ring_buffer.c 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ftrace_event.h>
  7. #include <linux/ring_buffer.h>
  8. #include <linux/trace_clock.h>
  9. #include <linux/trace_seq.h>
  10. #include <linux/spinlock.h>
  11. #include <linux/irq_work.h>
  12. #include <linux/debugfs.h>
  13. #include <linux/uaccess.h>
  14. #include <linux/hardirq.h>
  15. #include <linux/kthread.h> /* for self test */
  16. #include <linux/kmemcheck.h>
  17. #include <linux/module.h>
  18. #include <linux/percpu.h>
  19. #include <linux/mutex.h>
  20. #include <linux/delay.h>
  21. #include <linux/slab.h>
  22. #include <linux/init.h>
  23. #include <linux/hash.h>
  24. #include <linux/list.h>
  25. #include <linux/cpu.h>
  26. #include <linux/fs.h>
  27. #include <asm/local.h>
  28. static void update_pages_handler(struct work_struct *work);
  29. /*
  30. * The ring buffer header is special. We must manually up keep it.
  31. */
  32. int ring_buffer_print_entry_header(struct trace_seq *s)
  33. {
  34. trace_seq_puts(s, "# compressed entry header\n");
  35. trace_seq_puts(s, "\ttype_len : 5 bits\n");
  36. trace_seq_puts(s, "\ttime_delta : 27 bits\n");
  37. trace_seq_puts(s, "\tarray : 32 bits\n");
  38. trace_seq_putc(s, '\n');
  39. trace_seq_printf(s, "\tpadding : type == %d\n",
  40. RINGBUF_TYPE_PADDING);
  41. trace_seq_printf(s, "\ttime_extend : type == %d\n",
  42. RINGBUF_TYPE_TIME_EXTEND);
  43. trace_seq_printf(s, "\tdata max type_len == %d\n",
  44. RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  45. return !trace_seq_has_overflowed(s);
  46. }
  47. /*
  48. * The ring buffer is made up of a list of pages. A separate list of pages is
  49. * allocated for each CPU. A writer may only write to a buffer that is
  50. * associated with the CPU it is currently executing on. A reader may read
  51. * from any per cpu buffer.
  52. *
  53. * The reader is special. For each per cpu buffer, the reader has its own
  54. * reader page. When a reader has read the entire reader page, this reader
  55. * page is swapped with another page in the ring buffer.
  56. *
  57. * Now, as long as the writer is off the reader page, the reader can do what
  58. * ever it wants with that page. The writer will never write to that page
  59. * again (as long as it is out of the ring buffer).
  60. *
  61. * Here's some silly ASCII art.
  62. *
  63. * +------+
  64. * |reader| RING BUFFER
  65. * |page |
  66. * +------+ +---+ +---+ +---+
  67. * | |-->| |-->| |
  68. * +---+ +---+ +---+
  69. * ^ |
  70. * | |
  71. * +---------------+
  72. *
  73. *
  74. * +------+
  75. * |reader| RING BUFFER
  76. * |page |------------------v
  77. * +------+ +---+ +---+ +---+
  78. * | |-->| |-->| |
  79. * +---+ +---+ +---+
  80. * ^ |
  81. * | |
  82. * +---------------+
  83. *
  84. *
  85. * +------+
  86. * |reader| RING BUFFER
  87. * |page |------------------v
  88. * +------+ +---+ +---+ +---+
  89. * ^ | |-->| |-->| |
  90. * | +---+ +---+ +---+
  91. * | |
  92. * | |
  93. * +------------------------------+
  94. *
  95. *
  96. * +------+
  97. * |buffer| RING BUFFER
  98. * |page |------------------v
  99. * +------+ +---+ +---+ +---+
  100. * ^ | | | |-->| |
  101. * | New +---+ +---+ +---+
  102. * | Reader------^ |
  103. * | page |
  104. * +------------------------------+
  105. *
  106. *
  107. * After we make this swap, the reader can hand this page off to the splice
  108. * code and be done with it. It can even allocate a new page if it needs to
  109. * and swap that into the ring buffer.
  110. *
  111. * We will be using cmpxchg soon to make all this lockless.
  112. *
  113. */
  114. /*
  115. * A fast way to enable or disable all ring buffers is to
  116. * call tracing_on or tracing_off. Turning off the ring buffers
  117. * prevents all ring buffers from being recorded to.
  118. * Turning this switch on, makes it OK to write to the
  119. * ring buffer, if the ring buffer is enabled itself.
  120. *
  121. * There's three layers that must be on in order to write
  122. * to the ring buffer.
  123. *
  124. * 1) This global flag must be set.
  125. * 2) The ring buffer must be enabled for recording.
  126. * 3) The per cpu buffer must be enabled for recording.
  127. *
  128. * In case of an anomaly, this global flag has a bit set that
  129. * will permantly disable all ring buffers.
  130. */
  131. /*
  132. * Global flag to disable all recording to ring buffers
  133. * This has two bits: ON, DISABLED
  134. *
  135. * ON DISABLED
  136. * ---- ----------
  137. * 0 0 : ring buffers are off
  138. * 1 0 : ring buffers are on
  139. * X 1 : ring buffers are permanently disabled
  140. */
  141. enum {
  142. RB_BUFFERS_ON_BIT = 0,
  143. RB_BUFFERS_DISABLED_BIT = 1,
  144. };
  145. enum {
  146. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  147. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  148. };
  149. static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  150. /* Used for individual buffers (after the counter) */
  151. #define RB_BUFFER_OFF (1 << 20)
  152. #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
  153. /**
  154. * tracing_off_permanent - permanently disable ring buffers
  155. *
  156. * This function, once called, will disable all ring buffers
  157. * permanently.
  158. */
  159. void tracing_off_permanent(void)
  160. {
  161. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  162. }
  163. #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
  164. #define RB_ALIGNMENT 4U
  165. #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  166. #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
  167. #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
  168. # define RB_FORCE_8BYTE_ALIGNMENT 0
  169. # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
  170. #else
  171. # define RB_FORCE_8BYTE_ALIGNMENT 1
  172. # define RB_ARCH_ALIGNMENT 8U
  173. #endif
  174. #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
  175. /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
  176. #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
  177. enum {
  178. RB_LEN_TIME_EXTEND = 8,
  179. RB_LEN_TIME_STAMP = 16,
  180. };
  181. #define skip_time_extend(event) \
  182. ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
  183. static inline int rb_null_event(struct ring_buffer_event *event)
  184. {
  185. return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
  186. }
  187. static void rb_event_set_padding(struct ring_buffer_event *event)
  188. {
  189. /* padding has a NULL time_delta */
  190. event->type_len = RINGBUF_TYPE_PADDING;
  191. event->time_delta = 0;
  192. }
  193. static unsigned
  194. rb_event_data_length(struct ring_buffer_event *event)
  195. {
  196. unsigned length;
  197. if (event->type_len)
  198. length = event->type_len * RB_ALIGNMENT;
  199. else
  200. length = event->array[0];
  201. return length + RB_EVNT_HDR_SIZE;
  202. }
  203. /*
  204. * Return the length of the given event. Will return
  205. * the length of the time extend if the event is a
  206. * time extend.
  207. */
  208. static inline unsigned
  209. rb_event_length(struct ring_buffer_event *event)
  210. {
  211. switch (event->type_len) {
  212. case RINGBUF_TYPE_PADDING:
  213. if (rb_null_event(event))
  214. /* undefined */
  215. return -1;
  216. return event->array[0] + RB_EVNT_HDR_SIZE;
  217. case RINGBUF_TYPE_TIME_EXTEND:
  218. return RB_LEN_TIME_EXTEND;
  219. case RINGBUF_TYPE_TIME_STAMP:
  220. return RB_LEN_TIME_STAMP;
  221. case RINGBUF_TYPE_DATA:
  222. return rb_event_data_length(event);
  223. default:
  224. BUG();
  225. }
  226. /* not hit */
  227. return 0;
  228. }
  229. /*
  230. * Return total length of time extend and data,
  231. * or just the event length for all other events.
  232. */
  233. static inline unsigned
  234. rb_event_ts_length(struct ring_buffer_event *event)
  235. {
  236. unsigned len = 0;
  237. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  238. /* time extends include the data event after it */
  239. len = RB_LEN_TIME_EXTEND;
  240. event = skip_time_extend(event);
  241. }
  242. return len + rb_event_length(event);
  243. }
  244. /**
  245. * ring_buffer_event_length - return the length of the event
  246. * @event: the event to get the length of
  247. *
  248. * Returns the size of the data load of a data event.
  249. * If the event is something other than a data event, it
  250. * returns the size of the event itself. With the exception
  251. * of a TIME EXTEND, where it still returns the size of the
  252. * data load of the data event after it.
  253. */
  254. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  255. {
  256. unsigned length;
  257. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  258. event = skip_time_extend(event);
  259. length = rb_event_length(event);
  260. if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  261. return length;
  262. length -= RB_EVNT_HDR_SIZE;
  263. if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
  264. length -= sizeof(event->array[0]);
  265. return length;
  266. }
  267. EXPORT_SYMBOL_GPL(ring_buffer_event_length);
  268. /* inline for ring buffer fast paths */
  269. static void *
  270. rb_event_data(struct ring_buffer_event *event)
  271. {
  272. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  273. event = skip_time_extend(event);
  274. BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  275. /* If length is in len field, then array[0] has the data */
  276. if (event->type_len)
  277. return (void *)&event->array[0];
  278. /* Otherwise length is in array[0] and array[1] has the data */
  279. return (void *)&event->array[1];
  280. }
  281. /**
  282. * ring_buffer_event_data - return the data of the event
  283. * @event: the event to get the data from
  284. */
  285. void *ring_buffer_event_data(struct ring_buffer_event *event)
  286. {
  287. return rb_event_data(event);
  288. }
  289. EXPORT_SYMBOL_GPL(ring_buffer_event_data);
  290. #define for_each_buffer_cpu(buffer, cpu) \
  291. for_each_cpu(cpu, buffer->cpumask)
  292. #define TS_SHIFT 27
  293. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  294. #define TS_DELTA_TEST (~TS_MASK)
  295. /* Flag when events were overwritten */
  296. #define RB_MISSED_EVENTS (1 << 31)
  297. /* Missed count stored at end */
  298. #define RB_MISSED_STORED (1 << 30)
  299. struct buffer_data_page {
  300. u64 time_stamp; /* page time stamp */
  301. local_t commit; /* write committed index */
  302. unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
  303. };
  304. /*
  305. * Note, the buffer_page list must be first. The buffer pages
  306. * are allocated in cache lines, which means that each buffer
  307. * page will be at the beginning of a cache line, and thus
  308. * the least significant bits will be zero. We use this to
  309. * add flags in the list struct pointers, to make the ring buffer
  310. * lockless.
  311. */
  312. struct buffer_page {
  313. struct list_head list; /* list of buffer pages */
  314. local_t write; /* index for next write */
  315. unsigned read; /* index for next read */
  316. local_t entries; /* entries on this page */
  317. unsigned long real_end; /* real end of data */
  318. struct buffer_data_page *page; /* Actual data page */
  319. };
  320. /*
  321. * The buffer page counters, write and entries, must be reset
  322. * atomically when crossing page boundaries. To synchronize this
  323. * update, two counters are inserted into the number. One is
  324. * the actual counter for the write position or count on the page.
  325. *
  326. * The other is a counter of updaters. Before an update happens
  327. * the update partition of the counter is incremented. This will
  328. * allow the updater to update the counter atomically.
  329. *
  330. * The counter is 20 bits, and the state data is 12.
  331. */
  332. #define RB_WRITE_MASK 0xfffff
  333. #define RB_WRITE_INTCNT (1 << 20)
  334. static void rb_init_page(struct buffer_data_page *bpage)
  335. {
  336. local_set(&bpage->commit, 0);
  337. }
  338. /**
  339. * ring_buffer_page_len - the size of data on the page.
  340. * @page: The page to read
  341. *
  342. * Returns the amount of data on the page, including buffer page header.
  343. */
  344. size_t ring_buffer_page_len(void *page)
  345. {
  346. return local_read(&((struct buffer_data_page *)page)->commit)
  347. + BUF_PAGE_HDR_SIZE;
  348. }
  349. /*
  350. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  351. * this issue out.
  352. */
  353. static void free_buffer_page(struct buffer_page *bpage)
  354. {
  355. free_page((unsigned long)bpage->page);
  356. kfree(bpage);
  357. }
  358. /*
  359. * We need to fit the time_stamp delta into 27 bits.
  360. */
  361. static inline int test_time_stamp(u64 delta)
  362. {
  363. if (delta & TS_DELTA_TEST)
  364. return 1;
  365. return 0;
  366. }
  367. #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
  368. /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
  369. #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
  370. int ring_buffer_print_page_header(struct trace_seq *s)
  371. {
  372. struct buffer_data_page field;
  373. trace_seq_printf(s, "\tfield: u64 timestamp;\t"
  374. "offset:0;\tsize:%u;\tsigned:%u;\n",
  375. (unsigned int)sizeof(field.time_stamp),
  376. (unsigned int)is_signed_type(u64));
  377. trace_seq_printf(s, "\tfield: local_t commit;\t"
  378. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  379. (unsigned int)offsetof(typeof(field), commit),
  380. (unsigned int)sizeof(field.commit),
  381. (unsigned int)is_signed_type(long));
  382. trace_seq_printf(s, "\tfield: int overwrite;\t"
  383. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  384. (unsigned int)offsetof(typeof(field), commit),
  385. 1,
  386. (unsigned int)is_signed_type(long));
  387. trace_seq_printf(s, "\tfield: char data;\t"
  388. "offset:%u;\tsize:%u;\tsigned:%u;\n",
  389. (unsigned int)offsetof(typeof(field), data),
  390. (unsigned int)BUF_PAGE_SIZE,
  391. (unsigned int)is_signed_type(char));
  392. return !trace_seq_has_overflowed(s);
  393. }
  394. struct rb_irq_work {
  395. struct irq_work work;
  396. wait_queue_head_t waiters;
  397. bool waiters_pending;
  398. };
  399. /*
  400. * head_page == tail_page && head == tail then buffer is empty.
  401. */
  402. struct ring_buffer_per_cpu {
  403. int cpu;
  404. atomic_t record_disabled;
  405. struct ring_buffer *buffer;
  406. raw_spinlock_t reader_lock; /* serialize readers */
  407. arch_spinlock_t lock;
  408. struct lock_class_key lock_key;
  409. unsigned int nr_pages;
  410. struct list_head *pages;
  411. struct buffer_page *head_page; /* read from head */
  412. struct buffer_page *tail_page; /* write to tail */
  413. struct buffer_page *commit_page; /* committed pages */
  414. struct buffer_page *reader_page;
  415. unsigned long lost_events;
  416. unsigned long last_overrun;
  417. local_t entries_bytes;
  418. local_t entries;
  419. local_t overrun;
  420. local_t commit_overrun;
  421. local_t dropped_events;
  422. local_t committing;
  423. local_t commits;
  424. unsigned long read;
  425. unsigned long read_bytes;
  426. u64 write_stamp;
  427. u64 read_stamp;
  428. /* ring buffer pages to update, > 0 to add, < 0 to remove */
  429. int nr_pages_to_update;
  430. struct list_head new_pages; /* new pages to add */
  431. struct work_struct update_pages_work;
  432. struct completion update_done;
  433. struct rb_irq_work irq_work;
  434. };
  435. struct ring_buffer {
  436. unsigned flags;
  437. int cpus;
  438. atomic_t record_disabled;
  439. atomic_t resize_disabled;
  440. cpumask_var_t cpumask;
  441. struct lock_class_key *reader_lock_key;
  442. struct mutex mutex;
  443. struct ring_buffer_per_cpu **buffers;
  444. #ifdef CONFIG_HOTPLUG_CPU
  445. struct notifier_block cpu_notify;
  446. #endif
  447. u64 (*clock)(void);
  448. struct rb_irq_work irq_work;
  449. };
  450. struct ring_buffer_iter {
  451. struct ring_buffer_per_cpu *cpu_buffer;
  452. unsigned long head;
  453. struct buffer_page *head_page;
  454. struct buffer_page *cache_reader_page;
  455. unsigned long cache_read;
  456. u64 read_stamp;
  457. };
  458. /*
  459. * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
  460. *
  461. * Schedules a delayed work to wake up any task that is blocked on the
  462. * ring buffer waiters queue.
  463. */
  464. static void rb_wake_up_waiters(struct irq_work *work)
  465. {
  466. struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
  467. wake_up_all(&rbwork->waiters);
  468. }
  469. /**
  470. * ring_buffer_wait - wait for input to the ring buffer
  471. * @buffer: buffer to wait on
  472. * @cpu: the cpu buffer to wait on
  473. * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
  474. *
  475. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  476. * as data is added to any of the @buffer's cpu buffers. Otherwise
  477. * it will wait for data to be added to a specific cpu buffer.
  478. */
  479. int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
  480. {
  481. struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
  482. DEFINE_WAIT(wait);
  483. struct rb_irq_work *work;
  484. int ret = 0;
  485. /*
  486. * Depending on what the caller is waiting for, either any
  487. * data in any cpu buffer, or a specific buffer, put the
  488. * caller on the appropriate wait queue.
  489. */
  490. if (cpu == RING_BUFFER_ALL_CPUS)
  491. work = &buffer->irq_work;
  492. else {
  493. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  494. return -ENODEV;
  495. cpu_buffer = buffer->buffers[cpu];
  496. work = &cpu_buffer->irq_work;
  497. }
  498. while (true) {
  499. prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
  500. /*
  501. * The events can happen in critical sections where
  502. * checking a work queue can cause deadlocks.
  503. * After adding a task to the queue, this flag is set
  504. * only to notify events to try to wake up the queue
  505. * using irq_work.
  506. *
  507. * We don't clear it even if the buffer is no longer
  508. * empty. The flag only causes the next event to run
  509. * irq_work to do the work queue wake up. The worse
  510. * that can happen if we race with !trace_empty() is that
  511. * an event will cause an irq_work to try to wake up
  512. * an empty queue.
  513. *
  514. * There's no reason to protect this flag either, as
  515. * the work queue and irq_work logic will do the necessary
  516. * synchronization for the wake ups. The only thing
  517. * that is necessary is that the wake up happens after
  518. * a task has been queued. It's OK for spurious wake ups.
  519. */
  520. work->waiters_pending = true;
  521. if (signal_pending(current)) {
  522. ret = -EINTR;
  523. break;
  524. }
  525. if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
  526. break;
  527. if (cpu != RING_BUFFER_ALL_CPUS &&
  528. !ring_buffer_empty_cpu(buffer, cpu)) {
  529. unsigned long flags;
  530. bool pagebusy;
  531. if (!full)
  532. break;
  533. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  534. pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
  535. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  536. if (!pagebusy)
  537. break;
  538. }
  539. schedule();
  540. }
  541. finish_wait(&work->waiters, &wait);
  542. return ret;
  543. }
  544. /**
  545. * ring_buffer_poll_wait - poll on buffer input
  546. * @buffer: buffer to wait on
  547. * @cpu: the cpu buffer to wait on
  548. * @filp: the file descriptor
  549. * @poll_table: The poll descriptor
  550. *
  551. * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
  552. * as data is added to any of the @buffer's cpu buffers. Otherwise
  553. * it will wait for data to be added to a specific cpu buffer.
