random.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
  5. * Rights Reserved.
  6. *
  7. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  8. *
  9. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  10. * rights reserved.
  11. *
  12. * Redistribution and use in source and binary forms, with or without
  13. * modification, are permitted provided that the following conditions
  14. * are met:
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, and the entire permission notice in its entirety,
  17. * including the disclaimer of warranties.
  18. * 2. Redistributions in binary form must reproduce the above copyright
  19. * notice, this list of conditions and the following disclaimer in the
  20. * documentation and/or other materials provided with the distribution.
  21. * 3. The name of the author may not be used to endorse or promote
  22. * products derived from this software without specific prior
  23. * written permission.
  24. *
  25. * ALTERNATIVELY, this product may be distributed under the terms of
  26. * the GNU General Public License, in which case the provisions of the GPL are
  27. * required INSTEAD OF the above restrictions. (This clause is
  28. * necessary due to a potential bad interaction between the GPL and
  29. * the restrictions contained in a BSD-style copyright.)
  30. *
  31. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  35. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42. * DAMAGE.
  43. */
  44. /*
  45. * (now, with legal B.S. out of the way.....)
  46. *
  47. * This routine gathers environmental noise from device drivers, etc.,
  48. * and returns good random numbers, suitable for cryptographic use.
  49. * Besides the obvious cryptographic uses, these numbers are also good
  50. * for seeding TCP sequence numbers, and other places where it is
  51. * desirable to have numbers which are not only random, but hard to
  52. * predict by an attacker.
  53. *
  54. * Theory of operation
  55. * ===================
  56. *
  57. * Computers are very predictable devices. Hence it is extremely hard
  58. * to produce truly random numbers on a computer --- as opposed to
  59. * pseudo-random numbers, which can easily generated by using a
  60. * algorithm. Unfortunately, it is very easy for attackers to guess
  61. * the sequence of pseudo-random number generators, and for some
  62. * applications this is not acceptable. So instead, we must try to
  63. * gather "environmental noise" from the computer's environment, which
  64. * must be hard for outside attackers to observe, and use that to
  65. * generate random numbers. In a Unix environment, this is best done
  66. * from inside the kernel.
  67. *
  68. * Sources of randomness from the environment include inter-keyboard
  69. * timings, inter-interrupt timings from some interrupts, and other
  70. * events which are both (a) non-deterministic and (b) hard for an
  71. * outside observer to measure. Randomness from these sources are
  72. * added to an "entropy pool", which is mixed using a CRC-like function.
  73. * This is not cryptographically strong, but it is adequate assuming
  74. * the randomness is not chosen maliciously, and it is fast enough that
  75. * the overhead of doing it on every interrupt is very reasonable.
  76. * As random bytes are mixed into the entropy pool, the routines keep
  77. * an *estimate* of how many bits of randomness have been stored into
  78. * the random number generator's internal state.
  79. *
  80. * When random bytes are desired, they are obtained by taking the SHA
  81. * hash of the contents of the "entropy pool". The SHA hash avoids
  82. * exposing the internal state of the entropy pool. It is believed to
  83. * be computationally infeasible to derive any useful information
  84. * about the input of SHA from its output. Even if it is possible to
  85. * analyze SHA in some clever way, as long as the amount of data
  86. * returned from the generator is less than the inherent entropy in
  87. * the pool, the output data is totally unpredictable. For this
  88. * reason, the routine decreases its internal estimate of how many
  89. * bits of "true randomness" are contained in the entropy pool as it
  90. * outputs random numbers.
  91. *
  92. * If this estimate goes to zero, the routine can still generate
  93. * random numbers; however, an attacker may (at least in theory) be
  94. * able to infer the future output of the generator from prior
  95. * outputs. This requires successful cryptanalysis of SHA, which is
  96. * not believed to be feasible, but there is a remote possibility.
  97. * Nonetheless, these numbers should be useful for the vast majority
  98. * of purposes.
  99. *
  100. * Exported interfaces ---- output
  101. * ===============================
  102. *
  103. * There are three exported interfaces; the first is one designed to
  104. * be used from within the kernel:
  105. *
  106. * void get_random_bytes(void *buf, int nbytes);
  107. *
  108. * This interface will return the requested number of random bytes,
  109. * and place it in the requested buffer.
  110. *
  111. * The two other interfaces are two character devices /dev/random and
  112. * /dev/urandom. /dev/random is suitable for use when very high
  113. * quality randomness is desired (for example, for key generation or
  114. * one-time pads), as it will only return a maximum of the number of
  115. * bits of randomness (as estimated by the random number generator)
  116. * contained in the entropy pool.
  117. *
  118. * The /dev/urandom device does not have this limit, and will return
  119. * as many bytes as are requested. As more and more random bytes are
  120. * requested without giving time for the entropy pool to recharge,
  121. * this will result in random numbers that are merely cryptographically
  122. * strong. For many applications, however, this is acceptable.
  123. *
  124. * Exported interfaces ---- input
  125. * ==============================
  126. *
  127. * The current exported interfaces for gathering environmental noise
  128. * from the devices are:
  129. *
  130. * void add_device_randomness(const void *buf, unsigned int size);
  131. * void add_input_randomness(unsigned int type, unsigned int code,
  132. * unsigned int value);
  133. * void add_interrupt_randomness(int irq, int irq_flags);
  134. * void add_disk_randomness(struct gendisk *disk);
  135. *
  136. * add_device_randomness() is for adding data to the random pool that
  137. * is likely to differ between two devices (or possibly even per boot).
  138. * This would be things like MAC addresses or serial numbers, or the
  139. * read-out of the RTC. This does *not* add any actual entropy to the
  140. * pool, but it initializes the pool to different values for devices
  141. * that might otherwise be identical and have very little entropy
  142. * available to them (particularly common in the embedded world).
  143. *
  144. * add_input_randomness() uses the input layer interrupt timing, as well as
  145. * the event type information from the hardware.
  146. *
  147. * add_interrupt_randomness() uses the interrupt timing as random
  148. * inputs to the entropy pool. Using the cycle counters and the irq source
  149. * as inputs, it feeds the randomness roughly once a second.
  150. *
  151. * add_disk_randomness() uses what amounts to the seek time of block
  152. * layer request events, on a per-disk_devt basis, as input to the
  153. * entropy pool. Note that high-speed solid state drives with very low
  154. * seek times do not make for good sources of entropy, as their seek
  155. * times are usually fairly consistent.
  156. *
  157. * All of these routines try to estimate how many bits of randomness a
  158. * particular randomness source. They do this by keeping track of the
  159. * first and second order deltas of the event timings.
  160. *
  161. * Ensuring unpredictability at system startup
  162. * ============================================
  163. *
  164. * When any operating system starts up, it will go through a sequence
  165. * of actions that are fairly predictable by an adversary, especially
  166. * if the start-up does not involve interaction with a human operator.
  167. * This reduces the actual number of bits of unpredictability in the
  168. * entropy pool below the value in entropy_count. In order to
  169. * counteract this effect, it helps to carry information in the
  170. * entropy pool across shut-downs and start-ups. To do this, put the
  171. * following lines an appropriate script which is run during the boot
  172. * sequence:
  173. *
  174. * echo "Initializing random number generator..."
  175. * random_seed=/var/run/random-seed
  176. * # Carry a random seed from start-up to start-up
  177. * # Load and then save the whole entropy pool
  178. * if [ -f $random_seed ]; then
  179. * cat $random_seed >/dev/urandom
  180. * else
  181. * touch $random_seed
  182. * fi
  183. * chmod 600 $random_seed
  184. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  185. *
  186. * and the following lines in an appropriate script which is run as
  187. * the system is shutdown:
  188. *
  189. * # Carry a random seed from shut-down to start-up
  190. * # Save the whole entropy pool
  191. * echo "Saving random seed..."
  192. * random_seed=/var/run/random-seed
  193. * touch $random_seed
  194. * chmod 600 $random_seed
  195. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  196. *
  197. * For example, on most modern systems using the System V init
  198. * scripts, such code fragments would be found in
  199. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  200. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  201. *
  202. * Effectively, these commands cause the contents of the entropy pool
  203. * to be saved at shut-down time and reloaded into the entropy pool at
  204. * start-up. (The 'dd' in the addition to the bootup script is to
  205. * make sure that /etc/random-seed is different for every start-up,
  206. * even if the system crashes without executing rc.0.) Even with
  207. * complete knowledge of the start-up activities, predicting the state
  208. * of the entropy pool requires knowledge of the previous history of
  209. * the system.
  210. *
  211. * Configuring the /dev/random driver under Linux
  212. * ==============================================
  213. *
  214. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  215. * the /dev/mem major number (#1). So if your system does not have
  216. * /dev/random and /dev/urandom created already, they can be created
  217. * by using the commands:
  218. *
  219. * mknod /dev/random c 1 8
  220. * mknod /dev/urandom c 1 9
  221. *
  222. * Acknowledgements:
  223. * =================
  224. *
  225. * Ideas for constructing this random number generator were derived
  226. * from Pretty Good Privacy's random number generator, and from private
  227. * discussions with Phil Karn. Colin Plumb provided a faster random
  228. * number generator, which speed up the mixing function of the entropy
  229. * pool, taken from PGPfone. Dale Worley has also contributed many
  230. * useful ideas and suggestions to improve this driver.
  231. *
  232. * Any flaws in the design are solely my responsibility, and should
  233. * not be attributed to the Phil, Colin, or any of authors of PGP.
  234. *
  235. * Further background information on this topic may be obtained from
  236. * RFC 1750, "Randomness Recommendations for Security", by Donald
  237. * Eastlake, Steve Crocker, and Jeff Schiller.
  238. */
  239. #include <linux/utsname.h>
  240. #include <linux/module.h>
  241. #include <linux/kernel.h>
  242. #include <linux/major.h>
  243. #include <linux/string.h>
  244. #include <linux/fcntl.h>
  245. #include <linux/slab.h>
  246. #include <linux/random.h>
  247. #include <linux/poll.h>
  248. #include <linux/init.h>
  249. #include <linux/fs.h>
  250. #include <linux/genhd.h>
  251. #include <linux/interrupt.h>
  252. #include <linux/mm.h>
  253. #include <linux/nodemask.h>
  254. #include <linux/spinlock.h>
  255. #include <linux/kthread.h>
  256. #include <linux/percpu.h>
  257. #include <linux/cryptohash.h>
  258. #include <linux/fips.h>
  259. #include <linux/ptrace.h>
  260. #include <linux/workqueue.h>
  261. #include <linux/irq.h>
  262. #include <linux/ratelimit.h>
  263. #include <linux/syscalls.h>
  264. #include <linux/completion.h>
  265. #include <linux/uuid.h>
  266. #include <crypto/chacha20.h>
  267. #include <asm/processor.h>
  268. #include <linux/uaccess.h>
  269. #include <asm/irq.h>
  270. #include <asm/irq_regs.h>
  271. #include <asm/io.h>
  272. #define CREATE_TRACE_POINTS
  273. #include <trace/events/random.h>
  274. /* #define ADD_INTERRUPT_BENCH */
  275. /*
  276. * Configuration information
  277. */
  278. #define INPUT_POOL_SHIFT 12
  279. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  280. #define OUTPUT_POOL_SHIFT 10
  281. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  282. #define SEC_XFER_SIZE 512
  283. #define EXTRACT_SIZE 10
  284. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  285. /*
  286. * To allow fractional bits to be tracked, the entropy_count field is
  287. * denominated in units of 1/8th bits.
  288. *
  289. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  290. * credit_entropy_bits() needs to be 64 bits wide.
  291. */
  292. #define ENTROPY_SHIFT 3
  293. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  294. /*
  295. * The minimum number of bits of entropy before we wake up a read on
  296. * /dev/random. Should be enough to do a significant reseed.
  297. */
  298. static int random_read_wakeup_bits = 64;
  299. /*
  300. * If the entropy count falls under this number of bits, then we
  301. * should wake up processes which are selecting or polling on write
  302. * access to /dev/random.
  303. */
  304. static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
  305. /*
  306. * Originally, we used a primitive polynomial of degree .poolwords
  307. * over GF(2). The taps for various sizes are defined below. They
  308. * were chosen to be evenly spaced except for the last tap, which is 1
  309. * to get the twisting happening as fast as possible.
  310. *
  311. * For the purposes of better mixing, we use the CRC-32 polynomial as
  312. * well to make a (modified) twisted Generalized Feedback Shift
  313. * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
  314. * generators. ACM Transactions on Modeling and Computer Simulation
  315. * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
  316. * GFSR generators II. ACM Transactions on Modeling and Computer
  317. * Simulation 4:254-266)
  318. *
  319. * Thanks to Colin Plumb for suggesting this.
  320. *
  321. * The mixing operation is much less sensitive than the output hash,
  322. * where we use SHA-1. All that we want of mixing operation is that
  323. * it be a good non-cryptographic hash; i.e. it not produce collisions
  324. * when fed "random" data of the sort we expect to see. As long as
  325. * the pool state differs for different inputs, we have preserved the
  326. * input entropy and done a good job. The fact that an intelligent
  327. * attacker can construct inputs that will produce controlled
  328. * alterations to the pool's state is not important because we don't
  329. * consider such inputs to contribute any randomness. The only
  330. * property we need with respect to them is that the attacker can't
  331. * increase his/her knowledge of the pool's state. Since all
  332. * additions are reversible (knowing the final state and the input,
  333. * you can reconstruct the initial state), if an attacker has any
  334. * uncertainty about the initial state, he/she can only shuffle that
  335. * uncertainty about, but never cause any collisions (which would
  336. * decrease the uncertainty).
  337. *
  338. * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
  339. * Videau in their paper, "The Linux Pseudorandom Number Generator
  340. * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
  341. * paper, they point out that we are not using a true Twisted GFSR,
  342. * since Matsumoto & Kurita used a trinomial feedback polynomial (that
  343. * is, with only three taps, instead of the six that we are using).
  344. * As a result, the resulting polynomial is neither primitive nor
  345. * irreducible, and hence does not have a maximal period over
  346. * GF(2**32). They suggest a slight change to the generator
  347. * polynomial which improves the resulting TGFSR polynomial to be
  348. * irreducible, which we have made here.
  349. */
  350. static struct poolinfo {
  351. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  352. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  353. int tap1, tap2, tap3, tap4, tap5;
  354. } poolinfo_table[] = {
  355. /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
  356. /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
  357. { S(128), 104, 76, 51, 25, 1 },
  358. /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
  359. /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
  360. { S(32), 26, 19, 14, 7, 1 },
  361. #if 0
  362. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  363. { S(2048), 1638, 1231, 819, 411, 1 },
  364. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  365. { S(1024), 817, 615, 412, 204, 1 },
  366. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  367. { S(1024), 819, 616, 410, 207, 2 },
  368. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  369. { S(512), 411, 308, 208, 104, 1 },
  370. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  371. { S(512), 409, 307, 206, 102, 2 },
  372. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  373. { S(512), 409, 309, 205, 103, 2 },
  374. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  375. { S(256), 205, 155, 101, 52, 1 },
  376. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  377. { S(128), 103, 78, 51, 27, 2 },
  378. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  379. { S(64), 52, 39, 26, 14, 1 },
  380. #endif
  381. };
  382. /*
  383. * Static global variables
  384. */
  385. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  386. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  387. static struct fasync_struct *fasync;
  388. static DEFINE_SPINLOCK(random_ready_list_lock);
  389. static LIST_HEAD(random_ready_list);
  390. struct crng_state {
  391. __u32 state[16];
  392. unsigned long init_time;
  393. spinlock_t lock;
  394. };
  395. struct crng_state primary_crng = {
  396. .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
  397. };
  398. /*
  399. * crng_init = 0 --> Uninitialized
  400. * 1 --> Initialized
  401. * 2 --> Initialized from input_pool
  402. *
  403. * crng_init is protected by primary_crng->lock, and only increases
  404. * its value (from 0->1->2).
  405. */
  406. static int crng_init = 0;
  407. #define crng_ready() (likely(crng_init > 1))
  408. static int crng_init_cnt = 0;
  409. static unsigned long crng_global_init_time = 0;
  410. #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
  411. static void _extract_crng(struct crng_state *crng,
  412. __u32 out[CHACHA20_BLOCK_WORDS]);
  413. static void _crng_backtrack_protect(struct crng_state *crng,
  414. __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
  415. static void process_random_ready_list(void);
  416. static void _get_random_bytes(void *buf, int nbytes);
  417. static struct ratelimit_state unseeded_warning =
  418. RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
  419. static struct ratelimit_state urandom_warning =
  420. RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
  421. static int ratelimit_disable __read_mostly;
  422. module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
  423. MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
  424. /**********************************************************************
  425. *
  426. * OS independent entropy store. Here are the functions which handle
  427. * storing entropy in an entropy pool.
  428. *
  429. **********************************************************************/
  430. struct entropy_store;
  431. struct entropy_store {
  432. /* read-only data: */
  433. const struct poolinfo *poolinfo;
  434. __u32 *pool;
  435. const char *name;
  436. struct entropy_store *pull;
  437. struct work_struct push_work;
  438. /* read-write data: */
  439. unsigned long last_pulled;
  440. spinlock_t lock;
  441. unsigned short add_ptr;
  442. unsigned short input_rotate;
  443. int entropy_count;
  444. int entropy_total;
  445. unsigned int initialized:1;
  446. unsigned int last_data_init:1;
  447. __u8 last_data[EXTRACT_SIZE];
  448. };
  449. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  450. size_t nbytes, int min, int rsvd);
  451. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  452. size_t nbytes, int fips);
  453. static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
  454. static void push_to_pool(struct work_struct *work);
  455. static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
  456. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
  457. static struct entropy_store input_pool = {
  458. .poolinfo = &poolinfo_table[0],
  459. .name = "input",
  460. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  461. .pool = input_pool_data
  462. };
  463. static struct entropy_store blocking_pool = {
  464. .poolinfo = &poolinfo_table[1],
  465. .name = "blocking",
  466. .pull = &input_pool,
  467. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  468. .pool = blocking_pool_data,
  469. .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
  470. push_to_pool),
  471. };
  472. static __u32 const twist_table[8] = {
  473. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  474. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  475. /*
  476. * This function adds bytes into the entropy "pool". It does not
  477. * update the entropy estimate. The caller should call
  478. * credit_entropy_bits if this is appropriate.
  479. *
  480. * The pool is stirred with a primitive polynomial of the appropriate
  481. * degree, and then twisted. We twist by three bits at a time because
  482. * it's cheap to do so and helps slightly in the expected case where
  483. * the entropy is concentrated in the low-order bits.
  484. */
  485. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  486. int nbytes)
  487. {
  488. unsigned long i, tap1, tap2, tap3, tap4, tap5;
  489. int input_rotate;
  490. int wordmask = r->poolinfo->poolwords - 1;
  491. const char *bytes = in;
  492. __u32 w;
  493. tap1 = r->poolinfo->tap1;
  494. tap2 = r->poolinfo->tap2;
  495. tap3 = r->poolinfo->tap3;
  496. tap4 = r->poolinfo->tap4;
  497. tap5 = r->poolinfo->tap5;
  498. input_rotate = r->input_rotate;
  499. i = r->add_ptr;
  500. /* mix one byte at a time to simplify size handling and churn faster */
  501. while (nbytes--) {
  502. w = rol32(*bytes++, input_rotate);
  503. i = (i - 1) & wordmask;
  504. /* XOR in the various taps */
  505. w ^= r->pool[i];
  506. w ^= r->pool[(i + tap1) & wordmask];
  507. w ^= r->pool[(i + tap2) & wordmask];
  508. w ^= r->pool[(i + tap3) & wordmask];
  509. w ^= r->pool[(i + tap4) & wordmask];
  510. w ^= r->pool[(i + tap5) & wordmask];
  511. /* Mix the result back in with a twist */
  512. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  513. /*
  514. * Normally, we add 7 bits of rotation to the pool.
