool\n");
  1207. return -ENOMEM;
  1208. }
  1209. ret = clk_prepare_enable(dmadev->clk);
  1210. if (ret < 0) {
  1211. dev_err(chan2dev(chan), "clk_prepare_enable failed: %d\n", ret);
  1212. return ret;
  1213. }
  1214. ret = stm32_mdma_disable_chan(chan);
  1215. if (ret < 0)
  1216. clk_disable_unprepare(dmadev->clk);
  1217. return ret;
  1218. }
  1219. static void stm32_mdma_free_chan_resources(struct dma_chan *c)
  1220. {
  1221. struct stm32_mdma_chan *chan = to_stm32_mdma_chan(c);
  1222. struct stm32_mdma_device *dmadev = stm32_mdma_get_dev(chan);
  1223. unsigned long flags;
  1224. dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
  1225. if (chan->busy) {
  1226. spin_lock_irqsave(&chan->vchan.lock, flags);
  1227. stm32_mdma_stop(chan);
  1228. chan->desc = NULL;
  1229. spin_unlock_irqrestore(&chan->vchan.lock, flags);
  1230. }
  1231. clk_disable_unprepare(dmadev->clk);
  1232. vchan_free_chan_resources(to_virt_chan(c));
  1233. dmam_pool_destroy(chan->desc_pool);
  1234. chan->desc_pool = NULL;
  1235. }
  1236. static struct dma_chan *stm32_mdma_of_xlate(struct of_phandle_args *dma_spec,
  1237. struct of_dma *ofdma)
  1238. {
  1239. struct stm32_mdma_device *dmadev = ofdma->of_dma_data;
  1240. struct stm32_mdma_chan *chan;
  1241. struct dma_chan *c;
  1242. struct stm32_mdma_chan_config config;
  1243. if (dma_spec->args_count < 5) {
  1244. dev_err(mdma2dev(dmadev), "Bad number of args\n");
  1245. return NULL;
  1246. }
  1247. config.request = dma_spec->args[0];
  1248. config.priority_level = dma_spec->args[1];
  1249. config.transfer_config = dma_spec->args[2];
  1250. config.mask_addr = dma_spec->args[3];
  1251. config.mask_data = dma_spec->args[4];
  1252. if (config.request >= dmadev->nr_requests) {
  1253. dev_err(mdma2dev(dmadev), "Bad request line\n");
  1254. return NULL;
  1255. }
  1256. if (config.priority_level > STM32_MDMA_VERY_HIGH_PRIORITY) {
  1257. dev_err(mdma2dev(dmadev), "Priority level not supported\n");
  1258. return NULL;
  1259. }
  1260. c = dma_get_any_slave_channel(&dmadev->ddev);
  1261. if (!c) {
  1262. dev_err(mdma2dev(dmadev), "No more channel avalaible\n");
  1263. return NULL;
  1264. }
  1265. chan = to_stm32_mdma_chan(c);
  1266. chan->chan_config = config;
  1267. return c;
  1268. }
  1269. static const struct of_device_id stm32_mdma_of_match[] = {
  1270. { .compatible = "st,stm32h7-mdma", },
  1271. { /* sentinel */ },
  1272. };
  1273. MODULE_DEVICE_TABLE(of, stm32_mdma_of_match);
  1274. static int stm32_mdma_probe(struct platform_device *pdev)
  1275. {
  1276. struct stm32_mdma_chan *chan;
  1277. struct stm32_mdma_device *dmadev;
  1278. struct dma_device *dd;
  1279. struct device_node *of_node;
  1280. struct resource *res;
  1281. u32 nr_channels, nr_requests;
  1282. int i, count, ret;
  1283. of_node = pdev->dev.of_node;
  1284. if (!of_node)
  1285. return -ENODEV;
  1286. ret = device_property_read_u32(&pdev->dev, "dma-channels",
  1287. &nr_channels);
  1288. if (ret) {
  1289. nr_channels = STM32_MDMA_MAX_CHANNELS;
  1290. dev_warn(&pdev->dev, "MDMA defaulting on %i channels\n",
  1291. nr_channels);
  1292. }
  1293. ret = device_property_read_u32(&pdev->dev, "dma-requests",
  1294. &nr_requests);
  1295. if (ret) {
  1296. nr_requests = STM32_MDMA_MAX_REQUESTS;
  1297. dev_warn(&pdev->dev, "MDMA defaulting on %i request lines\n",
  1298. nr_requests);
  1299. }
  1300. count = device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
  1301. NULL, 0);
  1302. if (count < 0)
  1303. count = 0;
  1304. dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev) + sizeof(u32) * count,
  1305. GFP_KERNEL);
  1306. if (!dmadev)
  1307. return -ENOMEM;
  1308. dmadev->nr_channels = nr_channels;
  1309. dmadev->nr_requests = nr_requests;
  1310. device_property_read_u32_array(&pdev->dev, "st,ahb-addr-masks",
  1311. dmadev->ahb_addr_masks,
  1312. count);
  1313. dmadev->nr_ahb_addr_masks = count;
  1314. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1315. dmadev->base = devm_ioremap_resource(&pdev->dev, res);
  1316. if (IS_ERR(dmadev->base))
  1317. return PTR_ERR(dmadev->base);
  1318. dmadev->clk = devm_clk_get(&pdev->dev, NULL);
  1319. if (IS_ERR(dmadev->clk)) {
  1320. ret = PTR_ERR(dmadev->clk);
  1321. if (ret == -EPROBE_DEFER)
  1322. dev_info(&pdev->dev, "Missing controller clock\n");
  1323. return ret;
  1324. }
  1325. dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
  1326. if (!IS_ERR(dmadev->rst)) {
  1327. reset_control_assert(dmadev->rst);
  1328. udelay(2);
  1329. reset_control_deassert(dmadev->rst);
  1330. }
  1331. dd = &dmadev->ddev;
  1332. dma_cap_set(DMA_SLAVE, dd->cap_mask);
  1333. dma_cap_set(DMA_PRIVATE, dd->cap_mask);
  1334. dma_cap_set(DMA_CYCLIC, dd->cap_mask);
  1335. dma_cap_set(DMA_MEMCPY, dd->cap_mask);
  1336. dd->device_alloc_chan_resources = stm32_mdma_alloc_chan_resources;
  1337. dd->device_free_chan_resources = stm32_mdma_free_chan_resources;
  1338. dd->device_tx_status = stm32_mdma_tx_status;
  1339. dd->device_issue_pending = stm32_mdma_issue_pending;
  1340. dd->device_prep_slave_sg = stm32_mdma_prep_slave_sg;
  1341. dd->device_prep_dma_cyclic = stm32_mdma_prep_dma_cyclic;
  1342. dd->device_prep_dma_memcpy = stm32_mdma_prep_dma_memcpy;
  1343. dd->device_config = stm32_mdma_slave_config;
  1344. dd->device_pause = stm32_mdma_pause;
  1345. dd->device_resume = stm32_mdma_resume;
  1346. dd->device_terminate_all = stm32_mdma_terminate_all;
  1347. dd->device_synchronize = stm32_mdma_synchronize;
  1348. dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
  1349. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
  1350. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
  1351. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
  1352. dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
  1353. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
  1354. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
  1355. BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
  1356. dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
  1357. BIT(DMA_MEM_TO_MEM);
  1358. dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  1359. dd->max_burst = STM32_MDMA_MAX_BURST;
  1360. dd->dev = &pdev->dev;
  1361. INIT_LIST_HEAD(&dd->channels);
  1362. for (i = 0; i < dmadev->nr_channels; i++) {
  1363. chan = &dmadev->chan[i];
  1364. chan->id = i;
  1365. chan->vchan.desc_free = stm32_mdma_desc_free;
  1366. vchan_init(&chan->vchan, dd);
  1367. }
  1368. dmadev->irq = platform_get_irq(pdev, 0);
  1369. if (dmadev->irq < 0) {
  1370. dev_err(&pdev->dev, "failed to get IRQ\n");
  1371. return dmadev->irq;
  1372. }
  1373. ret = devm_request_irq(&pdev->dev, dmadev->irq, stm32_mdma_irq_handler,
  1374. 0, dev_name(&pdev->dev), dmadev);
  1375. if (ret) {
  1376. dev_err(&pdev->dev, "failed to request IRQ\n");
  1377. return ret;
  1378. }
  1379. ret = dma_async_device_register(dd);
  1380. if (ret)
  1381. return ret;
  1382. ret = of_dma_controller_register(of_node, stm32_mdma_of_xlate, dmadev);
  1383. if (ret < 0) {
  1384. dev_err(&pdev->dev,
  1385. "STM32 MDMA DMA OF registration failed %d\n", ret);
  1386. goto err_unregister;
  1387. }
  1388. platform_set_drvdata(pdev, dmadev);
  1389. dev_info(&pdev->dev, "STM32 MDMA driver registered\n");
  1390. return 0;
  1391. err_unregister:
  1392. dma_async_device_unregister(dd);
  1393. return ret;
  1394. }
  1395. static struct platform_driver stm32_mdma_driver = {
  1396. .probe = stm32_mdma_probe,
  1397. .driver = {
  1398. .name = "stm32-mdma",
  1399. .of_match_table = stm32_mdma_of_match,
  1400. },
  1401. };
  1402. static int __init stm32_mdma_init(void)
  1403. {
  1404. return platform_driver_register(&stm32_mdma_driver);
  1405. }
  1406. subsys_initcall(stm32_mdma_init);
  1407. MODULE_DESCRIPTION("Driver for STM32 MDMA controller");
  1408. MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
  1409. MODULE_AUTHOR("Pierre-Yves Mordret <pierre-yves.mordret@st.com>");
  1410. MODULE_LICENSE("GPL v2");