sched.h 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/sched/deadline.h>
  5. #include <linux/mutex.h>
  6. #include <linux/spinlock.h>
  7. #include <linux/stop_machine.h>
  8. #include <linux/tick.h>
  9. #include <linux/slab.h>
  10. #include "cpupri.h"
  11. #include "cpudeadline.h"
  12. #include "cpuacct.h"
  13. struct rq;
  14. struct cpuidle_state;
  15. /* task_struct::on_rq states: */
  16. #define TASK_ON_RQ_QUEUED 1
  17. #define TASK_ON_RQ_MIGRATING 2
  18. extern __read_mostly int scheduler_running;
  19. extern unsigned long calc_load_update;
  20. extern atomic_long_t calc_load_tasks;
  21. extern long calc_load_fold_active(struct rq *this_rq);
  22. extern void update_cpu_load_active(struct rq *this_rq);
  23. /*
  24. * Helpers for converting nanosecond timing to jiffy resolution
  25. */
  26. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  27. /*
  28. * Increase resolution of nice-level calculations for 64-bit architectures.
  29. * The extra resolution improves shares distribution and load balancing of
  30. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  31. * hierarchies, especially on larger systems. This is not a user-visible change
  32. * and does not change the user-interface for setting shares/weights.
  33. *
  34. * We increase resolution only if we have enough bits to allow this increased
  35. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  36. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  37. * increased costs.
  38. */
  39. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  40. # define SCHED_LOAD_RESOLUTION 10
  41. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  42. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  43. #else
  44. # define SCHED_LOAD_RESOLUTION 0
  45. # define scale_load(w) (w)
  46. # define scale_load_down(w) (w)
  47. #endif
  48. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  49. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  50. #define NICE_0_LOAD SCHED_LOAD_SCALE
  51. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  52. /*
  53. * Single value that decides SCHED_DEADLINE internal math precision.
  54. * 10 -> just above 1us
  55. * 9 -> just above 0.5us
  56. */
  57. #define DL_SCALE (10)
  58. /*
  59. * These are the 'tuning knobs' of the scheduler:
  60. */
  61. /*
  62. * single value that denotes runtime == period, ie unlimited time.
  63. */
  64. #define RUNTIME_INF ((u64)~0ULL)
  65. static inline int fair_policy(int policy)
  66. {
  67. return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  68. }
  69. static inline int rt_policy(int policy)
  70. {
  71. return policy == SCHED_FIFO || policy == SCHED_RR;
  72. }
  73. static inline int dl_policy(int policy)
  74. {
  75. return policy == SCHED_DEADLINE;
  76. }
  77. static inline int task_has_rt_policy(struct task_struct *p)
  78. {
  79. return rt_policy(p->policy);
  80. }
  81. static inline int task_has_dl_policy(struct task_struct *p)
  82. {
  83. return dl_policy(p->policy);
  84. }
  85. static inline bool dl_time_before(u64 a, u64 b)
  86. {
  87. return (s64)(a - b) < 0;
  88. }
  89. /*
  90. * Tells if entity @a should preempt entity @b.
  91. */
  92. static inline bool
  93. dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
  94. {
  95. return dl_time_before(a->deadline, b->deadline);
  96. }
  97. /*
  98. * This is the priority-queue data structure of the RT scheduling class:
  99. */
  100. struct rt_prio_array {
  101. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  102. struct list_head queue[MAX_RT_PRIO];
  103. };
  104. struct rt_bandwidth {
  105. /* nests inside the rq lock: */
  106. raw_spinlock_t rt_runtime_lock;
  107. ktime_t rt_period;
  108. u64 rt_runtime;
  109. struct hrtimer rt_period_timer;
  110. };
  111. void __dl_clear_params(struct task_struct *p);
  112. /*
  113. * To keep the bandwidth of -deadline tasks and groups under control
  114. * we need some place where:
  115. * - store the maximum -deadline bandwidth of the system (the group);
  116. * - cache the fraction of that bandwidth that is currently allocated.
  117. *
  118. * This is all done in the data structure below. It is similar to the
  119. * one used for RT-throttling (rt_bandwidth), with the main difference
  120. * that, since here we are only interested in admission control, we
  121. * do not decrease any runtime while the group "executes", neither we
  122. * need a timer to replenish it.
  123. *
  124. * With respect to SMP, the bandwidth is given on a per-CPU basis,
  125. * meaning that:
  126. * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
  127. * - dl_total_bw array contains, in the i-eth element, the currently
  128. * allocated bandwidth on the i-eth CPU.
  129. * Moreover, groups consume bandwidth on each CPU, while tasks only
  130. * consume bandwidth on the CPU they're running on.
  131. * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
  132. * that will be shown the next time the proc or cgroup controls will
  133. * be red. It on its turn can be changed by writing on its own
  134. * control.
  135. */
  136. struct dl_bandwidth {
  137. raw_spinlock_t dl_runtime_lock;
  138. u64 dl_runtime;
  139. u64 dl_period;
  140. };
  141. static inline int dl_bandwidth_enabled(void)
  142. {
  143. return sysctl_sched_rt_runtime >= 0;
  144. }
  145. extern struct dl_bw *dl_bw_of(int i);
  146. struct dl_bw {
  147. raw_spinlock_t lock;
  148. u64 bw, total_bw;
  149. };
  150. static inline
  151. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  152. {
  153. dl_b->total_bw -= tsk_bw;
  154. }
  155. static inline
  156. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  157. {
  158. dl_b->total_bw += tsk_bw;
  159. }
  160. static inline
  161. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  162. {
  163. return dl_b->bw != -1 &&
  164. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  165. }
  166. extern struct mutex sched_domains_mutex;
  167. #ifdef CONFIG_CGROUP_SCHED
  168. #include <linux/cgroup.h>
  169. struct cfs_rq;
  170. struct rt_rq;
  171. extern struct list_head task_groups;
  172. struct cfs_bandwidth {
  173. #ifdef CONFIG_CFS_BANDWIDTH
  174. raw_spinlock_t lock;
  175. ktime_t period;
  176. u64 quota, runtime;
  177. s64 hierarchical_quota;
  178. u64 runtime_expires;
  179. int idle, timer_active;
  180. struct hrtimer period_timer, slack_timer;
  181. struct list_head throttled_cfs_rq;
  182. /* statistics */
  183. int nr_periods, nr_throttled;
  184. u64 throttled_time;
  185. #endif
  186. };
  187. /* task group related information */
  188. struct task_group {
  189. struct cgroup_subsys_state css;
  190. #ifdef CONFIG_FAIR_GROUP_SCHED
  191. /* schedulable entities of this group on each cpu */
  192. struct sched_entity **se;
  193. /* runqueue "owned" by this group on each cpu */
  194. struct cfs_rq **cfs_rq;
  195. unsigned long shares;
  196. #ifdef CONFIG_SMP
  197. atomic_long_t load_avg;
  198. atomic_t runnable_avg;
  199. #endif
  200. #endif
  201. #ifdef CONFIG_RT_GROUP_SCHED
  202. struct sched_rt_entity **rt_se;
  203. struct rt_rq **rt_rq;
  204. struct rt_bandwidth rt_bandwidth;
  205. #endif
  206. struct rcu_head rcu;
  207. struct list_head list;
  208. struct task_group *parent;
  209. struct list_head siblings;
  210. struct list_head children;
  211. #ifdef CONFIG_SCHED_AUTOGROUP
  212. struct autogroup *autogroup;
  213. #endif
  214. struct cfs_bandwidth cfs_bandwidth;
  215. };
  216. #ifdef CONFIG_FAIR_GROUP_SCHED
  217. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  218. /*
  219. * A weight of 0 or 1 can cause arithmetics problems.
  220. * A weight of a cfs_rq is the sum of weights of which entities
  221. * are queued on this cfs_rq, so a weight of a entity should not be
  222. * too large, so as the shares value of a task group.
  223. * (The default weight is 1024 - so there's no practical
  224. * limitation from this.)
  225. */
  226. #define MIN_SHARES (1UL << 1)
  227. #define MAX_SHARES (1UL << 18)
  228. #endif
  229. typedef int (*tg_visitor)(struct task_group *, void *);
  230. extern int walk_tg_tree_from(struct task_group *from,
  231. tg_visitor down, tg_visitor up, void *data);
  232. /*
  233. * Iterate the full tree, calling @down when first entering a node and @up when
  234. * leaving it for the final time.
  235. *
  236. * Caller must hold rcu_lock or sufficient equivalent.
  237. */
  238. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  239. {
  240. return walk_tg_tree_from(&root_task_group, down, up, data);
  241. }
  242. extern int tg_nop(struct task_group *tg, void *data);
  243. extern void free_fair_sched_group(struct task_group *tg);
  244. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  245. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  246. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  247. struct sched_entity *se, int cpu,
  248. struct sched_entity *parent);
  249. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  250. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  251. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  252. extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
  253. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  254. extern void free_rt_sched_group(struct task_group *tg);
  255. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  256. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  257. struct sched_rt_entity *rt_se, int cpu,
  258. struct sched_rt_entity *parent);
  259. extern struct task_group *sched_create_group(struct task_group *parent);
  260. extern void sched_online_group(struct task_group *tg,
  261. struct task_group *parent);
  262. extern void sched_destroy_group(struct task_group *tg);
  263. extern void sched_offline_group(struct task_group *tg);
  264. extern void sched_move_task(struct task_struct *tsk);
  265. #ifdef CONFIG_FAIR_GROUP_SCHED
  266. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  267. #endif
  268. #else /* CONFIG_CGROUP_SCHED */
  269. struct cfs_bandwidth { };
  270. #endif /* CONFIG_CGROUP_SCHED */
  271. /* CFS-related fields in a runqueue */
  272. struct cfs_rq {
  273. struct load_weight load;
  274. unsigned int nr_running, h_nr_running;
  275. u64 exec_clock;
  276. u64 min_vruntime;
  277. #ifndef CONFIG_64BIT
  278. u64 min_vruntime_copy;
  279. #endif
  280. struct rb_root tasks_timeline;
  281. struct rb_node *rb_leftmost;
  282. /*
  283. * 'curr' points to currently running entity on this cfs_rq.
  284. * It is set to NULL otherwise (i.e when none are currently running).
  285. */
  286. struct sched_entity *curr, *next, *last, *skip;
  287. #ifdef CONFIG_SCHED_DEBUG
  288. unsigned int nr_spread_over;
  289. #endif
  290. #ifdef CONFIG_SMP
  291. /*
  292. * CFS Load tracking
  293. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  294. * This allows for the description of both thread and group usage (in
  295. * the FAIR_GROUP_SCHED case).
  296. */
  297. unsigned long runnable_load_avg, blocked_load_avg;
  298. atomic64_t decay_counter;
  299. u64 last_decay;
  300. atomic_long_t removed_load;
  301. #ifdef CONFIG_FAIR_GROUP_SCHED
  302. /* Required to track per-cpu representation of a task_group */
  303. u32 tg_runnable_contrib;
  304. unsigned long tg_load_contrib;
  305. /*
  306. * h_load = weight * f(tg)
  307. *
  308. * Where f(tg) is the recursive weight fraction assigned to
  309. * this group.
  310. */
  311. unsigned long h_load;
  312. u64 last_h_load_update;
  313. struct sched_entity *h_load_next;
  314. #endif /* CONFIG_FAIR_GROUP_SCHED */
  315. #endif /* CONFIG_SMP */
  316. #ifdef CONFIG_FAIR_GROUP_SCHED
  317. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  318. /*
  319. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  320. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  321. * (like users, containers etc.)
  322. *
  323. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  324. * list is used during load balance.
  325. */
  326. int on_list;
  327. struct list_head leaf_cfs_rq_list;
  328. struct task_group *tg; /* group that "owns" this runqueue */
  329. #ifdef CONFIG_CFS_BANDWIDTH
  330. int runtime_enabled;
  331. u64 runtime_expires;
  332. s64 runtime_remaining;
  333. u64 throttled_clock, throttled_clock_task;
  334. u64 throttled_clock_task_time;
  335. int throttled, throttle_count;
  336. struct list_head throttled_list;
  337. #endif /* CONFIG_CFS_BANDWIDTH */
  338. #endif /* CONFIG_FAIR_GROUP_SCHED */
  339. };
  340. static inline int rt_bandwidth_enabled(void)
  341. {
  342. return sysctl_sched_rt_runtime >= 0;
  343. }
  344. /* Real-Time classes' related field in a runqueue: */
  345. struct rt_rq {
  346. struct rt_prio_array active;
  347. unsigned int rt_nr_running;
  348. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  349. struct {
  350. int curr; /* highest queued rt task prio */
  351. #ifdef CONFIG_SMP
  352. int next; /* next highest */
  353. #endif
  354. } highest_prio;
  355. #endif
  356. #ifdef CONFIG_SMP
  357. unsigned long rt_nr_migratory;
  358. unsigned long rt_nr_total;
  359. int overloaded;
  360. struct plist_head pushable_tasks;
  361. #endif
  362. int rt_queued;
  363. int rt_throttled;
  364. u64 rt_time;
  365. u64 rt_runtime;
  366. /* Nests inside the rq lock: */
  367. raw_spinlock_t rt_runtime_lock;
  368. #ifdef CONFIG_RT_GROUP_SCHED
  369. unsigned long rt_nr_boosted;
  370. struct rq *rq;
  371. struct task_group *tg;
  372. #endif
  373. };
  374. /* Deadline class' related fields in a runqueue */
  375. struct dl_rq {
  376. /* runqueue is an rbtree, ordered by deadline */
  377. struct rb_root rb_root;
  378. struct rb_node *rb_leftmost;
  379. unsigned long dl_nr_running;
  380. #ifdef CONFIG_SMP
  381. /*
  382. * Deadline values of the currently executing and the
  383. * earliest ready task on this rq. Caching these facilitates
  384. * the decision wether or not a ready but not running task
  385. * should migrate somewhere else.
  386. */
  387. struct {
  388. u64 curr;
  389. u64 next;
  390. } earliest_dl;
  391. unsigned long dl_nr_migratory;
  392. int overloaded;
  393. /*
  394. * Tasks on this rq that can be pushed away. They are kept in
  395. * an rb-tree, ordered by tasks' deadlines, with caching
  396. * of the leftmost (earliest deadline) element.
  397. */
  398. struct rb_root pushable_dl_tasks_root;
  399. struct rb_node *pushable_dl_tasks_leftmost;
  400. #else
  401. struct dl_bw dl_bw;
  402. #endif
  403. };
  404. #ifdef CONFIG_SMP
  405. /*
  406. * We add the notion of a root-domain which will be used to define per-domain
  407. * variables. Each exclusive cpuset essentially defines an island domain by
  408. * fully partitioning the member cpus from any other cpuset. Whenever a new
  409. * exclusive cpuset is created, we also create and attach a new root-domain
  410. * object.
  411. *
  412. */
  413. struct root_domain {
  414. atomic_t refcount;
  415. atomic_t rto_count;
  416. struct rcu_head rcu;
  417. cpumask_var_t span;
  418. cpumask_var_t online;
  419. /* Indicate more than one runnable task for any CPU */
  420. bool overload;
  421. /*
  422. * The bit corresponding to a CPU gets set here if such CPU has more
  423. * than one runnable -deadline task (as it is below for RT tasks).
  424. */
  425. cpumask_var_t dlo_mask;
  426. atomic_t dlo_count;
  427. struct dl_bw dl_bw;
  428. struct cpudl cpudl;
  429. /*
  430. * The "RT overload" flag: it gets set if a CPU has more than
  431. * one runnable RT task.
  432. */
  433. cpumask_var_t rto_mask;
  434. struct cpupri cpupri;
  435. };
  436. extern struct root_domain def_root_domain;
  437. #endif /* CONFIG_SMP */
  438. /*
  439. * This is the main, per-CPU runqueue data structure.
  440. *
  441. * Locking rule: those places that want to lock multiple runqueues
  442. * (such as the load balancing or the thread migration code), lock
  443. * acquire operations must be ordered by ascending &runqueue.
  444. */
  445. struct rq {
  446. /* runqueue lock: */
  447. raw_spinlock_t lock;
  448. /*
  449. * nr_running and cpu_load should be in the same cacheline because
  450. * remote CPUs use both these fields when doing load calculation.
  451. */
  452. unsigned int nr_running;
  453. #ifdef CONFIG_NUMA_BALANCING
  454. unsigned int nr_numa_running;
  455. unsigned int nr_preferred_running;
  456. #endif
  457. #define CPU_LOAD_IDX_MAX 5
  458. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  459. unsigned long last_load_update_tick;
  460. #ifdef CONFIG_NO_HZ_COMMON
  461. u64 nohz_stamp;
  462. unsigned long nohz_flags;
  463. #endif
  464. #ifdef CONFIG_NO_HZ_FULL
  465. unsigned long last_sched_tick;
  466. #endif
  467. int skip_clock_update;
  468. /* capture load from *all* tasks on this cpu: */
  469. struct load_weight load;
  470. unsigned long nr_load_updates;
  471. u64 nr_switches;
  472. struct cfs_rq cfs;
  473. struct rt_rq rt;
  474. struct dl_rq dl;
  475. #ifdef CONFIG_FAIR_GROUP_SCHED
  476. /* list of leaf cfs_rq on this cpu: */
  477. struct list_head leaf_cfs_rq_list;
  478. struct sched_avg avg;
  479. #endif /* CONFIG_FAIR_GROUP_SCHED */
  480. /*
  481. * This is part of a global counter where only the total sum
  482. * over all CPUs matters. A task can increase this counter on
  483. * one CPU and if it got migrated afterwards it may decrease
  484. * it on another CPU. Always updated under the runqueue lock:
  485. */
  486. unsigned long nr_uninterruptible;
  487. struct task_struct *curr, *idle, *stop;
  488. unsigned long next_balance;
  489. struct mm_struct *prev_mm;
  490. u64 clock;
  491. u64 clock_task;
  492. atomic_t nr_iowait;
  493. #ifdef CONFIG_SMP
  494. struct root_domain *rd;
  495. struct sched_domain *sd;
  496. unsigned long cpu_capacity;
  497. unsigned char idle_balance;
  498. /* For active balancing */
  499. int post_schedule;
  500. int active_balance;
  501. int push_cpu;
  502. struct cpu_stop_work active_balance_work;
  503. /* cpu of this runqueue: */
  504. int cpu;
  505. int online;
  506. struct list_head cfs_tasks;
  507. u64 rt_avg;
  508. u64 age_stamp;
  509. u64 idle_stamp;
  510. u64 avg_idle;
  511. /* This is used to determine avg_idle's max value */
  512. u64 max_idle_balance_cost;
  513. #endif
  514. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  515. u64 prev_irq_time;
  516. #endif
  517. #ifdef CONFIG_PARAVIRT
  518. u64 prev_steal_time;
  519. #endif
  520. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  521. u64 prev_steal_time_rq;
  522. #endif
  523. /* calc_load related fields */
  524. unsigned long calc_load_update;
  525. long calc_load_active;
  526. #ifdef CONFIG_SCHED_HRTICK
  527. #ifdef CONFIG_SMP
  528. int hrtick_csd_pending;
  529. struct call_single_data hrtick_csd;
  530. #endif
  531. struct hrtimer hrtick_timer;
  532. #endif
  533. #ifdef CONFIG_SCHEDSTATS
  534. /* latency stats */
  535. struct sched_info rq_sched_info;
  536. unsigned long long rq_cpu_time;
  537. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  538. /* sys_sched_yield() stats */
  539. unsigned int yld_count;
  540. /* schedule() stats */
  541. unsigned int sched_count;
  542. unsigned int sched_goidle;
  543. /* try_to_wake_up() stats */
  544. unsigned int ttwu_count;
  545. unsigned int ttwu_local;
  546. #endif
  547. #ifdef CONFIG_SMP
  548. struct llist_head wake_list;
  549. #endif
  550. #ifdef CONFIG_CPU_IDLE
  551. /* Must be inspected within a rcu lock section */
  552. struct cpuidle_state *idle_state;
  553. #endif
  554. };
  555. static inline int cpu_of(struct rq *rq)
  556. {
  557. #ifdef CONFIG_SMP
  558. return rq->cpu;
  559. #else
  560. return 0;
  561. #endif
  562. }
  563. DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  564. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  565. #define this_rq() this_cpu_ptr(&runqueues)
  566. #define task_rq(p) cpu_rq(task_cpu(p))
  567. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  568. #define raw_rq() raw_cpu_ptr(&runqueues)
  569. static inline u64 rq_clock(struct rq *rq)
  570. {
  571. return rq->clock;
  572. }
  573. static inline u64 rq_clock_task(struct rq *rq)
  574. {
  575. return rq->clock_task;
  576. }
  577. #ifdef CONFIG_NUMA
  578. enum numa_topology_type {
  579. NUMA_DIRECT,
  580. NUMA_GLUELESS_MESH,
  581. NUMA_BACKPLANE,
  582. };
  583. extern enum numa_topology_type sched_numa_topology_type;
  584. extern int sched_max_numa_distance;
  585. extern bool find_numa_distance(int distance);
  586. #endif
  587. #ifdef CONFIG_NUMA_BALANCING
  588. /* The regions in numa_faults array from task_struct */
  589. enum numa_faults_stats {
  590. NUMA_MEM = 0,
  591. NUMA_CPU,
  592. NUMA_MEMBUF,
  593. NUMA_CPUBUF
  594. };
  595. extern void sched_setnuma(struct task_struct *p, int node);
  596. extern int migrate_task_to(struct task_struct *p, int cpu);
  597. extern int migrate_swap(struct task_struct *, struct task_struct *);
  598. #endif /* CONFIG_NUMA_BALANCING */
  599. #ifdef CONFIG_SMP
  600. extern void sched_ttwu_pending(void);
  601. #define rcu_dereference_check_sched_domain(p) \
  602. rcu_dereference_check((p), \
  603. lockdep_is_held(&sched_domains_mutex))
  604. /*
  605. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  606. * See detach_destroy_domains: synchronize_sched for details.
  607. *
  608. * The domain tree of any CPU may only be accessed from within
  609. * preempt-disabled sections.
  610. */
  611. #define for_each_domain(cpu, __sd) \
  612. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  613. __sd; __sd = __sd->parent)
  614. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  615. /**
  616. * highest_flag_domain - Return highest sched_domain containing flag.
  617. * @cpu: The cpu whose highest level of sched domain is to
  618. * be returned.
  619. * @flag: The flag to check for the highest sched_domain
  620. * for the given cpu.
  621. *
  622. * Returns the highest sched_domain of a cpu which contains the given flag.
  623. */
  624. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  625. {
  626. struct sched_domain *sd, *hsd = NULL;
  627. for_each_domain(cpu, sd) {
  628. if (!(sd->flags & flag))
  629. break;
  630. hsd = sd;
  631. }
  632. return hsd;
  633. }
  634. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  635. {
  636. struct sched_domain *sd;
  637. for_each_domain(cpu, sd) {
  638. if (sd->flags & flag)
  639. break;
  640. }
  641. return sd;
  642. }
  643. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  644. DECLARE_PER_CPU(int, sd_llc_size);
  645. DECLARE_PER_CPU(int, sd_llc_id);
  646. DECLARE_PER_CPU(struct sched_domain *, sd_numa);
  647. DECLARE_PER_CPU(struct sched_domain *, sd_busy);
  648. DECLARE_PER_CPU(struct sched_domain *, sd_asym);
  649. struct sched_group_capacity {
  650. atomic_t ref;
  651. /*
  652. * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
  653. * for a single CPU.