  515. * At the beginning of the pool, add an extra 7 bits
  516. * rotation, so that successive passes spread the
  517. * input bits across the pool evenly.
  518. */
  519. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  520. }
  521. r->input_rotate = input_rotate;
  522. r->add_ptr = i;
  523. }
  524. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  525. int nbytes)
  526. {
  527. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  528. _mix_pool_bytes(r, in, nbytes);
  529. }
  530. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  531. int nbytes)
  532. {
  533. unsigned long flags;
  534. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  535. spin_lock_irqsave(&r->lock, flags);
  536. _mix_pool_bytes(r, in, nbytes);
  537. spin_unlock_irqrestore(&r->lock, flags);
  538. }
  539. struct fast_pool {
  540. __u32 pool[4];
  541. unsigned long last;
  542. unsigned short reg_idx;
  543. unsigned char count;
  544. };
  545. /*
  546. * This is a fast mixing routine used by the interrupt randomness
  547. * collector. It's hardcoded for an 128 bit pool and assumes that any
  548. * locks that might be needed are taken by the caller.
  549. */
  550. static void fast_mix(struct fast_pool *f)
  551. {
  552. __u32 a = f->pool[0], b = f->pool[1];
  553. __u32 c = f->pool[2], d = f->pool[3];
  554. a += b; c += d;
  555. b = rol32(b, 6); d = rol32(d, 27);
  556. d ^= a; b ^= c;
  557. a += b; c += d;
  558. b = rol32(b, 16); d = rol32(d, 14);
  559. d ^= a; b ^= c;
  560. a += b; c += d;
  561. b = rol32(b, 6); d = rol32(d, 27);
  562. d ^= a; b ^= c;
  563. a += b; c += d;
  564. b = rol32(b, 16); d = rol32(d, 14);
  565. d ^= a; b ^= c;
  566. f->pool[0] = a; f->pool[1] = b;
  567. f->pool[2] = c; f->pool[3] = d;
  568. f->count++;
  569. }
  570. static void process_random_ready_list(void)
  571. {
  572. unsigned long flags;
  573. struct random_ready_callback *rdy, *tmp;
  574. spin_lock_irqsave(&random_ready_list_lock, flags);
  575. list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
  576. struct module *owner = rdy->owner;
  577. list_del_init(&rdy->list);
  578. rdy->func(rdy);
  579. module_put(owner);
  580. }
  581. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  582. }
  583. /*
  584. * Credit (or debit) the entropy store with n bits of entropy.
  585. * Use credit_entropy_bits_safe() if the value comes from userspace
  586. * or otherwise should be checked for extreme values.
  587. */
  588. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  589. {
  590. int entropy_count, orig;
  591. const int pool_size = r->poolinfo->poolfracbits;
  592. int nfrac = nbits << ENTROPY_SHIFT;
  593. if (!nbits)
  594. return;
  595. retry:
  596. entropy_count = orig = READ_ONCE(r->entropy_count);
  597. if (nfrac < 0) {
  598. /* Debit */
  599. entropy_count += nfrac;
  600. } else {
  601. /*
  602. * Credit: we have to account for the possibility of
  603. * overwriting already present entropy. Even in the
  604. * ideal case of pure Shannon entropy, new contributions
  605. * approach the full value asymptotically:
  606. *
  607. * entropy <- entropy + (pool_size - entropy) *
  608. * (1 - exp(-add_entropy/pool_size))
  609. *
  610. * For add_entropy <= pool_size/2 then
  611. * (1 - exp(-add_entropy/pool_size)) >=
  612. * (add_entropy/pool_size)*0.7869...
  613. * so we can approximate the exponential with
  614. * 3/4*add_entropy/pool_size and still be on the
  615. * safe side by adding at most pool_size/2 at a time.
  616. *
  617. * The use of pool_size-2 in the while statement is to
  618. * prevent rounding artifacts from making the loop
  619. * arbitrarily long; this limits the loop to log2(pool_size)*2
  620. * turns no matter how large nbits is.
  621. */
  622. int pnfrac = nfrac;
  623. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  624. /* The +2 corresponds to the /4 in the denominator */
  625. do {
  626. unsigned int anfrac = min(pnfrac, pool_size/2);
  627. unsigned int add =
  628. ((pool_size - entropy_count)*anfrac*3) >> s;
  629. entropy_count += add;
  630. pnfrac -= anfrac;
  631. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  632. }
  633. if (unlikely(entropy_count < 0)) {
  634. pr_warn("random: negative entropy/overflow: pool %s count %d\n",
  635. r->name, entropy_count);
  636. WARN_ON(1);
  637. entropy_count = 0;
  638. } else if (entropy_count > pool_size)
  639. entropy_count = pool_size;
  640. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  641. goto retry;
  642. r->entropy_total += nbits;
  643. if (!r->initialized && r->entropy_total > 128) {
  644. r->initialized = 1;
  645. r->entropy_total = 0;
  646. }
  647. trace_credit_entropy_bits(r->name, nbits,
  648. entropy_count >> ENTROPY_SHIFT,
  649. r->entropy_total, _RET_IP_);
  650. if (r == &input_pool) {
  651. int entropy_bits = entropy_count >> ENTROPY_SHIFT;
  652. if (crng_init < 2 && entropy_bits >= 128) {
  653. crng_reseed(&primary_crng, r);
  654. entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
  655. }
  656. /* should we wake readers? */
  657. if (entropy_bits >= random_read_wakeup_bits &&
  658. wq_has_sleeper(&random_read_wait)) {
  659. wake_up_interruptible(&random_read_wait);
  660. kill_fasync(&fasync, SIGIO, POLL_IN);
  661. }
  662. /* If the input pool is getting full, send some
  663. * entropy to the blocking pool until it is 75% full.
  664. */
  665. if (entropy_bits > random_write_wakeup_bits &&
  666. r->initialized &&
  667. r->entropy_total >= 2*random_read_wakeup_bits) {
  668. struct entropy_store *other = &blocking_pool;
  669. if (other->entropy_count <=
  670. 3 * other->poolinfo->poolfracbits / 4) {
  671. schedule_work(&other->push_work);
  672. r->entropy_total = 0;
  673. }
  674. }
  675. }
  676. }
  677. static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  678. {
  679. const int nbits_max = r->poolinfo->poolwords * 32;
  680. if (nbits < 0)
  681. return -EINVAL;
  682. /* Cap the value to avoid overflows */
  683. nbits = min(nbits, nbits_max);
  684. credit_entropy_bits(r, nbits);
  685. return 0;
  686. }
  687. /*********************************************************************
  688. *
  689. * CRNG using CHACHA20
  690. *
  691. *********************************************************************/
  692. #define CRNG_RESEED_INTERVAL (300*HZ)
  693. static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  694. #ifdef CONFIG_NUMA
  695. /*
  696. * Hack to deal with crazy userspace progams when they are all trying
  697. * to access /dev/urandom in parallel. The programs are almost
  698. * certainly doing something terribly wrong, but we'll work around
  699. * their brain damage.
  700. */
  701. static struct crng_state **crng_node_pool __read_mostly;
  702. #endif
  703. static void invalidate_batched_entropy(void);
  704. static void crng_initialize(struct crng_state *crng)
  705. {
  706. int i;
  707. unsigned long rv;
  708. memcpy(&crng->state[0], "expand 32-byte k", 16);
  709. if (crng == &primary_crng)
  710. _extract_entropy(&input_pool, &crng->state[4],
  711. sizeof(__u32) * 12, 0);
  712. else
  713. _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
  714. for (i = 4; i < 16; i++) {
  715. if (!arch_get_random_seed_long(&rv) &&
  716. !arch_get_random_long(&rv))
  717. rv = random_get_entropy();
  718. crng->state[i] ^= rv;
  719. }
  720. crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
  721. }
  722. #ifdef CONFIG_NUMA
  723. static void do_numa_crng_init(struct work_struct *work)
  724. {
  725. int i;
  726. struct crng_state *crng;
  727. struct crng_state **pool;
  728. pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
  729. for_each_online_node(i) {
  730. crng = kmalloc_node(sizeof(struct crng_state),
  731. GFP_KERNEL | __GFP_NOFAIL, i);
  732. spin_lock_init(&crng->lock);
  733. crng_initialize(crng);
  734. pool[i] = crng;
  735. }
  736. mb();
  737. if (cmpxchg(&crng_node_pool, NULL, pool)) {
  738. for_each_node(i)
  739. kfree(pool[i]);
  740. kfree(pool);
  741. }
  742. }
  743. static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
  744. static void numa_crng_init(void)
  745. {
  746. schedule_work(&numa_crng_init_work);
  747. }
  748. #else
  749. static void numa_crng_init(void) {}
  750. #endif
  751. /*
  752. * crng_fast_load() can be called by code in the interrupt service
  753. * path. So we can't afford to dilly-dally.
  754. */
  755. static int crng_fast_load(const char *cp, size_t len)
  756. {
  757. unsigned long flags;
  758. char *p;
  759. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  760. return 0;
  761. if (crng_init != 0) {
  762. spin_unlock_irqrestore(&primary_crng.lock, flags);
  763. return 0;
  764. }
  765. p = (unsigned char *) &primary_crng.state[4];
  766. while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
  767. p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
  768. cp++; crng_init_cnt++; len--;
  769. }
  770. spin_unlock_irqrestore(&primary_crng.lock, flags);
  771. if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
  772. invalidate_batched_entropy();
  773. crng_init = 1;
  774. wake_up_interruptible(&crng_init_wait);
  775. pr_notice("random: fast init done\n");
  776. }
  777. return 1;
  778. }
  779. /*
  780. * crng_slow_load() is called by add_device_randomness, which has two
  781. * attributes. (1) We can't trust the buffer passed to it is
  782. * guaranteed to be unpredictable (so it might not have any entropy at
  783. * all), and (2) it doesn't have the performance constraints of
  784. * crng_fast_load().
  785. *
  786. * So we do something more comprehensive which is guaranteed to touch
  787. * all of the primary_crng's state, and which uses a LFSR with a
  788. * period of 255 as part of the mixing algorithm. Finally, we do
  789. * *not* advance crng_init_cnt since buffer we may get may be something
  790. * like a fixed DMI table (for example), which might very well be
  791. * unique to the machine, but is otherwise unvarying.
  792. */
  793. static int crng_slow_load(const char *cp, size_t len)
  794. {
  795. unsigned long flags;
  796. static unsigned char lfsr = 1;
  797. unsigned char tmp;
  798. unsigned i, max = CHACHA20_KEY_SIZE;
  799. const char * src_buf = cp;
  800. char * dest_buf = (char *) &primary_crng.state[4];
  801. if (!spin_trylock_irqsave(&primary_crng.lock, flags))
  802. return 0;
  803. if (crng_init != 0) {
  804. spin_unlock_irqrestore(&primary_crng.lock, flags);
  805. return 0;
  806. }
  807. if (len > max)
  808. max = len;
  809. for (i = 0; i < max ; i++) {
  810. tmp = lfsr;
  811. lfsr >>= 1;
  812. if (tmp & 1)
  813. lfsr ^= 0xE1;
  814. tmp = dest_buf[i % CHACHA20_KEY_SIZE];
  815. dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
  816. lfsr += (tmp << 3) | (tmp >> 5);
  817. }
  818. spin_unlock_irqrestore(&primary_crng.lock, flags);
  819. return 1;
  820. }
  821. static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
  822. {
  823. unsigned long flags;
  824. int i, num;
  825. union {
  826. __u32 block[CHACHA20_BLOCK_WORDS];
  827. __u32 key[8];
  828. } buf;
  829. if (r) {
  830. num = extract_entropy(r, &buf, 32, 16, 0);
  831. if (num == 0)
  832. return;
  833. } else {
  834. _extract_crng(&primary_crng, buf.block);
  835. _crng_backtrack_protect(&primary_crng, buf.block,
  836. CHACHA20_KEY_SIZE);
  837. }
  838. spin_lock_irqsave(&crng->lock, flags);
  839. for (i = 0; i < 8; i++) {
  840. unsigned long rv;
  841. if (!arch_get_random_seed_long(&rv) &&
  842. !arch_get_random_long(&rv))
  843. rv = random_get_entropy();
  844. crng->state[i+4] ^= buf.key[i] ^ rv;
  845. }
  846. memzero_explicit(&buf, sizeof(buf));
  847. crng->init_time = jiffies;
  848. spin_unlock_irqrestore(&crng->lock, flags);
  849. if (crng == &primary_crng && crng_init < 2) {
  850. invalidate_batched_entropy();
  851. numa_crng_init();
  852. crng_init = 2;
  853. process_random_ready_list();
  854. wake_up_interruptible(&crng_init_wait);
  855. pr_notice("random: crng init done\n");
  856. if (unseeded_warning.missed) {
  857. pr_notice("random: %d get_random_xx warning(s) missed "
  858. "due to ratelimiting\n",
  859. unseeded_warning.missed);
  860. unseeded_warning.missed = 0;
  861. }
  862. if (urandom_warning.missed) {
  863. pr_notice("random: %d urandom warning(s) missed "
  864. "due to ratelimiting\n",
  865. urandom_warning.missed);
  866. urandom_warning.missed = 0;
  867. }
  868. }
  869. }
  870. static void _extract_crng(struct crng_state *crng,
  871. __u32 out[CHACHA20_BLOCK_WORDS])
  872. {
  873. unsigned long v, flags;
  874. if (crng_ready() &&
  875. (time_after(crng_global_init_time, crng->init_time) ||
  876. time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
  877. crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
  878. spin_lock_irqsave(&crng->lock, flags);
  879. if (arch_get_random_long(&v))
  880. crng->state[14] ^= v;
  881. chacha20_block(&crng->state[0], out);
  882. if (crng->state[12] == 0)
  883. crng->state[13]++;
  884. spin_unlock_irqrestore(&crng->lock, flags);
  885. }
  886. static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
  887. {
  888. struct crng_state *crng = NULL;
  889. #ifdef CONFIG_NUMA
  890. if (crng_node_pool)
  891. crng = crng_node_pool[numa_node_id()];
  892. if (crng == NULL)
  893. #endif
  894. crng = &primary_crng;
  895. _extract_crng(crng, out);
  896. }
  897. /*
  898. * Use the leftover bytes from the CRNG block output (if there is
  899. * enough) to mutate the CRNG key to provide backtracking protection.
  900. */
  901. static void _crng_backtrack_protect(struct crng_state *crng,
  902. __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
  903. {
  904. unsigned long flags;
  905. __u32 *s, *d;
  906. int i;
  907. used = round_up(used, sizeof(__u32));
  908. if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
  909. extract_crng(tmp);
  910. used = 0;
  911. }
  912. spin_lock_irqsave(&crng->lock, flags);
  913. s = &tmp[used / sizeof(__u32)];
  914. d = &crng->state[4];
  915. for (i=0; i < 8; i++)
  916. *d++ ^= *s++;
  917. spin_unlock_irqrestore(&crng->lock, flags);
  918. }
  919. static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
  920. {
  921. struct crng_state *crng = NULL;
  922. #ifdef CONFIG_NUMA
  923. if (crng_node_pool)
  924. crng = crng_node_pool[numa_node_id()];
  925. if (crng == NULL)
  926. #endif
  927. crng = &primary_crng;
  928. _crng_backtrack_protect(crng, tmp, used);
  929. }
  930. static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
  931. {
  932. ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
  933. __u32 tmp[CHACHA20_BLOCK_WORDS];
  934. int large_request = (nbytes > 256);
  935. while (nbytes) {
  936. if (large_request && need_resched()) {
  937. if (signal_pending(current)) {
  938. if (ret == 0)
  939. ret = -ERESTARTSYS;
  940. break;
  941. }
  942. schedule();
  943. }
  944. extract_crng(tmp);
  945. i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
  946. if (copy_to_user(buf, tmp, i)) {
  947. ret = -EFAULT;
  948. break;
  949. }
  950. nbytes -= i;
  951. buf += i;
  952. ret += i;
  953. }
  954. crng_backtrack_protect(tmp, i);
  955. /* Wipe data just written to memory */
  956. memzero_explicit(tmp, sizeof(tmp));
  957. return ret;
  958. }
  959. /*********************************************************************
  960. *
  961. * Entropy input management
  962. *
  963. *********************************************************************/
  964. /* There is one of these per entropy source */
  965. struct timer_rand_state {
  966. cycles_t last_time;
  967. long last_delta, last_delta2;
  968. };
  969. #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
  970. /*
  971. * Add device- or boot-specific data to the input pool to help
  972. * initialize it.
  973. *
  974. * None of this adds any entropy; it is meant to avoid the problem of
  975. * the entropy pool having similar initial state across largely
  976. * identical devices.
  977. */
  978. void add_device_randomness(const void *buf, unsigned int size)
  979. {
  980. unsigned long time = random_get_entropy() ^ jiffies;
  981. unsigned long flags;
  982. if (!crng_ready() && size)
  983. crng_slow_load(buf, size);
  984. trace_add_device_randomness(size, _RET_IP_);
  985. spin_lock_irqsave(&input_pool.lock, flags);
  986. _mix_pool_bytes(&input_pool, buf, size);
  987. _mix_pool_bytes(&input_pool, &time, sizeof(time));
  988. spin_unlock_irqrestore(&input_pool.lock, flags);
  989. }
  990. EXPORT_SYMBOL(add_device_randomness);
  991. static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
  992. /*
  993. * This function adds entropy to the entropy "pool" by using timing
  994. * delays. It uses the timer_rand_state structure to make an estimate
  995. * of how many bits of entropy this call has added to the pool.
  996. *
  997. * The number "num" is also added to the pool - it should somehow describe
  998. * the type of event which just happened. This is currently 0-255 for
  999. * keyboard scan codes, and 256 upwards for interrupts.
  1000. *
  1001. */
  1002. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  1003. {
  1004. struct entropy_store *r;
  1005. struct {
  1006. long jiffies;
  1007. unsigned cycles;
  1008. unsigned num;
  1009. } sample;
  1010. long delta, delta2, delta3;
  1011. preempt_disable();
  1012. sample.jiffies = jiffies;
  1013. sample.cycles = random_get_entropy();
  1014. sample.num = num;
  1015. r = &input_pool;
  1016. mix_pool_bytes(r, &sample, sizeof(sample));
  1017. /*
  1018. * Calculate number of bits of randomness we probably added.
  1019. * We take into account the first, second and third-order deltas
  1020. * in order to make our estimate.