  554. *
  555. * Returns POLLIN | POLLRDNORM if data exists in the buffers,
  556. * zero otherwise.
  557. */
  558. int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
  559. struct file *filp, poll_table *poll_table)
  560. {
  561. struct ring_buffer_per_cpu *cpu_buffer;
  562. struct rb_irq_work *work;
  563. if (cpu == RING_BUFFER_ALL_CPUS)
  564. work = &buffer->irq_work;
  565. else {
  566. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  567. return -EINVAL;
  568. cpu_buffer = buffer->buffers[cpu];
  569. work = &cpu_buffer->irq_work;
  570. }
  571. poll_wait(filp, &work->waiters, poll_table);
  572. work->waiters_pending = true;
  573. /*
  574. * There's a tight race between setting the waiters_pending and
  575. * checking if the ring buffer is empty. Once the waiters_pending bit
  576. * is set, the next event will wake the task up, but we can get stuck
  577. * if there's only a single event in.
  578. *
  579. * FIXME: Ideally, we need a memory barrier on the writer side as well,
  580. * but adding a memory barrier to all events will cause too much of a
  581. * performance hit in the fast path. We only need a memory barrier when
  582. * the buffer goes from empty to having content. But as this race is
  583. * extremely small, and it's not a problem if another event comes in, we
  584. * will fix it later.
  585. */
  586. smp_mb();
  587. if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
  588. (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
  589. return POLLIN | POLLRDNORM;
  590. return 0;
  591. }
  592. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  593. #define RB_WARN_ON(b, cond) \
  594. ({ \
  595. int _____ret = unlikely(cond); \
  596. if (_____ret) { \
  597. if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
  598. struct ring_buffer_per_cpu *__b = \
  599. (void *)b; \
  600. atomic_inc(&__b->buffer->record_disabled); \
  601. } else \
  602. atomic_inc(&b->record_disabled); \
  603. WARN_ON(1); \
  604. } \
  605. _____ret; \
  606. })
  607. /* Up this if you want to test the TIME_EXTENTS and normalization */
  608. #define DEBUG_SHIFT 0
  609. static inline u64 rb_time_stamp(struct ring_buffer *buffer)
  610. {
  611. /* shift to debug/test normalization and TIME_EXTENTS */
  612. return buffer->clock() << DEBUG_SHIFT;
  613. }
  614. u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
  615. {
  616. u64 time;
  617. preempt_disable_notrace();
  618. time = rb_time_stamp(buffer);
  619. preempt_enable_no_resched_notrace();
  620. return time;
  621. }
  622. EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
  623. void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
  624. int cpu, u64 *ts)
  625. {
  626. /* Just stupid testing the normalize function and deltas */
  627. *ts >>= DEBUG_SHIFT;
  628. }
  629. EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
  630. /*
  631. * Making the ring buffer lockless makes things tricky.
  632. * Although writes only happen on the CPU that they are on,
  633. * and they only need to worry about interrupts. Reads can
  634. * happen on any CPU.
  635. *
  636. * The reader page is always off the ring buffer, but when the
  637. * reader finishes with a page, it needs to swap its page with
  638. * a new one from the buffer. The reader needs to take from
  639. * the head (writes go to the tail). But if a writer is in overwrite
  640. * mode and wraps, it must push the head page forward.
  641. *
  642. * Here lies the problem.
  643. *
  644. * The reader must be careful to replace only the head page, and
  645. * not another one. As described at the top of the file in the
  646. * ASCII art, the reader sets its old page to point to the next
  647. * page after head. It then sets the page after head to point to
  648. * the old reader page. But if the writer moves the head page
  649. * during this operation, the reader could end up with the tail.
  650. *
  651. * We use cmpxchg to help prevent this race. We also do something
  652. * special with the page before head. We set the LSB to 1.
  653. *
  654. * When the writer must push the page forward, it will clear the
  655. * bit that points to the head page, move the head, and then set
  656. * the bit that points to the new head page.
  657. *
  658. * We also don't want an interrupt coming in and moving the head
  659. * page on another writer. Thus we use the second LSB to catch
  660. * that too. Thus:
  661. *
  662. * head->list->prev->next bit 1 bit 0
  663. * ------- -------
  664. * Normal page 0 0
  665. * Points to head page 0 1
  666. * New head page 1 0
  667. *
  668. * Note we can not trust the prev pointer of the head page, because:
  669. *
  670. * +----+ +-----+ +-----+
  671. * | |------>| T |---X--->| N |
  672. * | |<------| | | |
  673. * +----+ +-----+ +-----+
  674. * ^ ^ |
  675. * | +-----+ | |
  676. * +----------| R |----------+ |
  677. * | |<-----------+
  678. * +-----+
  679. *
  680. * Key: ---X--> HEAD flag set in pointer
  681. * T Tail page
  682. * R Reader page
  683. * N Next page
  684. *
  685. * (see __rb_reserve_next() to see where this happens)
  686. *
  687. * What the above shows is that the reader just swapped out
  688. * the reader page with a page in the buffer, but before it
  689. * could make the new header point back to the new page added
  690. * it was preempted by a writer. The writer moved forward onto
  691. * the new page added by the reader and is about to move forward
  692. * again.
  693. *
  694. * You can see, it is legitimate for the previous pointer of
  695. * the head (or any page) not to point back to itself. But only
  696. * temporarially.
  697. */
  698. #define RB_PAGE_NORMAL 0UL
  699. #define RB_PAGE_HEAD 1UL
  700. #define RB_PAGE_UPDATE 2UL
  701. #define RB_FLAG_MASK 3UL
  702. /* PAGE_MOVED is not part of the mask */
  703. #define RB_PAGE_MOVED 4UL
  704. /*
  705. * rb_list_head - remove any bit
  706. */
  707. static struct list_head *rb_list_head(struct list_head *list)
  708. {
  709. unsigned long val = (unsigned long)list;
  710. return (struct list_head *)(val & ~RB_FLAG_MASK);
  711. }
  712. /*
  713. * rb_is_head_page - test if the given page is the head page
  714. *
  715. * Because the reader may move the head_page pointer, we can
  716. * not trust what the head page is (it may be pointing to
  717. * the reader page). But if the next page is a header page,
  718. * its flags will be non zero.
  719. */
  720. static inline int
  721. rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  722. struct buffer_page *page, struct list_head *list)
  723. {
  724. unsigned long val;
  725. val = (unsigned long)list->next;
  726. if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
  727. return RB_PAGE_MOVED;
  728. return val & RB_FLAG_MASK;
  729. }
  730. /*
  731. * rb_is_reader_page
  732. *
  733. * The unique thing about the reader page, is that, if the
  734. * writer is ever on it, the previous pointer never points
  735. * back to the reader page.
  736. */
  737. static int rb_is_reader_page(struct buffer_page *page)
  738. {
  739. struct list_head *list = page->list.prev;
  740. return rb_list_head(list->next) != &page->list;
  741. }
  742. /*
  743. * rb_set_list_to_head - set a list_head to be pointing to head.
  744. */
  745. static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
  746. struct list_head *list)
  747. {
  748. unsigned long *ptr;
  749. ptr = (unsigned long *)&list->next;
  750. *ptr |= RB_PAGE_HEAD;
  751. *ptr &= ~RB_PAGE_UPDATE;
  752. }
  753. /*
  754. * rb_head_page_activate - sets up head page
  755. */
  756. static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
  757. {
  758. struct buffer_page *head;
  759. head = cpu_buffer->head_page;
  760. if (!head)
  761. return;
  762. /*
  763. * Set the previous list pointer to have the HEAD flag.
  764. */
  765. rb_set_list_to_head(cpu_buffer, head->list.prev);
  766. }
  767. static void rb_list_head_clear(struct list_head *list)
  768. {
  769. unsigned long *ptr = (unsigned long *)&list->next;
  770. *ptr &= ~RB_FLAG_MASK;
  771. }
  772. /*
  773. * rb_head_page_dactivate - clears head page ptr (for free list)
  774. */
  775. static void
  776. rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
  777. {
  778. struct list_head *hd;
  779. /* Go through the whole list and clear any pointers found. */
  780. rb_list_head_clear(cpu_buffer->pages);
  781. list_for_each(hd, cpu_buffer->pages)
  782. rb_list_head_clear(hd);
  783. }
  784. static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
  785. struct buffer_page *head,
  786. struct buffer_page *prev,
  787. int old_flag, int new_flag)
  788. {
  789. struct list_head *list;
  790. unsigned long val = (unsigned long)&head->list;
  791. unsigned long ret;
  792. list = &prev->list;
  793. val &= ~RB_FLAG_MASK;
  794. ret = cmpxchg((unsigned long *)&list->next,
  795. val | old_flag, val | new_flag);
  796. /* check if the reader took the page */
  797. if ((ret & ~RB_FLAG_MASK) != val)
  798. return RB_PAGE_MOVED;
  799. return ret & RB_FLAG_MASK;
  800. }
  801. static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
  802. struct buffer_page *head,
  803. struct buffer_page *prev,
  804. int old_flag)
  805. {
  806. return rb_head_page_set(cpu_buffer, head, prev,
  807. old_flag, RB_PAGE_UPDATE);
  808. }
  809. static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
  810. struct buffer_page *head,
  811. struct buffer_page *prev,
  812. int old_flag)
  813. {
  814. return rb_head_page_set(cpu_buffer, head, prev,
  815. old_flag, RB_PAGE_HEAD);
  816. }
  817. static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
  818. struct buffer_page *head,
  819. struct buffer_page *prev,
  820. int old_flag)
  821. {
  822. return rb_head_page_set(cpu_buffer, head, prev,
  823. old_flag, RB_PAGE_NORMAL);
  824. }
  825. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  826. struct buffer_page **bpage)
  827. {
  828. struct list_head *p = rb_list_head((*bpage)->list.next);
  829. *bpage = list_entry(p, struct buffer_page, list);
  830. }
  831. static struct buffer_page *
  832. rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
  833. {
  834. struct buffer_page *head;
  835. struct buffer_page *page;
  836. struct list_head *list;
  837. int i;
  838. if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
  839. return NULL;
  840. /* sanity check */
  841. list = cpu_buffer->pages;
  842. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
  843. return NULL;
  844. page = head = cpu_buffer->head_page;
  845. /*
  846. * It is possible that the writer moves the header behind
  847. * where we started, and we miss in one loop.
  848. * A second loop should grab the header, but we'll do
  849. * three loops just because I'm paranoid.
  850. */
  851. for (i = 0; i < 3; i++) {
  852. do {
  853. if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
  854. cpu_buffer->head_page = page;
  855. return page;
  856. }
  857. rb_inc_page(cpu_buffer, &page);
  858. } while (page != head);
  859. }
  860. RB_WARN_ON(cpu_buffer, 1);
  861. return NULL;
  862. }
  863. static int rb_head_page_replace(struct buffer_page *old,
  864. struct buffer_page *new)
  865. {
  866. unsigned long *ptr = (unsigned long *)&old->list.prev->next;
  867. unsigned long val;
  868. unsigned long ret;
  869. val = *ptr & ~RB_FLAG_MASK;
  870. val |= RB_PAGE_HEAD;
  871. ret = cmpxchg(ptr, val, (unsigned long)&new->list);
  872. return ret == val;
  873. }
  874. /*
  875. * rb_tail_page_update - move the tail page forward
  876. *
  877. * Returns 1 if moved tail page, 0 if someone else did.
  878. */
  879. static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
  880. struct buffer_page *tail_page,
  881. struct buffer_page *next_page)
  882. {
  883. struct buffer_page *old_tail;
  884. unsigned long old_entries;
  885. unsigned long old_write;
  886. int ret = 0;
  887. /*
  888. * The tail page now needs to be moved forward.
  889. *
  890. * We need to reset the tail page, but without messing
  891. * with possible erasing of data brought in by interrupts
  892. * that have moved the tail page and are currently on it.
  893. *
  894. * We add a counter to the write field to denote this.
  895. */
  896. old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
  897. old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
  898. /*
  899. * Just make sure we have seen our old_write and synchronize
  900. * with any interrupts that come in.
  901. */
  902. barrier();
  903. /*
  904. * If the tail page is still the same as what we think
  905. * it is, then it is up to us to update the tail
  906. * pointer.
  907. */
  908. if (tail_page == cpu_buffer->tail_page) {
  909. /* Zero the write counter */
  910. unsigned long val = old_write & ~RB_WRITE_MASK;
  911. unsigned long eval = old_entries & ~RB_WRITE_MASK;
  912. /*
  913. * This will only succeed if an interrupt did
  914. * not come in and change it. In which case, we
  915. * do not want to modify it.
  916. *
  917. * We add (void) to let the compiler know that we do not care
  918. * about the return value of these functions. We use the
  919. * cmpxchg to only update if an interrupt did not already
  920. * do it for us. If the cmpxchg fails, we don't care.
  921. */
  922. (void)local_cmpxchg(&next_page->write, old_write, val);
  923. (void)local_cmpxchg(&next_page->entries, old_entries, eval);
  924. /*
  925. * No need to worry about races with clearing out the commit.
  926. * it only can increment when a commit takes place. But that
  927. * only happens in the outer most nested commit.
  928. */
  929. local_set(&next_page->page->commit, 0);
  930. old_tail = cmpxchg(&cpu_buffer->tail_page,
  931. tail_page, next_page);
  932. if (old_tail == tail_page)
  933. ret = 1;
  934. }
  935. return ret;
  936. }
  937. static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
  938. struct buffer_page *bpage)
  939. {
  940. unsigned long val = (unsigned long)bpage;
  941. if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
  942. return 1;
  943. return 0;
  944. }
  945. /**
  946. * rb_check_list - make sure a pointer to a list has the last bits zero
  947. */
  948. static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
  949. struct list_head *list)
  950. {
  951. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
  952. return 1;
  953. if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
  954. return 1;
  955. return 0;
  956. }
  957. /**
  958. * rb_check_pages - integrity check of buffer pages
  959. * @cpu_buffer: CPU buffer with pages to test
  960. *
  961. * As a safety measure we check to make sure the data pages have not
  962. * been corrupted.
  963. */
  964. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  965. {
  966. struct list_head *head = cpu_buffer->pages;
  967. struct buffer_page *bpage, *tmp;
  968. /* Reset the head page if it exists */
  969. if (cpu_buffer->head_page)
  970. rb_set_head_page(cpu_buffer);
  971. rb_head_page_deactivate(cpu_buffer);
  972. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  973. return -1;
  974. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  975. return -1;
  976. if (rb_check_list(cpu_buffer, head))
  977. return -1;
  978. list_for_each_entry_safe(bpage, tmp, head, list) {
  979. if (RB_WARN_ON(cpu_buffer,
  980. bpage->list.next->prev != &bpage->list))
  981. return -1;
  982. if (RB_WARN_ON(cpu_buffer,
  983. bpage->list.prev->next != &bpage->list))
  984. return -1;
  985. if (rb_check_list(cpu_buffer, &bpage->list))
  986. return -1;
  987. }
  988. rb_head_page_activate(cpu_buffer);
  989. return 0;
  990. }
  991. static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
  992. {
  993. int i;
  994. struct buffer_page *bpage, *tmp;
  995. for (i = 0; i < nr_pages; i++) {
  996. struct page *page;
  997. /*
  998. * __GFP_NORETRY flag makes sure that the allocation fails
  999. * gracefully without invoking oom-killer and the system is
  1000. * not destabilized.
  1001. */
  1002. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  1003. GFP_KERNEL | __GFP_NORETRY,
  1004. cpu_to_node(cpu));
  1005. if (!bpage)
  1006. goto free_pages;
  1007. list_add(&bpage->list, pages);
  1008. page = alloc_pages_node(cpu_to_node(cpu),
  1009. GFP_KERNEL | __GFP_NORETRY, 0);
  1010. if (!page)
  1011. goto free_pages;
  1012. bpage->page = page_address(page);
  1013. rb_init_page(bpage->page);
  1014. }
  1015. return 0;
  1016. free_pages:
  1017. list_for_each_entry_safe(bpage, tmp, pages, list) {
  1018. list_del_init(&bpage->list);
  1019. free_buffer_page(bpage);
  1020. }
  1021. return -ENOMEM;
  1022. }
  1023. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  1024. unsigned nr_pages)
  1025. {
  1026. LIST_HEAD(pages);
  1027. WARN_ON(!nr_pages);
  1028. if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
  1029. return -ENOMEM;
  1030. /*
  1031. * The ring buffer page list is a circular list that does not
  1032. * start and end with a list head. All page list items point to
  1033. * other pages.
  1034. */
  1035. cpu_buffer->pages = pages.next;
  1036. list_del(&pages);
  1037. cpu_buffer->nr_pages = nr_pages;
  1038. rb_check_pages(cpu_buffer);
  1039. return 0;
  1040. }
  1041. static struct ring_buffer_per_cpu *
  1042. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
  1043. {
  1044. struct ring_buffer_per_cpu *cpu_buffer;
  1045. struct buffer_page *bpage;
  1046. struct page *page;
  1047. int ret;
  1048. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  1049. GFP_KERNEL, cpu_to_node(cpu));
  1050. if (!cpu_buffer)
  1051. return NULL;
  1052. cpu_buffer->cpu = cpu;
  1053. cpu_buffer->buffer = buffer;
  1054. raw_spin_lock_init(&cpu_buffer->reader_lock);
  1055. lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
  1056. cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
  1057. INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
  1058. init_completion(&cpu_buffer->update_done);
  1059. init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
  1060. init_waitqueue_head(&cpu_buffer->irq_work.waiters);
  1061. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  1062. GFP_KERNEL, cpu_to_node(cpu));
  1063. if (!bpage)
  1064. goto fail_free_buffer;
  1065. rb_check_bpage(cpu_buffer, bpage);
  1066. cpu_buffer->reader_page = bpage;
  1067. page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
  1068. if (!page)
  1069. goto fail_free_reader;
  1070. bpage->page = page_address(page);
  1071. rb_init_page(bpage->page);
  1072. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1073. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1074. ret = rb_allocate_pages(cpu_buffer, nr_pages);
  1075. if (ret < 0)
  1076. goto fail_free_reader;
  1077. cpu_buffer->head_page
  1078. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  1079. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  1080. rb_head_page_activate(cpu_buffer);
  1081. return cpu_buffer;
  1082. fail_free_reader:
  1083. free_buffer_page(cpu_buffer->reader_page);
  1084. fail_free_buffer:
  1085. kfree(cpu_buffer);
  1086. return NULL;
  1087. }
  1088. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  1089. {
  1090. struct list_head *head = cpu_buffer->pages;
  1091. struct buffer_page *bpage, *tmp;
  1092. free_buffer_page(cpu_buffer->reader_page);
  1093. rb_head_page_deactivate(cpu_buffer);
  1094. if (head) {
  1095. list_for_each_entry_safe(bpage, tmp, head, list) {
  1096. list_del_init(&bpage->list);
  1097. free_buffer_page(bpage);
  1098. }
  1099. bpage = list_entry(head, struct buffer_page, list);
  1100. free_buffer_page(bpage);
  1101. }
  1102. kfree(cpu_buffer);
  1103. }
  1104. #ifdef CONFIG_HOTPLUG_CPU
  1105. static int rb_cpu_notify(struct notifier_block *self,
  1106. unsigned long action, void *hcpu);
  1107. #endif
  1108. /**
  1109. * __ring_buffer_alloc - allocate a new ring_buffer
  1110. * @size: the size in bytes per cpu that is needed.