  654. */
  655. unsigned int capacity, capacity_orig;
  656. unsigned long next_update;
  657. int imbalance; /* XXX unrelated to capacity but shared group state */
  658. /*
  659. * Number of busy cpus in this group.
  660. */
  661. atomic_t nr_busy_cpus;
  662. unsigned long cpumask[0]; /* iteration mask */
  663. };
  664. struct sched_group {
  665. struct sched_group *next; /* Must be a circular list */
  666. atomic_t ref;
  667. unsigned int group_weight;
  668. struct sched_group_capacity *sgc;
  669. /*
  670. * The CPUs this group covers.
  671. *
  672. * NOTE: this field is variable length. (Allocated dynamically
  673. * by attaching extra space to the end of the structure,
  674. * depending on how many CPUs the kernel has booted up with)
  675. */
  676. unsigned long cpumask[0];
  677. };
  678. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  679. {
  680. return to_cpumask(sg->cpumask);
  681. }
  682. /*
  683. * cpumask masking which cpus in the group are allowed to iterate up the domain
  684. * tree.
  685. */
  686. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  687. {
  688. return to_cpumask(sg->sgc->cpumask);
  689. }
  690. /**
  691. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  692. * @group: The group whose first cpu is to be returned.
  693. */
  694. static inline unsigned int group_first_cpu(struct sched_group *group)
  695. {
  696. return cpumask_first(sched_group_cpus(group));
  697. }
  698. extern int group_balance_cpu(struct sched_group *sg);
  699. #else
  700. static inline void sched_ttwu_pending(void) { }
  701. #endif /* CONFIG_SMP */
  702. #include "stats.h"
  703. #include "auto_group.h"
  704. #ifdef CONFIG_CGROUP_SCHED
  705. /*
  706. * Return the group to which this tasks belongs.
  707. *
  708. * We cannot use task_css() and friends because the cgroup subsystem
  709. * changes that value before the cgroup_subsys::attach() method is called,
  710. * therefore we cannot pin it and might observe the wrong value.
  711. *
  712. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  713. * core changes this before calling sched_move_task().
  714. *
  715. * Instead we use a 'copy' which is updated from sched_move_task() while
  716. * holding both task_struct::pi_lock and rq::lock.
  717. */
  718. static inline struct task_group *task_group(struct task_struct *p)
  719. {
  720. return p->sched_task_group;
  721. }
  722. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  723. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  724. {
  725. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  726. struct task_group *tg = task_group(p);
  727. #endif
  728. #ifdef CONFIG_FAIR_GROUP_SCHED
  729. p->se.cfs_rq = tg->cfs_rq[cpu];
  730. p->se.parent = tg->se[cpu];
  731. #endif
  732. #ifdef CONFIG_RT_GROUP_SCHED
  733. p->rt.rt_rq = tg->rt_rq[cpu];
  734. p->rt.parent = tg->rt_se[cpu];
  735. #endif
  736. }
  737. #else /* CONFIG_CGROUP_SCHED */
  738. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  739. static inline struct task_group *task_group(struct task_struct *p)
  740. {
  741. return NULL;
  742. }
  743. #endif /* CONFIG_CGROUP_SCHED */
  744. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  745. {
  746. set_task_rq(p, cpu);
  747. #ifdef CONFIG_SMP
  748. /*
  749. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  750. * successfuly executed on another CPU. We must ensure that updates of
  751. * per-task data have been completed by this moment.
  752. */
  753. smp_wmb();
  754. task_thread_info(p)->cpu = cpu;
  755. p->wake_cpu = cpu;
  756. #endif
  757. }
  758. /*
  759. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  760. */
  761. #ifdef CONFIG_SCHED_DEBUG
  762. # include <linux/static_key.h>
  763. # define const_debug __read_mostly
  764. #else
  765. # define const_debug const
  766. #endif
  767. extern const_debug unsigned int sysctl_sched_features;
  768. #define SCHED_FEAT(name, enabled) \
  769. __SCHED_FEAT_##name ,
  770. enum {
  771. #include "features.h"
  772. __SCHED_FEAT_NR,
  773. };
  774. #undef SCHED_FEAT
  775. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  776. #define SCHED_FEAT(name, enabled) \
  777. static __always_inline bool static_branch_##name(struct static_key *key) \
  778. { \
  779. return static_key_##enabled(key); \
  780. }
  781. #include "features.h"
  782. #undef SCHED_FEAT
  783. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  784. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  785. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  786. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  787. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  788. #ifdef CONFIG_NUMA_BALANCING
  789. #define sched_feat_numa(x) sched_feat(x)
  790. #ifdef CONFIG_SCHED_DEBUG
  791. #define numabalancing_enabled sched_feat_numa(NUMA)
  792. #else
  793. extern bool numabalancing_enabled;
  794. #endif /* CONFIG_SCHED_DEBUG */
  795. #else
  796. #define sched_feat_numa(x) (0)
  797. #define numabalancing_enabled (0)
  798. #endif /* CONFIG_NUMA_BALANCING */
  799. static inline u64 global_rt_period(void)
  800. {
  801. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  802. }
  803. static inline u64 global_rt_runtime(void)
  804. {
  805. if (sysctl_sched_rt_runtime < 0)
  806. return RUNTIME_INF;
  807. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  808. }
  809. static inline int task_current(struct rq *rq, struct task_struct *p)
  810. {
  811. return rq->curr == p;
  812. }
  813. static inline int task_running(struct rq *rq, struct task_struct *p)
  814. {
  815. #ifdef CONFIG_SMP
  816. return p->on_cpu;
  817. #else
  818. return task_current(rq, p);
  819. #endif
  820. }
  821. static inline int task_on_rq_queued(struct task_struct *p)
  822. {
  823. return p->on_rq == TASK_ON_RQ_QUEUED;
  824. }
  825. static inline int task_on_rq_migrating(struct task_struct *p)
  826. {
  827. return p->on_rq == TASK_ON_RQ_MIGRATING;
  828. }
  829. #ifndef prepare_arch_switch
  830. # define prepare_arch_switch(next) do { } while (0)
  831. #endif
  832. #ifndef finish_arch_switch
  833. # define finish_arch_switch(prev) do { } while (0)
  834. #endif
  835. #ifndef finish_arch_post_lock_switch
  836. # define finish_arch_post_lock_switch() do { } while (0)
  837. #endif
  838. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  839. {
  840. #ifdef CONFIG_SMP
  841. /*
  842. * We can optimise this out completely for !SMP, because the
  843. * SMP rebalancing from interrupt is the only thing that cares
  844. * here.
  845. */
  846. next->on_cpu = 1;
  847. #endif
  848. }
  849. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  850. {
  851. #ifdef CONFIG_SMP
  852. /*
  853. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  854. * We must ensure this doesn't happen until the switch is completely
  855. * finished.
  856. */
  857. smp_wmb();
  858. prev->on_cpu = 0;
  859. #endif
  860. #ifdef CONFIG_DEBUG_SPINLOCK
  861. /* this is a valid case when another task releases the spinlock */
  862. rq->lock.owner = current;
  863. #endif
  864. /*
  865. * If we are tracking spinlock dependencies then we have to
  866. * fix up the runqueue lock - which gets 'carried over' from
  867. * prev into current:
  868. */
  869. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  870. raw_spin_unlock_irq(&rq->lock);
  871. }
  872. /*
  873. * wake flags
  874. */
  875. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  876. #define WF_FORK 0x02 /* child wakeup after fork */
  877. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  878. /*
  879. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  880. * of tasks with abnormal "nice" values across CPUs the contribution that
  881. * each task makes to its run queue's load is weighted according to its
  882. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  883. * scaled version of the new time slice allocation that they receive on time
  884. * slice expiry etc.
  885. */
  886. #define WEIGHT_IDLEPRIO 3
  887. #define WMULT_IDLEPRIO 1431655765
  888. /*
  889. * Nice levels are multiplicative, with a gentle 10% change for every
  890. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  891. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  892. * that remained on nice 0.
  893. *
  894. * The "10% effect" is relative and cumulative: from _any_ nice level,
  895. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  896. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  897. * If a task goes up by ~10% and another task goes down by ~10% then
  898. * the relative distance between them is ~25%.)
  899. */
  900. static const int prio_to_weight[40] = {
  901. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  902. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  903. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  904. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  905. /* 0 */ 1024, 820, 655, 526, 423,
  906. /* 5 */ 335, 272, 215, 172, 137,
  907. /* 10 */ 110, 87, 70, 56, 45,
  908. /* 15 */ 36, 29, 23, 18, 15,
  909. };
  910. /*
  911. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  912. *
  913. * In cases where the weight does not change often, we can use the
  914. * precalculated inverse to speed up arithmetics by turning divisions
  915. * into multiplications:
  916. */
  917. static const u32 prio_to_wmult[40] = {
  918. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  919. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  920. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  921. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  922. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  923. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  924. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  925. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  926. };
  927. #define ENQUEUE_WAKEUP 1
  928. #define ENQUEUE_HEAD 2
  929. #ifdef CONFIG_SMP
  930. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  931. #else
  932. #define ENQUEUE_WAKING 0
  933. #endif
  934. #define ENQUEUE_REPLENISH 8
  935. #define DEQUEUE_SLEEP 1
  936. #define RETRY_TASK ((void *)-1UL)
  937. struct sched_class {
  938. const struct sched_class *next;
  939. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  940. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  941. void (*yield_task) (struct rq *rq);
  942. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  943. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  944. /*
  945. * It is the responsibility of the pick_next_task() method that will
  946. * return the next task to call put_prev_task() on the @prev task or
  947. * something equivalent.
  948. *
  949. * May return RETRY_TASK when it finds a higher prio class has runnable
  950. * tasks.
  951. */
  952. struct task_struct * (*pick_next_task) (struct rq *rq,
  953. struct task_struct *prev);
  954. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  955. #ifdef CONFIG_SMP
  956. int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
  957. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  958. void (*post_schedule) (struct rq *this_rq);
  959. void (*task_waking) (struct task_struct *task);
  960. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  961. void (*set_cpus_allowed)(struct task_struct *p,
  962. const struct cpumask *newmask);
  963. void (*rq_online)(struct rq *rq);
  964. void (*rq_offline)(struct rq *rq);
  965. #endif
  966. void (*set_curr_task) (struct rq *rq);
  967. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  968. void (*task_fork) (struct task_struct *p);
  969. void (*task_dead) (struct task_struct *p);
  970. /*
  971. * The switched_from() call is allowed to drop rq->lock, therefore we
  972. * cannot assume the switched_from/switched_to pair is serliazed by
  973. * rq->lock. They are however serialized by p->pi_lock.
  974. */
  975. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  976. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  977. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  978. int oldprio);
  979. unsigned int (*get_rr_interval) (struct rq *rq,
  980. struct task_struct *task);
  981. void (*update_curr) (struct rq *rq);
  982. #ifdef CONFIG_FAIR_GROUP_SCHED
  983. void (*task_move_group) (struct task_struct *p, int on_rq);
  984. #endif
  985. };
  986. static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
  987. {
  988. prev->sched_class->put_prev_task(rq, prev);
  989. }
  990. #define sched_class_highest (&stop_sched_class)
  991. #define for_each_class(class) \
  992. for (class = sched_class_highest; class; class = class->next)
  993. extern const struct sched_class stop_sched_class;
  994. extern const struct sched_class dl_sched_class;
  995. extern const struct sched_class rt_sched_class;
  996. extern const struct sched_class fair_sched_class;
  997. extern const struct sched_class idle_sched_class;
  998. #ifdef CONFIG_SMP
  999. extern void update_group_capacity(struct sched_domain *sd, int cpu);
  1000. extern void trigger_load_balance(struct rq *rq);
  1001. extern void idle_enter_fair(struct rq *this_rq);
  1002. extern void idle_exit_fair(struct rq *this_rq);
  1003. #else
  1004. static inline void idle_enter_fair(struct rq *rq) { }
  1005. static inline void idle_exit_fair(struct rq *rq) { }
  1006. #endif
  1007. #ifdef CONFIG_CPU_IDLE
  1008. static inline void idle_set_state(struct rq *rq,
  1009. struct cpuidle_state *idle_state)
  1010. {
  1011. rq->idle_state = idle_state;
  1012. }
  1013. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  1014. {
  1015. WARN_ON(!rcu_read_lock_held());
  1016. return rq->idle_state;
  1017. }
  1018. #else
  1019. static inline void idle_set_state(struct rq *rq,
  1020. struct cpuidle_state *idle_state)
  1021. {
  1022. }
  1023. static inline struct cpuidle_state *idle_get_state(struct rq *rq)
  1024. {
  1025. return NULL;
  1026. }
  1027. #endif
  1028. extern void sysrq_sched_debug_show(void);
  1029. extern void sched_init_granularity(void);
  1030. extern void update_max_interval(void);
  1031. extern void init_sched_dl_class(void);
  1032. extern void init_sched_rt_class(void);
  1033. extern void init_sched_fair_class(void);
  1034. extern void init_sched_dl_class(void);
  1035. extern void resched_curr(struct rq *rq);
  1036. extern void resched_cpu(int cpu);
  1037. extern struct rt_bandwidth def_rt_bandwidth;
  1038. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  1039. extern struct dl_bandwidth def_dl_bandwidth;
  1040. extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
  1041. extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
  1042. unsigned long to_ratio(u64 period, u64 runtime);
  1043. extern void update_idle_cpu_load(struct rq *this_rq);
  1044. extern void init_task_runnable_average(struct task_struct *p);
  1045. static inline void add_nr_running(struct rq *rq, unsigned count)
  1046. {
  1047. unsigned prev_nr = rq->nr_running;
  1048. rq->nr_running = prev_nr + count;
  1049. if (prev_nr < 2 && rq->nr_running >= 2) {
  1050. #ifdef CONFIG_SMP
  1051. if (!rq->rd->overload)
  1052. rq->rd->overload = true;
  1053. #endif
  1054. #ifdef CONFIG_NO_HZ_FULL
  1055. if (tick_nohz_full_cpu(rq->cpu)) {
  1056. /*
  1057. * Tick is needed if more than one task runs on a CPU.
  1058. * Send the target an IPI to kick it out of nohz mode.
  1059. *
  1060. * We assume that IPI implies full memory barrier and the
  1061. * new value of rq->nr_running is visible on reception
  1062. * from the target.
  1063. */
  1064. tick_nohz_full_kick_cpu(rq->cpu);
  1065. }
  1066. #endif
  1067. }
  1068. }
  1069. static inline void sub_nr_running(struct rq *rq, unsigned count)
  1070. {
  1071. rq->nr_running -= count;
  1072. }
  1073. static inline void rq_last_tick_reset(struct rq *rq)
  1074. {
  1075. #ifdef CONFIG_NO_HZ_FULL
  1076. rq->last_sched_tick = jiffies;
  1077. #endif
  1078. }
  1079. extern void update_rq_clock(struct rq *rq);
  1080. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  1081. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  1082. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  1083. extern const_debug unsigned int sysctl_sched_time_avg;
  1084. extern const_debug unsigned int sysctl_sched_nr_migrate;
  1085. extern const_debug unsigned int sysctl_sched_migration_cost;
  1086. static inline u64 sched_avg_period(void)
  1087. {
  1088. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1089. }
  1090. #ifdef CONFIG_SCHED_HRTICK
  1091. /*
  1092. * Use hrtick when:
  1093. * - enabled by features
  1094. * - hrtimer is actually high res
  1095. */
  1096. static inline int hrtick_enabled(struct rq *rq)
  1097. {
  1098. if (!sched_feat(HRTICK))
  1099. return 0;
  1100. if (!cpu_active(cpu_of(rq)))
  1101. return 0;
  1102. return hrtimer_is_hres_active(&rq->hrtick_timer);
  1103. }
  1104. void hrtick_start(struct rq *rq, u64 delay);
  1105. #else
  1106. static inline int hrtick_enabled(struct rq *rq)
  1107. {
  1108. return 0;
  1109. }
  1110. #endif /* CONFIG_SCHED_HRTICK */
  1111. #ifdef CONFIG_SMP
  1112. extern void sched_avg_update(struct rq *rq);
  1113. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1114. {
  1115. rq->rt_avg += rt_delta;
  1116. sched_avg_update(rq);
  1117. }
  1118. #else
  1119. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  1120. static inline void sched_avg_update(struct rq *rq) { }
  1121. #endif
  1122. extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
  1123. #ifdef CONFIG_SMP
  1124. #ifdef CONFIG_PREEMPT
  1125. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1126. /*
  1127. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1128. * way at the expense of forcing extra atomic operations in all
  1129. * invocations. This assures that the double_lock is acquired using the
  1130. * same underlying policy as the spinlock_t on this architecture, which
  1131. * reduces latency compared to the unfair variant below. However, it
  1132. * also adds more overhead and therefore may reduce throughput.
  1133. */
  1134. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1135. __releases(this_rq->lock)
  1136. __acquires(busiest->lock)
  1137. __acquires(this_rq->lock)
  1138. {
  1139. raw_spin_unlock(&this_rq->lock);
  1140. double_rq_lock(this_rq, busiest);
  1141. return 1;
  1142. }
  1143. #else
  1144. /*
  1145. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1146. * latency by eliminating extra atomic operations when the locks are
  1147. * already in proper order on entry. This favors lower cpu-ids and will
  1148. * grant the double lock to lower cpus over higher ids under contention,
  1149. * regardless of entry order into the function.
  1150. */
  1151. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1152. __releases(this_rq->lock)
  1153. __acquires(busiest->lock)
  1154. __acquires(this_rq->lock)
  1155. {
  1156. int ret = 0;
  1157. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1158. if (busiest < this_rq) {
  1159. raw_spin_unlock(&this_rq->lock);
  1160. raw_spin_lock(&busiest->lock);
  1161. raw_spin_lock_nested(&this_rq->lock,
  1162. SINGLE_DEPTH_NESTING);
  1163. ret = 1;
  1164. } else
  1165. raw_spin_lock_nested(&busiest->lock,
  1166. SINGLE_DEPTH_NESTING);
  1167. }
  1168. return ret;
  1169. }
  1170. #endif /* CONFIG_PREEMPT */
  1171. /*
  1172. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1173. */
  1174. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1175. {
  1176. if (unlikely(!irqs_disabled())) {
  1177. /* printk() doesn't work good under rq->lock */
  1178. raw_spin_unlock(&this_rq->lock);
  1179. BUG_ON(1);
  1180. }
  1181. return _double_lock_balance(this_rq, busiest);
  1182. }
  1183. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1184. __releases(busiest->lock)
  1185. {
  1186. raw_spin_unlock(&busiest->lock);
  1187. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1188. }
  1189. static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
  1190. {
  1191. if (l1 > l2)
  1192. swap(l1, l2);
  1193. spin_lock(l1);
  1194. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1195. }
  1196. static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
  1197. {
  1198. if (l1 > l2)
  1199. swap(l1, l2);
  1200. spin_lock_irq(l1);
  1201. spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1202. }
  1203. static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
  1204. {
  1205. if (l1 > l2)
  1206. swap(l1, l2);
  1207. raw_spin_lock(l1);
  1208. raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
  1209. }
  1210. /*
  1211. * double_rq_lock - safely lock two runqueues
  1212. *
  1213. * Note this does not disable interrupts like task_rq_lock,
  1214. * you need to do so manually before calling.
  1215. */
  1216. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1217. __acquires(rq1->lock)
  1218. __acquires(rq2->lock)
  1219. {
  1220. BUG_ON(!irqs_disabled());
  1221. if (rq1 == rq2) {
  1222. raw_spin_lock(&rq1->lock);
  1223. __acquire(rq2->lock); /* Fake it out ;) */
  1224. } else {
  1225. if (rq1 < rq2) {
  1226. raw_spin_lock(&rq1->lock);
  1227. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1228. } else {
  1229. raw_spin_lock(&rq2->lock);
  1230. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1231. }
  1232. }
  1233. }
  1234. /*
  1235. * double_rq_unlock - safely unlock two runqueues
  1236. *
  1237. * Note this does not restore interrupts like task_rq_unlock,
  1238. * you need to do so manually after calling.
  1239. */
  1240. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1241. __releases(rq1->lock)
  1242. __releases(rq2->lock)
  1243. {
  1244. raw_spin_unlock(&rq1->lock);
  1245. if (rq1 != rq2)
  1246. raw_spin_unlock(&rq2->lock);
  1247. else
  1248. __release(rq2->lock);
  1249. }
  1250. #else /* CONFIG_SMP */
  1251. /*
  1252. * double_rq_lock - safely lock two runqueues
  1253. *
  1254. * Note this does not disable interrupts like task_rq_lock,
  1255. * you need to do so manually before calling.
  1256. */
  1257. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1258. __acquires(rq1->lock)
  1259. __acquires(rq2->lock)
  1260. {
  1261. BUG_ON(!irqs_disabled());
  1262. BUG_ON(rq1 != rq2);
  1263. raw_spin_lock(&rq1->lock);
  1264. __acquire(rq2->lock); /* Fake it out ;) */
  1265. }
  1266. /*
  1267. * double_rq_unlock - safely unlock two runqueues
  1268. *
  1269. * Note this does not restore interrupts like task_rq_unlock,
  1270. * you need to do so manually after calling.
  1271. */
  1272. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1273. __releases(rq1->lock)
  1274. __releases(rq2->lock)
  1275. {
  1276. BUG_ON(rq1 != rq2);
  1277. raw_spin_unlock(&rq1->lock);
  1278. __release(rq2->lock);
  1279. }
  1280. #endif
  1281. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1282. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1283. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1284. extern void print_rt_stats(struct seq_file *m, int cpu);
  1285. extern void print_dl_stats(struct seq_file *m, int cpu);
  1286. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1287. extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
  1288. extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
  1289. extern void cfs_bandwidth_usage_inc(void);
  1290. extern void cfs_bandwidth_usage_dec(void);
  1291. #ifdef CONFIG_NO_HZ_COMMON
  1292. enum rq_nohz_flag_bits {
  1293. NOHZ_TICK_STOPPED,
  1294. NOHZ_BALANCE_KICK,
  1295. };
  1296. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1297. #endif
  1298. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1299. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1300. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1301. #ifndef CONFIG_64BIT
  1302. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1303. static inline void irq_time_write_begin(void)
  1304. {
  1305. __this_cpu_inc(irq_time_seq.sequence);
  1306. smp_wmb();
  1307. }
  1308. static inline void irq_time_write_end(void)
  1309. {
  1310. smp_wmb();
  1311. __this_cpu_inc(irq_time_seq.sequence);
  1312. }
  1313. static inline u64 irq_time_read(int cpu)
  1314. {
  1315. u64 irq_time;
  1316. unsigned seq;
  1317. do {
  1318. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1319. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1320. per_cpu(cpu_hardirq_time, cpu);
  1321. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1322. return irq_time;
  1323. }
  1324. #else /* CONFIG_64BIT */
  1325. static inline void irq_time_write_begin(void)
  1326. {
  1327. }
  1328. static inline void irq_time_write_end(void)
  1329. {
  1330. }
  1331. static inline u64 irq_time_read(int cpu)
  1332. {
  1333. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1334. }
  1335. #endif /* CONFIG_64BIT */
  1336. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */