signal.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580
  1. #ifndef _LINUX_SCHED_SIGNAL_H
  2. #define _LINUX_SCHED_SIGNAL_H
  3. #include <linux/rculist.h>
  4. #include <linux/signal.h>
  5. #include <linux/sched.h>
  6. #include <linux/sched/jobctl.h>
  7. #include <linux/sched/task.h>
  8. #include <linux/cred.h>
  9. /*
  10. * Types defining task->signal and task->sighand and APIs using them:
  11. */
  12. struct sighand_struct {
  13. atomic_t count;
  14. struct k_sigaction action[_NSIG];
  15. spinlock_t siglock;
  16. wait_queue_head_t signalfd_wqh;
  17. };
  18. /*
  19. * Per-process accounting stats:
  20. */
  21. struct pacct_struct {
  22. int ac_flag;
  23. long ac_exitcode;
  24. unsigned long ac_mem;
  25. u64 ac_utime, ac_stime;
  26. unsigned long ac_minflt, ac_majflt;
  27. };
  28. struct cpu_itimer {
  29. u64 expires;
  30. u64 incr;
  31. };
  32. /*
  33. * NOTE! "signal_struct" does not have its own
  34. * locking, because a shared signal_struct always
  35. * implies a shared sighand_struct, so locking
  36. * sighand_struct is always a proper superset of
  37. * the locking of signal_struct.
  38. */
  39. struct signal_struct {
  40. atomic_t sigcnt;
  41. atomic_t live;
  42. int nr_threads;
  43. struct list_head thread_head;
  44. wait_queue_head_t wait_chldexit; /* for wait4() */
  45. /* current thread group signal load-balancing target: */
  46. struct task_struct *curr_target;
  47. /* shared signal handling: */
  48. struct sigpending shared_pending;
  49. /* thread group exit support */
  50. int group_exit_code;
  51. /* overloaded:
  52. * - notify group_exit_task when ->count is equal to notify_count
  53. * - everyone except group_exit_task is stopped during signal delivery
  54. * of fatal signals, group_exit_task processes the signal.
  55. */
  56. int notify_count;
  57. struct task_struct *group_exit_task;
  58. /* thread group stop support, overloads group_exit_code too */
  59. int group_stop_count;
  60. unsigned int flags; /* see SIGNAL_* flags below */
  61. /*
  62. * PR_SET_CHILD_SUBREAPER marks a process, like a service
  63. * manager, to re-parent orphan (double-forking) child processes
  64. * to this process instead of 'init'. The service manager is
  65. * able to receive SIGCHLD signals and is able to investigate
  66. * the process until it calls wait(). All children of this
  67. * process will inherit a flag if they should look for a
  68. * child_subreaper process at exit.
  69. */
  70. unsigned int is_child_subreaper:1;
  71. unsigned int has_child_subreaper:1;
  72. #ifdef CONFIG_POSIX_TIMERS
  73. /* POSIX.1b Interval Timers */
  74. int posix_timer_id;
  75. struct list_head posix_timers;
  76. /* ITIMER_REAL timer for the process */
  77. struct hrtimer real_timer;
  78. ktime_t it_real_incr;
  79. /*
  80. * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
  81. * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
  82. * values are defined to 0 and 1 respectively
  83. */
  84. struct cpu_itimer it[2];
  85. /*
  86. * Thread group totals for process CPU timers.
  87. * See thread_group_cputimer(), et al, for details.
  88. */
  89. struct thread_group_cputimer cputimer;
  90. /* Earliest-expiration cache. */
  91. struct task_cputime cputime_expires;
  92. struct list_head cpu_timers[3];
  93. #endif
  94. struct pid *leader_pid;
  95. #ifdef CONFIG_NO_HZ_FULL
  96. atomic_t tick_dep_mask;
  97. #endif
  98. struct pid *tty_old_pgrp;
  99. /* boolean value for session group leader */
  100. int leader;
  101. struct tty_struct *tty; /* NULL if no tty */
  102. #ifdef CONFIG_SCHED_AUTOGROUP
  103. struct autogroup *autogroup;
  104. #endif
  105. /*
  106. * Cumulative resource counters for dead threads in the group,
  107. * and for reaped dead child processes forked by this group.
  108. * Live threads maintain their own counters and add to these
  109. * in __exit_signal, except for the group leader.
  110. */
  111. seqlock_t stats_lock;
  112. u64 utime, stime, cutime, cstime;
  113. u64 gtime;
  114. u64 cgtime;
  115. struct prev_cputime prev_cputime;
  116. unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
  117. unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
  118. unsigned long inblock, oublock, cinblock, coublock;
  119. unsigned long maxrss, cmaxrss;
  120. struct task_io_accounting ioac;
  121. /*
  122. * Cumulative ns of schedule CPU time fo dead threads in the
  123. * group, not including a zombie group leader, (This only differs
  124. * from jiffies_to_ns(utime + stime) if sched_clock uses something
  125. * other than jiffies.)
  126. */
  127. unsigned long long sum_sched_runtime;
  128. /*
  129. * We don't bother to synchronize most readers of this at all,
  130. * because there is no reader checking a limit that actually needs
  131. * to get both rlim_cur and rlim_max atomically, and either one
  132. * alone is a single word that can safely be read normally.
  133. * getrlimit/setrlimit use task_lock(current->group_leader) to
  134. * protect this instead of the siglock, because they really
  135. * have no need to disable irqs.
  136. */
  137. struct rlimit rlim[RLIM_NLIMITS];
  138. #ifdef CONFIG_BSD_PROCESS_ACCT
  139. struct pacct_struct pacct; /* per-process accounting information */
  140. #endif
  141. #ifdef CONFIG_TASKSTATS
  142. struct taskstats *stats;
  143. #endif
  144. #ifdef CONFIG_AUDIT
  145. unsigned audit_tty;
  146. struct tty_audit_buf *tty_audit_buf;
  147. #endif
  148. /*
  149. * Thread is the potential origin of an oom condition; kill first on
  150. * oom
  151. */
  152. bool oom_flag_origin;
  153. short oom_score_adj; /* OOM kill score adjustment */
  154. short oom_score_adj_min; /* OOM kill score adjustment min value.
  155. * Only settable by CAP_SYS_RESOURCE. */
  156. struct mm_struct *oom_mm; /* recorded mm when the thread group got
  157. * killed by the oom killer */
  158. struct mutex cred_guard_mutex; /* guard against foreign influences on
  159. * credential calculations
  160. * (notably. ptrace) */
  161. };
  162. /*
  163. * Bits in flags field of signal_struct.
  164. */
  165. #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
  166. #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
  167. #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
  168. #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
  169. /*
  170. * Pending notifications to parent.
  171. */
  172. #define SIGNAL_CLD_STOPPED 0x00000010
  173. #define SIGNAL_CLD_CONTINUED 0x00000020
  174. #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
  175. #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
  176. #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
  177. SIGNAL_STOP_CONTINUED)
  178. static inline void signal_set_stop_flags(struct signal_struct *sig,
  179. unsigned int flags)
  180. {
  181. WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
  182. sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
  183. }
  184. /* If true, all threads except ->group_exit_task have pending SIGKILL */
  185. static inline int signal_group_exit(const struct signal_struct *sig)
  186. {
  187. return (sig->flags & SIGNAL_GROUP_EXIT) ||
  188. (sig->group_exit_task != NULL);
  189. }
  190. extern void flush_signals(struct task_struct *);
  191. extern void ignore_signals(struct task_struct *);
  192. extern void flush_signal_handlers(struct task_struct *, int force_default);
  193. extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
  194. static inline int kernel_dequeue_signal(siginfo_t *info)
  195. {
  196. struct task_struct *tsk = current;
  197. siginfo_t __info;
  198. int ret;
  199. spin_lock_irq(&tsk->sighand->siglock);
  200. ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
  201. spin_unlock_irq(&tsk->sighand->siglock);
  202. return ret;
  203. }
  204. static inline void kernel_signal_stop(void)
  205. {
  206. spin_lock_irq(&current->sighand->siglock);
  207. if (current->jobctl & JOBCTL_STOP_DEQUEUED)
  208. __set_current_state(TASK_STOPPED);
  209. spin_unlock_irq(&current->sighand->siglock);
  210. schedule();
  211. }
  212. extern int send_sig_info(int, struct siginfo *, struct task_struct *);
  213. extern int force_sigsegv(int, struct task_struct *);
  214. extern int force_sig_info(int, struct siginfo *, struct task_struct *);
  215. extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
  216. extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
  217. extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
  218. const struct cred *, u32);
  219. extern int kill_pgrp(struct pid *pid, int sig, int priv);
  220. extern int kill_pid(struct pid *pid, int sig, int priv);
  221. extern int kill_proc_info(int, struct siginfo *, pid_t);
  222. extern __must_check bool do_notify_parent(struct task_struct *, int);
  223. extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
  224. extern void force_sig(int, struct task_struct *);
  225. extern int send_sig(int, struct task_struct *, int);
  226. extern int zap_other_threads(struct task_struct *p);
  227. extern struct sigqueue *sigqueue_alloc(void);
  228. extern void sigqueue_free(struct sigqueue *);
  229. extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
  230. extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
  231. static inline int restart_syscall(void)
  232. {
  233. set_tsk_thread_flag(current, TIF_SIGPENDING);
  234. return -ERESTARTNOINTR;
  235. }
  236. static inline int signal_pending(struct task_struct *p)
  237. {
  238. return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
  239. }
  240. static inline int __fatal_signal_pending(struct task_struct *p)
  241. {
  242. return unlikely(sigismember(&p->pending.signal, SIGKILL));
  243. }
  244. static inline int fatal_signal_pending(struct task_struct *p)
  245. {
  246. return signal_pending(p) && __fatal_signal_pending(p);
  247. }
  248. static inline int signal_pending_state(long state, struct task_struct *p)
  249. {
  250. if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
  251. return 0;
  252. if (!signal_pending(p))
  253. return 0;
  254. return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
  255. }
  256. /*
  257. * Reevaluate whether the task has signals pending delivery.
  258. * Wake the task if so.
  259. * This is required every time the blocked sigset_t changes.
  260. * callers must hold sighand->siglock.
  261. */
  262. extern void recalc_sigpending_and_wake(struct task_struct *t);
  263. extern void recalc_sigpending(void);
  264. extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
  265. static inline void signal_wake_up(struct task_struct *t, bool resume)
  266. {
  267. signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
  268. }
  269. static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
  270. {
  271. signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
  272. }
  273. #ifdef TIF_RESTORE_SIGMASK
  274. /*
  275. * Legacy restore_sigmask accessors. These are inefficient on
  276. * SMP architectures because they require atomic operations.
  277. */
  278. /**
  279. * set_restore_sigmask() - make sure saved_sigmask processing gets done
  280. *
  281. * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
  282. * will run before returning to user mode, to process the flag. For
  283. * all callers, TIF_SIGPENDING is already set or it's no harm to set
  284. * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
  285. * arch code will notice on return to user mode, in case those bits
  286. * are scarce. We set TIF_SIGPENDING here to ensure that the arch
  287. * signal code always gets run when TIF_RESTORE_SIGMASK is set.
  288. */
  289. static inline void set_restore_sigmask(void)
  290. {
  291. set_thread_flag(TIF_RESTORE_SIGMASK);
  292. WARN_ON(!test_thread_flag(TIF_SIGPENDING));
  293. }
  294. static inline void clear_restore_sigmask(void)
  295. {
  296. clear_thread_flag(TIF_RESTORE_SIGMASK);
  297. }
  298. static inline bool test_restore_sigmask(void)
  299. {
  300. return test_thread_flag(TIF_RESTORE_SIGMASK);
  301. }
  302. static inline bool test_and_clear_restore_sigmask(void)
  303. {
  304. return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
  305. }
  306. #else /* TIF_RESTORE_SIGMASK */
  307. /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
  308. static inline void set_restore_sigmask(void)
  309. {
  310. current->restore_sigmask = true;
  311. WARN_ON(!test_thread_flag(TIF_SIGPENDING));
  312. }
  313. static inline void clear_restore_sigmask(void)
  314. {
  315. current->restore_sigmask = false;
  316. }
  317. static inline bool test_restore_sigmask(void)
  318. {
  319. return current->restore_sigmask;
  320. }
  321. static inline bool test_and_clear_restore_sigmask(void)
  322. {
  323. if (!current->restore_sigmask)
  324. return false;
  325. current->restore_sigmask = false;
  326. return true;
  327. }
  328. #endif
  329. static inline void restore_saved_sigmask(void)
  330. {
  331. if (test_and_clear_restore_sigmask())
  332. __set_current_blocked(&current->saved_sigmask);
  333. }
  334. static inline sigset_t *sigmask_to_save(void)
  335. {
  336. sigset_t *res = &current->blocked;
  337. if (unlikely(test_restore_sigmask()))
  338. res = &current->saved_sigmask;
  339. return res;
  340. }
  341. static inline int kill_cad_pid(int sig, int priv)
  342. {
  343. return kill_pid(cad_pid, sig, priv);
  344. }
  345. /* These can be the second arg to send_sig_info/send_group_sig_info. */
  346. #define SEND_SIG_NOINFO ((struct siginfo *) 0)
  347. #define SEND_SIG_PRIV ((struct siginfo *) 1)
  348. #define SEND_SIG_FORCED ((struct siginfo *) 2)
  349. /*
  350. * True if we are on the alternate signal stack.
  351. */
  352. static inline int on_sig_stack(unsigned long sp)
  353. {
  354. /*
  355. * If the signal stack is SS_AUTODISARM then, by construction, we
  356. * can't be on the signal stack unless user code deliberately set
  357. * SS_AUTODISARM when we were already on it.
  358. *
  359. * This improves reliability: if user state gets corrupted such that
  360. * the stack pointer points very close to the end of the signal stack,
  361. * then this check will enable the signal to be handled anyway.
  362. */
  363. if (current->sas_ss_flags & SS_AUTODISARM)
  364. return 0;
  365. #ifdef CONFIG_STACK_GROWSUP
  366. return sp >= current->sas_ss_sp &&
  367. sp - current->sas_ss_sp < current->sas_ss_size;
  368. #else
  369. return sp > current->sas_ss_sp &&
  370. sp - current->sas_ss_sp <= current->sas_ss_size;
  371. #endif
  372. }
  373. static inline int sas_ss_flags(unsigned long sp)
  374. {
  375. if (!current->sas_ss_size)
  376. return SS_DISABLE;
  377. return on_sig_stack(sp) ? SS_ONSTACK : 0;
  378. }
  379. static inline void sas_ss_reset(struct task_struct *p)
  380. {
  381. p->sas_ss_sp = 0;
  382. p->sas_ss_size = 0;
  383. p->sas_ss_flags = SS_DISABLE;
  384. }
  385. static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
  386. {
  387. if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
  388. #ifdef CONFIG_STACK_GROWSUP
  389. return current->sas_ss_sp;
  390. #else
  391. return current->sas_ss_sp + current->sas_ss_size;
  392. #endif
  393. return sp;
  394. }
  395. extern void __cleanup_sighand(struct sighand_struct *);
  396. extern void flush_itimer_signals(void);
  397. #define tasklist_empty() \
  398. list_empty(&init_task.tasks)
  399. #define next_task(p) \
  400. list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
  401. #define for_each_process(p) \
  402. for (p = &init_task ; (p = next_task(p)) != &init_task ; )
  403. extern bool current_is_single_threaded(void);
  404. /*
  405. * Careful: do_each_thread/while_each_thread is a double loop so
  406. * 'break' will not work as expected - use goto instead.
  407. */
  408. #define do_each_thread(g, t) \
  409. for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
  410. #define while_each_thread(g, t) \
  411. while ((t = next_thread(t)) != g)
  412. #define __for_each_thread(signal, t) \
  413. list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
  414. #define for_each_thread(p, t) \
  415. __for_each_thread((p)->signal, t)
  416. /* Careful: this is a double loop, 'break' won't work as expected. */
  417. #define for_each_process_thread(p, t) \
  418. for_each_process(p) for_each_thread(p, t)
  419. typedef int (*proc_visitor)(struct task_struct *p, void *data);
  420. void walk_process_tree(struct task_struct *top, proc_visitor, void *);
  421. static inline int get_nr_threads(struct task_struct *tsk)
  422. {
  423. return tsk->signal->nr_threads;
  424. }
  425. static inline bool thread_group_leader(struct task_struct *p)
  426. {
  427. return p->exit_signal >= 0;
  428. }
  429. /* Do to the insanities of de_thread it is possible for a process
  430. * to have the pid of the thread group leader without actually being
  431. * the thread group leader. For iteration through the pids in proc
  432. * all we care about is that we have a task with the appropriate
  433. * pid, we don't actually care if we have the right task.
  434. */
  435. static inline bool has_group_leader_pid(struct task_struct *p)
  436. {
  437. return task_pid(p) == p->signal->leader_pid;
  438. }
  439. static inline
  440. bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
  441. {
  442. return p1->signal == p2->signal;
  443. }
  444. static inline struct task_struct *next_thread(const struct task_struct *p)
  445. {
  446. return list_entry_rcu(p->thread_group.next,
  447. struct task_struct, thread_group);
  448. }
  449. static inline int thread_group_empty(struct task_struct *p)
  450. {
  451. return list_empty(&p->thread_group);
  452. }
  453. #define delay_group_leader(p) \
  454. (thread_group_leader(p) && !thread_group_empty(p))
  455. extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
  456. unsigned long *flags);
  457. static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
  458. unsigned long *flags)
  459. {
  460. struct sighand_struct *ret;
  461. ret = __lock_task_sighand(tsk, flags);
  462. (void)__cond_lock(&tsk->sighand->siglock, ret);
  463. return ret;
  464. }
  465. static inline void unlock_task_sighand(struct task_struct *tsk,
  466. unsigned long *flags)
  467. {
  468. spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
  469. }
  470. static inline unsigned long task_rlimit(const struct task_struct *tsk,
  471. unsigned int limit)
  472. {
  473. return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
  474. }
  475. static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
  476. unsigned int limit)
  477. {
  478. return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
  479. }
  480. static inline unsigned long rlimit(unsigned int limit)
  481. {
  482. return task_rlimit(current, limit);
  483. }
  484. static inline unsigned long rlimit_max(unsigned int limit)
  485. {
  486. return task_rlimit_max(current, limit);
  487. }
  488. #endif /* _LINUX_SCHED_SIGNAL_H */