  1021. */
  1022. delta = sample.jiffies - state->last_time;
  1023. state->last_time = sample.jiffies;
  1024. delta2 = delta - state->last_delta;
  1025. state->last_delta = delta;
  1026. delta3 = delta2 - state->last_delta2;
  1027. state->last_delta2 = delta2;
  1028. if (delta < 0)
  1029. delta = -delta;
  1030. if (delta2 < 0)
  1031. delta2 = -delta2;
  1032. if (delta3 < 0)
  1033. delta3 = -delta3;
  1034. if (delta > delta2)
  1035. delta = delta2;
  1036. if (delta > delta3)
  1037. delta = delta3;
  1038. /*
  1039. * delta is now minimum absolute delta.
  1040. * Round down by 1 bit on general principles,
  1041. * and limit entropy entimate to 12 bits.
  1042. */
  1043. credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
  1044. preempt_enable();
  1045. }
  1046. void add_input_randomness(unsigned int type, unsigned int code,
  1047. unsigned int value)
  1048. {
  1049. static unsigned char last_value;
  1050. /* ignore autorepeat and the like */
  1051. if (value == last_value)
  1052. return;
  1053. last_value = value;
  1054. add_timer_randomness(&input_timer_state,
  1055. (type << 4) ^ code ^ (code >> 4) ^ value);
  1056. trace_add_input_randomness(ENTROPY_BITS(&input_pool));
  1057. }
  1058. EXPORT_SYMBOL_GPL(add_input_randomness);
  1059. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  1060. #ifdef ADD_INTERRUPT_BENCH
  1061. static unsigned long avg_cycles, avg_deviation;
  1062. #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
  1063. #define FIXED_1_2 (1 << (AVG_SHIFT-1))
  1064. static void add_interrupt_bench(cycles_t start)
  1065. {
  1066. long delta = random_get_entropy() - start;
  1067. /* Use a weighted moving average */
  1068. delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
  1069. avg_cycles += delta;
  1070. /* And average deviation */
  1071. delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
  1072. avg_deviation += delta;
  1073. }
  1074. #else
  1075. #define add_interrupt_bench(x)
  1076. #endif
  1077. static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
  1078. {
  1079. __u32 *ptr = (__u32 *) regs;
  1080. unsigned int idx;
  1081. if (regs == NULL)
  1082. return 0;
  1083. idx = READ_ONCE(f->reg_idx);
  1084. if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
  1085. idx = 0;
  1086. ptr += idx++;
  1087. WRITE_ONCE(f->reg_idx, idx);
  1088. return *ptr;
  1089. }
  1090. void add_interrupt_randomness(int irq, int irq_flags)
  1091. {
  1092. struct entropy_store *r;
  1093. struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
  1094. struct pt_regs *regs = get_irq_regs();
  1095. unsigned long now = jiffies;
  1096. cycles_t cycles = random_get_entropy();
  1097. __u32 c_high, j_high;
  1098. __u64 ip;
  1099. unsigned long seed;
  1100. int credit = 0;
  1101. if (cycles == 0)
  1102. cycles = get_reg(fast_pool, regs);
  1103. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  1104. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  1105. fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
  1106. fast_pool->pool[1] ^= now ^ c_high;
  1107. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  1108. fast_pool->pool[2] ^= ip;
  1109. fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
  1110. get_reg(fast_pool, regs);
  1111. fast_mix(fast_pool);
  1112. add_interrupt_bench(cycles);
  1113. if (unlikely(crng_init == 0)) {
  1114. if ((fast_pool->count >= 64) &&
  1115. crng_fast_load((char *) fast_pool->pool,
  1116. sizeof(fast_pool->pool))) {
  1117. fast_pool->count = 0;
  1118. fast_pool->last = now;
  1119. }
  1120. return;
  1121. }
  1122. if ((fast_pool->count < 64) &&
  1123. !time_after(now, fast_pool->last + HZ))
  1124. return;
  1125. r = &input_pool;
  1126. if (!spin_trylock(&r->lock))
  1127. return;
  1128. fast_pool->last = now;
  1129. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
  1130. /*
  1131. * If we have architectural seed generator, produce a seed and
  1132. * add it to the pool. For the sake of paranoia don't let the
  1133. * architectural seed generator dominate the input from the
  1134. * interrupt noise.
  1135. */
  1136. if (arch_get_random_seed_long(&seed)) {
  1137. __mix_pool_bytes(r, &seed, sizeof(seed));
  1138. credit = 1;
  1139. }
  1140. spin_unlock(&r->lock);
  1141. fast_pool->count = 0;
  1142. /* award one bit for the contents of the fast pool */
  1143. credit_entropy_bits(r, credit + 1);
  1144. }
  1145. EXPORT_SYMBOL_GPL(add_interrupt_randomness);
  1146. #ifdef CONFIG_BLOCK
  1147. void add_disk_randomness(struct gendisk *disk)
  1148. {
  1149. if (!disk || !disk->random)
  1150. return;
  1151. /* first major is 1, so we get >= 0x200 here */
  1152. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  1153. trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
  1154. }
  1155. EXPORT_SYMBOL_GPL(add_disk_randomness);
  1156. #endif
  1157. /*********************************************************************
  1158. *
  1159. * Entropy extraction routines
  1160. *
  1161. *********************************************************************/
  1162. /*
  1163. * This utility inline function is responsible for transferring entropy
  1164. * from the primary pool to the secondary extraction pool. We make
  1165. * sure we pull enough for a 'catastrophic reseed'.
  1166. */
  1167. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
  1168. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1169. {
  1170. if (!r->pull ||
  1171. r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
  1172. r->entropy_count > r->poolinfo->poolfracbits)
  1173. return;
  1174. _xfer_secondary_pool(r, nbytes);
  1175. }
  1176. static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  1177. {
  1178. __u32 tmp[OUTPUT_POOL_WORDS];
  1179. int bytes = nbytes;
  1180. /* pull at least as much as a wakeup */
  1181. bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
  1182. /* but never more than the buffer size */
  1183. bytes = min_t(int, bytes, sizeof(tmp));
  1184. trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
  1185. ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
  1186. bytes = extract_entropy(r->pull, tmp, bytes,
  1187. random_read_wakeup_bits / 8, 0);
  1188. mix_pool_bytes(r, tmp, bytes);
  1189. credit_entropy_bits(r, bytes*8);
  1190. }
  1191. /*
  1192. * Used as a workqueue function so that when the input pool is getting
  1193. * full, we can "spill over" some entropy to the output pools. That
  1194. * way the output pools can store some of the excess entropy instead
  1195. * of letting it go to waste.
  1196. */
  1197. static void push_to_pool(struct work_struct *work)
  1198. {
  1199. struct entropy_store *r = container_of(work, struct entropy_store,
  1200. push_work);
  1201. BUG_ON(!r);
  1202. _xfer_secondary_pool(r, random_read_wakeup_bits/8);
  1203. trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
  1204. r->pull->entropy_count >> ENTROPY_SHIFT);
  1205. }
  1206. /*
  1207. * This function decides how many bytes to actually take from the
  1208. * given pool, and also debits the entropy count accordingly.
  1209. */
  1210. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  1211. int reserved)
  1212. {
  1213. int entropy_count, orig, have_bytes;
  1214. size_t ibytes, nfrac;
  1215. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  1216. /* Can we pull enough? */
  1217. retry:
  1218. entropy_count = orig = READ_ONCE(r->entropy_count);
  1219. ibytes = nbytes;
  1220. /* never pull more than available */
  1221. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  1222. if ((have_bytes -= reserved) < 0)
  1223. have_bytes = 0;
  1224. ibytes = min_t(size_t, ibytes, have_bytes);
  1225. if (ibytes < min)
  1226. ibytes = 0;
  1227. if (unlikely(entropy_count < 0)) {
  1228. pr_warn("random: negative entropy count: pool %s count %d\n",
  1229. r->name, entropy_count);
  1230. WARN_ON(1);
  1231. entropy_count = 0;
  1232. }
  1233. nfrac = ibytes << (ENTROPY_SHIFT + 3);
  1234. if ((size_t) entropy_count > nfrac)
  1235. entropy_count -= nfrac;
  1236. else
  1237. entropy_count = 0;
  1238. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  1239. goto retry;
  1240. trace_debit_entropy(r->name, 8 * ibytes);
  1241. if (ibytes &&
  1242. (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
  1243. wake_up_interruptible(&random_write_wait);
  1244. kill_fasync(&fasync, SIGIO, POLL_OUT);
  1245. }
  1246. return ibytes;
  1247. }
  1248. /*
  1249. * This function does the actual extraction for extract_entropy and
  1250. * extract_entropy_user.
  1251. *
  1252. * Note: we assume that .poolwords is a multiple of 16 words.
  1253. */
  1254. static void extract_buf(struct entropy_store *r, __u8 *out)
  1255. {
  1256. int i;
  1257. union {
  1258. __u32 w[5];
  1259. unsigned long l[LONGS(20)];
  1260. } hash;
  1261. __u32 workspace[SHA_WORKSPACE_WORDS];
  1262. unsigned long flags;
  1263. /*
  1264. * If we have an architectural hardware random number
  1265. * generator, use it for SHA's initial vector
  1266. */
  1267. sha_init(hash.w);
  1268. for (i = 0; i < LONGS(20); i++) {
  1269. unsigned long v;
  1270. if (!arch_get_random_long(&v))
  1271. break;
  1272. hash.l[i] = v;
  1273. }
  1274. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  1275. spin_lock_irqsave(&r->lock, flags);
  1276. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  1277. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  1278. /*
  1279. * We mix the hash back into the pool to prevent backtracking
  1280. * attacks (where the attacker knows the state of the pool
  1281. * plus the current outputs, and attempts to find previous
  1282. * ouputs), unless the hash function can be inverted. By
  1283. * mixing at least a SHA1 worth of hash data back, we make
  1284. * brute-forcing the feedback as hard as brute-forcing the
  1285. * hash.
  1286. */
  1287. __mix_pool_bytes(r, hash.w, sizeof(hash.w));
  1288. spin_unlock_irqrestore(&r->lock, flags);
  1289. memzero_explicit(workspace, sizeof(workspace));
  1290. /*
  1291. * In case the hash function has some recognizable output
  1292. * pattern, we fold it in half. Thus, we always feed back
  1293. * twice as much data as we output.
  1294. */
  1295. hash.w[0] ^= hash.w[3];
  1296. hash.w[1] ^= hash.w[4];
  1297. hash.w[2] ^= rol32(hash.w[2], 16);
  1298. memcpy(out, &hash, EXTRACT_SIZE);
  1299. memzero_explicit(&hash, sizeof(hash));
  1300. }
  1301. static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
  1302. size_t nbytes, int fips)
  1303. {
  1304. ssize_t ret = 0, i;
  1305. __u8 tmp[EXTRACT_SIZE];
  1306. unsigned long flags;
  1307. while (nbytes) {
  1308. extract_buf(r, tmp);
  1309. if (fips) {
  1310. spin_lock_irqsave(&r->lock, flags);
  1311. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  1312. panic("Hardware RNG duplicated output!\n");
  1313. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1314. spin_unlock_irqrestore(&r->lock, flags);
  1315. }
  1316. i = min_t(int, nbytes, EXTRACT_SIZE);
  1317. memcpy(buf, tmp, i);
  1318. nbytes -= i;
  1319. buf += i;
  1320. ret += i;
  1321. }
  1322. /* Wipe data just returned from memory */
  1323. memzero_explicit(tmp, sizeof(tmp));
  1324. return ret;
  1325. }
  1326. /*
  1327. * This function extracts randomness from the "entropy pool", and
  1328. * returns it in a buffer.
  1329. *
  1330. * The min parameter specifies the minimum amount we can pull before
  1331. * failing to avoid races that defeat catastrophic reseeding while the
  1332. * reserved parameter indicates how much entropy we must leave in the
  1333. * pool after each pull to avoid starving other readers.
  1334. */
  1335. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  1336. size_t nbytes, int min, int reserved)
  1337. {
  1338. __u8 tmp[EXTRACT_SIZE];
  1339. unsigned long flags;
  1340. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  1341. if (fips_enabled) {
  1342. spin_lock_irqsave(&r->lock, flags);
  1343. if (!r->last_data_init) {
  1344. r->last_data_init = 1;
  1345. spin_unlock_irqrestore(&r->lock, flags);
  1346. trace_extract_entropy(r->name, EXTRACT_SIZE,
  1347. ENTROPY_BITS(r), _RET_IP_);
  1348. xfer_secondary_pool(r, EXTRACT_SIZE);
  1349. extract_buf(r, tmp);
  1350. spin_lock_irqsave(&r->lock, flags);
  1351. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  1352. }
  1353. spin_unlock_irqrestore(&r->lock, flags);
  1354. }
  1355. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1356. xfer_secondary_pool(r, nbytes);
  1357. nbytes = account(r, nbytes, min, reserved);
  1358. return _extract_entropy(r, buf, nbytes, fips_enabled);
  1359. }
  1360. /*
  1361. * This function extracts randomness from the "entropy pool", and
  1362. * returns it in a userspace buffer.
  1363. */
  1364. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  1365. size_t nbytes)
  1366. {
  1367. ssize_t ret = 0, i;
  1368. __u8 tmp[EXTRACT_SIZE];
  1369. int large_request = (nbytes > 256);
  1370. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  1371. xfer_secondary_pool(r, nbytes);
  1372. nbytes = account(r, nbytes, 0, 0);
  1373. while (nbytes) {
  1374. if (large_request && need_resched()) {
  1375. if (signal_pending(current)) {
  1376. if (ret == 0)
  1377. ret = -ERESTARTSYS;
  1378. break;
  1379. }
  1380. schedule();
  1381. }
  1382. extract_buf(r, tmp);
  1383. i = min_t(int, nbytes, EXTRACT_SIZE);
  1384. if (copy_to_user(buf, tmp, i)) {
  1385. ret = -EFAULT;
  1386. break;
  1387. }
  1388. nbytes -= i;
  1389. buf += i;
  1390. ret += i;
  1391. }
  1392. /* Wipe data just returned from memory */
  1393. memzero_explicit(tmp, sizeof(tmp));
  1394. return ret;
  1395. }
  1396. #define warn_unseeded_randomness(previous) \
  1397. _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
  1398. static void _warn_unseeded_randomness(const char *func_name, void *caller,
  1399. void **previous)
  1400. {
  1401. #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1402. const bool print_once = false;
  1403. #else
  1404. static bool print_once __read_mostly;
  1405. #endif
  1406. if (print_once ||
  1407. crng_ready() ||
  1408. (previous && (caller == READ_ONCE(*previous))))
  1409. return;
  1410. WRITE_ONCE(*previous, caller);
  1411. #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
  1412. print_once = true;
  1413. #endif
  1414. if (__ratelimit(&unseeded_warning))
  1415. pr_notice("random: %s called from %pS with crng_init=%d\n",
  1416. func_name, caller, crng_init);
  1417. }
  1418. /*
  1419. * This function is the exported kernel interface. It returns some
  1420. * number of good random numbers, suitable for key generation, seeding
  1421. * TCP sequence numbers, etc. It does not rely on the hardware random
  1422. * number generator. For random bytes direct from the hardware RNG
  1423. * (when available), use get_random_bytes_arch(). In order to ensure
  1424. * that the randomness provided by this function is okay, the function
  1425. * wait_for_random_bytes() should be called and return 0 at least once
  1426. * at any point prior.
  1427. */
  1428. static void _get_random_bytes(void *buf, int nbytes)
  1429. {
  1430. __u32 tmp[CHACHA20_BLOCK_WORDS];
  1431. trace_get_random_bytes(nbytes, _RET_IP_);
  1432. while (nbytes >= CHACHA20_BLOCK_SIZE) {
  1433. extract_crng(buf);
  1434. buf += CHACHA20_BLOCK_SIZE;
  1435. nbytes -= CHACHA20_BLOCK_SIZE;
  1436. }
  1437. if (nbytes > 0) {
  1438. extract_crng(tmp);
  1439. memcpy(buf, tmp, nbytes);
  1440. crng_backtrack_protect(tmp, nbytes);
  1441. } else
  1442. crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
  1443. memzero_explicit(tmp, sizeof(tmp));
  1444. }
  1445. void get_random_bytes(void *buf, int nbytes)
  1446. {
  1447. static void *previous;
  1448. warn_unseeded_randomness(&previous);
  1449. _get_random_bytes(buf, nbytes);
  1450. }
  1451. EXPORT_SYMBOL(get_random_bytes);
  1452. /*
  1453. * Wait for the urandom pool to be seeded and thus guaranteed to supply
  1454. * cryptographically secure random numbers. This applies to: the /dev/urandom
  1455. * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
  1456. * family of functions. Using any of these functions without first calling
  1457. * this function forfeits the guarantee of security.
  1458. *
  1459. * Returns: 0 if the urandom pool has been seeded.
  1460. * -ERESTARTSYS if the function was interrupted by a signal.
  1461. */
  1462. int wait_for_random_bytes(void)
  1463. {
  1464. if (likely(crng_ready()))
  1465. return 0;
  1466. return wait_event_interruptible(crng_init_wait, crng_ready());
  1467. }
  1468. EXPORT_SYMBOL(wait_for_random_bytes);
  1469. /*
  1470. * Add a callback function that will be invoked when the nonblocking
  1471. * pool is initialised.
  1472. *
  1473. * returns: 0 if callback is successfully added
  1474. * -EALREADY if pool is already initialised (callback not called)
  1475. * -ENOENT if module for callback is not alive
  1476. */
  1477. int add_random_ready_callback(struct random_ready_callback *rdy)
  1478. {
  1479. struct module *owner;
  1480. unsigned long flags;
  1481. int err = -EALREADY;
  1482. if (crng_ready())
  1483. return err;
  1484. owner = rdy->owner;
  1485. if (!try_module_get(owner))
  1486. return -ENOENT;
  1487. spin_lock_irqsave(&random_ready_list_lock, flags);
  1488. if (crng_ready())
  1489. goto out;
  1490. owner = NULL;
  1491. list_add(&rdy->list, &random_ready_list);
  1492. err = 0;
  1493. out:
  1494. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1495. module_put(owner);
  1496. return err;
  1497. }
  1498. EXPORT_SYMBOL(add_random_ready_callback);
  1499. /*
  1500. * Delete a previously registered readiness callback function.
  1501. */
  1502. void del_random_ready_callback(struct random_ready_callback *rdy)
  1503. {
  1504. unsigned long flags;
  1505. struct module *owner = NULL;
  1506. spin_lock_irqsave(&random_ready_list_lock, flags);
  1507. if (!list_empty(&rdy->list)) {
  1508. list_del_init(&rdy->list);
  1509. owner = rdy->owner;
  1510. }
  1511. spin_unlock_irqrestore(&random_ready_list_lock, flags);
  1512. module_put(owner);
  1513. }
  1514. EXPORT_SYMBOL(del_random_ready_callback);
  1515. /*
  1516. * This function will use the architecture-specific hardware random
  1517. * number generator if it is available. The arch-specific hw RNG will
  1518. * almost certainly be faster than what we can do in software, but it
  1519. * is impossible to verify that it is implemented securely (as
  1520. * opposed, to, say, the AES encryption of a sequence number using a
  1521. * key known by the NSA). So it's useful if we need the speed, but
  1522. * only if we're willing to trust the hardware manufacturer not to
  1523. * have put in a back door.
  1524. */
  1525. void get_random_bytes_arch(void *buf, int nbytes)
  1526. {
  1527. char *p = buf;
  1528. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1529. while (nbytes) {
  1530. unsigned long v;
  1531. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1532. if (!arch_get_random_long(&v))
  1533. break;
  1534. memcpy(p, &v, chunk);
  1535. p += chunk;
  1536. nbytes -= chunk;
  1537. }
  1538. if (nbytes)
  1539. get_random_bytes(p, nbytes);
  1540. }
  1541. EXPORT_SYMBOL(get_random_bytes_arch);
  1542. /*
  1543. * init_std_data - initialize pool with system data
  1544. *
  1545. * @r: pool to initialize
  1546. *
  1547. * This function clears the pool's entropy count and mixes some system
  1548. * data into the pool to prepare it for use. The pool is not cleared
  1549. * as that can only decrease the entropy in the pool.
  1550. */
  1551. static void init_std_data(struct entropy_store *r)
  1552. {
  1553. int i;
  1554. ktime_t now = ktime_get_real();
  1555. unsigned long rv;
  1556. r->last_pulled = jiffies;
  1557. mix_pool_bytes(r, &now, sizeof(now));
  1558. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1559. if (!arch_get_random_seed_long(&rv) &&
  1560. !arch_get_random_long(&rv))
  1561. rv = random_get_entropy();
  1562. mix_pool_bytes(r, &rv, sizeof(rv));
  1563. }
  1564. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  1565. }
  1566. /*
  1567. * Note that setup_arch() may call add_device_randomness()
  1568. * long before we get here. This allows seeding of the pools
  1569. * with some platform dependent data very early in the boot
  1570. * process. But it limits our options here. We must use
  1571. * statically allocated structures that already have all
  1572. * initializations complete at compile time. We should also
  1573. * take care not to overwrite the precious per platform data
  1574. * we were given.
  1575. */
  1576. static int rand_initialize(void)
  1577. {
  1578. init_std_data(&input_pool);
  1579. init_std_data(&blocking_pool);
  1580. crng_initialize(&primary_crng);
  1581. crng_global_init_time = jiffies;
  1582. if (ratelimit_disable) {
  1583. urandom_warning.interval = 0;
  1584. unseeded_warning.interval = 0;
  1585. }
  1586. return 0;
  1587. }
  1588. early_initcall(rand_initialize);
  1589. #ifdef CONFIG_BLOCK
  1590. void rand_initialize_disk(struct gendisk *disk)
  1591. {
  1592. struct timer_rand_state *state;
  1593. /*
  1594. * If kzalloc returns null, we just won't use that entropy
  1595. * source.
  1596. */
  1597. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1598. if (state) {
  1599. state->last_time = INITIAL_JIFFIES;
  1600. disk->random = state;
  1601. }
  1602. }
  1603. #endif
  1604. static ssize_t
  1605. _random_read(int nonblock, char __user *buf, size_t nbytes)
  1606. {
  1607. ssize_t n;
  1608. if (nbytes == 0)
  1609. return 0;
  1610. nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
  1611. while (1) {
  1612. n = extract_entropy_user(&blocking_pool, buf, nbytes);
  1613. if (n < 0)
  1614. return n;
  1615. trace_random_read(n*8, (nbytes-n)*8,
  1616. ENTROPY_BITS(&blocking_pool),
  1617. ENTROPY_BITS(&input_pool));
  1618. if (n > 0)
  1619. return n;
  1620. /* Pool is (near) empty. Maybe wait and retry. */
  1621. if (nonblock)
  1622. return -EAGAIN;
  1623. wait_event_interruptible(random_read_wait,
  1624. ENTROPY_BITS(&input_pool) >=
  1625. random_read_wakeup_bits);
  1626. if (signal_pending(current))
  1627. return -ERESTARTSYS;
  1628. }
  1629. }
  1630. static ssize_t
  1631. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1632. {
  1633. return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
  1634. }
  1635. static ssize_t
  1636. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1637. {
  1638. unsigned long flags;
  1639. static int maxwarn = 10;
  1640. int ret;
  1641. if (!crng_ready() && maxwarn > 0) {
  1642. maxwarn--;
  1643. if (__ratelimit(&urandom_warning))
  1644. printk(KERN_NOTICE "random: %s: uninitialized "
  1645. "urandom read (%zd bytes read)\n",
  1646. current->comm, nbytes);
  1647. spin_lock_irqsave(&primary_crng.lock, flags);
  1648. crng_init_cnt = 0;
  1649. spin_unlock_irqrestore(&primary_crng.lock, flags);
  1650. }
  1651. nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
  1652. ret = extract_crng_user(buf, nbytes);
  1653. trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
  1654. return ret;
  1655. }
  1656. static __poll_t
  1657. random_poll(struct file *file, poll_table * wait)
  1658. {
  1659. __poll_t mask;
  1660. poll_wait(file, &random_read_wait, wait);
  1661. poll_wait(file, &random_write_wait, wait);
  1662. mask = 0;
  1663. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
  1664. mask |= EPOLLIN | EPOLLRDNORM;
  1665. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
  1666. mask |= EPOLLOUT | EPOLLWRNORM;
  1667. return mask;
  1668. }
  1669. static int
  1670. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1671. {
  1672. size_t bytes;
  1673. __u32 buf[16];
  1674. const char __user *p = buffer;
  1675. while (count > 0) {
  1676. bytes = min(count, sizeof(buf));
  1677. if (copy_from_user(&buf, p, bytes))
  1678. return -EFAULT;
  1679. count -= bytes;
  1680. p += bytes;
  1681. mix_pool_bytes(r, buf, bytes);
  1682. cond_resched();
  1683. }
  1684. return 0;
  1685. }
  1686. static ssize_t random_write(struct file *file, const char __user *buffer,
  1687. size_t count, loff_t *ppos)
  1688. {
  1689. size_t ret;
  1690. ret = write_pool(&input_pool, buffer, count);
  1691. if (ret)
  1692. return ret;
  1693. return (ssize_t)count;
  1694. }
  1695. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1696. {
  1697. int size, ent_count;
  1698. int __user *p = (int __user *)arg;
  1699. int retval;
  1700. switch (cmd) {
  1701. case RNDGETENTCNT:
  1702. /* inherently racy, no point locking */
  1703. ent_count = ENTROPY_BITS(&input_pool);
  1704. if (put_user(ent_count, p))
  1705. return -EFAULT;
  1706. return 0;
  1707. case RNDADDTOENTCNT:
  1708. if (!capable(CAP_SYS_ADMIN))
  1709. return -EPERM;
  1710. if (get_user(ent_count, p))
  1711. return -EFAULT;
  1712. return credit_entropy_bits_safe(&input_pool, ent_count);
  1713. case RNDADDENTROPY:
  1714. if (!capable(CAP_SYS_ADMIN))
  1715. return -EPERM;
  1716. if (get_user(ent_count, p++))
  1717. return -EFAULT;
  1718. if (ent_count < 0)
  1719. return -EINVAL;
  1720. if (get_user(size, p++))
  1721. return -EFAULT;
  1722. retval = write_pool(&input_pool, (const char __user *)p,
  1723. size);
  1724. if (retval < 0)
  1725. return retval;
  1726. return credit_entropy_bits_safe(&input_pool, ent_count);
  1727. case RNDZAPENTCNT:
  1728. case RNDCLEARPOOL:
  1729. /*
  1730. * Clear the entropy pool counters. We no longer clear
  1731. * the entropy pool, as that's silly.
  1732. */
  1733. if (!capable(CAP_SYS_ADMIN))
  1734. return -EPERM;
  1735. input_pool.entropy_count = 0;
  1736. blocking_pool.entropy_count = 0;
  1737. return 0;
  1738. case RNDRESEEDCRNG:
  1739. if (!capable(CAP_SYS_ADMIN))
  1740. return -EPERM;
  1741. if (crng_init < 2)
  1742. return -ENODATA;
  1743. crng_reseed(&primary_crng, NULL);
  1744. crng_global_init_time = jiffies - 1;
  1745. return 0;
  1746. default:
  1747. return -EINVAL;
  1748. }
  1749. }
  1750. static int random_fasync(int fd, struct file *filp, int on)
  1751. {
  1752. return fasync_helper(fd, filp, on, &fasync);
  1753. }
  1754. const struct file_operations random_fops = {
  1755. .read = random_read,
  1756. .write = random_write,
  1757. .poll = random_poll,
  1758. .unlocked_ioctl = random_ioctl,
  1759. .fasync = random_fasync,
  1760. .llseek = noop_llseek,
  1761. };
  1762. const struct file_operations urandom_fops = {
  1763. .read = urandom_read,
  1764. .write = random_write,
  1765. .unlocked_ioctl = random_ioctl,
  1766. .fasync = random_fasync,
  1767. .llseek = noop_llseek,
  1768. };
  1769. SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
  1770. unsigned int, flags)
  1771. {
  1772. int ret;
  1773. if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
  1774. return -EINVAL;
  1775. if (count > INT_MAX)
  1776. count = INT_MAX;
  1777. if (flags & GRND_RANDOM)
  1778. return _random_read(flags & GRND_NONBLOCK, buf, count);
  1779. if (!crng_ready()) {
  1780. if (flags & GRND_NONBLOCK)
  1781. return -EAGAIN;
  1782. ret = wait_for_random_bytes();
  1783. if (unlikely(ret))
  1784. return ret;
  1785. }
  1786. return urandom_read(NULL, buf, count, NULL);
  1787. }
  1788. /********************************************************************
  1789. *
  1790. * Sysctl interface
  1791. *
  1792. ********************************************************************/
  1793. #ifdef CONFIG_SYSCTL
  1794. #include <linux/sysctl.h>
  1795. static int min_read_thresh = 8, min_write_thresh;
  1796. static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
  1797. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1798. static int random_min_urandom_seed = 60;
  1799. static char sysctl_bootid[16];
  1800. /*
  1801. * This function is used to return both the bootid UUID, and random
  1802. * UUID. The difference is in whether table->data is NULL; if it is,
  1803. * then a new UUID is generated and returned to the user.
  1804. *
  1805. * If the user accesses this via the proc interface, the UUID will be
  1806. * returned as an ASCII string in the standard UUID format; if via the
  1807. * sysctl system call, as 16 bytes of binary data.
  1808. */
  1809. static int proc_do_uuid(struct ctl_table *table, int write,
  1810. void __user *buffer, size_t *lenp, loff_t *ppos)
  1811. {
  1812. struct ctl_table fake_table;
  1813. unsigned char buf[64], tmp_uuid[16], *uuid;
  1814. uuid = table->data;
  1815. if (!uuid) {
  1816. uuid = tmp_uuid;
  1817. generate_random_uuid(uuid);
  1818. } else {
  1819. static DEFINE_SPINLOCK(bootid_spinlock);
  1820. spin_lock(&bootid_spinlock);
  1821. if (!uuid[8])
  1822. generate_random_uuid(uuid);
  1823. spin_unlock(&bootid_spinlock);
  1824. }
  1825. sprintf(buf, "%pU", uuid);
  1826. fake_table.data = buf;
  1827. fake_table.maxlen = sizeof(buf);
  1828. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1829. }
  1830. /*
  1831. * Return entropy available scaled to integral bits
  1832. */
  1833. static int proc_do_entropy(struct ctl_table *table, int write,
  1834. void __user *buffer, size_t *lenp, loff_t *ppos)
  1835. {
  1836. struct ctl_table fake_table;
  1837. int entropy_count;
  1838. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1839. fake_table.data = &entropy_count;
  1840. fake_table.maxlen = sizeof(entropy_count);
  1841. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1842. }
  1843. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1844. extern struct ctl_table random_table[];
  1845. struct ctl_table random_table[] = {
  1846. {
  1847. .procname = "poolsize",
  1848. .data = &sysctl_poolsize,
  1849. .maxlen = sizeof(int),
  1850. .mode = 0444,
  1851. .proc_handler = proc_dointvec,
  1852. },
  1853. {
  1854. .procname = "entropy_avail",
  1855. .maxlen = sizeof(int),
  1856. .mode = 0444,
  1857. .proc_handler = proc_do_entropy,
  1858. .data = &input_pool.entropy_count,
  1859. },
  1860. {
  1861. .procname = "read_wakeup_threshold",
  1862. .data = &random_read_wakeup_bits,
  1863. .maxlen = sizeof(int),
  1864. .mode = 0644,
  1865. .proc_handler = proc_dointvec_minmax,
  1866. .extra1 = &min_read_thresh,
  1867. .extra2 = &max_read_thresh,
  1868. },
  1869. {
  1870. .procname = "write_wakeup_threshold",
  1871. .data = &random_write_wakeup_bits,
  1872. .maxlen = sizeof(int),
  1873. .mode = 0644,
  1874. .proc_handler = proc_dointvec_minmax,
  1875. .extra1 = &min_write_thresh,
  1876. .extra2 = &max_write_thresh,
  1877. },
  1878. {
  1879. .procname = "urandom_min_reseed_secs",
  1880. .data = &random_min_urandom_seed,
  1881. .maxlen = sizeof(int),
  1882. .mode = 0644,
  1883. .proc_handler = proc_dointvec,
  1884. },
  1885. {
  1886. .procname = "boot_id",
  1887. .data = &sysctl_bootid,
  1888. .maxlen = 16,
  1889. .mode = 0444,
  1890. .proc_handler = proc_do_uuid,
  1891. },
  1892. {
  1893. .procname = "uuid",
  1894. .maxlen = 16,
  1895. .mode = 0444,
  1896. .proc_handler = proc_do_uuid,
  1897. },
  1898. #ifdef ADD_INTERRUPT_BENCH
  1899. {
  1900. .procname = "add_interrupt_avg_cycles",
  1901. .data = &avg_cycles,
  1902. .maxlen = sizeof(avg_cycles),
  1903. .mode = 0444,
  1904. .proc_handler = proc_doulongvec_minmax,
  1905. },
  1906. {
  1907. .procname = "add_interrupt_avg_deviation",
  1908. .data = &avg_deviation,
  1909. .maxlen = sizeof(avg_deviation),
  1910. .mode = 0444,
  1911. .proc_handler = proc_doulongvec_minmax,
  1912. },
  1913. #endif
  1914. { }
  1915. };
  1916. #endif /* CONFIG_SYSCTL */
  1917. struct batched_entropy {
  1918. union {
  1919. u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
  1920. u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
  1921. };
  1922. unsigned int position;
  1923. };
  1924. static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
  1925. /*
  1926. * Get a random word for internal kernel use only. The quality of the random
  1927. * number is either as good as RDRAND or as good as /dev/urandom, with the
  1928. * goal of being quite fast and not depleting entropy. In order to ensure
  1929. * that the randomness provided by this function is okay, the function
  1930. * wait_for_random_bytes() should be called and return 0 at least once
  1931. * at any point prior.
  1932. */
  1933. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
  1934. u64 get_random_u64(void)
  1935. {
  1936. u64 ret;
  1937. bool use_lock;
  1938. unsigned long flags = 0;
  1939. struct batched_entropy *batch;
  1940. static void *previous;
  1941. #if BITS_PER_LONG == 64
  1942. if (arch_get_random_long((unsigned long *)&ret))
  1943. return ret;
  1944. #else
  1945. if (arch_get_random_long((unsigned long *)&ret) &&
  1946. arch_get_random_long((unsigned long *)&ret + 1))
  1947. return ret;
  1948. #endif
  1949. warn_unseeded_randomness(&previous);
  1950. use_lock = READ_ONCE(crng_init) < 2;
  1951. batch = &get_cpu_var(batched_entropy_u64);
  1952. if (use_lock)
  1953. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  1954. if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
  1955. extract_crng((__u32 *)batch->entropy_u64);
  1956. batch->position = 0;
  1957. }
  1958. ret = batch->entropy_u64[batch->position++];
  1959. if (use_lock)
  1960. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1961. put_cpu_var(batched_entropy_u64);
  1962. return ret;
  1963. }
  1964. EXPORT_SYMBOL(get_random_u64);
  1965. static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
  1966. u32 get_random_u32(void)
  1967. {
  1968. u32 ret;
  1969. bool use_lock;
  1970. unsigned long flags = 0;
  1971. struct batched_entropy *batch;
  1972. static void *previous;
  1973. if (arch_get_random_int(&ret))
  1974. return ret;
  1975. warn_unseeded_randomness(&previous);
  1976. use_lock = READ_ONCE(crng_init) < 2;
  1977. batch = &get_cpu_var(batched_entropy_u32);
  1978. if (use_lock)
  1979. read_lock_irqsave(&batched_entropy_reset_lock, flags);
  1980. if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
  1981. extract_crng(batch->entropy_u32);
  1982. batch->position = 0;
  1983. }
  1984. ret = batch->entropy_u32[batch->position++];
  1985. if (use_lock)
  1986. read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  1987. put_cpu_var(batched_entropy_u32);
  1988. return ret;
  1989. }
  1990. EXPORT_SYMBOL(get_random_u32);
  1991. /* It's important to invalidate all potential batched entropy that might
  1992. * be stored before the crng is initialized, which we can do lazily by
  1993. * simply resetting the counter to zero so that it's re-extracted on the
  1994. * next usage. */
  1995. static void invalidate_batched_entropy(void)
  1996. {
  1997. int cpu;
  1998. unsigned long flags;
  1999. write_lock_irqsave(&batched_entropy_reset_lock, flags);
  2000. for_each_possible_cpu (cpu) {
  2001. per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
  2002. per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
  2003. }
  2004. write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
  2005. }
  2006. /**
  2007. * randomize_page - Generate a random, page aligned address
  2008. * @start: The smallest acceptable address the caller will take.
  2009. * @range: The size of the area, starting at @start, within which the
  2010. * random address must fall.
  2011. *
  2012. * If @start + @range would overflow, @range is capped.
  2013. *
  2014. * NOTE: Historical use of randomize_range, which this replaces, presumed that
  2015. * @start was already page aligned. We now align it regardless.
  2016. *
  2017. * Return: A page aligned address within [start, start + range). On error,
  2018. * @start is returned.
  2019. */
  2020. unsigned long
  2021. randomize_page(unsigned long start, unsigned long range)
  2022. {
  2023. if (!PAGE_ALIGNED(start)) {
  2024. range -= PAGE_ALIGN(start) - start;
  2025. start = PAGE_ALIGN(start);
  2026. }
  2027. if (start > ULONG_MAX - range)
  2028. range = ULONG_MAX - start;
  2029. range >>= PAGE_SHIFT;
  2030. if (range == 0)
  2031. return start;
  2032. return start + (get_random_long() % range << PAGE_SHIFT);
  2033. }
  2034. /* Interface for in-kernel drivers of true hardware RNGs.
  2035. * Those devices may produce endless random bits and will be throttled
  2036. * when our pool is full.
  2037. */
  2038. void add_hwgenerator_randomness(const char *buffer, size_t count,
  2039. size_t entropy)
  2040. {
  2041. struct entropy_store *poolp = &input_pool;
  2042. if (unlikely(crng_init == 0)) {
  2043. crng_fast_load(buffer, count);
  2044. return;
  2045. }
  2046. /* Suspend writing if we're above the trickle threshold.
  2047. * We'll be woken up again once below random_write_wakeup_thresh,
  2048. * or when the calling thread is about to terminate.
  2049. */
  2050. wait_event_interruptible(random_write_wait, kthread_should_stop() ||
  2051. ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
  2052. mix_pool_bytes(poolp, buffer, count);
  2053. credit_entropy_bits(poolp, entropy);
  2054. }
  2055. EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);