  1111. * @flags: attributes to set for the ring buffer.
  1112. *
  1113. * Currently the only flag that is available is the RB_FL_OVERWRITE
  1114. * flag. This flag means that the buffer will overwrite old data
  1115. * when the buffer wraps. If this flag is not set, the buffer will
  1116. * drop data when the tail hits the head.
  1117. */
  1118. struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
  1119. struct lock_class_key *key)
  1120. {
  1121. struct ring_buffer *buffer;
  1122. int bsize;
  1123. int cpu, nr_pages;
  1124. /* keep it in its own cache line */
  1125. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  1126. GFP_KERNEL);
  1127. if (!buffer)
  1128. return NULL;
  1129. if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
  1130. goto fail_free_buffer;
  1131. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1132. buffer->flags = flags;
  1133. buffer->clock = trace_clock_local;
  1134. buffer->reader_lock_key = key;
  1135. init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
  1136. init_waitqueue_head(&buffer->irq_work.waiters);
  1137. /* need at least two pages */
  1138. if (nr_pages < 2)
  1139. nr_pages = 2;
  1140. /*
  1141. * In case of non-hotplug cpu, if the ring-buffer is allocated
  1142. * in early initcall, it will not be notified of secondary cpus.
  1143. * In that off case, we need to allocate for all possible cpus.
  1144. */
  1145. #ifdef CONFIG_HOTPLUG_CPU
  1146. cpu_notifier_register_begin();
  1147. cpumask_copy(buffer->cpumask, cpu_online_mask);
  1148. #else
  1149. cpumask_copy(buffer->cpumask, cpu_possible_mask);
  1150. #endif
  1151. buffer->cpus = nr_cpu_ids;
  1152. bsize = sizeof(void *) * nr_cpu_ids;
  1153. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  1154. GFP_KERNEL);
  1155. if (!buffer->buffers)
  1156. goto fail_free_cpumask;
  1157. for_each_buffer_cpu(buffer, cpu) {
  1158. buffer->buffers[cpu] =
  1159. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  1160. if (!buffer->buffers[cpu])
  1161. goto fail_free_buffers;
  1162. }
  1163. #ifdef CONFIG_HOTPLUG_CPU
  1164. buffer->cpu_notify.notifier_call = rb_cpu_notify;
  1165. buffer->cpu_notify.priority = 0;
  1166. __register_cpu_notifier(&buffer->cpu_notify);
  1167. cpu_notifier_register_done();
  1168. #endif
  1169. mutex_init(&buffer->mutex);
  1170. return buffer;
  1171. fail_free_buffers:
  1172. for_each_buffer_cpu(buffer, cpu) {
  1173. if (buffer->buffers[cpu])
  1174. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1175. }
  1176. kfree(buffer->buffers);
  1177. fail_free_cpumask:
  1178. free_cpumask_var(buffer->cpumask);
  1179. #ifdef CONFIG_HOTPLUG_CPU
  1180. cpu_notifier_register_done();
  1181. #endif
  1182. fail_free_buffer:
  1183. kfree(buffer);
  1184. return NULL;
  1185. }
  1186. EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
  1187. /**
  1188. * ring_buffer_free - free a ring buffer.
  1189. * @buffer: the buffer to free.
  1190. */
  1191. void
  1192. ring_buffer_free(struct ring_buffer *buffer)
  1193. {
  1194. int cpu;
  1195. #ifdef CONFIG_HOTPLUG_CPU
  1196. cpu_notifier_register_begin();
  1197. __unregister_cpu_notifier(&buffer->cpu_notify);
  1198. #endif
  1199. for_each_buffer_cpu(buffer, cpu)
  1200. rb_free_cpu_buffer(buffer->buffers[cpu]);
  1201. #ifdef CONFIG_HOTPLUG_CPU
  1202. cpu_notifier_register_done();
  1203. #endif
  1204. kfree(buffer->buffers);
  1205. free_cpumask_var(buffer->cpumask);
  1206. kfree(buffer);
  1207. }
  1208. EXPORT_SYMBOL_GPL(ring_buffer_free);
  1209. void ring_buffer_set_clock(struct ring_buffer *buffer,
  1210. u64 (*clock)(void))
  1211. {
  1212. buffer->clock = clock;
  1213. }
  1214. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  1215. static inline unsigned long rb_page_entries(struct buffer_page *bpage)
  1216. {
  1217. return local_read(&bpage->entries) & RB_WRITE_MASK;
  1218. }
  1219. static inline unsigned long rb_page_write(struct buffer_page *bpage)
  1220. {
  1221. return local_read(&bpage->write) & RB_WRITE_MASK;
  1222. }
  1223. static int
  1224. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
  1225. {
  1226. struct list_head *tail_page, *to_remove, *next_page;
  1227. struct buffer_page *to_remove_page, *tmp_iter_page;
  1228. struct buffer_page *last_page, *first_page;
  1229. unsigned int nr_removed;
  1230. unsigned long head_bit;
  1231. int page_entries;
  1232. head_bit = 0;
  1233. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1234. atomic_inc(&cpu_buffer->record_disabled);
  1235. /*
  1236. * We don't race with the readers since we have acquired the reader
  1237. * lock. We also don't race with writers after disabling recording.
  1238. * This makes it easy to figure out the first and the last page to be
  1239. * removed from the list. We unlink all the pages in between including
  1240. * the first and last pages. This is done in a busy loop so that we
  1241. * lose the least number of traces.
  1242. * The pages are freed after we restart recording and unlock readers.
  1243. */
  1244. tail_page = &cpu_buffer->tail_page->list;
  1245. /*
  1246. * tail page might be on reader page, we remove the next page
  1247. * from the ring buffer
  1248. */
  1249. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  1250. tail_page = rb_list_head(tail_page->next);
  1251. to_remove = tail_page;
  1252. /* start of pages to remove */
  1253. first_page = list_entry(rb_list_head(to_remove->next),
  1254. struct buffer_page, list);
  1255. for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
  1256. to_remove = rb_list_head(to_remove)->next;
  1257. head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
  1258. }
  1259. next_page = rb_list_head(to_remove)->next;
  1260. /*
  1261. * Now we remove all pages between tail_page and next_page.
  1262. * Make sure that we have head_bit value preserved for the
  1263. * next page
  1264. */
  1265. tail_page->next = (struct list_head *)((unsigned long)next_page |
  1266. head_bit);
  1267. next_page = rb_list_head(next_page);
  1268. next_page->prev = tail_page;
  1269. /* make sure pages points to a valid page in the ring buffer */
  1270. cpu_buffer->pages = next_page;
  1271. /* update head page */
  1272. if (head_bit)
  1273. cpu_buffer->head_page = list_entry(next_page,
  1274. struct buffer_page, list);
  1275. /*
  1276. * change read pointer to make sure any read iterators reset
  1277. * themselves
  1278. */
  1279. cpu_buffer->read = 0;
  1280. /* pages are removed, resume tracing and then free the pages */
  1281. atomic_dec(&cpu_buffer->record_disabled);
  1282. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1283. RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
  1284. /* last buffer page to remove */
  1285. last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
  1286. list);
  1287. tmp_iter_page = first_page;
  1288. do {
  1289. to_remove_page = tmp_iter_page;
  1290. rb_inc_page(cpu_buffer, &tmp_iter_page);
  1291. /* update the counters */
  1292. page_entries = rb_page_entries(to_remove_page);
  1293. if (page_entries) {
  1294. /*
  1295. * If something was added to this page, it was full
  1296. * since it is not the tail page. So we deduct the
  1297. * bytes consumed in ring buffer from here.
  1298. * Increment overrun to account for the lost events.
  1299. */
  1300. local_add(page_entries, &cpu_buffer->overrun);
  1301. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1302. }
  1303. /*
  1304. * We have already removed references to this list item, just
  1305. * free up the buffer_page and its page
  1306. */
  1307. free_buffer_page(to_remove_page);
  1308. nr_removed--;
  1309. } while (to_remove_page != last_page);
  1310. RB_WARN_ON(cpu_buffer, nr_removed);
  1311. return nr_removed == 0;
  1312. }
  1313. static int
  1314. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1315. {
  1316. struct list_head *pages = &cpu_buffer->new_pages;
  1317. int retries, success;
  1318. raw_spin_lock_irq(&cpu_buffer->reader_lock);
  1319. /*
  1320. * We are holding the reader lock, so the reader page won't be swapped
  1321. * in the ring buffer. Now we are racing with the writer trying to
  1322. * move head page and the tail page.
  1323. * We are going to adapt the reader page update process where:
  1324. * 1. We first splice the start and end of list of new pages between
  1325. * the head page and its previous page.
  1326. * 2. We cmpxchg the prev_page->next to point from head page to the
  1327. * start of new pages list.
  1328. * 3. Finally, we update the head->prev to the end of new list.
  1329. *
  1330. * We will try this process 10 times, to make sure that we don't keep
  1331. * spinning.
  1332. */
  1333. retries = 10;
  1334. success = 0;
  1335. while (retries--) {
  1336. struct list_head *head_page, *prev_page, *r;
  1337. struct list_head *last_page, *first_page;
  1338. struct list_head *head_page_with_bit;
  1339. head_page = &rb_set_head_page(cpu_buffer)->list;
  1340. if (!head_page)
  1341. break;
  1342. prev_page = head_page->prev;
  1343. first_page = pages->next;
  1344. last_page = pages->prev;
  1345. head_page_with_bit = (struct list_head *)
  1346. ((unsigned long)head_page | RB_PAGE_HEAD);
  1347. last_page->next = head_page_with_bit;
  1348. first_page->prev = prev_page;
  1349. r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
  1350. if (r == head_page_with_bit) {
  1351. /*
  1352. * yay, we replaced the page pointer to our new list,
  1353. * now, we just have to update to head page's prev
  1354. * pointer to point to end of list
  1355. */
  1356. head_page->prev = last_page;
  1357. success = 1;
  1358. break;
  1359. }
  1360. }
  1361. if (success)
  1362. INIT_LIST_HEAD(pages);
  1363. /*
  1364. * If we weren't successful in adding in new pages, warn and stop
  1365. * tracing
  1366. */
  1367. RB_WARN_ON(cpu_buffer, !success);
  1368. raw_spin_unlock_irq(&cpu_buffer->reader_lock);
  1369. /* free pages if they weren't inserted */
  1370. if (!success) {
  1371. struct buffer_page *bpage, *tmp;
  1372. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1373. list) {
  1374. list_del_init(&bpage->list);
  1375. free_buffer_page(bpage);
  1376. }
  1377. }
  1378. return success;
  1379. }
  1380. static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
  1381. {
  1382. int success;
  1383. if (cpu_buffer->nr_pages_to_update > 0)
  1384. success = rb_insert_pages(cpu_buffer);
  1385. else
  1386. success = rb_remove_pages(cpu_buffer,
  1387. -cpu_buffer->nr_pages_to_update);
  1388. if (success)
  1389. cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
  1390. }
  1391. static void update_pages_handler(struct work_struct *work)
  1392. {
  1393. struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
  1394. struct ring_buffer_per_cpu, update_pages_work);
  1395. rb_update_pages(cpu_buffer);
  1396. complete(&cpu_buffer->update_done);
  1397. }
  1398. /**
  1399. * ring_buffer_resize - resize the ring buffer
  1400. * @buffer: the buffer to resize.
  1401. * @size: the new size.
  1402. * @cpu_id: the cpu buffer to resize
  1403. *
  1404. * Minimum size is 2 * BUF_PAGE_SIZE.
  1405. *
  1406. * Returns 0 on success and < 0 on failure.
  1407. */
  1408. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
  1409. int cpu_id)
  1410. {
  1411. struct ring_buffer_per_cpu *cpu_buffer;
  1412. unsigned nr_pages;
  1413. int cpu, err = 0;
  1414. /*
  1415. * Always succeed at resizing a non-existent buffer:
  1416. */
  1417. if (!buffer)
  1418. return size;
  1419. /* Make sure the requested buffer exists */
  1420. if (cpu_id != RING_BUFFER_ALL_CPUS &&
  1421. !cpumask_test_cpu(cpu_id, buffer->cpumask))
  1422. return size;
  1423. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1424. size *= BUF_PAGE_SIZE;
  1425. /* we need a minimum of two pages */
  1426. if (size < BUF_PAGE_SIZE * 2)
  1427. size = BUF_PAGE_SIZE * 2;
  1428. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  1429. /*
  1430. * Don't succeed if resizing is disabled, as a reader might be
  1431. * manipulating the ring buffer and is expecting a sane state while
  1432. * this is true.
  1433. */
  1434. if (atomic_read(&buffer->resize_disabled))
  1435. return -EBUSY;
  1436. /* prevent another thread from changing buffer sizes */
  1437. mutex_lock(&buffer->mutex);
  1438. if (cpu_id == RING_BUFFER_ALL_CPUS) {
  1439. /* calculate the pages to update */
  1440. for_each_buffer_cpu(buffer, cpu) {
  1441. cpu_buffer = buffer->buffers[cpu];
  1442. cpu_buffer->nr_pages_to_update = nr_pages -
  1443. cpu_buffer->nr_pages;
  1444. /*
  1445. * nothing more to do for removing pages or no update
  1446. */
  1447. if (cpu_buffer->nr_pages_to_update <= 0)
  1448. continue;
  1449. /*
  1450. * to add pages, make sure all new pages can be
  1451. * allocated without receiving ENOMEM
  1452. */
  1453. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1454. if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1455. &cpu_buffer->new_pages, cpu)) {
  1456. /* not enough memory for new pages */
  1457. err = -ENOMEM;
  1458. goto out_err;
  1459. }
  1460. }
  1461. get_online_cpus();
  1462. /*
  1463. * Fire off all the required work handlers
  1464. * We can't schedule on offline CPUs, but it's not necessary
  1465. * since we can change their buffer sizes without any race.
  1466. */
  1467. for_each_buffer_cpu(buffer, cpu) {
  1468. cpu_buffer = buffer->buffers[cpu];
  1469. if (!cpu_buffer->nr_pages_to_update)
  1470. continue;
  1471. /* Can't run something on an offline CPU. */
  1472. if (!cpu_online(cpu)) {
  1473. rb_update_pages(cpu_buffer);
  1474. cpu_buffer->nr_pages_to_update = 0;
  1475. } else {
  1476. schedule_work_on(cpu,
  1477. &cpu_buffer->update_pages_work);
  1478. }
  1479. }
  1480. /* wait for all the updates to complete */
  1481. for_each_buffer_cpu(buffer, cpu) {
  1482. cpu_buffer = buffer->buffers[cpu];
  1483. if (!cpu_buffer->nr_pages_to_update)
  1484. continue;
  1485. if (cpu_online(cpu))
  1486. wait_for_completion(&cpu_buffer->update_done);
  1487. cpu_buffer->nr_pages_to_update = 0;
  1488. }
  1489. put_online_cpus();
  1490. } else {
  1491. /* Make sure this CPU has been intitialized */
  1492. if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
  1493. goto out;
  1494. cpu_buffer = buffer->buffers[cpu_id];
  1495. if (nr_pages == cpu_buffer->nr_pages)
  1496. goto out;
  1497. cpu_buffer->nr_pages_to_update = nr_pages -
  1498. cpu_buffer->nr_pages;
  1499. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  1500. if (cpu_buffer->nr_pages_to_update > 0 &&
  1501. __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
  1502. &cpu_buffer->new_pages, cpu_id)) {
  1503. err = -ENOMEM;
  1504. goto out_err;
  1505. }
  1506. get_online_cpus();
  1507. /* Can't run something on an offline CPU. */
  1508. if (!cpu_online(cpu_id))
  1509. rb_update_pages(cpu_buffer);
  1510. else {
  1511. schedule_work_on(cpu_id,
  1512. &cpu_buffer->update_pages_work);
  1513. wait_for_completion(&cpu_buffer->update_done);
  1514. }
  1515. cpu_buffer->nr_pages_to_update = 0;
  1516. put_online_cpus();
  1517. }
  1518. out:
  1519. /*
  1520. * The ring buffer resize can happen with the ring buffer
  1521. * enabled, so that the update disturbs the tracing as little
  1522. * as possible. But if the buffer is disabled, we do not need
  1523. * to worry about that, and we can take the time to verify
  1524. * that the buffer is not corrupt.
  1525. */
  1526. if (atomic_read(&buffer->record_disabled)) {
  1527. atomic_inc(&buffer->record_disabled);
  1528. /*
  1529. * Even though the buffer was disabled, we must make sure
  1530. * that it is truly disabled before calling rb_check_pages.
  1531. * There could have been a race between checking
  1532. * record_disable and incrementing it.
  1533. */
  1534. synchronize_sched();
  1535. for_each_buffer_cpu(buffer, cpu) {
  1536. cpu_buffer = buffer->buffers[cpu];
  1537. rb_check_pages(cpu_buffer);
  1538. }
  1539. atomic_dec(&buffer->record_disabled);
  1540. }
  1541. mutex_unlock(&buffer->mutex);
  1542. return size;
  1543. out_err:
  1544. for_each_buffer_cpu(buffer, cpu) {
  1545. struct buffer_page *bpage, *tmp;
  1546. cpu_buffer = buffer->buffers[cpu];
  1547. cpu_buffer->nr_pages_to_update = 0;
  1548. if (list_empty(&cpu_buffer->new_pages))
  1549. continue;
  1550. list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
  1551. list) {
  1552. list_del_init(&bpage->list);
  1553. free_buffer_page(bpage);
  1554. }
  1555. }
  1556. mutex_unlock(&buffer->mutex);
  1557. return err;
  1558. }
  1559. EXPORT_SYMBOL_GPL(ring_buffer_resize);
  1560. void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
  1561. {
  1562. mutex_lock(&buffer->mutex);
  1563. if (val)
  1564. buffer->flags |= RB_FL_OVERWRITE;
  1565. else
  1566. buffer->flags &= ~RB_FL_OVERWRITE;
  1567. mutex_unlock(&buffer->mutex);
  1568. }
  1569. EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
  1570. static inline void *
  1571. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  1572. {
  1573. return bpage->data + index;
  1574. }
  1575. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  1576. {
  1577. return bpage->page->data + index;
  1578. }
  1579. static inline struct ring_buffer_event *
  1580. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  1581. {
  1582. return __rb_page_index(cpu_buffer->reader_page,
  1583. cpu_buffer->reader_page->read);
  1584. }
  1585. static inline struct ring_buffer_event *
  1586. rb_iter_head_event(struct ring_buffer_iter *iter)
  1587. {
  1588. return __rb_page_index(iter->head_page, iter->head);
  1589. }
  1590. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  1591. {
  1592. return local_read(&bpage->page->commit);
  1593. }
  1594. /* Size is determined by what has been committed */
  1595. static inline unsigned rb_page_size(struct buffer_page *bpage)
  1596. {
  1597. return rb_page_commit(bpage);
  1598. }
  1599. static inline unsigned
  1600. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  1601. {
  1602. return rb_page_commit(cpu_buffer->commit_page);
  1603. }
  1604. static inline unsigned
  1605. rb_event_index(struct ring_buffer_event *event)
  1606. {
  1607. unsigned long addr = (unsigned long)event;
  1608. return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
  1609. }
  1610. static inline int
  1611. rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1612. struct ring_buffer_event *event)
  1613. {
  1614. unsigned long addr = (unsigned long)event;
  1615. unsigned long index;
  1616. index = rb_event_index(event);
  1617. addr &= PAGE_MASK;
  1618. return cpu_buffer->commit_page->page == (void *)addr &&
  1619. rb_commit_index(cpu_buffer) == index;
  1620. }
  1621. static void
  1622. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  1623. {
  1624. unsigned long max_count;
  1625. /*
  1626. * We only race with interrupts and NMIs on this CPU.
  1627. * If we own the commit event, then we can commit
  1628. * all others that interrupted us, since the interruptions
  1629. * are in stack format (they finish before they come
  1630. * back to us). This allows us to do a simple loop to
  1631. * assign the commit to the tail.
  1632. */
  1633. again:
  1634. max_count = cpu_buffer->nr_pages * 100;
  1635. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  1636. if (RB_WARN_ON(cpu_buffer, !(--max_count)))
  1637. return;
  1638. if (RB_WARN_ON(cpu_buffer,
  1639. rb_is_reader_page(cpu_buffer->tail_page)))
  1640. return;
  1641. local_set(&cpu_buffer->commit_page->page->commit,
  1642. rb_page_write(cpu_buffer->commit_page));
  1643. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  1644. cpu_buffer->write_stamp =
  1645. cpu_buffer->commit_page->page->time_stamp;
  1646. /* add barrier to keep gcc from optimizing too much */
  1647. barrier();
  1648. }
  1649. while (rb_commit_index(cpu_buffer) !=
  1650. rb_page_write(cpu_buffer->commit_page)) {
  1651. local_set(&cpu_buffer->commit_page->page->commit,
  1652. rb_page_write(cpu_buffer->commit_page));
  1653. RB_WARN_ON(cpu_buffer,
  1654. local_read(&cpu_buffer->commit_page->page->commit) &
  1655. ~RB_WRITE_MASK);
  1656. barrier();
  1657. }
  1658. /* again, keep gcc from optimizing */
  1659. barrier();
  1660. /*
  1661. * If an interrupt came in just after the first while loop
  1662. * and pushed the tail page forward, we will be left with
  1663. * a dangling commit that will never go forward.
  1664. */
  1665. if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
  1666. goto again;
  1667. }
  1668. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1669. {
  1670. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  1671. cpu_buffer->reader_page->read = 0;
  1672. }
  1673. static void rb_inc_iter(struct ring_buffer_iter *iter)
  1674. {
  1675. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1676. /*
  1677. * The iterator could be on the reader page (it starts there).
  1678. * But the head could have moved, since the reader was
  1679. * found. Check for this case and assign the iterator
  1680. * to the head page instead of next.
  1681. */
  1682. if (iter->head_page == cpu_buffer->reader_page)
  1683. iter->head_page = rb_set_head_page(cpu_buffer);
  1684. else
  1685. rb_inc_page(cpu_buffer, &iter->head_page);
  1686. iter->read_stamp = iter->head_page->page->time_stamp;
  1687. iter->head = 0;
  1688. }
  1689. /* Slow path, do not inline */
  1690. static noinline struct ring_buffer_event *
  1691. rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
  1692. {
  1693. event->type_len = RINGBUF_TYPE_TIME_EXTEND;
  1694. /* Not the first event on the page? */
  1695. if (rb_event_index(event)) {
  1696. event->time_delta = delta & TS_MASK;
  1697. event->array[0] = delta >> TS_SHIFT;
  1698. } else {
  1699. /* nope, just zero it */
  1700. event->time_delta = 0;
  1701. event->array[0] = 0;
  1702. }
  1703. return skip_time_extend(event);
  1704. }
  1705. /**
  1706. * rb_update_event - update event type and data
  1707. * @event: the event to update
  1708. * @type: the type of event
  1709. * @length: the size of the event field in the ring buffer
  1710. *
  1711. * Update the type and data fields of the event. The length
  1712. * is the actual size that is written to the ring buffer,
  1713. * and with this, we can determine what to place into the
  1714. * data field.
  1715. */
  1716. static void
  1717. rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
  1718. struct ring_buffer_event *event, unsigned length,
  1719. int add_timestamp, u64 delta)
  1720. {
  1721. /* Only a commit updates the timestamp */
  1722. if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
  1723. delta = 0;
  1724. /*
  1725. * If we need to add a timestamp, then we
  1726. * add it to the start of the resevered space.
  1727. */
  1728. if (unlikely(add_timestamp)) {
  1729. event = rb_add_time_stamp(event, delta);
  1730. length -= RB_LEN_TIME_EXTEND;
  1731. delta = 0;
  1732. }
  1733. event->time_delta = delta;
  1734. length -= RB_EVNT_HDR_SIZE;
  1735. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
  1736. event->type_len = 0;
  1737. event->array[0] = length;
  1738. } else
  1739. event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
  1740. }
  1741. /*
  1742. * rb_handle_head_page - writer hit the head page
  1743. *
  1744. * Returns: +1 to retry page
  1745. * 0 to continue
  1746. * -1 on error
  1747. */
  1748. static int
  1749. rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
  1750. struct buffer_page *tail_page,
  1751. struct buffer_page *next_page)
  1752. {
  1753. struct buffer_page *new_head;
  1754. int entries;
  1755. int type;
  1756. int ret;
  1757. entries = rb_page_entries(next_page);
  1758. /*
  1759. * The hard part is here. We need to move the head
  1760. * forward, and protect against both readers on
  1761. * other CPUs and writers coming in via interrupts.
  1762. */
  1763. type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
  1764. RB_PAGE_HEAD);
  1765. /*
  1766. * type can be one of four:
  1767. * NORMAL - an interrupt already moved it for us
  1768. * HEAD - we are the first to get here.
  1769. * UPDATE - we are the interrupt interrupting
  1770. * a current move.
  1771. * MOVED - a reader on another CPU moved the next
  1772. * pointer to its reader page. Give up
  1773. * and try again.
  1774. */
  1775. switch (type) {
  1776. case RB_PAGE_HEAD:
  1777. /*
  1778. * We changed the head to UPDATE, thus
  1779. * it is our responsibility to update
  1780. * the counters.
  1781. */
  1782. local_add(entries, &cpu_buffer->overrun);
  1783. local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
  1784. /*
  1785. * The entries will be zeroed out when we move the
  1786. * tail page.
  1787. */
  1788. /* still more to do */
  1789. break;
  1790. case RB_PAGE_UPDATE:
  1791. /*
  1792. * This is an interrupt that interrupt the
  1793. * previous update. Still more to do.
  1794. */
  1795. break;
  1796. case RB_PAGE_NORMAL:
  1797. /*
  1798. * An interrupt came in before the update
  1799. * and processed this for us.
  1800. * Nothing left to do.
  1801. */
  1802. return 1;
  1803. case RB_PAGE_MOVED:
  1804. /*
  1805. * The reader is on another CPU and just did
  1806. * a swap with our next_page.
  1807. * Try again.
  1808. */
  1809. return 1;
  1810. default:
  1811. RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
  1812. return -1;
  1813. }
  1814. /*
  1815. * Now that we are here, the old head pointer is
  1816. * set to UPDATE. This will keep the reader from
  1817. * swapping the head page with the reader page.
  1818. * The reader (on another CPU) will spin till
  1819. * we are finished.
  1820. *
  1821. * We just need to protect against interrupts
  1822. * doing the job. We will set the next pointer
  1823. * to HEAD. After that, we set the old pointer
  1824. * to NORMAL, but only if it was HEAD before.
  1825. * otherwise we are an interrupt, and only
  1826. * want the outer most commit to reset it.
  1827. */
  1828. new_head = next_page;
  1829. rb_inc_page(cpu_buffer, &new_head);
  1830. ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
  1831. RB_PAGE_NORMAL);
  1832. /*
  1833. * Valid returns are:
  1834. * HEAD - an interrupt came in and already set it.
  1835. * NORMAL - One of two things:
  1836. * 1) We really set it.
  1837. * 2) A bunch of interrupts came in and moved
  1838. * the page forward again.
  1839. */
  1840. switch (ret) {
  1841. case RB_PAGE_HEAD:
  1842. case RB_PAGE_NORMAL:
  1843. /* OK */
  1844. break;
  1845. default:
  1846. RB_WARN_ON(cpu_buffer, 1);
  1847. return -1;
  1848. }
  1849. /*
  1850. * It is possible that an interrupt came in,
  1851. * set the head up, then more interrupts came in
  1852. * and moved it again. When we get back here,
  1853. * the page would have been set to NORMAL but we
  1854. * just set it back to HEAD.
  1855. *
  1856. * How do you detect this? Well, if that happened
  1857. * the tail page would have moved.
  1858. */
  1859. if (ret == RB_PAGE_NORMAL) {
  1860. /*
  1861. * If the tail had moved passed next, then we need
  1862. * to reset the pointer.
  1863. */
  1864. if (cpu_buffer->tail_page != tail_page &&
  1865. cpu_buffer->tail_page != next_page)
  1866. rb_head_page_set_normal(cpu_buffer, new_head,
  1867. next_page,
  1868. RB_PAGE_HEAD);
  1869. }
  1870. /*
  1871. * If this was the outer most commit (the one that
  1872. * changed the original pointer from HEAD to UPDATE),
  1873. * then it is up to us to reset it to NORMAL.
  1874. */
  1875. if (type == RB_PAGE_HEAD) {
  1876. ret = rb_head_page_set_normal(cpu_buffer, next_page,
  1877. tail_page,
  1878. RB_PAGE_UPDATE);
  1879. if (RB_WARN_ON(cpu_buffer,
  1880. ret != RB_PAGE_UPDATE))
  1881. return -1;
  1882. }
  1883. return 0;
  1884. }
  1885. static unsigned rb_calculate_event_length(unsigned length)
  1886. {
  1887. struct ring_buffer_event event; /* Used only for sizeof array */
  1888. /* zero length can cause confusions */
  1889. if (!length)
  1890. length = 1;
  1891. if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
  1892. length += sizeof(event.array[0]);
  1893. length += RB_EVNT_HDR_SIZE;
  1894. length = ALIGN(length, RB_ARCH_ALIGNMENT);
  1895. return length;
  1896. }
  1897. static inline void
  1898. rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1899. struct buffer_page *tail_page,
  1900. unsigned long tail, unsigned long length)
  1901. {
  1902. struct ring_buffer_event *event;
  1903. /*
  1904. * Only the event that crossed the page boundary
  1905. * must fill the old tail_page with padding.
  1906. */
  1907. if (tail >= BUF_PAGE_SIZE) {
  1908. /*
  1909. * If the page was filled, then we still need
  1910. * to update the real_end. Reset it to zero
  1911. * and the reader will ignore it.
  1912. */
  1913. if (tail == BUF_PAGE_SIZE)
  1914. tail_page->real_end = 0;
  1915. local_sub(length, &tail_page->write);
  1916. return;
  1917. }
  1918. event = __rb_page_index(tail_page, tail);
  1919. kmemcheck_annotate_bitfield(event, bitfield);
  1920. /* account for padding bytes */
  1921. local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
  1922. /*
  1923. * Save the original length to the meta data.
  1924. * This will be used by the reader to add lost event
  1925. * counter.
  1926. */
  1927. tail_page->real_end = tail;
  1928. /*
  1929. * If this event is bigger than the minimum size, then
  1930. * we need to be careful that we don't subtract the
  1931. * write counter enough to allow another writer to slip
  1932. * in on this page.
  1933. * We put in a discarded commit instead, to make sure
  1934. * that this space is not used again.
  1935. *
  1936. * If we are less than the minimum size, we don't need to
  1937. * worry about it.
  1938. */
  1939. if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
  1940. /* No room for any events */
  1941. /* Mark the rest of the page with padding */
  1942. rb_event_set_padding(event);
  1943. /* Set the write back to the previous setting */
  1944. local_sub(length, &tail_page->write);
  1945. return;
  1946. }
  1947. /* Put in a discarded event */
  1948. event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
  1949. event->type_len = RINGBUF_TYPE_PADDING;
  1950. /* time delta must be non zero */
  1951. event->time_delta = 1;
  1952. /* Set write to end of buffer */
  1953. length = (tail + length) - BUF_PAGE_SIZE;
  1954. local_sub(length, &tail_page->write);
  1955. }
  1956. /*
  1957. * This is the slow path, force gcc not to inline it.
  1958. */
  1959. static noinline struct ring_buffer_event *
  1960. rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
  1961. unsigned long length, unsigned long tail,
  1962. struct buffer_page *tail_page, u64 ts)
  1963. {
  1964. struct buffer_page *commit_page = cpu_buffer->commit_page;
  1965. struct ring_buffer *buffer = cpu_buffer->buffer;
  1966. struct buffer_page *next_page;
  1967. int ret;
  1968. next_page = tail_page;
  1969. rb_inc_page(cpu_buffer, &next_page);
  1970. /*
  1971. * If for some reason, we had an interrupt storm that made
  1972. * it all the way around the buffer, bail, and warn
  1973. * about it.
  1974. */
  1975. if (unlikely(next_page == commit_page)) {
  1976. local_inc(&cpu_buffer->commit_overrun);
  1977. goto out_reset;
  1978. }
  1979. /*
  1980. * This is where the fun begins!
  1981. *
  1982. * We are fighting against races between a reader that
  1983. * could be on another CPU trying to swap its reader
  1984. * page with the buffer head.
  1985. *
  1986. * We are also fighting against interrupts coming in and
  1987. * moving the head or tail on us as well.
  1988. *
  1989. * If the next page is the head page then we have filled
  1990. * the buffer, unless the commit page is still on the
  1991. * reader page.
  1992. */
  1993. if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
  1994. /*
  1995. * If the commit is not on the reader page, then
  1996. * move the header page.
  1997. */
  1998. if (!rb_is_reader_page(cpu_buffer->commit_page)) {
  1999. /*
  2000. * If we are not in overwrite mode,
  2001. * this is easy, just stop here.
  2002. */
  2003. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  2004. local_inc(&cpu_buffer->dropped_events);
  2005. goto out_reset;
  2006. }
  2007. ret = rb_handle_head_page(cpu_buffer,
  2008. tail_page,
  2009. next_page);
  2010. if (ret < 0)
  2011. goto out_reset;
  2012. if (ret)
  2013. goto out_again;
  2014. } else {
  2015. /*
  2016. * We need to be careful here too. The
  2017. * commit page could still be on the reader
  2018. * page. We could have a small buffer, and
  2019. * have filled up the buffer with events
  2020. * from interrupts and such, and wrapped.
  2021. *
  2022. * Note, if the tail page is also the on the
  2023. * reader_page, we let it move out.
  2024. */
  2025. if (unlikely((cpu_buffer->commit_page !=
  2026. cpu_buffer->tail_page) &&
  2027. (cpu_buffer->commit_page ==
  2028. cpu_buffer->reader_page))) {
  2029. local_inc(&cpu_buffer->commit_overrun);
  2030. goto out_reset;
  2031. }
  2032. }
  2033. }
  2034. ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
  2035. if (ret) {
  2036. /*
  2037. * Nested commits always have zero deltas, so
  2038. * just reread the time stamp
  2039. */
  2040. ts = rb_time_stamp(buffer);
  2041. next_page->page->time_stamp = ts;
  2042. }
  2043. out_again:
  2044. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2045. /* fail and let the caller try again */
  2046. return ERR_PTR(-EAGAIN);
  2047. out_reset:
  2048. /* reset write */
  2049. rb_reset_tail(cpu_buffer, tail_page, tail, length);
  2050. return NULL;
  2051. }
  2052. static struct ring_buffer_event *
  2053. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  2054. unsigned long length, u64 ts,
  2055. u64 delta, int add_timestamp)
  2056. {
  2057. struct buffer_page *tail_page;
  2058. struct ring_buffer_event *event;
  2059. unsigned long tail, write;
  2060. /*
  2061. * If the time delta since the last event is too big to
  2062. * hold in the time field of the event, then we append a
  2063. * TIME EXTEND event ahead of the data event.
  2064. */
  2065. if (unlikely(add_timestamp))
  2066. length += RB_LEN_TIME_EXTEND;
  2067. tail_page = cpu_buffer->tail_page;
  2068. write = local_add_return(length, &tail_page->write);
  2069. /* set write to only the index of the write */
  2070. write &= RB_WRITE_MASK;
  2071. tail = write - length;
  2072. /*
  2073. * If this is the first commit on the page, then it has the same
  2074. * timestamp as the page itself.
  2075. */
  2076. if (!tail)
  2077. delta = 0;
  2078. /* See if we shot pass the end of this buffer page */
  2079. if (unlikely(write > BUF_PAGE_SIZE))
  2080. return rb_move_tail(cpu_buffer, length, tail,
  2081. tail_page, ts);
  2082. /* We reserved something on the buffer */
  2083. event = __rb_page_index(tail_page, tail);
  2084. kmemcheck_annotate_bitfield(event, bitfield);
  2085. rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
  2086. local_inc(&tail_page->entries);
  2087. /*
  2088. * If this is the first commit on the page, then update
  2089. * its timestamp.
  2090. */
  2091. if (!tail)
  2092. tail_page->page->time_stamp = ts;
  2093. /* account for these added bytes */
  2094. local_add(length, &cpu_buffer->entries_bytes);
  2095. return event;
  2096. }
  2097. static inline int
  2098. rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
  2099. struct ring_buffer_event *event)
  2100. {
  2101. unsigned long new_index, old_index;
  2102. struct buffer_page *bpage;
  2103. unsigned long index;
  2104. unsigned long addr;
  2105. new_index = rb_event_index(event);
  2106. old_index = new_index + rb_event_ts_length(event);
  2107. addr = (unsigned long)event;
  2108. addr &= PAGE_MASK;
  2109. bpage = cpu_buffer->tail_page;
  2110. if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
  2111. unsigned long write_mask =
  2112. local_read(&bpage->write) & ~RB_WRITE_MASK;
  2113. unsigned long event_length = rb_event_length(event);
  2114. /*
  2115. * This is on the tail page. It is possible that
  2116. * a write could come in and move the tail page
  2117. * and write to the next page. That is fine
  2118. * because we just shorten what is on this page.
  2119. */
  2120. old_index += write_mask;
  2121. new_index += write_mask;
  2122. index = local_cmpxchg(&bpage->write, old_index, new_index);
  2123. if (index == old_index) {
  2124. /* update counters */
  2125. local_sub(event_length, &cpu_buffer->entries_bytes);
  2126. return 1;
  2127. }
  2128. }
  2129. /* could not discard */
  2130. return 0;
  2131. }
  2132. static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2133. {
  2134. local_inc(&cpu_buffer->committing);
  2135. local_inc(&cpu_buffer->commits);
  2136. }
  2137. static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
  2138. {
  2139. unsigned long commits;
  2140. if (RB_WARN_ON(cpu_buffer,
  2141. !local_read(&cpu_buffer->committing)))
  2142. return;
  2143. again:
  2144. commits = local_read(&cpu_buffer->commits);
  2145. /* synchronize with interrupts */
  2146. barrier();
  2147. if (local_read(&cpu_buffer->committing) == 1)
  2148. rb_set_commit_to_write(cpu_buffer);
  2149. local_dec(&cpu_buffer->committing);
  2150. /* synchronize with interrupts */
  2151. barrier();
  2152. /*
  2153. * Need to account for interrupts coming in between the
  2154. * updating of the commit page and the clearing of the
  2155. * committing counter.
  2156. */
  2157. if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
  2158. !local_read(&cpu_buffer->committing)) {
  2159. local_inc(&cpu_buffer->committing);
  2160. goto again;
  2161. }
  2162. }
  2163. static struct ring_buffer_event *
  2164. rb_reserve_next_event(struct ring_buffer *buffer,
  2165. struct ring_buffer_per_cpu *cpu_buffer,
  2166. unsigned long length)
  2167. {
  2168. struct ring_buffer_event *event;
  2169. u64 ts, delta;
  2170. int nr_loops = 0;
  2171. int add_timestamp;
  2172. u64 diff;
  2173. rb_start_commit(cpu_buffer);
  2174. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  2175. /*
  2176. * Due to the ability to swap a cpu buffer from a buffer
  2177. * it is possible it was swapped before we committed.
  2178. * (committing stops a swap). We check for it here and
  2179. * if it happened, we have to fail the write.
  2180. */
  2181. barrier();
  2182. if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
  2183. local_dec(&cpu_buffer->committing);
  2184. local_dec(&cpu_buffer->commits);
  2185. return NULL;
  2186. }
  2187. #endif
  2188. length = rb_calculate_event_length(length);
  2189. again:
  2190. add_timestamp = 0;
  2191. delta = 0;
  2192. /*
  2193. * We allow for interrupts to reenter here and do a trace.
  2194. * If one does, it will cause this original code to loop
  2195. * back here. Even with heavy interrupts happening, this
  2196. * should only happen a few times in a row. If this happens
  2197. * 1000 times in a row, there must be either an interrupt
  2198. * storm or we have something buggy.
  2199. * Bail!
  2200. */
  2201. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  2202. goto out_fail;
  2203. ts = rb_time_stamp(cpu_buffer->buffer);
  2204. diff = ts - cpu_buffer->write_stamp;
  2205. /* make sure this diff is calculated here */
  2206. barrier();
  2207. /* Did the write stamp get updated already? */
  2208. if (likely(ts >= cpu_buffer->write_stamp)) {
  2209. delta = diff;
  2210. if (unlikely(test_time_stamp(delta))) {
  2211. int local_clock_stable = 1;
  2212. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  2213. local_clock_stable = sched_clock_stable();
  2214. #endif
  2215. WARN_ONCE(delta > (1ULL << 59),
  2216. KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
  2217. (unsigned long long)delta,
  2218. (unsigned long long)ts,
  2219. (unsigned long long)cpu_buffer->write_stamp,
  2220. local_clock_stable ? "" :
  2221. "If you just came from a suspend/resume,\n"
  2222. "please switch to the trace global clock:\n"
  2223. " echo global > /sys/kernel/debug/tracing/trace_clock\n");
  2224. add_timestamp = 1;
  2225. }
  2226. }
  2227. event = __rb_reserve_next(cpu_buffer, length, ts,
  2228. delta, add_timestamp);
  2229. if (unlikely(PTR_ERR(event) == -EAGAIN))
  2230. goto again;
  2231. if (!event)
  2232. goto out_fail;
  2233. return event;
  2234. out_fail:
  2235. rb_end_commit(cpu_buffer);
  2236. return NULL;
  2237. }
  2238. #ifdef CONFIG_TRACING
  2239. /*
  2240. * The lock and unlock are done within a preempt disable section.
  2241. * The current_context per_cpu variable can only be modified
  2242. * by the current task between lock and unlock. But it can
  2243. * be modified more than once via an interrupt. To pass this
  2244. * information from the lock to the unlock without having to
  2245. * access the 'in_interrupt()' functions again (which do show
  2246. * a bit of overhead in something as critical as function tracing,
  2247. * we use a bitmask trick.
  2248. *
  2249. * bit 0 = NMI context
  2250. * bit 1 = IRQ context
  2251. * bit 2 = SoftIRQ context
  2252. * bit 3 = normal context.
  2253. *
  2254. * This works because this is the order of contexts that can
  2255. * preempt other contexts. A SoftIRQ never preempts an IRQ
  2256. * context.
  2257. *
  2258. * When the context is determined, the corresponding bit is
  2259. * checked and set (if it was set, then a recursion of that context
  2260. * happened).
  2261. *
  2262. * On unlock, we need to clear this bit. To do so, just subtract
  2263. * 1 from the current_context and AND it to itself.
  2264. *
  2265. * (binary)
  2266. * 101 - 1 = 100
  2267. * 101 & 100 = 100 (clearing bit zero)
  2268. *
  2269. * 1010 - 1 = 1001
  2270. * 1010 & 1001 = 1000 (clearing bit 1)
  2271. *
  2272. * The least significant bit can be cleared this way, and it
  2273. * just so happens that it is the same bit corresponding to
  2274. * the current context.
  2275. */
  2276. static DEFINE_PER_CPU(unsigned int, current_context);
  2277. static __always_inline int trace_recursive_lock(void)
  2278. {
  2279. unsigned int val = this_cpu_read(current_context);
  2280. int bit;
  2281. if (in_interrupt()) {
  2282. if (in_nmi())
  2283. bit = 0;
  2284. else if (in_irq())
  2285. bit = 1;
  2286. else
  2287. bit = 2;
  2288. } else
  2289. bit = 3;
  2290. if (unlikely(val & (1 << bit)))
  2291. return 1;
  2292. val |= (1 << bit);
  2293. this_cpu_write(current_context, val);
  2294. return 0;
  2295. }
  2296. static __always_inline void trace_recursive_unlock(void)
  2297. {
  2298. unsigned int val = this_cpu_read(current_context);
  2299. val--;
  2300. val &= this_cpu_read(current_context);
  2301. this_cpu_write(current_context, val);
  2302. }
  2303. #else
  2304. #define trace_recursive_lock() (0)
  2305. #define trace_recursive_unlock() do { } while (0)
  2306. #endif
  2307. /**
  2308. * ring_buffer_lock_reserve - reserve a part of the buffer
  2309. * @buffer: the ring buffer to reserve from
  2310. * @length: the length of the data to reserve (excluding event header)
  2311. *
  2312. * Returns a reseverd event on the ring buffer to copy directly to.
  2313. * The user of this interface will need to get the body to write into
  2314. * and can use the ring_buffer_event_data() interface.
  2315. *
  2316. * The length is the length of the data needed, not the event length
  2317. * which also includes the event header.
  2318. *
  2319. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  2320. * If NULL is returned, then nothing has been allocated or locked.
  2321. */
  2322. struct ring_buffer_event *
  2323. ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
  2324. {
  2325. struct ring_buffer_per_cpu *cpu_buffer;
  2326. struct ring_buffer_event *event;
  2327. int cpu;
  2328. if (ring_buffer_flags != RB_BUFFERS_ON)
  2329. return NULL;
  2330. /* If we are tracing schedule, we don't want to recurse */
  2331. preempt_disable_notrace();
  2332. if (atomic_read(&buffer->record_disabled))
  2333. goto out_nocheck;
  2334. if (trace_recursive_lock())
  2335. goto out_nocheck;
  2336. cpu = raw_smp_processor_id();
  2337. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2338. goto out;
  2339. cpu_buffer = buffer->buffers[cpu];
  2340. if (atomic_read(&cpu_buffer->record_disabled))
  2341. goto out;
  2342. if (length > BUF_MAX_DATA_SIZE)
  2343. goto out;
  2344. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2345. if (!event)
  2346. goto out;
  2347. return event;
  2348. out:
  2349. trace_recursive_unlock();
  2350. out_nocheck:
  2351. preempt_enable_notrace();
  2352. return NULL;
  2353. }
  2354. EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
  2355. static void
  2356. rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2357. struct ring_buffer_event *event)
  2358. {
  2359. u64 delta;
  2360. /*
  2361. * The event first in the commit queue updates the
  2362. * time stamp.
  2363. */
  2364. if (rb_event_is_commit(cpu_buffer, event)) {
  2365. /*
  2366. * A commit event that is first on a page
  2367. * updates the write timestamp with the page stamp
  2368. */
  2369. if (!rb_event_index(event))
  2370. cpu_buffer->write_stamp =
  2371. cpu_buffer->commit_page->page->time_stamp;
  2372. else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
  2373. delta = event->array[0];
  2374. delta <<= TS_SHIFT;
  2375. delta += event->time_delta;
  2376. cpu_buffer->write_stamp += delta;
  2377. } else
  2378. cpu_buffer->write_stamp += event->time_delta;
  2379. }
  2380. }
  2381. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  2382. struct ring_buffer_event *event)
  2383. {
  2384. local_inc(&cpu_buffer->entries);
  2385. rb_update_write_stamp(cpu_buffer, event);
  2386. rb_end_commit(cpu_buffer);
  2387. }
  2388. static __always_inline void
  2389. rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
  2390. {
  2391. if (buffer->irq_work.waiters_pending) {
  2392. buffer->irq_work.waiters_pending = false;
  2393. /* irq_work_queue() supplies it's own memory barriers */
  2394. irq_work_queue(&buffer->irq_work.work);
  2395. }
  2396. if (cpu_buffer->irq_work.waiters_pending) {
  2397. cpu_buffer->irq_work.waiters_pending = false;
  2398. /* irq_work_queue() supplies it's own memory barriers */
  2399. irq_work_queue(&cpu_buffer->irq_work.work);
  2400. }
  2401. }
  2402. /**
  2403. * ring_buffer_unlock_commit - commit a reserved
  2404. * @buffer: The buffer to commit to
  2405. * @event: The event pointer to commit.
  2406. *
  2407. * This commits the data to the ring buffer, and releases any locks held.
  2408. *
  2409. * Must be paired with ring_buffer_lock_reserve.
  2410. */
  2411. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  2412. struct ring_buffer_event *event)
  2413. {
  2414. struct ring_buffer_per_cpu *cpu_buffer;
  2415. int cpu = raw_smp_processor_id();
  2416. cpu_buffer = buffer->buffers[cpu];
  2417. rb_commit(cpu_buffer, event);
  2418. rb_wakeups(buffer, cpu_buffer);
  2419. trace_recursive_unlock();
  2420. preempt_enable_notrace();
  2421. return 0;
  2422. }
  2423. EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
  2424. static inline void rb_event_discard(struct ring_buffer_event *event)
  2425. {
  2426. if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
  2427. event = skip_time_extend(event);
  2428. /* array[0] holds the actual length for the discarded event */
  2429. event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
  2430. event->type_len = RINGBUF_TYPE_PADDING;
  2431. /* time delta must be non zero */
  2432. if (!event->time_delta)
  2433. event->time_delta = 1;
  2434. }
  2435. /*
  2436. * Decrement the entries to the page that an event is on.
  2437. * The event does not even need to exist, only the pointer
  2438. * to the page it is on. This may only be called before the commit
  2439. * takes place.
  2440. */
  2441. static inline void
  2442. rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
  2443. struct ring_buffer_event *event)
  2444. {
  2445. unsigned long addr = (unsigned long)event;
  2446. struct buffer_page *bpage = cpu_buffer->commit_page;
  2447. struct buffer_page *start;
  2448. addr &= PAGE_MASK;
  2449. /* Do the likely case first */
  2450. if (likely(bpage->page == (void *)addr)) {
  2451. local_dec(&bpage->entries);
  2452. return;
  2453. }
  2454. /*
  2455. * Because the commit page may be on the reader page we
  2456. * start with the next page and check the end loop there.
  2457. */
  2458. rb_inc_page(cpu_buffer, &bpage);
  2459. start = bpage;
  2460. do {
  2461. if (bpage->page == (void *)addr) {
  2462. local_dec(&bpage->entries);
  2463. return;
  2464. }
  2465. rb_inc_page(cpu_buffer, &bpage);
  2466. } while (bpage != start);
  2467. /* commit not part of this buffer?? */
  2468. RB_WARN_ON(cpu_buffer, 1);
  2469. }
  2470. /**
  2471. * ring_buffer_commit_discard - discard an event that has not been committed
  2472. * @buffer: the ring buffer
  2473. * @event: non committed event to discard
  2474. *
  2475. * Sometimes an event that is in the ring buffer needs to be ignored.
  2476. * This function lets the user discard an event in the ring buffer
  2477. * and then that event will not be read later.
  2478. *
  2479. * This function only works if it is called before the the item has been
  2480. * committed. It will try to free the event from the ring buffer
  2481. * if another event has not been added behind it.
  2482. *
  2483. * If another event has been added behind it, it will set the event
  2484. * up as discarded, and perform the commit.
  2485. *
  2486. * If this function is called, do not call ring_buffer_unlock_commit on
  2487. * the event.
  2488. */
  2489. void ring_buffer_discard_commit(struct ring_buffer *buffer,
  2490. struct ring_buffer_event *event)
  2491. {
  2492. struct ring_buffer_per_cpu *cpu_buffer;
  2493. int cpu;
  2494. /* The event is discarded regardless */
  2495. rb_event_discard(event);
  2496. cpu = smp_processor_id();
  2497. cpu_buffer = buffer->buffers[cpu];
  2498. /*
  2499. * This must only be called if the event has not been
  2500. * committed yet. Thus we can assume that preemption
  2501. * is still disabled.
  2502. */
  2503. RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
  2504. rb_decrement_entry(cpu_buffer, event);
  2505. if (rb_try_to_discard(cpu_buffer, event))
  2506. goto out;
  2507. /*
  2508. * The commit is still visible by the reader, so we
  2509. * must still update the timestamp.
  2510. */
  2511. rb_update_write_stamp(cpu_buffer, event);
  2512. out:
  2513. rb_end_commit(cpu_buffer);
  2514. trace_recursive_unlock();
  2515. preempt_enable_notrace();
  2516. }
  2517. EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
  2518. /**
  2519. * ring_buffer_write - write data to the buffer without reserving
  2520. * @buffer: The ring buffer to write to.
  2521. * @length: The length of the data being written (excluding the event header)
  2522. * @data: The data to write to the buffer.
  2523. *
  2524. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  2525. * one function. If you already have the data to write to the buffer, it
  2526. * may be easier to simply call this function.
  2527. *
  2528. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  2529. * and not the length of the event which would hold the header.
  2530. */
  2531. int ring_buffer_write(struct ring_buffer *buffer,
  2532. unsigned long length,
  2533. void *data)
  2534. {
  2535. struct ring_buffer_per_cpu *cpu_buffer;
  2536. struct ring_buffer_event *event;
  2537. void *body;
  2538. int ret = -EBUSY;
  2539. int cpu;
  2540. if (ring_buffer_flags != RB_BUFFERS_ON)
  2541. return -EBUSY;
  2542. preempt_disable_notrace();
  2543. if (atomic_read(&buffer->record_disabled))
  2544. goto out;
  2545. cpu = raw_smp_processor_id();
  2546. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2547. goto out;
  2548. cpu_buffer = buffer->buffers[cpu];
  2549. if (atomic_read(&cpu_buffer->record_disabled))
  2550. goto out;
  2551. if (length > BUF_MAX_DATA_SIZE)
  2552. goto out;
  2553. event = rb_reserve_next_event(buffer, cpu_buffer, length);
  2554. if (!event)
  2555. goto out;
  2556. body = rb_event_data(event);
  2557. memcpy(body, data, length);
  2558. rb_commit(cpu_buffer, event);
  2559. rb_wakeups(buffer, cpu_buffer);
  2560. ret = 0;
  2561. out:
  2562. preempt_enable_notrace();
  2563. return ret;
  2564. }
  2565. EXPORT_SYMBOL_GPL(ring_buffer_write);
  2566. static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  2567. {
  2568. struct buffer_page *reader = cpu_buffer->reader_page;
  2569. struct buffer_page *head = rb_set_head_page(cpu_buffer);
  2570. struct buffer_page *commit = cpu_buffer->commit_page;
  2571. /* In case of error, head will be NULL */
  2572. if (unlikely(!head))
  2573. return 1;
  2574. return reader->read == rb_page_commit(reader) &&
  2575. (commit == reader ||
  2576. (commit == head &&
  2577. head->read == rb_page_commit(commit)));
  2578. }
  2579. /**
  2580. * ring_buffer_record_disable - stop all writes into the buffer
  2581. * @buffer: The ring buffer to stop writes to.
  2582. *
  2583. * This prevents all writes to the buffer. Any attempt to write
  2584. * to the buffer after this will fail and return NULL.
  2585. *
  2586. * The caller should call synchronize_sched() after this.
  2587. */
  2588. void ring_buffer_record_disable(struct ring_buffer *buffer)
  2589. {
  2590. atomic_inc(&buffer->record_disabled);
  2591. }
  2592. EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
  2593. /**
  2594. * ring_buffer_record_enable - enable writes to the buffer
  2595. * @buffer: The ring buffer to enable writes
  2596. *
  2597. * Note, multiple disables will need the same number of enables
  2598. * to truly enable the writing (much like preempt_disable).
  2599. */
  2600. void ring_buffer_record_enable(struct ring_buffer *buffer)
  2601. {
  2602. atomic_dec(&buffer->record_disabled);
  2603. }
  2604. EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
  2605. /**
  2606. * ring_buffer_record_off - stop all writes into the buffer
  2607. * @buffer: The ring buffer to stop writes to.
  2608. *
  2609. * This prevents all writes to the buffer. Any attempt to write
  2610. * to the buffer after this will fail and return NULL.
  2611. *
  2612. * This is different than ring_buffer_record_disable() as
  2613. * it works like an on/off switch, where as the disable() version
  2614. * must be paired with a enable().
  2615. */
  2616. void ring_buffer_record_off(struct ring_buffer *buffer)
  2617. {
  2618. unsigned int rd;
  2619. unsigned int new_rd;
  2620. do {
  2621. rd = atomic_read(&buffer->record_disabled);
  2622. new_rd = rd | RB_BUFFER_OFF;
  2623. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2624. }
  2625. EXPORT_SYMBOL_GPL(ring_buffer_record_off);
  2626. /**
  2627. * ring_buffer_record_on - restart writes into the buffer
  2628. * @buffer: The ring buffer to start writes to.
  2629. *
  2630. * This enables all writes to the buffer that was disabled by
  2631. * ring_buffer_record_off().
  2632. *
  2633. * This is different than ring_buffer_record_enable() as
  2634. * it works like an on/off switch, where as the enable() version
  2635. * must be paired with a disable().
  2636. */
  2637. void ring_buffer_record_on(struct ring_buffer *buffer)
  2638. {
  2639. unsigned int rd;
  2640. unsigned int new_rd;
  2641. do {
  2642. rd = atomic_read(&buffer->record_disabled);
  2643. new_rd = rd & ~RB_BUFFER_OFF;
  2644. } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
  2645. }
  2646. EXPORT_SYMBOL_GPL(ring_buffer_record_on);
  2647. /**
  2648. * ring_buffer_record_is_on - return true if the ring buffer can write
  2649. * @buffer: The ring buffer to see if write is enabled
  2650. *
  2651. * Returns true if the ring buffer is in a state that it accepts writes.
  2652. */
  2653. int ring_buffer_record_is_on(struct ring_buffer *buffer)
  2654. {
  2655. return !atomic_read(&buffer->record_disabled);
  2656. }
  2657. /**
  2658. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  2659. * @buffer: The ring buffer to stop writes to.
  2660. * @cpu: The CPU buffer to stop
  2661. *
  2662. * This prevents all writes to the buffer. Any attempt to write
  2663. * to the buffer after this will fail and return NULL.
  2664. *
  2665. * The caller should call synchronize_sched() after this.
  2666. */
  2667. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  2668. {
  2669. struct ring_buffer_per_cpu *cpu_buffer;
  2670. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2671. return;
  2672. cpu_buffer = buffer->buffers[cpu];
  2673. atomic_inc(&cpu_buffer->record_disabled);
  2674. }
  2675. EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
  2676. /**
  2677. * ring_buffer_record_enable_cpu - enable writes to the buffer
  2678. * @buffer: The ring buffer to enable writes
  2679. * @cpu: The CPU to enable.
  2680. *
  2681. * Note, multiple disables will need the same number of enables
  2682. * to truly enable the writing (much like preempt_disable).
  2683. */
  2684. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  2685. {
  2686. struct ring_buffer_per_cpu *cpu_buffer;
  2687. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2688. return;
  2689. cpu_buffer = buffer->buffers[cpu];
  2690. atomic_dec(&cpu_buffer->record_disabled);
  2691. }
  2692. EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
  2693. /*
  2694. * The total entries in the ring buffer is the running counter
  2695. * of entries entered into the ring buffer, minus the sum of
  2696. * the entries read from the ring buffer and the number of
  2697. * entries that were overwritten.
  2698. */
  2699. static inline unsigned long
  2700. rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
  2701. {
  2702. return local_read(&cpu_buffer->entries) -
  2703. (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
  2704. }
  2705. /**
  2706. * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
  2707. * @buffer: The ring buffer
  2708. * @cpu: The per CPU buffer to read from.
  2709. */
  2710. u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
  2711. {
  2712. unsigned long flags;
  2713. struct ring_buffer_per_cpu *cpu_buffer;
  2714. struct buffer_page *bpage;
  2715. u64 ret = 0;
  2716. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2717. return 0;
  2718. cpu_buffer = buffer->buffers[cpu];
  2719. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2720. /*
  2721. * if the tail is on reader_page, oldest time stamp is on the reader
  2722. * page
  2723. */
  2724. if (cpu_buffer->tail_page == cpu_buffer->reader_page)
  2725. bpage = cpu_buffer->reader_page;
  2726. else
  2727. bpage = rb_set_head_page(cpu_buffer);
  2728. if (bpage)
  2729. ret = bpage->page->time_stamp;
  2730. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2731. return ret;
  2732. }
  2733. EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
  2734. /**
  2735. * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
  2736. * @buffer: The ring buffer
  2737. * @cpu: The per CPU buffer to read from.
  2738. */
  2739. unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
  2740. {
  2741. struct ring_buffer_per_cpu *cpu_buffer;
  2742. unsigned long ret;
  2743. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2744. return 0;
  2745. cpu_buffer = buffer->buffers[cpu];
  2746. ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
  2747. return ret;
  2748. }
  2749. EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
  2750. /**
  2751. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  2752. * @buffer: The ring buffer
  2753. * @cpu: The per CPU buffer to get the entries from.
  2754. */
  2755. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  2756. {
  2757. struct ring_buffer_per_cpu *cpu_buffer;
  2758. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2759. return 0;
  2760. cpu_buffer = buffer->buffers[cpu];
  2761. return rb_num_of_entries(cpu_buffer);
  2762. }
  2763. EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
  2764. /**
  2765. * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
  2766. * buffer wrapping around (only if RB_FL_OVERWRITE is on).
  2767. * @buffer: The ring buffer
  2768. * @cpu: The per CPU buffer to get the number of overruns from
  2769. */
  2770. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2771. {
  2772. struct ring_buffer_per_cpu *cpu_buffer;
  2773. unsigned long ret;
  2774. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2775. return 0;
  2776. cpu_buffer = buffer->buffers[cpu];
  2777. ret = local_read(&cpu_buffer->overrun);
  2778. return ret;
  2779. }
  2780. EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
  2781. /**
  2782. * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
  2783. * commits failing due to the buffer wrapping around while there are uncommitted
  2784. * events, such as during an interrupt storm.
  2785. * @buffer: The ring buffer
  2786. * @cpu: The per CPU buffer to get the number of overruns from
  2787. */
  2788. unsigned long
  2789. ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
  2790. {
  2791. struct ring_buffer_per_cpu *cpu_buffer;
  2792. unsigned long ret;
  2793. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2794. return 0;
  2795. cpu_buffer = buffer->buffers[cpu];
  2796. ret = local_read(&cpu_buffer->commit_overrun);
  2797. return ret;
  2798. }
  2799. EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
  2800. /**
  2801. * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
  2802. * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
  2803. * @buffer: The ring buffer
  2804. * @cpu: The per CPU buffer to get the number of overruns from
  2805. */
  2806. unsigned long
  2807. ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
  2808. {
  2809. struct ring_buffer_per_cpu *cpu_buffer;
  2810. unsigned long ret;
  2811. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2812. return 0;
  2813. cpu_buffer = buffer->buffers[cpu];
  2814. ret = local_read(&cpu_buffer->dropped_events);
  2815. return ret;
  2816. }
  2817. EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
  2818. /**
  2819. * ring_buffer_read_events_cpu - get the number of events successfully read
  2820. * @buffer: The ring buffer
  2821. * @cpu: The per CPU buffer to get the number of events read
  2822. */
  2823. unsigned long
  2824. ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
  2825. {
  2826. struct ring_buffer_per_cpu *cpu_buffer;
  2827. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  2828. return 0;
  2829. cpu_buffer = buffer->buffers[cpu];
  2830. return cpu_buffer->read;
  2831. }
  2832. EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
  2833. /**
  2834. * ring_buffer_entries - get the number of entries in a buffer
  2835. * @buffer: The ring buffer
  2836. *
  2837. * Returns the total number of entries in the ring buffer
  2838. * (all CPU entries)
  2839. */
  2840. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  2841. {
  2842. struct ring_buffer_per_cpu *cpu_buffer;
  2843. unsigned long entries = 0;
  2844. int cpu;
  2845. /* if you care about this being correct, lock the buffer */
  2846. for_each_buffer_cpu(buffer, cpu) {
  2847. cpu_buffer = buffer->buffers[cpu];
  2848. entries += rb_num_of_entries(cpu_buffer);
  2849. }
  2850. return entries;
  2851. }
  2852. EXPORT_SYMBOL_GPL(ring_buffer_entries);
  2853. /**
  2854. * ring_buffer_overruns - get the number of overruns in buffer
  2855. * @buffer: The ring buffer
  2856. *
  2857. * Returns the total number of overruns in the ring buffer
  2858. * (all CPU entries)
  2859. */
  2860. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  2861. {
  2862. struct ring_buffer_per_cpu *cpu_buffer;
  2863. unsigned long overruns = 0;
  2864. int cpu;
  2865. /* if you care about this being correct, lock the buffer */
  2866. for_each_buffer_cpu(buffer, cpu) {
  2867. cpu_buffer = buffer->buffers[cpu];
  2868. overruns += local_read(&cpu_buffer->overrun);
  2869. }
  2870. return overruns;
  2871. }
  2872. EXPORT_SYMBOL_GPL(ring_buffer_overruns);
  2873. static void rb_iter_reset(struct ring_buffer_iter *iter)
  2874. {
  2875. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  2876. /* Iterator usage is expected to have record disabled */
  2877. iter->head_page = cpu_buffer->reader_page;
  2878. iter->head = cpu_buffer->reader_page->read;
  2879. iter->cache_reader_page = iter->head_page;
  2880. iter->cache_read = cpu_buffer->read;
  2881. if (iter->head)
  2882. iter->read_stamp = cpu_buffer->read_stamp;
  2883. else
  2884. iter->read_stamp = iter->head_page->page->time_stamp;
  2885. }
  2886. /**
  2887. * ring_buffer_iter_reset - reset an iterator
  2888. * @iter: The iterator to reset
  2889. *
  2890. * Resets the iterator, so that it will start from the beginning
  2891. * again.
  2892. */
  2893. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  2894. {
  2895. struct ring_buffer_per_cpu *cpu_buffer;
  2896. unsigned long flags;
  2897. if (!iter)
  2898. return;
  2899. cpu_buffer = iter->cpu_buffer;
  2900. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  2901. rb_iter_reset(iter);
  2902. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  2903. }
  2904. EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
  2905. /**
  2906. * ring_buffer_iter_empty - check if an iterator has no more to read
  2907. * @iter: The iterator to check
  2908. */
  2909. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  2910. {
  2911. struct ring_buffer_per_cpu *cpu_buffer;
  2912. cpu_buffer = iter->cpu_buffer;
  2913. return iter->head_page == cpu_buffer->commit_page &&
  2914. iter->head == rb_commit_index(cpu_buffer);
  2915. }
  2916. EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
  2917. static void
  2918. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  2919. struct ring_buffer_event *event)
  2920. {
  2921. u64 delta;
  2922. switch (event->type_len) {
  2923. case RINGBUF_TYPE_PADDING:
  2924. return;
  2925. case RINGBUF_TYPE_TIME_EXTEND:
  2926. delta = event->array[0];
  2927. delta <<= TS_SHIFT;
  2928. delta += event->time_delta;
  2929. cpu_buffer->read_stamp += delta;
  2930. return;
  2931. case RINGBUF_TYPE_TIME_STAMP:
  2932. /* FIXME: not implemented */
  2933. return;
  2934. case RINGBUF_TYPE_DATA:
  2935. cpu_buffer->read_stamp += event->time_delta;
  2936. return;
  2937. default:
  2938. BUG();
  2939. }
  2940. return;
  2941. }
  2942. static void
  2943. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  2944. struct ring_buffer_event *event)
  2945. {
  2946. u64 delta;
  2947. switch (event->type_len) {
  2948. case RINGBUF_TYPE_PADDING:
  2949. return;
  2950. case RINGBUF_TYPE_TIME_EXTEND:
  2951. delta = event->array[0];
  2952. delta <<= TS_SHIFT;
  2953. delta += event->time_delta;
  2954. iter->read_stamp += delta;
  2955. return;
  2956. case RINGBUF_TYPE_TIME_STAMP:
  2957. /* FIXME: not implemented */
  2958. return;
  2959. case RINGBUF_TYPE_DATA:
  2960. iter->read_stamp += event->time_delta;
  2961. return;
  2962. default:
  2963. BUG();
  2964. }
  2965. return;
  2966. }
  2967. static struct buffer_page *
  2968. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  2969. {
  2970. struct buffer_page *reader = NULL;
  2971. unsigned long overwrite;
  2972. unsigned long flags;
  2973. int nr_loops = 0;
  2974. int ret;
  2975. local_irq_save(flags);
  2976. arch_spin_lock(&cpu_buffer->lock);
  2977. again:
  2978. /*
  2979. * This should normally only loop twice. But because the
  2980. * start of the reader inserts an empty page, it causes
  2981. * a case where we will loop three times. There should be no
  2982. * reason to loop four times (that I know of).
  2983. */
  2984. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  2985. reader = NULL;
  2986. goto out;
  2987. }
  2988. reader = cpu_buffer->reader_page;
  2989. /* If there's more to read, return this page */
  2990. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  2991. goto out;
  2992. /* Never should we have an index greater than the size */
  2993. if (RB_WARN_ON(cpu_buffer,
  2994. cpu_buffer->reader_page->read > rb_page_size(reader)))
  2995. goto out;
  2996. /* check if we caught up to the tail */
  2997. reader = NULL;
  2998. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  2999. goto out;
  3000. /* Don't bother swapping if the ring buffer is empty */
  3001. if (rb_num_of_entries(cpu_buffer) == 0)
  3002. goto out;
  3003. /*
  3004. * Reset the reader page to size zero.
  3005. */
  3006. local_set(&cpu_buffer->reader_page->write, 0);
  3007. local_set(&cpu_buffer->reader_page->entries, 0);
  3008. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3009. cpu_buffer->reader_page->real_end = 0;
  3010. spin:
  3011. /*
  3012. * Splice the empty reader page into the list around the head.
  3013. */
  3014. reader = rb_set_head_page(cpu_buffer);
  3015. if (!reader)
  3016. goto out;
  3017. cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
  3018. cpu_buffer->reader_page->list.prev = reader->list.prev;
  3019. /*
  3020. * cpu_buffer->pages just needs to point to the buffer, it
  3021. * has no specific buffer page to point to. Lets move it out
  3022. * of our way so we don't accidentally swap it.
  3023. */
  3024. cpu_buffer->pages = reader->list.prev;
  3025. /* The reader page will be pointing to the new head */
  3026. rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
  3027. /*
  3028. * We want to make sure we read the overruns after we set up our
  3029. * pointers to the next object. The writer side does a
  3030. * cmpxchg to cross pages which acts as the mb on the writer
  3031. * side. Note, the reader will constantly fail the swap
  3032. * while the writer is updating the pointers, so this
  3033. * guarantees that the overwrite recorded here is the one we
  3034. * want to compare with the last_overrun.
  3035. */
  3036. smp_mb();
  3037. overwrite = local_read(&(cpu_buffer->overrun));
  3038. /*
  3039. * Here's the tricky part.
  3040. *
  3041. * We need to move the pointer past the header page.
  3042. * But we can only do that if a writer is not currently
  3043. * moving it. The page before the header page has the
  3044. * flag bit '1' set if it is pointing to the page we want.
  3045. * but if the writer is in the process of moving it
  3046. * than it will be '2' or already moved '0'.
  3047. */
  3048. ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
  3049. /*
  3050. * If we did not convert it, then we must try again.
  3051. */
  3052. if (!ret)
  3053. goto spin;
  3054. /*
  3055. * Yeah! We succeeded in replacing the page.
  3056. *
  3057. * Now make the new head point back to the reader page.
  3058. */
  3059. rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
  3060. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  3061. /* Finally update the reader page to the new head */
  3062. cpu_buffer->reader_page = reader;
  3063. rb_reset_reader_page(cpu_buffer);
  3064. if (overwrite != cpu_buffer->last_overrun) {
  3065. cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
  3066. cpu_buffer->last_overrun = overwrite;
  3067. }
  3068. goto again;
  3069. out:
  3070. arch_spin_unlock(&cpu_buffer->lock);
  3071. local_irq_restore(flags);
  3072. return reader;
  3073. }
  3074. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  3075. {
  3076. struct ring_buffer_event *event;
  3077. struct buffer_page *reader;
  3078. unsigned length;
  3079. reader = rb_get_reader_page(cpu_buffer);
  3080. /* This function should not be called when buffer is empty */
  3081. if (RB_WARN_ON(cpu_buffer, !reader))
  3082. return;
  3083. event = rb_reader_event(cpu_buffer);
  3084. if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
  3085. cpu_buffer->read++;
  3086. rb_update_read_stamp(cpu_buffer, event);
  3087. length = rb_event_length(event);
  3088. cpu_buffer->reader_page->read += length;
  3089. }
  3090. static void rb_advance_iter(struct ring_buffer_iter *iter)
  3091. {
  3092. struct ring_buffer_per_cpu *cpu_buffer;
  3093. struct ring_buffer_event *event;
  3094. unsigned length;
  3095. cpu_buffer = iter->cpu_buffer;
  3096. /*
  3097. * Check if we are at the end of the buffer.
  3098. */
  3099. if (iter->head >= rb_page_size(iter->head_page)) {
  3100. /* discarded commits can make the page empty */
  3101. if (iter->head_page == cpu_buffer->commit_page)
  3102. return;
  3103. rb_inc_iter(iter);
  3104. return;
  3105. }
  3106. event = rb_iter_head_event(iter);
  3107. length = rb_event_length(event);
  3108. /*
  3109. * This should not be called to advance the header if we are
  3110. * at the tail of the buffer.
  3111. */
  3112. if (RB_WARN_ON(cpu_buffer,
  3113. (iter->head_page == cpu_buffer->commit_page) &&
  3114. (iter->head + length > rb_commit_index(cpu_buffer))))
  3115. return;
  3116. rb_update_iter_read_stamp(iter, event);
  3117. iter->head += length;
  3118. /* check for end of page padding */
  3119. if ((iter->head >= rb_page_size(iter->head_page)) &&
  3120. (iter->head_page != cpu_buffer->commit_page))
  3121. rb_inc_iter(iter);
  3122. }
  3123. static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
  3124. {
  3125. return cpu_buffer->lost_events;
  3126. }
  3127. static struct ring_buffer_event *
  3128. rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
  3129. unsigned long *lost_events)
  3130. {
  3131. struct ring_buffer_event *event;
  3132. struct buffer_page *reader;
  3133. int nr_loops = 0;
  3134. again:
  3135. /*
  3136. * We repeat when a time extend is encountered.
  3137. * Since the time extend is always attached to a data event,
  3138. * we should never loop more than once.
  3139. * (We never hit the following condition more than twice).
  3140. */
  3141. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
  3142. return NULL;
  3143. reader = rb_get_reader_page(cpu_buffer);
  3144. if (!reader)
  3145. return NULL;
  3146. event = rb_reader_event(cpu_buffer);
  3147. switch (event->type_len) {
  3148. case RINGBUF_TYPE_PADDING:
  3149. if (rb_null_event(event))
  3150. RB_WARN_ON(cpu_buffer, 1);
  3151. /*
  3152. * Because the writer could be discarding every
  3153. * event it creates (which would probably be bad)
  3154. * if we were to go back to "again" then we may never
  3155. * catch up, and will trigger the warn on, or lock
  3156. * the box. Return the padding, and we will release
  3157. * the current locks, and try again.
  3158. */
  3159. return event;
  3160. case RINGBUF_TYPE_TIME_EXTEND:
  3161. /* Internal data, OK to advance */
  3162. rb_advance_reader(cpu_buffer);
  3163. goto again;
  3164. case RINGBUF_TYPE_TIME_STAMP:
  3165. /* FIXME: not implemented */
  3166. rb_advance_reader(cpu_buffer);
  3167. goto again;
  3168. case RINGBUF_TYPE_DATA:
  3169. if (ts) {
  3170. *ts = cpu_buffer->read_stamp + event->time_delta;
  3171. ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
  3172. cpu_buffer->cpu, ts);
  3173. }
  3174. if (lost_events)
  3175. *lost_events = rb_lost_events(cpu_buffer);
  3176. return event;
  3177. default:
  3178. BUG();
  3179. }
  3180. return NULL;
  3181. }
  3182. EXPORT_SYMBOL_GPL(ring_buffer_peek);
  3183. static struct ring_buffer_event *
  3184. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3185. {
  3186. struct ring_buffer *buffer;
  3187. struct ring_buffer_per_cpu *cpu_buffer;
  3188. struct ring_buffer_event *event;
  3189. int nr_loops = 0;
  3190. cpu_buffer = iter->cpu_buffer;
  3191. buffer = cpu_buffer->buffer;
  3192. /*
  3193. * Check if someone performed a consuming read to
  3194. * the buffer. A consuming read invalidates the iterator
  3195. * and we need to reset the iterator in this case.
  3196. */
  3197. if (unlikely(iter->cache_read != cpu_buffer->read ||
  3198. iter->cache_reader_page != cpu_buffer->reader_page))
  3199. rb_iter_reset(iter);
  3200. again:
  3201. if (ring_buffer_iter_empty(iter))
  3202. return NULL;
  3203. /*
  3204. * We repeat when a time extend is encountered or we hit
  3205. * the end of the page. Since the time extend is always attached
  3206. * to a data event, we should never loop more than three times.
  3207. * Once for going to next page, once on time extend, and
  3208. * finally once to get the event.
  3209. * (We never hit the following condition more than thrice).
  3210. */
  3211. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
  3212. return NULL;
  3213. if (rb_per_cpu_empty(cpu_buffer))
  3214. return NULL;
  3215. if (iter->head >= rb_page_size(iter->head_page)) {
  3216. rb_inc_iter(iter);
  3217. goto again;
  3218. }
  3219. event = rb_iter_head_event(iter);
  3220. switch (event->type_len) {
  3221. case RINGBUF_TYPE_PADDING:
  3222. if (rb_null_event(event)) {
  3223. rb_inc_iter(iter);
  3224. goto again;
  3225. }
  3226. rb_advance_iter(iter);
  3227. return event;
  3228. case RINGBUF_TYPE_TIME_EXTEND:
  3229. /* Internal data, OK to advance */
  3230. rb_advance_iter(iter);
  3231. goto again;
  3232. case RINGBUF_TYPE_TIME_STAMP:
  3233. /* FIXME: not implemented */
  3234. rb_advance_iter(iter);
  3235. goto again;
  3236. case RINGBUF_TYPE_DATA:
  3237. if (ts) {
  3238. *ts = iter->read_stamp + event->time_delta;
  3239. ring_buffer_normalize_time_stamp(buffer,
  3240. cpu_buffer->cpu, ts);
  3241. }
  3242. return event;
  3243. default:
  3244. BUG();
  3245. }
  3246. return NULL;
  3247. }
  3248. EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
  3249. static inline int rb_ok_to_lock(void)
  3250. {
  3251. /*
  3252. * If an NMI die dumps out the content of the ring buffer
  3253. * do not grab locks. We also permanently disable the ring
  3254. * buffer too. A one time deal is all you get from reading
  3255. * the ring buffer from an NMI.
  3256. */
  3257. if (likely(!in_nmi()))
  3258. return 1;
  3259. tracing_off_permanent();
  3260. return 0;
  3261. }
  3262. /**
  3263. * ring_buffer_peek - peek at the next event to be read
  3264. * @buffer: The ring buffer to read
  3265. * @cpu: The cpu to peak at
  3266. * @ts: The timestamp counter of this event.
  3267. * @lost_events: a variable to store if events were lost (may be NULL)
  3268. *
  3269. * This will return the event that will be read next, but does
  3270. * not consume the data.
  3271. */
  3272. struct ring_buffer_event *
  3273. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
  3274. unsigned long *lost_events)
  3275. {
  3276. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3277. struct ring_buffer_event *event;
  3278. unsigned long flags;
  3279. int dolock;
  3280. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3281. return NULL;
  3282. dolock = rb_ok_to_lock();
  3283. again:
  3284. local_irq_save(flags);
  3285. if (dolock)
  3286. raw_spin_lock(&cpu_buffer->reader_lock);
  3287. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3288. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3289. rb_advance_reader(cpu_buffer);
  3290. if (dolock)
  3291. raw_spin_unlock(&cpu_buffer->reader_lock);
  3292. local_irq_restore(flags);
  3293. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3294. goto again;
  3295. return event;
  3296. }
  3297. /**
  3298. * ring_buffer_iter_peek - peek at the next event to be read
  3299. * @iter: The ring buffer iterator
  3300. * @ts: The timestamp counter of this event.
  3301. *
  3302. * This will return the event that will be read next, but does
  3303. * not increment the iterator.
  3304. */
  3305. struct ring_buffer_event *
  3306. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  3307. {
  3308. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3309. struct ring_buffer_event *event;
  3310. unsigned long flags;
  3311. again:
  3312. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3313. event = rb_iter_peek(iter, ts);
  3314. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3315. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3316. goto again;
  3317. return event;
  3318. }
  3319. /**
  3320. * ring_buffer_consume - return an event and consume it
  3321. * @buffer: The ring buffer to get the next event from
  3322. * @cpu: the cpu to read the buffer from
  3323. * @ts: a variable to store the timestamp (may be NULL)
  3324. * @lost_events: a variable to store if events were lost (may be NULL)
  3325. *
  3326. * Returns the next event in the ring buffer, and that event is consumed.
  3327. * Meaning, that sequential reads will keep returning a different event,
  3328. * and eventually empty the ring buffer if the producer is slower.
  3329. */
  3330. struct ring_buffer_event *
  3331. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
  3332. unsigned long *lost_events)
  3333. {
  3334. struct ring_buffer_per_cpu *cpu_buffer;
  3335. struct ring_buffer_event *event = NULL;
  3336. unsigned long flags;
  3337. int dolock;
  3338. dolock = rb_ok_to_lock();
  3339. again:
  3340. /* might be called in atomic */
  3341. preempt_disable();
  3342. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3343. goto out;
  3344. cpu_buffer = buffer->buffers[cpu];
  3345. local_irq_save(flags);
  3346. if (dolock)
  3347. raw_spin_lock(&cpu_buffer->reader_lock);
  3348. event = rb_buffer_peek(cpu_buffer, ts, lost_events);
  3349. if (event) {
  3350. cpu_buffer->lost_events = 0;
  3351. rb_advance_reader(cpu_buffer);
  3352. }
  3353. if (dolock)
  3354. raw_spin_unlock(&cpu_buffer->reader_lock);
  3355. local_irq_restore(flags);
  3356. out:
  3357. preempt_enable();
  3358. if (event && event->type_len == RINGBUF_TYPE_PADDING)
  3359. goto again;
  3360. return event;
  3361. }
  3362. EXPORT_SYMBOL_GPL(ring_buffer_consume);
  3363. /**
  3364. * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
  3365. * @buffer: The ring buffer to read from
  3366. * @cpu: The cpu buffer to iterate over
  3367. *
  3368. * This performs the initial preparations necessary to iterate
  3369. * through the buffer. Memory is allocated, buffer recording
  3370. * is disabled, and the iterator pointer is returned to the caller.
  3371. *
  3372. * Disabling buffer recordng prevents the reading from being
  3373. * corrupted. This is not a consuming read, so a producer is not
  3374. * expected.
  3375. *
  3376. * After a sequence of ring_buffer_read_prepare calls, the user is
  3377. * expected to make at least one call to ring_buffer_read_prepare_sync.
  3378. * Afterwards, ring_buffer_read_start is invoked to get things going
  3379. * for real.
  3380. *
  3381. * This overall must be paired with ring_buffer_read_finish.
  3382. */
  3383. struct ring_buffer_iter *
  3384. ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
  3385. {
  3386. struct ring_buffer_per_cpu *cpu_buffer;
  3387. struct ring_buffer_iter *iter;
  3388. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3389. return NULL;
  3390. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  3391. if (!iter)
  3392. return NULL;
  3393. cpu_buffer = buffer->buffers[cpu];
  3394. iter->cpu_buffer = cpu_buffer;
  3395. atomic_inc(&buffer->resize_disabled);
  3396. atomic_inc(&cpu_buffer->record_disabled);
  3397. return iter;
  3398. }
  3399. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
  3400. /**
  3401. * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
  3402. *
  3403. * All previously invoked ring_buffer_read_prepare calls to prepare
  3404. * iterators will be synchronized. Afterwards, read_buffer_read_start
  3405. * calls on those iterators are allowed.
  3406. */
  3407. void
  3408. ring_buffer_read_prepare_sync(void)
  3409. {
  3410. synchronize_sched();
  3411. }
  3412. EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
  3413. /**
  3414. * ring_buffer_read_start - start a non consuming read of the buffer
  3415. * @iter: The iterator returned by ring_buffer_read_prepare
  3416. *
  3417. * This finalizes the startup of an iteration through the buffer.
  3418. * The iterator comes from a call to ring_buffer_read_prepare and
  3419. * an intervening ring_buffer_read_prepare_sync must have been
  3420. * performed.
  3421. *
  3422. * Must be paired with ring_buffer_read_finish.
  3423. */
  3424. void
  3425. ring_buffer_read_start(struct ring_buffer_iter *iter)
  3426. {
  3427. struct ring_buffer_per_cpu *cpu_buffer;
  3428. unsigned long flags;
  3429. if (!iter)
  3430. return;
  3431. cpu_buffer = iter->cpu_buffer;
  3432. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3433. arch_spin_lock(&cpu_buffer->lock);
  3434. rb_iter_reset(iter);
  3435. arch_spin_unlock(&cpu_buffer->lock);
  3436. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3437. }
  3438. EXPORT_SYMBOL_GPL(ring_buffer_read_start);
  3439. /**
  3440. * ring_buffer_read_finish - finish reading the iterator of the buffer
  3441. * @iter: The iterator retrieved by ring_buffer_start
  3442. *
  3443. * This re-enables the recording to the buffer, and frees the
  3444. * iterator.
  3445. */
  3446. void
  3447. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  3448. {
  3449. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3450. unsigned long flags;
  3451. /*
  3452. * Ring buffer is disabled from recording, here's a good place
  3453. * to check the integrity of the ring buffer.
  3454. * Must prevent readers from trying to read, as the check
  3455. * clears the HEAD page and readers require it.
  3456. */
  3457. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3458. rb_check_pages(cpu_buffer);
  3459. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3460. atomic_dec(&cpu_buffer->record_disabled);
  3461. atomic_dec(&cpu_buffer->buffer->resize_disabled);
  3462. kfree(iter);
  3463. }
  3464. EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
  3465. /**
  3466. * ring_buffer_read - read the next item in the ring buffer by the iterator
  3467. * @iter: The ring buffer iterator
  3468. * @ts: The time stamp of the event read.
  3469. *
  3470. * This reads the next event in the ring buffer and increments the iterator.
  3471. */
  3472. struct ring_buffer_event *
  3473. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  3474. {
  3475. struct ring_buffer_event *event;
  3476. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  3477. unsigned long flags;
  3478. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3479. again:
  3480. event = rb_iter_peek(iter, ts);
  3481. if (!event)
  3482. goto out;
  3483. if (event->type_len == RINGBUF_TYPE_PADDING)
  3484. goto again;
  3485. rb_advance_iter(iter);
  3486. out:
  3487. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3488. return event;
  3489. }
  3490. EXPORT_SYMBOL_GPL(ring_buffer_read);
  3491. /**
  3492. * ring_buffer_size - return the size of the ring buffer (in bytes)
  3493. * @buffer: The ring buffer.
  3494. */
  3495. unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
  3496. {
  3497. /*
  3498. * Earlier, this method returned
  3499. * BUF_PAGE_SIZE * buffer->nr_pages
  3500. * Since the nr_pages field is now removed, we have converted this to
  3501. * return the per cpu buffer value.
  3502. */
  3503. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3504. return 0;
  3505. return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
  3506. }
  3507. EXPORT_SYMBOL_GPL(ring_buffer_size);
  3508. static void
  3509. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  3510. {
  3511. rb_head_page_deactivate(cpu_buffer);
  3512. cpu_buffer->head_page
  3513. = list_entry(cpu_buffer->pages, struct buffer_page, list);
  3514. local_set(&cpu_buffer->head_page->write, 0);
  3515. local_set(&cpu_buffer->head_page->entries, 0);
  3516. local_set(&cpu_buffer->head_page->page->commit, 0);
  3517. cpu_buffer->head_page->read = 0;
  3518. cpu_buffer->tail_page = cpu_buffer->head_page;
  3519. cpu_buffer->commit_page = cpu_buffer->head_page;
  3520. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  3521. INIT_LIST_HEAD(&cpu_buffer->new_pages);
  3522. local_set(&cpu_buffer->reader_page->write, 0);
  3523. local_set(&cpu_buffer->reader_page->entries, 0);
  3524. local_set(&cpu_buffer->reader_page->page->commit, 0);
  3525. cpu_buffer->reader_page->read = 0;
  3526. local_set(&cpu_buffer->entries_bytes, 0);
  3527. local_set(&cpu_buffer->overrun, 0);
  3528. local_set(&cpu_buffer->commit_overrun, 0);
  3529. local_set(&cpu_buffer->dropped_events, 0);
  3530. local_set(&cpu_buffer->entries, 0);
  3531. local_set(&cpu_buffer->committing, 0);
  3532. local_set(&cpu_buffer->commits, 0);
  3533. cpu_buffer->read = 0;
  3534. cpu_buffer->read_bytes = 0;
  3535. cpu_buffer->write_stamp = 0;
  3536. cpu_buffer->read_stamp = 0;
  3537. cpu_buffer->lost_events = 0;
  3538. cpu_buffer->last_overrun = 0;
  3539. rb_head_page_activate(cpu_buffer);
  3540. }
  3541. /**
  3542. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  3543. * @buffer: The ring buffer to reset a per cpu buffer of
  3544. * @cpu: The CPU buffer to be reset
  3545. */
  3546. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  3547. {
  3548. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3549. unsigned long flags;
  3550. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3551. return;
  3552. atomic_inc(&buffer->resize_disabled);
  3553. atomic_inc(&cpu_buffer->record_disabled);
  3554. /* Make sure all commits have finished */
  3555. synchronize_sched();
  3556. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3557. if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
  3558. goto out;
  3559. arch_spin_lock(&cpu_buffer->lock);
  3560. rb_reset_cpu(cpu_buffer);
  3561. arch_spin_unlock(&cpu_buffer->lock);
  3562. out:
  3563. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3564. atomic_dec(&cpu_buffer->record_disabled);
  3565. atomic_dec(&buffer->resize_disabled);
  3566. }
  3567. EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
  3568. /**
  3569. * ring_buffer_reset - reset a ring buffer
  3570. * @buffer: The ring buffer to reset all cpu buffers
  3571. */
  3572. void ring_buffer_reset(struct ring_buffer *buffer)
  3573. {
  3574. int cpu;
  3575. for_each_buffer_cpu(buffer, cpu)
  3576. ring_buffer_reset_cpu(buffer, cpu);
  3577. }
  3578. EXPORT_SYMBOL_GPL(ring_buffer_reset);
  3579. /**
  3580. * rind_buffer_empty - is the ring buffer empty?
  3581. * @buffer: The ring buffer to test
  3582. */
  3583. int ring_buffer_empty(struct ring_buffer *buffer)
  3584. {
  3585. struct ring_buffer_per_cpu *cpu_buffer;
  3586. unsigned long flags;
  3587. int dolock;
  3588. int cpu;
  3589. int ret;
  3590. dolock = rb_ok_to_lock();
  3591. /* yes this is racy, but if you don't like the race, lock the buffer */
  3592. for_each_buffer_cpu(buffer, cpu) {
  3593. cpu_buffer = buffer->buffers[cpu];
  3594. local_irq_save(flags);
  3595. if (dolock)
  3596. raw_spin_lock(&cpu_buffer->reader_lock);
  3597. ret = rb_per_cpu_empty(cpu_buffer);
  3598. if (dolock)
  3599. raw_spin_unlock(&cpu_buffer->reader_lock);
  3600. local_irq_restore(flags);
  3601. if (!ret)
  3602. return 0;
  3603. }
  3604. return 1;
  3605. }
  3606. EXPORT_SYMBOL_GPL(ring_buffer_empty);
  3607. /**
  3608. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  3609. * @buffer: The ring buffer
  3610. * @cpu: The CPU buffer to test
  3611. */
  3612. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  3613. {
  3614. struct ring_buffer_per_cpu *cpu_buffer;
  3615. unsigned long flags;
  3616. int dolock;
  3617. int ret;
  3618. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3619. return 1;
  3620. dolock = rb_ok_to_lock();
  3621. cpu_buffer = buffer->buffers[cpu];
  3622. local_irq_save(flags);
  3623. if (dolock)
  3624. raw_spin_lock(&cpu_buffer->reader_lock);
  3625. ret = rb_per_cpu_empty(cpu_buffer);
  3626. if (dolock)
  3627. raw_spin_unlock(&cpu_buffer->reader_lock);
  3628. local_irq_restore(flags);
  3629. return ret;
  3630. }
  3631. EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
  3632. #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
  3633. /**
  3634. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  3635. * @buffer_a: One buffer to swap with
  3636. * @buffer_b: The other buffer to swap with
  3637. *
  3638. * This function is useful for tracers that want to take a "snapshot"
  3639. * of a CPU buffer and has another back up buffer lying around.
  3640. * it is expected that the tracer handles the cpu buffer not being
  3641. * used at the moment.
  3642. */
  3643. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  3644. struct ring_buffer *buffer_b, int cpu)
  3645. {
  3646. struct ring_buffer_per_cpu *cpu_buffer_a;
  3647. struct ring_buffer_per_cpu *cpu_buffer_b;
  3648. int ret = -EINVAL;
  3649. if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
  3650. !cpumask_test_cpu(cpu, buffer_b->cpumask))
  3651. goto out;
  3652. cpu_buffer_a = buffer_a->buffers[cpu];
  3653. cpu_buffer_b = buffer_b->buffers[cpu];
  3654. /* At least make sure the two buffers are somewhat the same */
  3655. if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
  3656. goto out;
  3657. ret = -EAGAIN;
  3658. if (ring_buffer_flags != RB_BUFFERS_ON)
  3659. goto out;
  3660. if (atomic_read(&buffer_a->record_disabled))
  3661. goto out;
  3662. if (atomic_read(&buffer_b->record_disabled))
  3663. goto out;
  3664. if (atomic_read(&cpu_buffer_a->record_disabled))
  3665. goto out;
  3666. if (atomic_read(&cpu_buffer_b->record_disabled))
  3667. goto out;
  3668. /*
  3669. * We can't do a synchronize_sched here because this
  3670. * function can be called in atomic context.
  3671. * Normally this will be called from the same CPU as cpu.
  3672. * If not it's up to the caller to protect this.
  3673. */
  3674. atomic_inc(&cpu_buffer_a->record_disabled);
  3675. atomic_inc(&cpu_buffer_b->record_disabled);
  3676. ret = -EBUSY;
  3677. if (local_read(&cpu_buffer_a->committing))
  3678. goto out_dec;
  3679. if (local_read(&cpu_buffer_b->committing))
  3680. goto out_dec;
  3681. buffer_a->buffers[cpu] = cpu_buffer_b;
  3682. buffer_b->buffers[cpu] = cpu_buffer_a;
  3683. cpu_buffer_b->buffer = buffer_a;
  3684. cpu_buffer_a->buffer = buffer_b;
  3685. ret = 0;
  3686. out_dec:
  3687. atomic_dec(&cpu_buffer_a->record_disabled);
  3688. atomic_dec(&cpu_buffer_b->record_disabled);
  3689. out:
  3690. return ret;
  3691. }
  3692. EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
  3693. #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
  3694. /**
  3695. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  3696. * @buffer: the buffer to allocate for.
  3697. * @cpu: the cpu buffer to allocate.
  3698. *
  3699. * This function is used in conjunction with ring_buffer_read_page.
  3700. * When reading a full page from the ring buffer, these functions
  3701. * can be used to speed up the process. The calling function should
  3702. * allocate a few pages first with this function. Then when it
  3703. * needs to get pages from the ring buffer, it passes the result
  3704. * of this function into ring_buffer_read_page, which will swap
  3705. * the page that was allocated, with the read page of the buffer.
  3706. *
  3707. * Returns:
  3708. * The page allocated, or NULL on error.
  3709. */
  3710. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
  3711. {
  3712. struct buffer_data_page *bpage;
  3713. struct page *page;
  3714. page = alloc_pages_node(cpu_to_node(cpu),
  3715. GFP_KERNEL | __GFP_NORETRY, 0);
  3716. if (!page)
  3717. return NULL;
  3718. bpage = page_address(page);
  3719. rb_init_page(bpage);
  3720. return bpage;
  3721. }
  3722. EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
  3723. /**
  3724. * ring_buffer_free_read_page - free an allocated read page
  3725. * @buffer: the buffer the page was allocate for
  3726. * @data: the page to free
  3727. *
  3728. * Free a page allocated from ring_buffer_alloc_read_page.
  3729. */
  3730. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  3731. {
  3732. free_page((unsigned long)data);
  3733. }
  3734. EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
  3735. /**
  3736. * ring_buffer_read_page - extract a page from the ring buffer
  3737. * @buffer: buffer to extract from
  3738. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  3739. * @len: amount to extract
  3740. * @cpu: the cpu of the buffer to extract
  3741. * @full: should the extraction only happen when the page is full.
  3742. *
  3743. * This function will pull out a page from the ring buffer and consume it.
  3744. * @data_page must be the address of the variable that was returned
  3745. * from ring_buffer_alloc_read_page. This is because the page might be used
  3746. * to swap with a page in the ring buffer.
  3747. *
  3748. * for example:
  3749. * rpage = ring_buffer_alloc_read_page(buffer, cpu);
  3750. * if (!rpage)
  3751. * return error;
  3752. * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
  3753. * if (ret >= 0)
  3754. * process_page(rpage, ret);
  3755. *
  3756. * When @full is set, the function will not return true unless
  3757. * the writer is off the reader page.
  3758. *
  3759. * Note: it is up to the calling functions to handle sleeps and wakeups.
  3760. * The ring buffer can be used anywhere in the kernel and can not
  3761. * blindly call wake_up. The layer that uses the ring buffer must be
  3762. * responsible for that.
  3763. *
  3764. * Returns:
  3765. * >=0 if data has been transferred, returns the offset of consumed data.
  3766. * <0 if no data has been transferred.
  3767. */
  3768. int ring_buffer_read_page(struct ring_buffer *buffer,
  3769. void **data_page, size_t len, int cpu, int full)
  3770. {
  3771. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  3772. struct ring_buffer_event *event;
  3773. struct buffer_data_page *bpage;
  3774. struct buffer_page *reader;
  3775. unsigned long missed_events;
  3776. unsigned long flags;
  3777. unsigned int commit;
  3778. unsigned int read;
  3779. u64 save_timestamp;
  3780. int ret = -1;
  3781. if (!cpumask_test_cpu(cpu, buffer->cpumask))
  3782. goto out;
  3783. /*
  3784. * If len is not big enough to hold the page header, then
  3785. * we can not copy anything.
  3786. */
  3787. if (len <= BUF_PAGE_HDR_SIZE)
  3788. goto out;
  3789. len -= BUF_PAGE_HDR_SIZE;
  3790. if (!data_page)
  3791. goto out;
  3792. bpage = *data_page;
  3793. if (!bpage)
  3794. goto out;
  3795. raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  3796. reader = rb_get_reader_page(cpu_buffer);
  3797. if (!reader)
  3798. goto out_unlock;
  3799. event = rb_reader_event(cpu_buffer);
  3800. read = reader->read;
  3801. commit = rb_page_commit(reader);
  3802. /* Check if any events were dropped */
  3803. missed_events = cpu_buffer->lost_events;
  3804. /*
  3805. * If this page has been partially read or
  3806. * if len is not big enough to read the rest of the page or
  3807. * a writer is still on the page, then
  3808. * we must copy the data from the page to the buffer.
  3809. * Otherwise, we can simply swap the page with the one passed in.
  3810. */
  3811. if (read || (len < (commit - read)) ||
  3812. cpu_buffer->reader_page == cpu_buffer->commit_page) {
  3813. struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
  3814. unsigned int rpos = read;
  3815. unsigned int pos = 0;
  3816. unsigned int size;
  3817. if (full)
  3818. goto out_unlock;
  3819. if (len > (commit - read))
  3820. len = (commit - read);
  3821. /* Always keep the time extend and data together */
  3822. size = rb_event_ts_length(event);
  3823. if (len < size)
  3824. goto out_unlock;
  3825. /* save the current timestamp, since the user will need it */
  3826. save_timestamp = cpu_buffer->read_stamp;
  3827. /* Need to copy one event at a time */
  3828. do {
  3829. /* We need the size of one event, because
  3830. * rb_advance_reader only advances by one event,
  3831. * whereas rb_event_ts_length may include the size of
  3832. * one or two events.
  3833. * We have already ensured there's enough space if this
  3834. * is a time extend. */
  3835. size = rb_event_length(event);
  3836. memcpy(bpage->data + pos, rpage->data + rpos, size);
  3837. len -= size;
  3838. rb_advance_reader(cpu_buffer);
  3839. rpos = reader->read;
  3840. pos += size;
  3841. if (rpos >= commit)
  3842. break;
  3843. event = rb_reader_event(cpu_buffer);
  3844. /* Always keep the time extend and data together */
  3845. size = rb_event_ts_length(event);
  3846. } while (len >= size);
  3847. /* update bpage */
  3848. local_set(&bpage->commit, pos);
  3849. bpage->time_stamp = save_timestamp;
  3850. /* we copied everything to the beginning */
  3851. read = 0;
  3852. } else {
  3853. /* update the entry counter */
  3854. cpu_buffer->read += rb_page_entries(reader);
  3855. cpu_buffer->read_bytes += BUF_PAGE_SIZE;
  3856. /* swap the pages */
  3857. rb_init_page(bpage);
  3858. bpage = reader->page;
  3859. reader->page = *data_page;
  3860. local_set(&reader->write, 0);
  3861. local_set(&reader->entries, 0);
  3862. reader->read = 0;
  3863. *data_page = bpage;
  3864. /*
  3865. * Use the real_end for the data size,
  3866. * This gives us a chance to store the lost events
  3867. * on the page.
  3868. */
  3869. if (reader->real_end)
  3870. local_set(&bpage->commit, reader->real_end);
  3871. }
  3872. ret = read;
  3873. cpu_buffer->lost_events = 0;
  3874. commit = local_read(&bpage->commit);
  3875. /*
  3876. * Set a flag in the commit field if we lost events
  3877. */
  3878. if (missed_events) {
  3879. /* If there is room at the end of the page to save the
  3880. * missed events, then record it there.
  3881. */
  3882. if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
  3883. memcpy(&bpage->data[commit], &missed_events,
  3884. sizeof(missed_events));
  3885. local_add(RB_MISSED_STORED, &bpage->commit);
  3886. commit += sizeof(missed_events);
  3887. }
  3888. local_add(RB_MISSED_EVENTS, &bpage->commit);
  3889. }
  3890. /*
  3891. * This page may be off to user land. Zero it out here.
  3892. */
  3893. if (commit < BUF_PAGE_SIZE)
  3894. memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
  3895. out_unlock:
  3896. raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  3897. out:
  3898. return ret;
  3899. }
  3900. EXPORT_SYMBOL_GPL(ring_buffer_read_page);
  3901. #ifdef CONFIG_HOTPLUG_CPU
  3902. static int rb_cpu_notify(struct notifier_block *self,
  3903. unsigned long action, void *hcpu)
  3904. {
  3905. struct ring_buffer *buffer =
  3906. container_of(self, struct ring_buffer, cpu_notify);
  3907. long cpu = (long)hcpu;
  3908. int cpu_i, nr_pages_same;
  3909. unsigned int nr_pages;
  3910. switch (action) {
  3911. case CPU_UP_PREPARE:
  3912. case CPU_UP_PREPARE_FROZEN:
  3913. if (cpumask_test_cpu(cpu, buffer->cpumask))
  3914. return NOTIFY_OK;
  3915. nr_pages = 0;
  3916. nr_pages_same = 1;
  3917. /* check if all cpu sizes are same */
  3918. for_each_buffer_cpu(buffer, cpu_i) {
  3919. /* fill in the size from first enabled cpu */
  3920. if (nr_pages == 0)
  3921. nr_pages = buffer->buffers[cpu_i]->nr_pages;
  3922. if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
  3923. nr_pages_same = 0;
  3924. break;
  3925. }
  3926. }
  3927. /* allocate minimum pages, user can later expand it */
  3928. if (!nr_pages_same)
  3929. nr_pages = 2;
  3930. buffer->buffers[cpu] =
  3931. rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
  3932. if (!buffer->buffers[cpu]) {
  3933. WARN(1, "failed to allocate ring buffer on CPU %ld\n",
  3934. cpu);
  3935. return NOTIFY_OK;
  3936. }
  3937. smp_wmb();
  3938. cpumask_set_cpu(cpu, buffer->cpumask);
  3939. break;
  3940. case CPU_DOWN_PREPARE:
  3941. case CPU_DOWN_PREPARE_FROZEN:
  3942. /*
  3943. * Do nothing.
  3944. * If we were to free the buffer, then the user would
  3945. * lose any trace that was in the buffer.
  3946. */
  3947. break;
  3948. default:
  3949. break;
  3950. }
  3951. return NOTIFY_OK;
  3952. }
  3953. #endif
  3954. #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
  3955. /*
  3956. * This is a basic integrity check of the ring buffer.
  3957. * Late in the boot cycle this test will run when configured in.
  3958. * It will kick off a thread per CPU that will go into a loop
  3959. * writing to the per cpu ring buffer various sizes of data.
  3960. * Some of the data will be large items, some small.
  3961. *
  3962. * Another thread is created that goes into a spin, sending out
  3963. * IPIs to the other CPUs to also write into the ring buffer.
  3964. * this is to test the nesting ability of the buffer.
  3965. *
  3966. * Basic stats are recorded and reported. If something in the
  3967. * ring buffer should happen that's not expected, a big warning
  3968. * is displayed and all ring buffers are disabled.
  3969. */
  3970. static struct task_struct *rb_threads[NR_CPUS] __initdata;
  3971. struct rb_test_data {
  3972. struct ring_buffer *buffer;
  3973. unsigned long events;
  3974. unsigned long bytes_written;
  3975. unsigned long bytes_alloc;
  3976. unsigned long bytes_dropped;
  3977. unsigned long events_nested;
  3978. unsigned long bytes_written_nested;
  3979. unsigned long bytes_alloc_nested;
  3980. unsigned long bytes_dropped_nested;
  3981. int min_size_nested;
  3982. int max_size_nested;
  3983. int max_size;
  3984. int min_size;
  3985. int cpu;
  3986. int cnt;
  3987. };
  3988. static struct rb_test_data rb_data[NR_CPUS] __initdata;
  3989. /* 1 meg per cpu */
  3990. #define RB_TEST_BUFFER_SIZE 1048576
  3991. static char rb_string[] __initdata =
  3992. "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
  3993. "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
  3994. "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
  3995. static bool rb_test_started __initdata;
  3996. struct rb_item {
  3997. int size;
  3998. char str[];
  3999. };
  4000. static __init int rb_write_something(struct rb_test_data *data, bool nested)
  4001. {
  4002. struct ring_buffer_event *event;
  4003. struct rb_item *item;
  4004. bool started;
  4005. int event_len;
  4006. int size;
  4007. int len;
  4008. int cnt;
  4009. /* Have nested writes different that what is written */
  4010. cnt = data->cnt + (nested ? 27 : 0);
  4011. /* Multiply cnt by ~e, to make some unique increment */
  4012. size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
  4013. len = size + sizeof(struct rb_item);
  4014. started = rb_test_started;
  4015. /* read rb_test_started before checking buffer enabled */
  4016. smp_rmb();
  4017. event = ring_buffer_lock_reserve(data->buffer, len);
  4018. if (!event) {
  4019. /* Ignore dropped events before test starts. */
  4020. if (started) {
  4021. if (nested)
  4022. data->bytes_dropped += len;
  4023. else
  4024. data->bytes_dropped_nested += len;
  4025. }
  4026. return len;
  4027. }
  4028. event_len = ring_buffer_event_length(event);
  4029. if (RB_WARN_ON(data->buffer, event_len < len))
  4030. goto out;
  4031. item = ring_buffer_event_data(event);
  4032. item->size = size;
  4033. memcpy(item->str, rb_string, size);
  4034. if (nested) {
  4035. data->bytes_alloc_nested += event_len;
  4036. data->bytes_written_nested += len;
  4037. data->events_nested++;
  4038. if (!data->min_size_nested || len < data->min_size_nested)
  4039. data->min_size_nested = len;
  4040. if (len > data->max_size_nested)
  4041. data->max_size_nested = len;
  4042. } else {
  4043. data->bytes_alloc += event_len;
  4044. data->bytes_written += len;
  4045. data->events++;
  4046. if (!data->min_size || len < data->min_size)
  4047. data->max_size = len;
  4048. if (len > data->max_size)
  4049. data->max_size = len;
  4050. }
  4051. out:
  4052. ring_buffer_unlock_commit(data->buffer, event);
  4053. return 0;
  4054. }
  4055. static __init int rb_test(void *arg)
  4056. {
  4057. struct rb_test_data *data = arg;
  4058. while (!kthread_should_stop()) {
  4059. rb_write_something(data, false);
  4060. data->cnt++;
  4061. set_current_state(TASK_INTERRUPTIBLE);
  4062. /* Now sleep between a min of 100-300us and a max of 1ms */
  4063. usleep_range(((data->cnt % 3) + 1) * 100, 1000);
  4064. }
  4065. return 0;
  4066. }
  4067. static __init void rb_ipi(void *ignore)
  4068. {
  4069. struct rb_test_data *data;
  4070. int cpu = smp_processor_id();
  4071. data = &rb_data[cpu];
  4072. rb_write_something(data, true);
  4073. }
  4074. static __init int rb_hammer_test(void *arg)
  4075. {
  4076. while (!kthread_should_stop()) {
  4077. /* Send an IPI to all cpus to write data! */
  4078. smp_call_function(rb_ipi, NULL, 1);
  4079. /* No sleep, but for non preempt, let others run */
  4080. schedule();
  4081. }
  4082. return 0;
  4083. }
  4084. static __init int test_ringbuffer(void)
  4085. {
  4086. struct task_struct *rb_hammer;
  4087. struct ring_buffer *buffer;
  4088. int cpu;
  4089. int ret = 0;
  4090. pr_info("Running ring buffer tests...\n");
  4091. buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
  4092. if (WARN_ON(!buffer))
  4093. return 0;
  4094. /* Disable buffer so that threads can't write to it yet */
  4095. ring_buffer_record_off(buffer);
  4096. for_each_online_cpu(cpu) {
  4097. rb_data[cpu].buffer = buffer;
  4098. rb_data[cpu].cpu = cpu;
  4099. rb_data[cpu].cnt = cpu;
  4100. rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
  4101. "rbtester/%d", cpu);
  4102. if (WARN_ON(!rb_threads[cpu])) {
  4103. pr_cont("FAILED\n");
  4104. ret = -1;
  4105. goto out_free;
  4106. }
  4107. kthread_bind(rb_threads[cpu], cpu);
  4108. wake_up_process(rb_threads[cpu]);
  4109. }
  4110. /* Now create the rb hammer! */
  4111. rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
  4112. if (WARN_ON(!rb_hammer)) {
  4113. pr_cont("FAILED\n");
  4114. ret = -1;
  4115. goto out_free;
  4116. }
  4117. ring_buffer_record_on(buffer);
  4118. /*
  4119. * Show buffer is enabled before setting rb_test_started.
  4120. * Yes there's a small race window where events could be
  4121. * dropped and the thread wont catch it. But when a ring
  4122. * buffer gets enabled, there will always be some kind of
  4123. * delay before other CPUs see it. Thus, we don't care about
  4124. * those dropped events. We care about events dropped after
  4125. * the threads see that the buffer is active.
  4126. */
  4127. smp_wmb();
  4128. rb_test_started = true;
  4129. set_current_state(TASK_INTERRUPTIBLE);
  4130. /* Just run for 10 seconds */;
  4131. schedule_timeout(10 * HZ);
  4132. kthread_stop(rb_hammer);
  4133. out_free:
  4134. for_each_online_cpu(cpu) {
  4135. if (!rb_threads[cpu])
  4136. break;
  4137. kthread_stop(rb_threads[cpu]);
  4138. }
  4139. if (ret) {
  4140. ring_buffer_free(buffer);
  4141. return ret;
  4142. }
  4143. /* Report! */
  4144. pr_info("finished\n");
  4145. for_each_online_cpu(cpu) {
  4146. struct ring_buffer_event *event;
  4147. struct rb_test_data *data = &rb_data[cpu];
  4148. struct rb_item *item;
  4149. unsigned long total_events;
  4150. unsigned long total_dropped;
  4151. unsigned long total_written;
  4152. unsigned long total_alloc;
  4153. unsigned long total_read = 0;
  4154. unsigned long total_size = 0;
  4155. unsigned long total_len = 0;
  4156. unsigned long total_lost = 0;
  4157. unsigned long lost;
  4158. int big_event_size;
  4159. int small_event_size;
  4160. ret = -1;
  4161. total_events = data->events + data->events_nested;
  4162. total_written = data->bytes_written + data->bytes_written_nested;
  4163. total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
  4164. total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
  4165. big_event_size = data->max_size + data->max_size_nested;
  4166. small_event_size = data->min_size + data->min_size_nested;
  4167. pr_info("CPU %d:\n", cpu);
  4168. pr_info(" events: %ld\n", total_events);
  4169. pr_info(" dropped bytes: %ld\n", total_dropped);
  4170. pr_info(" alloced bytes: %ld\n", total_alloc);
  4171. pr_info(" written bytes: %ld\n", total_written);
  4172. pr_info(" biggest event: %d\n", big_event_size);
  4173. pr_info(" smallest event: %d\n", small_event_size);
  4174. if (RB_WARN_ON(buffer, total_dropped))
  4175. break;
  4176. ret = 0;
  4177. while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
  4178. total_lost += lost;
  4179. item = ring_buffer_event_data(event);
  4180. total_len += ring_buffer_event_length(event);
  4181. total_size += item->size + sizeof(struct rb_item);
  4182. if (memcmp(&item->str[0], rb_string, item->size) != 0) {
  4183. pr_info("FAILED!\n");
  4184. pr_info("buffer had: %.*s\n", item->size, item->str);
  4185. pr_info("expected: %.*s\n", item->size, rb_string);
  4186. RB_WARN_ON(buffer, 1);
  4187. ret = -1;
  4188. break;
  4189. }
  4190. total_read++;
  4191. }
  4192. if (ret)
  4193. break;
  4194. ret = -1;
  4195. pr_info(" read events: %ld\n", total_read);
  4196. pr_info(" lost events: %ld\n", total_lost);
  4197. pr_info(" total events: %ld\n", total_lost + total_read);
  4198. pr_info(" recorded len bytes: %ld\n", total_len);
  4199. pr_info(" recorded size bytes: %ld\n", total_size);
  4200. if (total_lost)
  4201. pr_info(" With dropped events, record len and size may not match\n"
  4202. " alloced and written from above\n");
  4203. if (!total_lost) {
  4204. if (RB_WARN_ON(buffer, total_len != total_alloc ||
  4205. total_size != total_written))
  4206. break;
  4207. }
  4208. if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
  4209. break;
  4210. ret = 0;
  4211. }
  4212. if (!ret)
  4213. pr_info("Ring buffer PASSED!\n");
  4214. ring_buffer_free(buffer);
  4215. return 0;
  4216. }
  4217. late_initcall(test_ringbuffer);
  4218. #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */