fair.c 212 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/cpuidle.h>
  26. #include <linux/slab.h>
  27. #include <linux/profile.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/mempolicy.h>
  30. #include <linux/migrate.h>
  31. #include <linux/task_work.h>
  32. #include <trace/events/sched.h>
  33. #include "sched.h"
  34. /*
  35. * Targeted preemption latency for CPU-bound tasks:
  36. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  37. *
  38. * NOTE: this latency value is not the same as the concept of
  39. * 'timeslice length' - timeslices in CFS are of variable length
  40. * and have no persistent notion like in traditional, time-slice
  41. * based scheduling concepts.
  42. *
  43. * (to see the precise effective timeslice length of your workload,
  44. * run vmstat and monitor the context-switches (cs) field)
  45. */
  46. unsigned int sysctl_sched_latency = 6000000ULL;
  47. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  48. /*
  49. * The initial- and re-scaling of tunables is configurable
  50. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  51. *
  52. * Options are:
  53. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  54. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  55. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  56. */
  57. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  58. = SCHED_TUNABLESCALING_LOG;
  59. /*
  60. * Minimal preemption granularity for CPU-bound tasks:
  61. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  62. */
  63. unsigned int sysctl_sched_min_granularity = 750000ULL;
  64. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  65. /*
  66. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  67. */
  68. static unsigned int sched_nr_latency = 8;
  69. /*
  70. * After fork, child runs first. If set to 0 (default) then
  71. * parent will (try to) run first.
  72. */
  73. unsigned int sysctl_sched_child_runs_first __read_mostly;
  74. /*
  75. * SCHED_OTHER wake-up granularity.
  76. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  77. *
  78. * This option delays the preemption effects of decoupled workloads
  79. * and reduces their over-scheduling. Synchronous workloads will still
  80. * have immediate wakeup/sleep latencies.
  81. */
  82. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  83. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  84. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  85. /*
  86. * The exponential sliding window over which load is averaged for shares
  87. * distribution.
  88. * (default: 10msec)
  89. */
  90. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  91. #ifdef CONFIG_CFS_BANDWIDTH
  92. /*
  93. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  94. * each time a cfs_rq requests quota.
  95. *
  96. * Note: in the case that the slice exceeds the runtime remaining (either due
  97. * to consumption or the quota being specified to be smaller than the slice)
  98. * we will always only issue the remaining available time.
  99. *
  100. * default: 5 msec, units: microseconds
  101. */
  102. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  103. #endif
  104. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  105. {
  106. lw->weight += inc;
  107. lw->inv_weight = 0;
  108. }
  109. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  110. {
  111. lw->weight -= dec;
  112. lw->inv_weight = 0;
  113. }
  114. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  115. {
  116. lw->weight = w;
  117. lw->inv_weight = 0;
  118. }
  119. /*
  120. * Increase the granularity value when there are more CPUs,
  121. * because with more CPUs the 'effective latency' as visible
  122. * to users decreases. But the relationship is not linear,
  123. * so pick a second-best guess by going with the log2 of the
  124. * number of CPUs.
  125. *
  126. * This idea comes from the SD scheduler of Con Kolivas:
  127. */
  128. static int get_update_sysctl_factor(void)
  129. {
  130. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  131. unsigned int factor;
  132. switch (sysctl_sched_tunable_scaling) {
  133. case SCHED_TUNABLESCALING_NONE:
  134. factor = 1;
  135. break;
  136. case SCHED_TUNABLESCALING_LINEAR:
  137. factor = cpus;
  138. break;
  139. case SCHED_TUNABLESCALING_LOG:
  140. default:
  141. factor = 1 + ilog2(cpus);
  142. break;
  143. }
  144. return factor;
  145. }
  146. static void update_sysctl(void)
  147. {
  148. unsigned int factor = get_update_sysctl_factor();
  149. #define SET_SYSCTL(name) \
  150. (sysctl_##name = (factor) * normalized_sysctl_##name)
  151. SET_SYSCTL(sched_min_granularity);
  152. SET_SYSCTL(sched_latency);
  153. SET_SYSCTL(sched_wakeup_granularity);
  154. #undef SET_SYSCTL
  155. }
  156. void sched_init_granularity(void)
  157. {
  158. update_sysctl();
  159. }
  160. #define WMULT_CONST (~0U)
  161. #define WMULT_SHIFT 32
  162. static void __update_inv_weight(struct load_weight *lw)
  163. {
  164. unsigned long w;
  165. if (likely(lw->inv_weight))
  166. return;
  167. w = scale_load_down(lw->weight);
  168. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  169. lw->inv_weight = 1;
  170. else if (unlikely(!w))
  171. lw->inv_weight = WMULT_CONST;
  172. else
  173. lw->inv_weight = WMULT_CONST / w;
  174. }
  175. /*
  176. * delta_exec * weight / lw.weight
  177. * OR
  178. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  179. *
  180. * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
  181. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  182. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  183. *
  184. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  185. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  186. */
  187. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  188. {
  189. u64 fact = scale_load_down(weight);
  190. int shift = WMULT_SHIFT;
  191. __update_inv_weight(lw);
  192. if (unlikely(fact >> 32)) {
  193. while (fact >> 32) {
  194. fact >>= 1;
  195. shift--;
  196. }
  197. }
  198. /* hint to use a 32x32->64 mul */
  199. fact = (u64)(u32)fact * lw->inv_weight;
  200. while (fact >> 32) {
  201. fact >>= 1;
  202. shift--;
  203. }
  204. return mul_u64_u32_shr(delta_exec, fact, shift);
  205. }
  206. const struct sched_class fair_sched_class;
  207. /**************************************************************
  208. * CFS operations on generic schedulable entities:
  209. */
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* cpu runqueue to which this cfs_rq is attached */
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return cfs_rq->rq;
  215. }
  216. /* An entity is a task if it doesn't "own" a runqueue */
  217. #define entity_is_task(se) (!se->my_q)
  218. static inline struct task_struct *task_of(struct sched_entity *se)
  219. {
  220. #ifdef CONFIG_SCHED_DEBUG
  221. WARN_ON_ONCE(!entity_is_task(se));
  222. #endif
  223. return container_of(se, struct task_struct, se);
  224. }
  225. /* Walk up scheduling entities hierarchy */
  226. #define for_each_sched_entity(se) \
  227. for (; se; se = se->parent)
  228. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  229. {
  230. return p->se.cfs_rq;
  231. }
  232. /* runqueue on which this entity is (to be) queued */
  233. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  234. {
  235. return se->cfs_rq;
  236. }
  237. /* runqueue "owned" by this group */
  238. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  239. {
  240. return grp->my_q;
  241. }
  242. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  243. int force_update);
  244. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  245. {
  246. if (!cfs_rq->on_list) {
  247. /*
  248. * Ensure we either appear before our parent (if already
  249. * enqueued) or force our parent to appear after us when it is
  250. * enqueued. The fact that we always enqueue bottom-up
  251. * reduces this to two cases.
  252. */
  253. if (cfs_rq->tg->parent &&
  254. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  255. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  256. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  257. } else {
  258. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  259. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  260. }
  261. cfs_rq->on_list = 1;
  262. /* We should have no load, but we need to update last_decay. */
  263. update_cfs_rq_blocked_load(cfs_rq, 0);
  264. }
  265. }
  266. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  267. {
  268. if (cfs_rq->on_list) {
  269. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  270. cfs_rq->on_list = 0;
  271. }
  272. }
  273. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  274. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  275. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  276. /* Do the two (enqueued) entities belong to the same group ? */
  277. static inline struct cfs_rq *
  278. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  279. {
  280. if (se->cfs_rq == pse->cfs_rq)
  281. return se->cfs_rq;
  282. return NULL;
  283. }
  284. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  285. {
  286. return se->parent;
  287. }
  288. static void
  289. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  290. {
  291. int se_depth, pse_depth;
  292. /*
  293. * preemption test can be made between sibling entities who are in the
  294. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  295. * both tasks until we find their ancestors who are siblings of common
  296. * parent.
  297. */
  298. /* First walk up until both entities are at same depth */
  299. se_depth = (*se)->depth;
  300. pse_depth = (*pse)->depth;
  301. while (se_depth > pse_depth) {
  302. se_depth--;
  303. *se = parent_entity(*se);
  304. }
  305. while (pse_depth > se_depth) {
  306. pse_depth--;
  307. *pse = parent_entity(*pse);
  308. }
  309. while (!is_same_group(*se, *pse)) {
  310. *se = parent_entity(*se);
  311. *pse = parent_entity(*pse);
  312. }
  313. }
  314. #else /* !CONFIG_FAIR_GROUP_SCHED */
  315. static inline struct task_struct *task_of(struct sched_entity *se)
  316. {
  317. return container_of(se, struct task_struct, se);
  318. }
  319. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  320. {
  321. return container_of(cfs_rq, struct rq, cfs);
  322. }
  323. #define entity_is_task(se) 1
  324. #define for_each_sched_entity(se) \
  325. for (; se; se = NULL)
  326. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  327. {
  328. return &task_rq(p)->cfs;
  329. }
  330. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  331. {
  332. struct task_struct *p = task_of(se);
  333. struct rq *rq = task_rq(p);
  334. return &rq->cfs;
  335. }
  336. /* runqueue "owned" by this group */
  337. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  338. {
  339. return NULL;
  340. }
  341. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  342. {
  343. }
  344. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  345. {
  346. }
  347. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  348. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  349. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  350. {
  351. return NULL;
  352. }
  353. static inline void
  354. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  355. {
  356. }
  357. #endif /* CONFIG_FAIR_GROUP_SCHED */
  358. static __always_inline
  359. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  360. /**************************************************************
  361. * Scheduling class tree data structure manipulation methods:
  362. */
  363. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  364. {
  365. s64 delta = (s64)(vruntime - max_vruntime);
  366. if (delta > 0)
  367. max_vruntime = vruntime;
  368. return max_vruntime;
  369. }
  370. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  371. {
  372. s64 delta = (s64)(vruntime - min_vruntime);
  373. if (delta < 0)
  374. min_vruntime = vruntime;
  375. return min_vruntime;
  376. }
  377. static inline int entity_before(struct sched_entity *a,
  378. struct sched_entity *b)
  379. {
  380. return (s64)(a->vruntime - b->vruntime) < 0;
  381. }
  382. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  383. {
  384. u64 vruntime = cfs_rq->min_vruntime;
  385. if (cfs_rq->curr)
  386. vruntime = cfs_rq->curr->vruntime;
  387. if (cfs_rq->rb_leftmost) {
  388. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  389. struct sched_entity,
  390. run_node);
  391. if (!cfs_rq->curr)
  392. vruntime = se->vruntime;
  393. else
  394. vruntime = min_vruntime(vruntime, se->vruntime);
  395. }
  396. /* ensure we never gain time by being placed backwards. */
  397. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  398. #ifndef CONFIG_64BIT
  399. smp_wmb();
  400. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  401. #endif
  402. }
  403. /*
  404. * Enqueue an entity into the rb-tree:
  405. */
  406. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  407. {
  408. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  409. struct rb_node *parent = NULL;
  410. struct sched_entity *entry;
  411. int leftmost = 1;
  412. /*
  413. * Find the right place in the rbtree:
  414. */
  415. while (*link) {
  416. parent = *link;
  417. entry = rb_entry(parent, struct sched_entity, run_node);
  418. /*
  419. * We dont care about collisions. Nodes with
  420. * the same key stay together.
  421. */
  422. if (entity_before(se, entry)) {
  423. link = &parent->rb_left;
  424. } else {
  425. link = &parent->rb_right;
  426. leftmost = 0;
  427. }
  428. }
  429. /*
  430. * Maintain a cache of leftmost tree entries (it is frequently
  431. * used):
  432. */
  433. if (leftmost)
  434. cfs_rq->rb_leftmost = &se->run_node;
  435. rb_link_node(&se->run_node, parent, link);
  436. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  437. }
  438. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  439. {
  440. if (cfs_rq->rb_leftmost == &se->run_node) {
  441. struct rb_node *next_node;
  442. next_node = rb_next(&se->run_node);
  443. cfs_rq->rb_leftmost = next_node;
  444. }
  445. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  446. }
  447. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  448. {
  449. struct rb_node *left = cfs_rq->rb_leftmost;
  450. if (!left)
  451. return NULL;
  452. return rb_entry(left, struct sched_entity, run_node);
  453. }
  454. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  455. {
  456. struct rb_node *next = rb_next(&se->run_node);
  457. if (!next)
  458. return NULL;
  459. return rb_entry(next, struct sched_entity, run_node);
  460. }
  461. #ifdef CONFIG_SCHED_DEBUG
  462. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  463. {
  464. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  465. if (!last)
  466. return NULL;
  467. return rb_entry(last, struct sched_entity, run_node);
  468. }
  469. /**************************************************************
  470. * Scheduling class statistics methods:
  471. */
  472. int sched_proc_update_handler(struct ctl_table *table, int write,
  473. void __user *buffer, size_t *lenp,
  474. loff_t *ppos)
  475. {
  476. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  477. int factor = get_update_sysctl_factor();
  478. if (ret || !write)
  479. return ret;
  480. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  481. sysctl_sched_min_granularity);
  482. #define WRT_SYSCTL(name) \
  483. (normalized_sysctl_##name = sysctl_##name / (factor))
  484. WRT_SYSCTL(sched_min_granularity);
  485. WRT_SYSCTL(sched_latency);
  486. WRT_SYSCTL(sched_wakeup_granularity);
  487. #undef WRT_SYSCTL
  488. return 0;
  489. }
  490. #endif
  491. /*
  492. * delta /= w
  493. */
  494. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  495. {
  496. if (unlikely(se->load.weight != NICE_0_LOAD))
  497. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  498. return delta;
  499. }
  500. /*
  501. * The idea is to set a period in which each task runs once.
  502. *
  503. * When there are too many tasks (sched_nr_latency) we have to stretch
  504. * this period because otherwise the slices get too small.
  505. *
  506. * p = (nr <= nl) ? l : l*nr/nl
  507. */
  508. static u64 __sched_period(unsigned long nr_running)
  509. {
  510. u64 period = sysctl_sched_latency;
  511. unsigned long nr_latency = sched_nr_latency;
  512. if (unlikely(nr_running > nr_latency)) {
  513. period = sysctl_sched_min_granularity;
  514. period *= nr_running;
  515. }
  516. return period;
  517. }
  518. /*
  519. * We calculate the wall-time slice from the period by taking a part
  520. * proportional to the weight.
  521. *
  522. * s = p*P[w/rw]
  523. */
  524. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  525. {
  526. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  527. for_each_sched_entity(se) {
  528. struct load_weight *load;
  529. struct load_weight lw;
  530. cfs_rq = cfs_rq_of(se);
  531. load = &cfs_rq->load;
  532. if (unlikely(!se->on_rq)) {
  533. lw = cfs_rq->load;
  534. update_load_add(&lw, se->load.weight);
  535. load = &lw;
  536. }
  537. slice = __calc_delta(slice, se->load.weight, load);
  538. }
  539. return slice;
  540. }
  541. /*
  542. * We calculate the vruntime slice of a to-be-inserted task.
  543. *
  544. * vs = s/w
  545. */
  546. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  547. {
  548. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  549. }
  550. #ifdef CONFIG_SMP
  551. static int select_idle_sibling(struct task_struct *p, int cpu);
  552. static unsigned long task_h_load(struct task_struct *p);
  553. static inline void __update_task_entity_contrib(struct sched_entity *se);
  554. /* Give new task start runnable values to heavy its load in infant time */
  555. void init_task_runnable_average(struct task_struct *p)
  556. {
  557. u32 slice;
  558. p->se.avg.decay_count = 0;
  559. slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
  560. p->se.avg.runnable_avg_sum = slice;
  561. p->se.avg.runnable_avg_period = slice;
  562. __update_task_entity_contrib(&p->se);
  563. }
  564. #else
  565. void init_task_runnable_average(struct task_struct *p)
  566. {
  567. }
  568. #endif
  569. /*
  570. * Update the current task's runtime statistics.
  571. */
  572. static void update_curr(struct cfs_rq *cfs_rq)
  573. {
  574. struct sched_entity *curr = cfs_rq->curr;
  575. u64 now = rq_clock_task(rq_of(cfs_rq));
  576. u64 delta_exec;
  577. if (unlikely(!curr))
  578. return;
  579. delta_exec = now - curr->exec_start;
  580. if (unlikely((s64)delta_exec <= 0))
  581. return;
  582. curr->exec_start = now;
  583. schedstat_set(curr->statistics.exec_max,
  584. max(delta_exec, curr->statistics.exec_max));
  585. curr->sum_exec_runtime += delta_exec;
  586. schedstat_add(cfs_rq, exec_clock, delta_exec);
  587. curr->vruntime += calc_delta_fair(delta_exec, curr);
  588. update_min_vruntime(cfs_rq);
  589. if (entity_is_task(curr)) {
  590. struct task_struct *curtask = task_of(curr);
  591. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  592. cpuacct_charge(curtask, delta_exec);
  593. account_group_exec_runtime(curtask, delta_exec);
  594. }
  595. account_cfs_rq_runtime(cfs_rq, delta_exec);
  596. }
  597. static void update_curr_fair(struct rq *rq)
  598. {
  599. update_curr(cfs_rq_of(&rq->curr->se));
  600. }
  601. static inline void
  602. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  603. {
  604. schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
  605. }
  606. /*
  607. * Task is being enqueued - update stats:
  608. */
  609. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  610. {
  611. /*
  612. * Are we enqueueing a waiting task? (for current tasks
  613. * a dequeue/enqueue event is a NOP)
  614. */
  615. if (se != cfs_rq->curr)
  616. update_stats_wait_start(cfs_rq, se);
  617. }
  618. static void
  619. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  620. {
  621. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  622. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
  623. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  624. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  625. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  626. #ifdef CONFIG_SCHEDSTATS
  627. if (entity_is_task(se)) {
  628. trace_sched_stat_wait(task_of(se),
  629. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  630. }
  631. #endif
  632. schedstat_set(se->statistics.wait_start, 0);
  633. }
  634. static inline void
  635. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  636. {
  637. /*
  638. * Mark the end of the wait period if dequeueing a
  639. * waiting task:
  640. */
  641. if (se != cfs_rq->curr)
  642. update_stats_wait_end(cfs_rq, se);
  643. }
  644. /*
  645. * We are picking a new current task - update its stats:
  646. */
  647. static inline void
  648. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  649. {
  650. /*
  651. * We are starting a new run period:
  652. */
  653. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  654. }
  655. /**************************************************
  656. * Scheduling class queueing methods:
  657. */
  658. #ifdef CONFIG_NUMA_BALANCING
  659. /*
  660. * Approximate time to scan a full NUMA task in ms. The task scan period is
  661. * calculated based on the tasks virtual memory size and
  662. * numa_balancing_scan_size.
  663. */
  664. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  665. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  666. /* Portion of address space to scan in MB */
  667. unsigned int sysctl_numa_balancing_scan_size = 256;
  668. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  669. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  670. static unsigned int task_nr_scan_windows(struct task_struct *p)
  671. {
  672. unsigned long rss = 0;
  673. unsigned long nr_scan_pages;
  674. /*
  675. * Calculations based on RSS as non-present and empty pages are skipped
  676. * by the PTE scanner and NUMA hinting faults should be trapped based
  677. * on resident pages
  678. */
  679. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  680. rss = get_mm_rss(p->mm);
  681. if (!rss)
  682. rss = nr_scan_pages;
  683. rss = round_up(rss, nr_scan_pages);
  684. return rss / nr_scan_pages;
  685. }
  686. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  687. #define MAX_SCAN_WINDOW 2560
  688. static unsigned int task_scan_min(struct task_struct *p)
  689. {
  690. unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
  691. unsigned int scan, floor;
  692. unsigned int windows = 1;
  693. if (scan_size < MAX_SCAN_WINDOW)
  694. windows = MAX_SCAN_WINDOW / scan_size;
  695. floor = 1000 / windows;
  696. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  697. return max_t(unsigned int, floor, scan);
  698. }
  699. static unsigned int task_scan_max(struct task_struct *p)
  700. {
  701. unsigned int smin = task_scan_min(p);
  702. unsigned int smax;
  703. /* Watch for min being lower than max due to floor calculations */
  704. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  705. return max(smin, smax);
  706. }
  707. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  708. {
  709. rq->nr_numa_running += (p->numa_preferred_nid != -1);
  710. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  711. }
  712. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  713. {
  714. rq->nr_numa_running -= (p->numa_preferred_nid != -1);
  715. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  716. }
  717. struct numa_group {
  718. atomic_t refcount;
  719. spinlock_t lock; /* nr_tasks, tasks */
  720. int nr_tasks;
  721. pid_t gid;
  722. struct rcu_head rcu;
  723. nodemask_t active_nodes;
  724. unsigned long total_faults;
  725. /*
  726. * Faults_cpu is used to decide whether memory should move
  727. * towards the CPU. As a consequence, these stats are weighted
  728. * more by CPU use than by memory faults.
  729. */
  730. unsigned long *faults_cpu;
  731. unsigned long faults[0];
  732. };
  733. /* Shared or private faults. */
  734. #define NR_NUMA_HINT_FAULT_TYPES 2
  735. /* Memory and CPU locality */
  736. #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
  737. /* Averaged statistics, and temporary buffers. */
  738. #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
  739. pid_t task_numa_group_id(struct task_struct *p)
  740. {
  741. return p->numa_group ? p->numa_group->gid : 0;
  742. }
  743. /*
  744. * The averaged statistics, shared & private, memory & cpu,
  745. * occupy the first half of the array. The second half of the
  746. * array is for current counters, which are averaged into the
  747. * first set by task_numa_placement.
  748. */
  749. static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
  750. {
  751. return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
  752. }
  753. static inline unsigned long task_faults(struct task_struct *p, int nid)
  754. {
  755. if (!p->numa_faults)
  756. return 0;
  757. return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  758. p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
  759. }
  760. static inline unsigned long group_faults(struct task_struct *p, int nid)
  761. {
  762. if (!p->numa_group)
  763. return 0;
  764. return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
  765. p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
  766. }
  767. static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
  768. {
  769. return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
  770. group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
  771. }
  772. /* Handle placement on systems where not all nodes are directly connected. */
  773. static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
  774. int maxdist, bool task)
  775. {
  776. unsigned long score = 0;
  777. int node;
  778. /*
  779. * All nodes are directly connected, and the same distance
  780. * from each other. No need for fancy placement algorithms.
  781. */
  782. if (sched_numa_topology_type == NUMA_DIRECT)
  783. return 0;
  784. /*
  785. * This code is called for each node, introducing N^2 complexity,
  786. * which should be ok given the number of nodes rarely exceeds 8.
  787. */
  788. for_each_online_node(node) {
  789. unsigned long faults;
  790. int dist = node_distance(nid, node);
  791. /*
  792. * The furthest away nodes in the system are not interesting
  793. * for placement; nid was already counted.
  794. */
  795. if (dist == sched_max_numa_distance || node == nid)
  796. continue;
  797. /*
  798. * On systems with a backplane NUMA topology, compare groups
  799. * of nodes, and move tasks towards the group with the most
  800. * memory accesses. When comparing two nodes at distance
  801. * "hoplimit", only nodes closer by than "hoplimit" are part
  802. * of each group. Skip other nodes.
  803. */
  804. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  805. dist > maxdist)
  806. continue;
  807. /* Add up the faults from nearby nodes. */
  808. if (task)
  809. faults = task_faults(p, node);
  810. else
  811. faults = group_faults(p, node);
  812. /*
  813. * On systems with a glueless mesh NUMA topology, there are
  814. * no fixed "groups of nodes". Instead, nodes that are not
  815. * directly connected bounce traffic through intermediate
  816. * nodes; a numa_group can occupy any set of nodes.
  817. * The further away a node is, the less the faults count.
  818. * This seems to result in good task placement.
  819. */
  820. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  821. faults *= (sched_max_numa_distance - dist);
  822. faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
  823. }
  824. score += faults;
  825. }
  826. return score;
  827. }
  828. /*
  829. * These return the fraction of accesses done by a particular task, or
  830. * task group, on a particular numa node. The group weight is given a
  831. * larger multiplier, in order to group tasks together that are almost
  832. * evenly spread out between numa nodes.
  833. */
  834. static inline unsigned long task_weight(struct task_struct *p, int nid,
  835. int dist)
  836. {
  837. unsigned long faults, total_faults;
  838. if (!p->numa_faults)
  839. return 0;
  840. total_faults = p->total_numa_faults;
  841. if (!total_faults)
  842. return 0;
  843. faults = task_faults(p, nid);
  844. faults += score_nearby_nodes(p, nid, dist, true);
  845. return 1000 * faults / total_faults;
  846. }
  847. static inline unsigned long group_weight(struct task_struct *p, int nid,
  848. int dist)
  849. {
  850. unsigned long faults, total_faults;
  851. if (!p->numa_group)
  852. return 0;
  853. total_faults = p->numa_group->total_faults;
  854. if (!total_faults)
  855. return 0;
  856. faults = group_faults(p, nid);
  857. faults += score_nearby_nodes(p, nid, dist, false);
  858. return 1000 * faults / total_faults;
  859. }
  860. bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
  861. int src_nid, int dst_cpu)
  862. {
  863. struct numa_group *ng = p->numa_group;
  864. int dst_nid = cpu_to_node(dst_cpu);
  865. int last_cpupid, this_cpupid;
  866. this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
  867. /*
  868. * Multi-stage node selection is used in conjunction with a periodic
  869. * migration fault to build a temporal task<->page relation. By using
  870. * a two-stage filter we remove short/unlikely relations.
  871. *
  872. * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
  873. * a task's usage of a particular page (n_p) per total usage of this
  874. * page (n_t) (in a given time-span) to a probability.
  875. *
  876. * Our periodic faults will sample this probability and getting the
  877. * same result twice in a row, given these samples are fully
  878. * independent, is then given by P(n)^2, provided our sample period
  879. * is sufficiently short compared to the usage pattern.
  880. *
  881. * This quadric squishes small probabilities, making it less likely we
  882. * act on an unlikely task<->page relation.
  883. */
  884. last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
  885. if (!cpupid_pid_unset(last_cpupid) &&
  886. cpupid_to_nid(last_cpupid) != dst_nid)
  887. return false;
  888. /* Always allow migrate on private faults */
  889. if (cpupid_match_pid(p, last_cpupid))
  890. return true;
  891. /* A shared fault, but p->numa_group has not been set up yet. */
  892. if (!ng)
  893. return true;
  894. /*
  895. * Do not migrate if the destination is not a node that
  896. * is actively used by this numa group.
  897. */
  898. if (!node_isset(dst_nid, ng->active_nodes))
  899. return false;
  900. /*
  901. * Source is a node that is not actively used by this
  902. * numa group, while the destination is. Migrate.
  903. */
  904. if (!node_isset(src_nid, ng->active_nodes))
  905. return true;
  906. /*
  907. * Both source and destination are nodes in active
  908. * use by this numa group. Maximize memory bandwidth
  909. * by migrating from more heavily used groups, to less
  910. * heavily used ones, spreading the load around.
  911. * Use a 1/4 hysteresis to avoid spurious page movement.
  912. */
  913. return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
  914. }
  915. static unsigned long weighted_cpuload(const int cpu);
  916. static unsigned long source_load(int cpu, int type);
  917. static unsigned long target_load(int cpu, int type);
  918. static unsigned long capacity_of(int cpu);
  919. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  920. /* Cached statistics for all CPUs within a node */
  921. struct numa_stats {
  922. unsigned long nr_running;
  923. unsigned long load;
  924. /* Total compute capacity of CPUs on a node */
  925. unsigned long compute_capacity;
  926. /* Approximate capacity in terms of runnable tasks on a node */
  927. unsigned long task_capacity;
  928. int has_free_capacity;
  929. };
  930. /*
  931. * XXX borrowed from update_sg_lb_stats
  932. */
  933. static void update_numa_stats(struct numa_stats *ns, int nid)
  934. {
  935. int smt, cpu, cpus = 0;
  936. unsigned long capacity;
  937. memset(ns, 0, sizeof(*ns));
  938. for_each_cpu(cpu, cpumask_of_node(nid)) {
  939. struct rq *rq = cpu_rq(cpu);
  940. ns->nr_running += rq->nr_running;
  941. ns->load += weighted_cpuload(cpu);
  942. ns->compute_capacity += capacity_of(cpu);
  943. cpus++;
  944. }
  945. /*
  946. * If we raced with hotplug and there are no CPUs left in our mask
  947. * the @ns structure is NULL'ed and task_numa_compare() will
  948. * not find this node attractive.
  949. *
  950. * We'll either bail at !has_free_capacity, or we'll detect a huge
  951. * imbalance and bail there.
  952. */
  953. if (!cpus)
  954. return;
  955. /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
  956. smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
  957. capacity = cpus / smt; /* cores */
  958. ns->task_capacity = min_t(unsigned, capacity,
  959. DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
  960. ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
  961. }
  962. struct task_numa_env {
  963. struct task_struct *p;
  964. int src_cpu, src_nid;
  965. int dst_cpu, dst_nid;
  966. struct numa_stats src_stats, dst_stats;
  967. int imbalance_pct;
  968. int dist;
  969. struct task_struct *best_task;
  970. long best_imp;
  971. int best_cpu;
  972. };
  973. static void task_numa_assign(struct task_numa_env *env,
  974. struct task_struct *p, long imp)
  975. {
  976. if (env->best_task)
  977. put_task_struct(env->best_task);
  978. if (p)
  979. get_task_struct(p);
  980. env->best_task = p;
  981. env->best_imp = imp;
  982. env->best_cpu = env->dst_cpu;
  983. }
  984. static bool load_too_imbalanced(long src_load, long dst_load,
  985. struct task_numa_env *env)
  986. {
  987. long imb, old_imb;
  988. long orig_src_load, orig_dst_load;
  989. long src_capacity, dst_capacity;
  990. /*
  991. * The load is corrected for the CPU capacity available on each node.
  992. *
  993. * src_load dst_load
  994. * ------------ vs ---------
  995. * src_capacity dst_capacity
  996. */
  997. src_capacity = env->src_stats.compute_capacity;
  998. dst_capacity = env->dst_stats.compute_capacity;
  999. /* We care about the slope of the imbalance, not the direction. */
  1000. if (dst_load < src_load)
  1001. swap(dst_load, src_load);
  1002. /* Is the difference below the threshold? */
  1003. imb = dst_load * src_capacity * 100 -
  1004. src_load * dst_capacity * env->imbalance_pct;
  1005. if (imb <= 0)
  1006. return false;
  1007. /*
  1008. * The imbalance is above the allowed threshold.
  1009. * Compare it with the old imbalance.
  1010. */
  1011. orig_src_load = env->src_stats.load;
  1012. orig_dst_load = env->dst_stats.load;
  1013. if (orig_dst_load < orig_src_load)
  1014. swap(orig_dst_load, orig_src_load);
  1015. old_imb = orig_dst_load * src_capacity * 100 -
  1016. orig_src_load * dst_capacity * env->imbalance_pct;
  1017. /* Would this change make things worse? */
  1018. return (imb > old_imb);
  1019. }
  1020. /*
  1021. * This checks if the overall compute and NUMA accesses of the system would
  1022. * be improved if the source tasks was migrated to the target dst_cpu taking
  1023. * into account that it might be best if task running on the dst_cpu should
  1024. * be exchanged with the source task
  1025. */
  1026. static void task_numa_compare(struct task_numa_env *env,
  1027. long taskimp, long groupimp)
  1028. {
  1029. struct rq *src_rq = cpu_rq(env->src_cpu);
  1030. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  1031. struct task_struct *cur;
  1032. long src_load, dst_load;
  1033. long load;
  1034. long imp = env->p->numa_group ? groupimp : taskimp;
  1035. long moveimp = imp;
  1036. int dist = env->dist;
  1037. rcu_read_lock();
  1038. raw_spin_lock_irq(&dst_rq->lock);
  1039. cur = dst_rq->curr;
  1040. /*
  1041. * No need to move the exiting task, and this ensures that ->curr
  1042. * wasn't reaped and thus get_task_struct() in task_numa_assign()
  1043. * is safe under RCU read lock.
  1044. * Note that rcu_read_lock() itself can't protect from the final
  1045. * put_task_struct() after the last schedule().
  1046. */
  1047. if ((cur->flags & PF_EXITING) || is_idle_task(cur))
  1048. cur = NULL;
  1049. raw_spin_unlock_irq(&dst_rq->lock);
  1050. /*
  1051. * Because we have preemption enabled we can get migrated around and
  1052. * end try selecting ourselves (current == env->p) as a swap candidate.
  1053. */
  1054. if (cur == env->p)
  1055. goto unlock;
  1056. /*
  1057. * "imp" is the fault differential for the source task between the
  1058. * source and destination node. Calculate the total differential for
  1059. * the source task and potential destination task. The more negative
  1060. * the value is, the more rmeote accesses that would be expected to
  1061. * be incurred if the tasks were swapped.
  1062. */
  1063. if (cur) {
  1064. /* Skip this swap candidate if cannot move to the source cpu */
  1065. if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
  1066. goto unlock;
  1067. /*
  1068. * If dst and source tasks are in the same NUMA group, or not
  1069. * in any group then look only at task weights.
  1070. */
  1071. if (cur->numa_group == env->p->numa_group) {
  1072. imp = taskimp + task_weight(cur, env->src_nid, dist) -
  1073. task_weight(cur, env->dst_nid, dist);
  1074. /*
  1075. * Add some hysteresis to prevent swapping the
  1076. * tasks within a group over tiny differences.
  1077. */
  1078. if (cur->numa_group)
  1079. imp -= imp/16;
  1080. } else {
  1081. /*
  1082. * Compare the group weights. If a task is all by
  1083. * itself (not part of a group), use the task weight
  1084. * instead.
  1085. */
  1086. if (cur->numa_group)
  1087. imp += group_weight(cur, env->src_nid, dist) -
  1088. group_weight(cur, env->dst_nid, dist);
  1089. else
  1090. imp += task_weight(cur, env->src_nid, dist) -
  1091. task_weight(cur, env->dst_nid, dist);
  1092. }
  1093. }
  1094. if (imp <= env->best_imp && moveimp <= env->best_imp)
  1095. goto unlock;
  1096. if (!cur) {
  1097. /* Is there capacity at our destination? */
  1098. if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
  1099. !env->dst_stats.has_free_capacity)
  1100. goto unlock;
  1101. goto balance;
  1102. }
  1103. /* Balance doesn't matter much if we're running a task per cpu */
  1104. if (imp > env->best_imp && src_rq->nr_running == 1 &&
  1105. dst_rq->nr_running == 1)
  1106. goto assign;
  1107. /*
  1108. * In the overloaded case, try and keep the load balanced.
  1109. */
  1110. balance:
  1111. load = task_h_load(env->p);
  1112. dst_load = env->dst_stats.load + load;
  1113. src_load = env->src_stats.load - load;
  1114. if (moveimp > imp && moveimp > env->best_imp) {
  1115. /*
  1116. * If the improvement from just moving env->p direction is
  1117. * better than swapping tasks around, check if a move is
  1118. * possible. Store a slightly smaller score than moveimp,
  1119. * so an actually idle CPU will win.
  1120. */
  1121. if (!load_too_imbalanced(src_load, dst_load, env)) {
  1122. imp = moveimp - 1;
  1123. cur = NULL;
  1124. goto assign;
  1125. }
  1126. }
  1127. if (imp <= env->best_imp)
  1128. goto unlock;
  1129. if (cur) {
  1130. load = task_h_load(cur);
  1131. dst_load -= load;
  1132. src_load += load;
  1133. }
  1134. if (load_too_imbalanced(src_load, dst_load, env))
  1135. goto unlock;
  1136. /*
  1137. * One idle CPU per node is evaluated for a task numa move.
  1138. * Call select_idle_sibling to maybe find a better one.
  1139. */
  1140. if (!cur)
  1141. env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
  1142. assign:
  1143. task_numa_assign(env, cur, imp);
  1144. unlock:
  1145. rcu_read_unlock();
  1146. }
  1147. static void task_numa_find_cpu(struct task_numa_env *env,
  1148. long taskimp, long groupimp)
  1149. {
  1150. int cpu;
  1151. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  1152. /* Skip this CPU if the source task cannot migrate */
  1153. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
  1154. continue;
  1155. env->dst_cpu = cpu;
  1156. task_numa_compare(env, taskimp, groupimp);
  1157. }
  1158. }
  1159. static int task_numa_migrate(struct task_struct *p)
  1160. {
  1161. struct task_numa_env env = {
  1162. .p = p,
  1163. .src_cpu = task_cpu(p),
  1164. .src_nid = task_node(p),
  1165. .imbalance_pct = 112,
  1166. .best_task = NULL,
  1167. .best_imp = 0,
  1168. .best_cpu = -1
  1169. };
  1170. struct sched_domain *sd;
  1171. unsigned long taskweight, groupweight;
  1172. int nid, ret, dist;
  1173. long taskimp, groupimp;
  1174. /*
  1175. * Pick the lowest SD_NUMA domain, as that would have the smallest
  1176. * imbalance and would be the first to start moving tasks about.
  1177. *
  1178. * And we want to avoid any moving of tasks about, as that would create
  1179. * random movement of tasks -- counter the numa conditions we're trying
  1180. * to satisfy here.
  1181. */
  1182. rcu_read_lock();
  1183. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  1184. if (sd)
  1185. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  1186. rcu_read_unlock();
  1187. /*
  1188. * Cpusets can break the scheduler domain tree into smaller
  1189. * balance domains, some of which do not cross NUMA boundaries.
  1190. * Tasks that are "trapped" in such domains cannot be migrated
  1191. * elsewhere, so there is no point in (re)trying.
  1192. */
  1193. if (unlikely(!sd)) {
  1194. p->numa_preferred_nid = task_node(p);
  1195. return -EINVAL;
  1196. }
  1197. env.dst_nid = p->numa_preferred_nid;
  1198. dist = env.dist = node_distance(env.src_nid, env.dst_nid);
  1199. taskweight = task_weight(p, env.src_nid, dist);
  1200. groupweight = group_weight(p, env.src_nid, dist);
  1201. update_numa_stats(&env.src_stats, env.src_nid);
  1202. taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
  1203. groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
  1204. update_numa_stats(&env.dst_stats, env.dst_nid);
  1205. /* Try to find a spot on the preferred nid. */
  1206. task_numa_find_cpu(&env, taskimp, groupimp);
  1207. /*
  1208. * Look at other nodes in these cases:
  1209. * - there is no space available on the preferred_nid
  1210. * - the task is part of a numa_group that is interleaved across
  1211. * multiple NUMA nodes; in order to better consolidate the group,
  1212. * we need to check other locations.
  1213. */
  1214. if (env.best_cpu == -1 || (p->numa_group &&
  1215. nodes_weight(p->numa_group->active_nodes) > 1)) {
  1216. for_each_online_node(nid) {
  1217. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1218. continue;
  1219. dist = node_distance(env.src_nid, env.dst_nid);
  1220. if (sched_numa_topology_type == NUMA_BACKPLANE &&
  1221. dist != env.dist) {
  1222. taskweight = task_weight(p, env.src_nid, dist);
  1223. groupweight = group_weight(p, env.src_nid, dist);
  1224. }
  1225. /* Only consider nodes where both task and groups benefit */
  1226. taskimp = task_weight(p, nid, dist) - taskweight;
  1227. groupimp = group_weight(p, nid, dist) - groupweight;
  1228. if (taskimp < 0 && groupimp < 0)
  1229. continue;
  1230. env.dist = dist;
  1231. env.dst_nid = nid;
  1232. update_numa_stats(&env.dst_stats, env.dst_nid);
  1233. task_numa_find_cpu(&env, taskimp, groupimp);
  1234. }
  1235. }
  1236. /*
  1237. * If the task is part of a workload that spans multiple NUMA nodes,
  1238. * and is migrating into one of the workload's active nodes, remember
  1239. * this node as the task's preferred numa node, so the workload can
  1240. * settle down.
  1241. * A task that migrated to a second choice node will be better off
  1242. * trying for a better one later. Do not set the preferred node here.
  1243. */
  1244. if (p->numa_group) {
  1245. if (env.best_cpu == -1)
  1246. nid = env.src_nid;
  1247. else
  1248. nid = env.dst_nid;
  1249. if (node_isset(nid, p->numa_group->active_nodes))
  1250. sched_setnuma(p, env.dst_nid);
  1251. }
  1252. /* No better CPU than the current one was found. */
  1253. if (env.best_cpu == -1)
  1254. return -EAGAIN;
  1255. /*
  1256. * Reset the scan period if the task is being rescheduled on an
  1257. * alternative node to recheck if the tasks is now properly placed.
  1258. */
  1259. p->numa_scan_period = task_scan_min(p);
  1260. if (env.best_task == NULL) {
  1261. ret = migrate_task_to(p, env.best_cpu);
  1262. if (ret != 0)
  1263. trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
  1264. return ret;
  1265. }
  1266. ret = migrate_swap(p, env.best_task);
  1267. if (ret != 0)
  1268. trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
  1269. put_task_struct(env.best_task);
  1270. return ret;
  1271. }
  1272. /* Attempt to migrate a task to a CPU on the preferred node. */
  1273. static void numa_migrate_preferred(struct task_struct *p)
  1274. {
  1275. unsigned long interval = HZ;
  1276. /* This task has no NUMA fault statistics yet */
  1277. if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
  1278. return;
  1279. /* Periodically retry migrating the task to the preferred node */
  1280. interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
  1281. p->numa_migrate_retry = jiffies + interval;
  1282. /* Success if task is already running on preferred CPU */
  1283. if (task_node(p) == p->numa_preferred_nid)
  1284. return;
  1285. /* Otherwise, try migrate to a CPU on the preferred node */
  1286. task_numa_migrate(p);
  1287. }
  1288. /*
  1289. * Find the nodes on which the workload is actively running. We do this by
  1290. * tracking the nodes from which NUMA hinting faults are triggered. This can
  1291. * be different from the set of nodes where the workload's memory is currently
  1292. * located.
  1293. *
  1294. * The bitmask is used to make smarter decisions on when to do NUMA page
  1295. * migrations, To prevent flip-flopping, and excessive page migrations, nodes
  1296. * are added when they cause over 6/16 of the maximum number of faults, but
  1297. * only removed when they drop below 3/16.
  1298. */
  1299. static void update_numa_active_node_mask(struct numa_group *numa_group)
  1300. {
  1301. unsigned long faults, max_faults = 0;
  1302. int nid;
  1303. for_each_online_node(nid) {
  1304. faults = group_faults_cpu(numa_group, nid);
  1305. if (faults > max_faults)
  1306. max_faults = faults;
  1307. }
  1308. for_each_online_node(nid) {
  1309. faults = group_faults_cpu(numa_group, nid);
  1310. if (!node_isset(nid, numa_group->active_nodes)) {
  1311. if (faults > max_faults * 6 / 16)
  1312. node_set(nid, numa_group->active_nodes);
  1313. } else if (faults < max_faults * 3 / 16)
  1314. node_clear(nid, numa_group->active_nodes);
  1315. }
  1316. }
  1317. /*
  1318. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1319. * increments. The more local the fault statistics are, the higher the scan
  1320. * period will be for the next scan window. If local/(local+remote) ratio is
  1321. * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
  1322. * the scan period will decrease. Aim for 70% local accesses.
  1323. */
  1324. #define NUMA_PERIOD_SLOTS 10
  1325. #define NUMA_PERIOD_THRESHOLD 7
  1326. /*
  1327. * Increase the scan period (slow down scanning) if the majority of
  1328. * our memory is already on our local node, or if the majority of
  1329. * the page accesses are shared with other processes.
  1330. * Otherwise, decrease the scan period.
  1331. */
  1332. static void update_task_scan_period(struct task_struct *p,
  1333. unsigned long shared, unsigned long private)
  1334. {
  1335. unsigned int period_slot;
  1336. int ratio;
  1337. int diff;
  1338. unsigned long remote = p->numa_faults_locality[0];
  1339. unsigned long local = p->numa_faults_locality[1];
  1340. /*
  1341. * If there were no record hinting faults then either the task is
  1342. * completely idle or all activity is areas that are not of interest
  1343. * to automatic numa balancing. Scan slower
  1344. */
  1345. if (local + shared == 0) {
  1346. p->numa_scan_period = min(p->numa_scan_period_max,
  1347. p->numa_scan_period << 1);
  1348. p->mm->numa_next_scan = jiffies +
  1349. msecs_to_jiffies(p->numa_scan_period);
  1350. return;
  1351. }
  1352. /*
  1353. * Prepare to scale scan period relative to the current period.
  1354. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  1355. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  1356. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  1357. */
  1358. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  1359. ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  1360. if (ratio >= NUMA_PERIOD_THRESHOLD) {
  1361. int slot = ratio - NUMA_PERIOD_THRESHOLD;
  1362. if (!slot)
  1363. slot = 1;
  1364. diff = slot * period_slot;
  1365. } else {
  1366. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  1367. /*
  1368. * Scale scan rate increases based on sharing. There is an
  1369. * inverse relationship between the degree of sharing and
  1370. * the adjustment made to the scanning period. Broadly
  1371. * speaking the intent is that there is little point
  1372. * scanning faster if shared accesses dominate as it may
  1373. * simply bounce migrations uselessly
  1374. */
  1375. ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
  1376. diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
  1377. }
  1378. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  1379. task_scan_min(p), task_scan_max(p));
  1380. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1381. }
  1382. /*
  1383. * Get the fraction of time the task has been running since the last
  1384. * NUMA placement cycle. The scheduler keeps similar statistics, but
  1385. * decays those on a 32ms period, which is orders of magnitude off
  1386. * from the dozens-of-seconds NUMA balancing period. Use the scheduler
  1387. * stats only if the task is so new there are no NUMA statistics yet.
  1388. */
  1389. static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
  1390. {
  1391. u64 runtime, delta, now;
  1392. /* Use the start of this time slice to avoid calculations. */
  1393. now = p->se.exec_start;
  1394. runtime = p->se.sum_exec_runtime;
  1395. if (p->last_task_numa_placement) {
  1396. delta = runtime - p->last_sum_exec_runtime;
  1397. *period = now - p->last_task_numa_placement;
  1398. } else {
  1399. delta = p->se.avg.runnable_avg_sum;
  1400. *period = p->se.avg.runnable_avg_period;
  1401. }
  1402. p->last_sum_exec_runtime = runtime;
  1403. p->last_task_numa_placement = now;
  1404. return delta;
  1405. }
  1406. /*
  1407. * Determine the preferred nid for a task in a numa_group. This needs to
  1408. * be done in a way that produces consistent results with group_weight,
  1409. * otherwise workloads might not converge.
  1410. */
  1411. static int preferred_group_nid(struct task_struct *p, int nid)
  1412. {
  1413. nodemask_t nodes;
  1414. int dist;
  1415. /* Direct connections between all NUMA nodes. */
  1416. if (sched_numa_topology_type == NUMA_DIRECT)
  1417. return nid;
  1418. /*
  1419. * On a system with glueless mesh NUMA topology, group_weight
  1420. * scores nodes according to the number of NUMA hinting faults on
  1421. * both the node itself, and on nearby nodes.
  1422. */
  1423. if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
  1424. unsigned long score, max_score = 0;
  1425. int node, max_node = nid;
  1426. dist = sched_max_numa_distance;
  1427. for_each_online_node(node) {
  1428. score = group_weight(p, node, dist);
  1429. if (score > max_score) {
  1430. max_score = score;
  1431. max_node = node;
  1432. }
  1433. }
  1434. return max_node;
  1435. }
  1436. /*
  1437. * Finding the preferred nid in a system with NUMA backplane
  1438. * interconnect topology is more involved. The goal is to locate
  1439. * tasks from numa_groups near each other in the system, and
  1440. * untangle workloads from different sides of the system. This requires
  1441. * searching down the hierarchy of node groups, recursively searching
  1442. * inside the highest scoring group of nodes. The nodemask tricks
  1443. * keep the complexity of the search down.
  1444. */
  1445. nodes = node_online_map;
  1446. for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
  1447. unsigned long max_faults = 0;
  1448. nodemask_t max_group = NODE_MASK_NONE;
  1449. int a, b;
  1450. /* Are there nodes at this distance from each other? */
  1451. if (!find_numa_distance(dist))
  1452. continue;
  1453. for_each_node_mask(a, nodes) {
  1454. unsigned long faults = 0;
  1455. nodemask_t this_group;
  1456. nodes_clear(this_group);
  1457. /* Sum group's NUMA faults; includes a==b case. */
  1458. for_each_node_mask(b, nodes) {
  1459. if (node_distance(a, b) < dist) {
  1460. faults += group_faults(p, b);
  1461. node_set(b, this_group);
  1462. node_clear(b, nodes);
  1463. }
  1464. }
  1465. /* Remember the top group. */
  1466. if (faults > max_faults) {
  1467. max_faults = faults;
  1468. max_group = this_group;
  1469. /*
  1470. * subtle: at the smallest distance there is
  1471. * just one node left in each "group", the
  1472. * winner is the preferred nid.
  1473. */
  1474. nid = a;
  1475. }
  1476. }
  1477. /* Next round, evaluate the nodes within max_group. */
  1478. nodes = max_group;
  1479. }
  1480. return nid;
  1481. }
  1482. static void task_numa_placement(struct task_struct *p)
  1483. {
  1484. int seq, nid, max_nid = -1, max_group_nid = -1;
  1485. unsigned long max_faults = 0, max_group_faults = 0;
  1486. unsigned long fault_types[2] = { 0, 0 };
  1487. unsigned long total_faults;
  1488. u64 runtime, period;
  1489. spinlock_t *group_lock = NULL;
  1490. seq = ACCESS_ONCE(p->mm->numa_scan_seq);
  1491. if (p->numa_scan_seq == seq)
  1492. return;
  1493. p->numa_scan_seq = seq;
  1494. p->numa_scan_period_max = task_scan_max(p);
  1495. total_faults = p->numa_faults_locality[0] +
  1496. p->numa_faults_locality[1];
  1497. runtime = numa_get_avg_runtime(p, &period);
  1498. /* If the task is part of a group prevent parallel updates to group stats */
  1499. if (p->numa_group) {
  1500. group_lock = &p->numa_group->lock;
  1501. spin_lock_irq(group_lock);
  1502. }
  1503. /* Find the node with the highest number of faults */
  1504. for_each_online_node(nid) {
  1505. /* Keep track of the offsets in numa_faults array */
  1506. int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
  1507. unsigned long faults = 0, group_faults = 0;
  1508. int priv;
  1509. for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
  1510. long diff, f_diff, f_weight;
  1511. mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
  1512. membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
  1513. cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
  1514. cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
  1515. /* Decay existing window, copy faults since last scan */
  1516. diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
  1517. fault_types[priv] += p->numa_faults[membuf_idx];
  1518. p->numa_faults[membuf_idx] = 0;
  1519. /*
  1520. * Normalize the faults_from, so all tasks in a group
  1521. * count according to CPU use, instead of by the raw
  1522. * number of faults. Tasks with little runtime have
  1523. * little over-all impact on throughput, and thus their
  1524. * faults are less important.
  1525. */
  1526. f_weight = div64_u64(runtime << 16, period + 1);
  1527. f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
  1528. (total_faults + 1);
  1529. f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
  1530. p->numa_faults[cpubuf_idx] = 0;
  1531. p->numa_faults[mem_idx] += diff;
  1532. p->numa_faults[cpu_idx] += f_diff;
  1533. faults += p->numa_faults[mem_idx];
  1534. p->total_numa_faults += diff;
  1535. if (p->numa_group) {
  1536. /*
  1537. * safe because we can only change our own group
  1538. *
  1539. * mem_idx represents the offset for a given
  1540. * nid and priv in a specific region because it
  1541. * is at the beginning of the numa_faults array.
  1542. */
  1543. p->numa_group->faults[mem_idx] += diff;
  1544. p->numa_group->faults_cpu[mem_idx] += f_diff;
  1545. p->numa_group->total_faults += diff;
  1546. group_faults += p->numa_group->faults[mem_idx];
  1547. }
  1548. }
  1549. if (faults > max_faults) {
  1550. max_faults = faults;
  1551. max_nid = nid;
  1552. }
  1553. if (group_faults > max_group_faults) {
  1554. max_group_faults = group_faults;
  1555. max_group_nid = nid;
  1556. }
  1557. }
  1558. update_task_scan_period(p, fault_types[0], fault_types[1]);
  1559. if (p->numa_group) {
  1560. update_numa_active_node_mask(p->numa_group);
  1561. spin_unlock_irq(group_lock);
  1562. max_nid = preferred_group_nid(p, max_group_nid);
  1563. }
  1564. if (max_faults) {
  1565. /* Set the new preferred node */
  1566. if (max_nid != p->numa_preferred_nid)
  1567. sched_setnuma(p, max_nid);
  1568. if (task_node(p) != p->numa_preferred_nid)
  1569. numa_migrate_preferred(p);
  1570. }
  1571. }
  1572. static inline int get_numa_group(struct numa_group *grp)
  1573. {
  1574. return atomic_inc_not_zero(&grp->refcount);
  1575. }
  1576. static inline void put_numa_group(struct numa_group *grp)
  1577. {
  1578. if (atomic_dec_and_test(&grp->refcount))
  1579. kfree_rcu(grp, rcu);
  1580. }
  1581. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  1582. int *priv)
  1583. {
  1584. struct numa_group *grp, *my_grp;
  1585. struct task_struct *tsk;
  1586. bool join = false;
  1587. int cpu = cpupid_to_cpu(cpupid);
  1588. int i;
  1589. if (unlikely(!p->numa_group)) {
  1590. unsigned int size = sizeof(struct numa_group) +
  1591. 4*nr_node_ids*sizeof(unsigned long);
  1592. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1593. if (!grp)
  1594. return;
  1595. atomic_set(&grp->refcount, 1);
  1596. spin_lock_init(&grp->lock);
  1597. grp->gid = p->pid;
  1598. /* Second half of the array tracks nids where faults happen */
  1599. grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
  1600. nr_node_ids;
  1601. node_set(task_node(current), grp->active_nodes);
  1602. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1603. grp->faults[i] = p->numa_faults[i];
  1604. grp->total_faults = p->total_numa_faults;
  1605. grp->nr_tasks++;
  1606. rcu_assign_pointer(p->numa_group, grp);
  1607. }
  1608. rcu_read_lock();
  1609. tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
  1610. if (!cpupid_match_pid(tsk, cpupid))
  1611. goto no_join;
  1612. grp = rcu_dereference(tsk->numa_group);
  1613. if (!grp)
  1614. goto no_join;
  1615. my_grp = p->numa_group;
  1616. if (grp == my_grp)
  1617. goto no_join;
  1618. /*
  1619. * Only join the other group if its bigger; if we're the bigger group,
  1620. * the other task will join us.
  1621. */
  1622. if (my_grp->nr_tasks > grp->nr_tasks)
  1623. goto no_join;
  1624. /*
  1625. * Tie-break on the grp address.
  1626. */
  1627. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1628. goto no_join;
  1629. /* Always join threads in the same process. */
  1630. if (tsk->mm == current->mm)
  1631. join = true;
  1632. /* Simple filter to avoid false positives due to PID collisions */
  1633. if (flags & TNF_SHARED)
  1634. join = true;
  1635. /* Update priv based on whether false sharing was detected */
  1636. *priv = !join;
  1637. if (join && !get_numa_group(grp))
  1638. goto no_join;
  1639. rcu_read_unlock();
  1640. if (!join)
  1641. return;
  1642. BUG_ON(irqs_disabled());
  1643. double_lock_irq(&my_grp->lock, &grp->lock);
  1644. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
  1645. my_grp->faults[i] -= p->numa_faults[i];
  1646. grp->faults[i] += p->numa_faults[i];
  1647. }
  1648. my_grp->total_faults -= p->total_numa_faults;
  1649. grp->total_faults += p->total_numa_faults;
  1650. my_grp->nr_tasks--;
  1651. grp->nr_tasks++;
  1652. spin_unlock(&my_grp->lock);
  1653. spin_unlock_irq(&grp->lock);
  1654. rcu_assign_pointer(p->numa_group, grp);
  1655. put_numa_group(my_grp);
  1656. return;
  1657. no_join:
  1658. rcu_read_unlock();
  1659. return;
  1660. }
  1661. void task_numa_free(struct task_struct *p)
  1662. {
  1663. struct numa_group *grp = p->numa_group;
  1664. void *numa_faults = p->numa_faults;
  1665. unsigned long flags;
  1666. int i;
  1667. if (grp) {
  1668. spin_lock_irqsave(&grp->lock, flags);
  1669. for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
  1670. grp->faults[i] -= p->numa_faults[i];
  1671. grp->total_faults -= p->total_numa_faults;
  1672. grp->nr_tasks--;
  1673. spin_unlock_irqrestore(&grp->lock, flags);
  1674. RCU_INIT_POINTER(p->numa_group, NULL);
  1675. put_numa_group(grp);
  1676. }
  1677. p->numa_faults = NULL;
  1678. kfree(numa_faults);
  1679. }
  1680. /*
  1681. * Got a PROT_NONE fault for a page on @node.
  1682. */
  1683. void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
  1684. {
  1685. struct task_struct *p = current;
  1686. bool migrated = flags & TNF_MIGRATED;
  1687. int cpu_node = task_node(current);
  1688. int local = !!(flags & TNF_FAULT_LOCAL);
  1689. int priv;
  1690. if (!numabalancing_enabled)
  1691. return;
  1692. /* for example, ksmd faulting in a user's mm */
  1693. if (!p->mm)
  1694. return;
  1695. /* Allocate buffer to track faults on a per-node basis */
  1696. if (unlikely(!p->numa_faults)) {
  1697. int size = sizeof(*p->numa_faults) *
  1698. NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
  1699. p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
  1700. if (!p->numa_faults)
  1701. return;
  1702. p->total_numa_faults = 0;
  1703. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1704. }
  1705. /*
  1706. * First accesses are treated as private, otherwise consider accesses
  1707. * to be private if the accessing pid has not changed
  1708. */
  1709. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  1710. priv = 1;
  1711. } else {
  1712. priv = cpupid_match_pid(p, last_cpupid);
  1713. if (!priv && !(flags & TNF_NO_GROUP))
  1714. task_numa_group(p, last_cpupid, flags, &priv);
  1715. }
  1716. /*
  1717. * If a workload spans multiple NUMA nodes, a shared fault that
  1718. * occurs wholly within the set of nodes that the workload is
  1719. * actively using should be counted as local. This allows the
  1720. * scan rate to slow down when a workload has settled down.
  1721. */
  1722. if (!priv && !local && p->numa_group &&
  1723. node_isset(cpu_node, p->numa_group->active_nodes) &&
  1724. node_isset(mem_node, p->numa_group->active_nodes))
  1725. local = 1;
  1726. task_numa_placement(p);
  1727. /*
  1728. * Retry task to preferred node migration periodically, in case it
  1729. * case it previously failed, or the scheduler moved us.
  1730. */
  1731. if (time_after(jiffies, p->numa_migrate_retry))
  1732. numa_migrate_preferred(p);
  1733. if (migrated)
  1734. p->numa_pages_migrated += pages;
  1735. p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
  1736. p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
  1737. p->numa_faults_locality[local] += pages;
  1738. }
  1739. static void reset_ptenuma_scan(struct task_struct *p)
  1740. {
  1741. ACCESS_ONCE(p->mm->numa_scan_seq)++;
  1742. p->mm->numa_scan_offset = 0;
  1743. }
  1744. /*
  1745. * The expensive part of numa migration is done from task_work context.
  1746. * Triggered from task_tick_numa().
  1747. */
  1748. void task_numa_work(struct callback_head *work)
  1749. {
  1750. unsigned long migrate, next_scan, now = jiffies;
  1751. struct task_struct *p = current;
  1752. struct mm_struct *mm = p->mm;
  1753. struct vm_area_struct *vma;
  1754. unsigned long start, end;
  1755. unsigned long nr_pte_updates = 0;
  1756. long pages;
  1757. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  1758. work->next = work; /* protect against double add */
  1759. /*
  1760. * Who cares about NUMA placement when they're dying.
  1761. *
  1762. * NOTE: make sure not to dereference p->mm before this check,
  1763. * exit_task_work() happens _after_ exit_mm() so we could be called
  1764. * without p->mm even though we still had it when we enqueued this
  1765. * work.
  1766. */
  1767. if (p->flags & PF_EXITING)
  1768. return;
  1769. if (!mm->numa_next_scan) {
  1770. mm->numa_next_scan = now +
  1771. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1772. }
  1773. /*
  1774. * Enforce maximal scan/migration frequency..
  1775. */
  1776. migrate = mm->numa_next_scan;
  1777. if (time_before(now, migrate))
  1778. return;
  1779. if (p->numa_scan_period == 0) {
  1780. p->numa_scan_period_max = task_scan_max(p);
  1781. p->numa_scan_period = task_scan_min(p);
  1782. }
  1783. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1784. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  1785. return;
  1786. /*
  1787. * Delay this task enough that another task of this mm will likely win
  1788. * the next time around.
  1789. */
  1790. p->node_stamp += 2 * TICK_NSEC;
  1791. start = mm->numa_scan_offset;
  1792. pages = sysctl_numa_balancing_scan_size;
  1793. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  1794. if (!pages)
  1795. return;
  1796. down_read(&mm->mmap_sem);
  1797. vma = find_vma(mm, start);
  1798. if (!vma) {
  1799. reset_ptenuma_scan(p);
  1800. start = 0;
  1801. vma = mm->mmap;
  1802. }
  1803. for (; vma; vma = vma->vm_next) {
  1804. if (!vma_migratable(vma) || !vma_policy_mof(vma))
  1805. continue;
  1806. /*
  1807. * Shared library pages mapped by multiple processes are not
  1808. * migrated as it is expected they are cache replicated. Avoid
  1809. * hinting faults in read-only file-backed mappings or the vdso
  1810. * as migrating the pages will be of marginal benefit.
  1811. */
  1812. if (!vma->vm_mm ||
  1813. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  1814. continue;
  1815. /*
  1816. * Skip inaccessible VMAs to avoid any confusion between
  1817. * PROT_NONE and NUMA hinting ptes
  1818. */
  1819. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  1820. continue;
  1821. do {
  1822. start = max(start, vma->vm_start);
  1823. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  1824. end = min(end, vma->vm_end);
  1825. nr_pte_updates += change_prot_numa(vma, start, end);
  1826. /*
  1827. * Scan sysctl_numa_balancing_scan_size but ensure that
  1828. * at least one PTE is updated so that unused virtual
  1829. * address space is quickly skipped.
  1830. */
  1831. if (nr_pte_updates)
  1832. pages -= (end - start) >> PAGE_SHIFT;
  1833. start = end;
  1834. if (pages <= 0)
  1835. goto out;
  1836. cond_resched();
  1837. } while (end != vma->vm_end);
  1838. }
  1839. out:
  1840. /*
  1841. * It is possible to reach the end of the VMA list but the last few
  1842. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  1843. * would find the !migratable VMA on the next scan but not reset the
  1844. * scanner to the start so check it now.
  1845. */
  1846. if (vma)
  1847. mm->numa_scan_offset = start;
  1848. else
  1849. reset_ptenuma_scan(p);
  1850. up_read(&mm->mmap_sem);
  1851. }
  1852. /*
  1853. * Drive the periodic memory faults..
  1854. */
  1855. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1856. {
  1857. struct callback_head *work = &curr->numa_work;
  1858. u64 period, now;
  1859. /*
  1860. * We don't care about NUMA placement if we don't have memory.
  1861. */
  1862. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  1863. return;
  1864. /*
  1865. * Using runtime rather than walltime has the dual advantage that
  1866. * we (mostly) drive the selection from busy threads and that the
  1867. * task needs to have done some actual work before we bother with
  1868. * NUMA placement.
  1869. */
  1870. now = curr->se.sum_exec_runtime;
  1871. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  1872. if (now - curr->node_stamp > period) {
  1873. if (!curr->node_stamp)
  1874. curr->numa_scan_period = task_scan_min(curr);
  1875. curr->node_stamp += period;
  1876. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  1877. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  1878. task_work_add(curr, work, true);
  1879. }
  1880. }
  1881. }
  1882. #else
  1883. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1884. {
  1885. }
  1886. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  1887. {
  1888. }
  1889. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  1890. {
  1891. }
  1892. #endif /* CONFIG_NUMA_BALANCING */
  1893. static void
  1894. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1895. {
  1896. update_load_add(&cfs_rq->load, se->load.weight);
  1897. if (!parent_entity(se))
  1898. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  1899. #ifdef CONFIG_SMP
  1900. if (entity_is_task(se)) {
  1901. struct rq *rq = rq_of(cfs_rq);
  1902. account_numa_enqueue(rq, task_of(se));
  1903. list_add(&se->group_node, &rq->cfs_tasks);
  1904. }
  1905. #endif
  1906. cfs_rq->nr_running++;
  1907. }
  1908. static void
  1909. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1910. {
  1911. update_load_sub(&cfs_rq->load, se->load.weight);
  1912. if (!parent_entity(se))
  1913. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  1914. if (entity_is_task(se)) {
  1915. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  1916. list_del_init(&se->group_node);
  1917. }
  1918. cfs_rq->nr_running--;
  1919. }
  1920. #ifdef CONFIG_FAIR_GROUP_SCHED
  1921. # ifdef CONFIG_SMP
  1922. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  1923. {
  1924. long tg_weight;
  1925. /*
  1926. * Use this CPU's actual weight instead of the last load_contribution
  1927. * to gain a more accurate current total weight. See
  1928. * update_cfs_rq_load_contribution().
  1929. */
  1930. tg_weight = atomic_long_read(&tg->load_avg);
  1931. tg_weight -= cfs_rq->tg_load_contrib;
  1932. tg_weight += cfs_rq->load.weight;
  1933. return tg_weight;
  1934. }
  1935. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1936. {
  1937. long tg_weight, load, shares;
  1938. tg_weight = calc_tg_weight(tg, cfs_rq);
  1939. load = cfs_rq->load.weight;
  1940. shares = (tg->shares * load);
  1941. if (tg_weight)
  1942. shares /= tg_weight;
  1943. if (shares < MIN_SHARES)
  1944. shares = MIN_SHARES;
  1945. if (shares > tg->shares)
  1946. shares = tg->shares;
  1947. return shares;
  1948. }
  1949. # else /* CONFIG_SMP */
  1950. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1951. {
  1952. return tg->shares;
  1953. }
  1954. # endif /* CONFIG_SMP */
  1955. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  1956. unsigned long weight)
  1957. {
  1958. if (se->on_rq) {
  1959. /* commit outstanding execution time */
  1960. if (cfs_rq->curr == se)
  1961. update_curr(cfs_rq);
  1962. account_entity_dequeue(cfs_rq, se);
  1963. }
  1964. update_load_set(&se->load, weight);
  1965. if (se->on_rq)
  1966. account_entity_enqueue(cfs_rq, se);
  1967. }
  1968. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  1969. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  1970. {
  1971. struct task_group *tg;
  1972. struct sched_entity *se;
  1973. long shares;
  1974. tg = cfs_rq->tg;
  1975. se = tg->se[cpu_of(rq_of(cfs_rq))];
  1976. if (!se || throttled_hierarchy(cfs_rq))
  1977. return;
  1978. #ifndef CONFIG_SMP
  1979. if (likely(se->load.weight == tg->shares))
  1980. return;
  1981. #endif
  1982. shares = calc_cfs_shares(cfs_rq, tg);
  1983. reweight_entity(cfs_rq_of(se), se, shares);
  1984. }
  1985. #else /* CONFIG_FAIR_GROUP_SCHED */
  1986. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  1987. {
  1988. }
  1989. #endif /* CONFIG_FAIR_GROUP_SCHED */
  1990. #ifdef CONFIG_SMP
  1991. /*
  1992. * We choose a half-life close to 1 scheduling period.
  1993. * Note: The tables below are dependent on this value.
  1994. */
  1995. #define LOAD_AVG_PERIOD 32
  1996. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  1997. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  1998. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  1999. static const u32 runnable_avg_yN_inv[] = {
  2000. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  2001. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  2002. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  2003. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  2004. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  2005. 0x85aac367, 0x82cd8698,
  2006. };
  2007. /*
  2008. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  2009. * over-estimates when re-combining.
  2010. */
  2011. static const u32 runnable_avg_yN_sum[] = {
  2012. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  2013. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  2014. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  2015. };
  2016. /*
  2017. * Approximate:
  2018. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  2019. */
  2020. static __always_inline u64 decay_load(u64 val, u64 n)
  2021. {
  2022. unsigned int local_n;
  2023. if (!n)
  2024. return val;
  2025. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  2026. return 0;
  2027. /* after bounds checking we can collapse to 32-bit */
  2028. local_n = n;
  2029. /*
  2030. * As y^PERIOD = 1/2, we can combine
  2031. * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
  2032. * With a look-up table which covers y^n (n<PERIOD)
  2033. *
  2034. * To achieve constant time decay_load.
  2035. */
  2036. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  2037. val >>= local_n / LOAD_AVG_PERIOD;
  2038. local_n %= LOAD_AVG_PERIOD;
  2039. }
  2040. val *= runnable_avg_yN_inv[local_n];
  2041. /* We don't use SRR here since we always want to round down. */
  2042. return val >> 32;
  2043. }
  2044. /*
  2045. * For updates fully spanning n periods, the contribution to runnable
  2046. * average will be: \Sum 1024*y^n
  2047. *
  2048. * We can compute this reasonably efficiently by combining:
  2049. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  2050. */
  2051. static u32 __compute_runnable_contrib(u64 n)
  2052. {
  2053. u32 contrib = 0;
  2054. if (likely(n <= LOAD_AVG_PERIOD))
  2055. return runnable_avg_yN_sum[n];
  2056. else if (unlikely(n >= LOAD_AVG_MAX_N))
  2057. return LOAD_AVG_MAX;
  2058. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  2059. do {
  2060. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  2061. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  2062. n -= LOAD_AVG_PERIOD;
  2063. } while (n > LOAD_AVG_PERIOD);
  2064. contrib = decay_load(contrib, n);
  2065. return contrib + runnable_avg_yN_sum[n];
  2066. }
  2067. /*
  2068. * We can represent the historical contribution to runnable average as the
  2069. * coefficients of a geometric series. To do this we sub-divide our runnable
  2070. * history into segments of approximately 1ms (1024us); label the segment that
  2071. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  2072. *
  2073. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  2074. * p0 p1 p2
  2075. * (now) (~1ms ago) (~2ms ago)
  2076. *
  2077. * Let u_i denote the fraction of p_i that the entity was runnable.
  2078. *
  2079. * We then designate the fractions u_i as our co-efficients, yielding the
  2080. * following representation of historical load:
  2081. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  2082. *
  2083. * We choose y based on the with of a reasonably scheduling period, fixing:
  2084. * y^32 = 0.5
  2085. *
  2086. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  2087. * approximately half as much as the contribution to load within the last ms
  2088. * (u_0).
  2089. *
  2090. * When a period "rolls over" and we have new u_0`, multiplying the previous
  2091. * sum again by y is sufficient to update:
  2092. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  2093. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  2094. */
  2095. static __always_inline int __update_entity_runnable_avg(u64 now,
  2096. struct sched_avg *sa,
  2097. int runnable)
  2098. {
  2099. u64 delta, periods;
  2100. u32 runnable_contrib;
  2101. int delta_w, decayed = 0;
  2102. delta = now - sa->last_runnable_update;
  2103. /*
  2104. * This should only happen when time goes backwards, which it
  2105. * unfortunately does during sched clock init when we swap over to TSC.
  2106. */
  2107. if ((s64)delta < 0) {
  2108. sa->last_runnable_update = now;
  2109. return 0;
  2110. }
  2111. /*
  2112. * Use 1024ns as the unit of measurement since it's a reasonable
  2113. * approximation of 1us and fast to compute.
  2114. */
  2115. delta >>= 10;
  2116. if (!delta)
  2117. return 0;
  2118. sa->last_runnable_update = now;
  2119. /* delta_w is the amount already accumulated against our next period */
  2120. delta_w = sa->runnable_avg_period % 1024;
  2121. if (delta + delta_w >= 1024) {
  2122. /* period roll-over */
  2123. decayed = 1;
  2124. /*
  2125. * Now that we know we're crossing a period boundary, figure
  2126. * out how much from delta we need to complete the current
  2127. * period and accrue it.
  2128. */
  2129. delta_w = 1024 - delta_w;
  2130. if (runnable)
  2131. sa->runnable_avg_sum += delta_w;
  2132. sa->runnable_avg_period += delta_w;
  2133. delta -= delta_w;
  2134. /* Figure out how many additional periods this update spans */
  2135. periods = delta / 1024;
  2136. delta %= 1024;
  2137. sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
  2138. periods + 1);
  2139. sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
  2140. periods + 1);
  2141. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  2142. runnable_contrib = __compute_runnable_contrib(periods);
  2143. if (runnable)
  2144. sa->runnable_avg_sum += runnable_contrib;
  2145. sa->runnable_avg_period += runnable_contrib;
  2146. }
  2147. /* Remainder of delta accrued against u_0` */
  2148. if (runnable)
  2149. sa->runnable_avg_sum += delta;
  2150. sa->runnable_avg_period += delta;
  2151. return decayed;
  2152. }
  2153. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  2154. static inline u64 __synchronize_entity_decay(struct sched_entity *se)
  2155. {
  2156. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2157. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  2158. decays -= se->avg.decay_count;
  2159. if (!decays)
  2160. return 0;
  2161. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  2162. se->avg.decay_count = 0;
  2163. return decays;
  2164. }
  2165. #ifdef CONFIG_FAIR_GROUP_SCHED
  2166. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  2167. int force_update)
  2168. {
  2169. struct task_group *tg = cfs_rq->tg;
  2170. long tg_contrib;
  2171. tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
  2172. tg_contrib -= cfs_rq->tg_load_contrib;
  2173. if (!tg_contrib)
  2174. return;
  2175. if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
  2176. atomic_long_add(tg_contrib, &tg->load_avg);
  2177. cfs_rq->tg_load_contrib += tg_contrib;
  2178. }
  2179. }
  2180. /*
  2181. * Aggregate cfs_rq runnable averages into an equivalent task_group
  2182. * representation for computing load contributions.
  2183. */
  2184. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  2185. struct cfs_rq *cfs_rq)
  2186. {
  2187. struct task_group *tg = cfs_rq->tg;
  2188. long contrib;
  2189. /* The fraction of a cpu used by this cfs_rq */
  2190. contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
  2191. sa->runnable_avg_period + 1);
  2192. contrib -= cfs_rq->tg_runnable_contrib;
  2193. if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
  2194. atomic_add(contrib, &tg->runnable_avg);
  2195. cfs_rq->tg_runnable_contrib += contrib;
  2196. }
  2197. }
  2198. static inline void __update_group_entity_contrib(struct sched_entity *se)
  2199. {
  2200. struct cfs_rq *cfs_rq = group_cfs_rq(se);
  2201. struct task_group *tg = cfs_rq->tg;
  2202. int runnable_avg;
  2203. u64 contrib;
  2204. contrib = cfs_rq->tg_load_contrib * tg->shares;
  2205. se->avg.load_avg_contrib = div_u64(contrib,
  2206. atomic_long_read(&tg->load_avg) + 1);
  2207. /*
  2208. * For group entities we need to compute a correction term in the case
  2209. * that they are consuming <1 cpu so that we would contribute the same
  2210. * load as a task of equal weight.
  2211. *
  2212. * Explicitly co-ordinating this measurement would be expensive, but
  2213. * fortunately the sum of each cpus contribution forms a usable
  2214. * lower-bound on the true value.
  2215. *
  2216. * Consider the aggregate of 2 contributions. Either they are disjoint
  2217. * (and the sum represents true value) or they are disjoint and we are
  2218. * understating by the aggregate of their overlap.
  2219. *
  2220. * Extending this to N cpus, for a given overlap, the maximum amount we
  2221. * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
  2222. * cpus that overlap for this interval and w_i is the interval width.
  2223. *
  2224. * On a small machine; the first term is well-bounded which bounds the
  2225. * total error since w_i is a subset of the period. Whereas on a
  2226. * larger machine, while this first term can be larger, if w_i is the
  2227. * of consequential size guaranteed to see n_i*w_i quickly converge to
  2228. * our upper bound of 1-cpu.
  2229. */
  2230. runnable_avg = atomic_read(&tg->runnable_avg);
  2231. if (runnable_avg < NICE_0_LOAD) {
  2232. se->avg.load_avg_contrib *= runnable_avg;
  2233. se->avg.load_avg_contrib >>= NICE_0_SHIFT;
  2234. }
  2235. }
  2236. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  2237. {
  2238. __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
  2239. __update_tg_runnable_avg(&rq->avg, &rq->cfs);
  2240. }
  2241. #else /* CONFIG_FAIR_GROUP_SCHED */
  2242. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  2243. int force_update) {}
  2244. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  2245. struct cfs_rq *cfs_rq) {}
  2246. static inline void __update_group_entity_contrib(struct sched_entity *se) {}
  2247. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  2248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  2249. static inline void __update_task_entity_contrib(struct sched_entity *se)
  2250. {
  2251. u32 contrib;
  2252. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  2253. contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
  2254. contrib /= (se->avg.runnable_avg_period + 1);
  2255. se->avg.load_avg_contrib = scale_load(contrib);
  2256. }
  2257. /* Compute the current contribution to load_avg by se, return any delta */
  2258. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  2259. {
  2260. long old_contrib = se->avg.load_avg_contrib;
  2261. if (entity_is_task(se)) {
  2262. __update_task_entity_contrib(se);
  2263. } else {
  2264. __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
  2265. __update_group_entity_contrib(se);
  2266. }
  2267. return se->avg.load_avg_contrib - old_contrib;
  2268. }
  2269. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  2270. long load_contrib)
  2271. {
  2272. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  2273. cfs_rq->blocked_load_avg -= load_contrib;
  2274. else
  2275. cfs_rq->blocked_load_avg = 0;
  2276. }
  2277. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  2278. /* Update a sched_entity's runnable average */
  2279. static inline void update_entity_load_avg(struct sched_entity *se,
  2280. int update_cfs_rq)
  2281. {
  2282. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2283. long contrib_delta;
  2284. u64 now;
  2285. /*
  2286. * For a group entity we need to use their owned cfs_rq_clock_task() in
  2287. * case they are the parent of a throttled hierarchy.
  2288. */
  2289. if (entity_is_task(se))
  2290. now = cfs_rq_clock_task(cfs_rq);
  2291. else
  2292. now = cfs_rq_clock_task(group_cfs_rq(se));
  2293. if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
  2294. return;
  2295. contrib_delta = __update_entity_load_avg_contrib(se);
  2296. if (!update_cfs_rq)
  2297. return;
  2298. if (se->on_rq)
  2299. cfs_rq->runnable_load_avg += contrib_delta;
  2300. else
  2301. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  2302. }
  2303. /*
  2304. * Decay the load contributed by all blocked children and account this so that
  2305. * their contribution may appropriately discounted when they wake up.
  2306. */
  2307. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
  2308. {
  2309. u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
  2310. u64 decays;
  2311. decays = now - cfs_rq->last_decay;
  2312. if (!decays && !force_update)
  2313. return;
  2314. if (atomic_long_read(&cfs_rq->removed_load)) {
  2315. unsigned long removed_load;
  2316. removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
  2317. subtract_blocked_load_contrib(cfs_rq, removed_load);
  2318. }
  2319. if (decays) {
  2320. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  2321. decays);
  2322. atomic64_add(decays, &cfs_rq->decay_counter);
  2323. cfs_rq->last_decay = now;
  2324. }
  2325. __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
  2326. }
  2327. /* Add the load generated by se into cfs_rq's child load-average */
  2328. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  2329. struct sched_entity *se,
  2330. int wakeup)
  2331. {
  2332. /*
  2333. * We track migrations using entity decay_count <= 0, on a wake-up
  2334. * migration we use a negative decay count to track the remote decays
  2335. * accumulated while sleeping.
  2336. *
  2337. * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
  2338. * are seen by enqueue_entity_load_avg() as a migration with an already
  2339. * constructed load_avg_contrib.
  2340. */
  2341. if (unlikely(se->avg.decay_count <= 0)) {
  2342. se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
  2343. if (se->avg.decay_count) {
  2344. /*
  2345. * In a wake-up migration we have to approximate the
  2346. * time sleeping. This is because we can't synchronize
  2347. * clock_task between the two cpus, and it is not
  2348. * guaranteed to be read-safe. Instead, we can
  2349. * approximate this using our carried decays, which are
  2350. * explicitly atomically readable.
  2351. */
  2352. se->avg.last_runnable_update -= (-se->avg.decay_count)
  2353. << 20;
  2354. update_entity_load_avg(se, 0);
  2355. /* Indicate that we're now synchronized and on-rq */
  2356. se->avg.decay_count = 0;
  2357. }
  2358. wakeup = 0;
  2359. } else {
  2360. __synchronize_entity_decay(se);
  2361. }
  2362. /* migrated tasks did not contribute to our blocked load */
  2363. if (wakeup) {
  2364. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  2365. update_entity_load_avg(se, 0);
  2366. }
  2367. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  2368. /* we force update consideration on load-balancer moves */
  2369. update_cfs_rq_blocked_load(cfs_rq, !wakeup);
  2370. }
  2371. /*
  2372. * Remove se's load from this cfs_rq child load-average, if the entity is
  2373. * transitioning to a blocked state we track its projected decay using
  2374. * blocked_load_avg.
  2375. */
  2376. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  2377. struct sched_entity *se,
  2378. int sleep)
  2379. {
  2380. update_entity_load_avg(se, 1);
  2381. /* we force update consideration on load-balancer moves */
  2382. update_cfs_rq_blocked_load(cfs_rq, !sleep);
  2383. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  2384. if (sleep) {
  2385. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  2386. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  2387. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  2388. }
  2389. /*
  2390. * Update the rq's load with the elapsed running time before entering
  2391. * idle. if the last scheduled task is not a CFS task, idle_enter will
  2392. * be the only way to update the runnable statistic.
  2393. */
  2394. void idle_enter_fair(struct rq *this_rq)
  2395. {
  2396. update_rq_runnable_avg(this_rq, 1);
  2397. }
  2398. /*
  2399. * Update the rq's load with the elapsed idle time before a task is
  2400. * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
  2401. * be the only way to update the runnable statistic.
  2402. */
  2403. void idle_exit_fair(struct rq *this_rq)
  2404. {
  2405. update_rq_runnable_avg(this_rq, 0);
  2406. }
  2407. static int idle_balance(struct rq *this_rq);
  2408. #else /* CONFIG_SMP */
  2409. static inline void update_entity_load_avg(struct sched_entity *se,
  2410. int update_cfs_rq) {}
  2411. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  2412. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  2413. struct sched_entity *se,
  2414. int wakeup) {}
  2415. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  2416. struct sched_entity *se,
  2417. int sleep) {}
  2418. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  2419. int force_update) {}
  2420. static inline int idle_balance(struct rq *rq)
  2421. {
  2422. return 0;
  2423. }
  2424. #endif /* CONFIG_SMP */
  2425. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2426. {
  2427. #ifdef CONFIG_SCHEDSTATS
  2428. struct task_struct *tsk = NULL;
  2429. if (entity_is_task(se))
  2430. tsk = task_of(se);
  2431. if (se->statistics.sleep_start) {
  2432. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
  2433. if ((s64)delta < 0)
  2434. delta = 0;
  2435. if (unlikely(delta > se->statistics.sleep_max))
  2436. se->statistics.sleep_max = delta;
  2437. se->statistics.sleep_start = 0;
  2438. se->statistics.sum_sleep_runtime += delta;
  2439. if (tsk) {
  2440. account_scheduler_latency(tsk, delta >> 10, 1);
  2441. trace_sched_stat_sleep(tsk, delta);
  2442. }
  2443. }
  2444. if (se->statistics.block_start) {
  2445. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
  2446. if ((s64)delta < 0)
  2447. delta = 0;
  2448. if (unlikely(delta > se->statistics.block_max))
  2449. se->statistics.block_max = delta;
  2450. se->statistics.block_start = 0;
  2451. se->statistics.sum_sleep_runtime += delta;
  2452. if (tsk) {
  2453. if (tsk->in_iowait) {
  2454. se->statistics.iowait_sum += delta;
  2455. se->statistics.iowait_count++;
  2456. trace_sched_stat_iowait(tsk, delta);
  2457. }
  2458. trace_sched_stat_blocked(tsk, delta);
  2459. /*
  2460. * Blocking time is in units of nanosecs, so shift by
  2461. * 20 to get a milliseconds-range estimation of the
  2462. * amount of time that the task spent sleeping:
  2463. */
  2464. if (unlikely(prof_on == SLEEP_PROFILING)) {
  2465. profile_hits(SLEEP_PROFILING,
  2466. (void *)get_wchan(tsk),
  2467. delta >> 20);
  2468. }
  2469. account_scheduler_latency(tsk, delta >> 10, 0);
  2470. }
  2471. }
  2472. #endif
  2473. }
  2474. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2475. {
  2476. #ifdef CONFIG_SCHED_DEBUG
  2477. s64 d = se->vruntime - cfs_rq->min_vruntime;
  2478. if (d < 0)
  2479. d = -d;
  2480. if (d > 3*sysctl_sched_latency)
  2481. schedstat_inc(cfs_rq, nr_spread_over);
  2482. #endif
  2483. }
  2484. static void
  2485. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  2486. {
  2487. u64 vruntime = cfs_rq->min_vruntime;
  2488. /*
  2489. * The 'current' period is already promised to the current tasks,
  2490. * however the extra weight of the new task will slow them down a
  2491. * little, place the new task so that it fits in the slot that
  2492. * stays open at the end.
  2493. */
  2494. if (initial && sched_feat(START_DEBIT))
  2495. vruntime += sched_vslice(cfs_rq, se);
  2496. /* sleeps up to a single latency don't count. */
  2497. if (!initial) {
  2498. unsigned long thresh = sysctl_sched_latency;
  2499. /*
  2500. * Halve their sleep time's effect, to allow
  2501. * for a gentler effect of sleepers:
  2502. */
  2503. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  2504. thresh >>= 1;
  2505. vruntime -= thresh;
  2506. }
  2507. /* ensure we never gain time by being placed backwards. */
  2508. se->vruntime = max_vruntime(se->vruntime, vruntime);
  2509. }
  2510. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  2511. static void
  2512. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2513. {
  2514. /*
  2515. * Update the normalized vruntime before updating min_vruntime
  2516. * through calling update_curr().
  2517. */
  2518. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  2519. se->vruntime += cfs_rq->min_vruntime;
  2520. /*
  2521. * Update run-time statistics of the 'current'.
  2522. */
  2523. update_curr(cfs_rq);
  2524. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  2525. account_entity_enqueue(cfs_rq, se);
  2526. update_cfs_shares(cfs_rq);
  2527. if (flags & ENQUEUE_WAKEUP) {
  2528. place_entity(cfs_rq, se, 0);
  2529. enqueue_sleeper(cfs_rq, se);
  2530. }
  2531. update_stats_enqueue(cfs_rq, se);
  2532. check_spread(cfs_rq, se);
  2533. if (se != cfs_rq->curr)
  2534. __enqueue_entity(cfs_rq, se);
  2535. se->on_rq = 1;
  2536. if (cfs_rq->nr_running == 1) {
  2537. list_add_leaf_cfs_rq(cfs_rq);
  2538. check_enqueue_throttle(cfs_rq);
  2539. }
  2540. }
  2541. static void __clear_buddies_last(struct sched_entity *se)
  2542. {
  2543. for_each_sched_entity(se) {
  2544. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2545. if (cfs_rq->last != se)
  2546. break;
  2547. cfs_rq->last = NULL;
  2548. }
  2549. }
  2550. static void __clear_buddies_next(struct sched_entity *se)
  2551. {
  2552. for_each_sched_entity(se) {
  2553. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2554. if (cfs_rq->next != se)
  2555. break;
  2556. cfs_rq->next = NULL;
  2557. }
  2558. }
  2559. static void __clear_buddies_skip(struct sched_entity *se)
  2560. {
  2561. for_each_sched_entity(se) {
  2562. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2563. if (cfs_rq->skip != se)
  2564. break;
  2565. cfs_rq->skip = NULL;
  2566. }
  2567. }
  2568. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2569. {
  2570. if (cfs_rq->last == se)
  2571. __clear_buddies_last(se);
  2572. if (cfs_rq->next == se)
  2573. __clear_buddies_next(se);
  2574. if (cfs_rq->skip == se)
  2575. __clear_buddies_skip(se);
  2576. }
  2577. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2578. static void
  2579. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2580. {
  2581. /*
  2582. * Update run-time statistics of the 'current'.
  2583. */
  2584. update_curr(cfs_rq);
  2585. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  2586. update_stats_dequeue(cfs_rq, se);
  2587. if (flags & DEQUEUE_SLEEP) {
  2588. #ifdef CONFIG_SCHEDSTATS
  2589. if (entity_is_task(se)) {
  2590. struct task_struct *tsk = task_of(se);
  2591. if (tsk->state & TASK_INTERRUPTIBLE)
  2592. se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
  2593. if (tsk->state & TASK_UNINTERRUPTIBLE)
  2594. se->statistics.block_start = rq_clock(rq_of(cfs_rq));
  2595. }
  2596. #endif
  2597. }
  2598. clear_buddies(cfs_rq, se);
  2599. if (se != cfs_rq->curr)
  2600. __dequeue_entity(cfs_rq, se);
  2601. se->on_rq = 0;
  2602. account_entity_dequeue(cfs_rq, se);
  2603. /*
  2604. * Normalize the entity after updating the min_vruntime because the
  2605. * update can refer to the ->curr item and we need to reflect this
  2606. * movement in our normalized position.
  2607. */
  2608. if (!(flags & DEQUEUE_SLEEP))
  2609. se->vruntime -= cfs_rq->min_vruntime;
  2610. /* return excess runtime on last dequeue */
  2611. return_cfs_rq_runtime(cfs_rq);
  2612. update_min_vruntime(cfs_rq);
  2613. update_cfs_shares(cfs_rq);
  2614. }
  2615. /*
  2616. * Preempt the current task with a newly woken task if needed:
  2617. */
  2618. static void
  2619. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2620. {
  2621. unsigned long ideal_runtime, delta_exec;
  2622. struct sched_entity *se;
  2623. s64 delta;
  2624. ideal_runtime = sched_slice(cfs_rq, curr);
  2625. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  2626. if (delta_exec > ideal_runtime) {
  2627. resched_curr(rq_of(cfs_rq));
  2628. /*
  2629. * The current task ran long enough, ensure it doesn't get
  2630. * re-elected due to buddy favours.
  2631. */
  2632. clear_buddies(cfs_rq, curr);
  2633. return;
  2634. }
  2635. /*
  2636. * Ensure that a task that missed wakeup preemption by a
  2637. * narrow margin doesn't have to wait for a full slice.
  2638. * This also mitigates buddy induced latencies under load.
  2639. */
  2640. if (delta_exec < sysctl_sched_min_granularity)
  2641. return;
  2642. se = __pick_first_entity(cfs_rq);
  2643. delta = curr->vruntime - se->vruntime;
  2644. if (delta < 0)
  2645. return;
  2646. if (delta > ideal_runtime)
  2647. resched_curr(rq_of(cfs_rq));
  2648. }
  2649. static void
  2650. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2651. {
  2652. /* 'current' is not kept within the tree. */
  2653. if (se->on_rq) {
  2654. /*
  2655. * Any task has to be enqueued before it get to execute on
  2656. * a CPU. So account for the time it spent waiting on the
  2657. * runqueue.
  2658. */
  2659. update_stats_wait_end(cfs_rq, se);
  2660. __dequeue_entity(cfs_rq, se);
  2661. }
  2662. update_stats_curr_start(cfs_rq, se);
  2663. cfs_rq->curr = se;
  2664. #ifdef CONFIG_SCHEDSTATS
  2665. /*
  2666. * Track our maximum slice length, if the CPU's load is at
  2667. * least twice that of our own weight (i.e. dont track it
  2668. * when there are only lesser-weight tasks around):
  2669. */
  2670. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  2671. se->statistics.slice_max = max(se->statistics.slice_max,
  2672. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  2673. }
  2674. #endif
  2675. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  2676. }
  2677. static int
  2678. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  2679. /*
  2680. * Pick the next process, keeping these things in mind, in this order:
  2681. * 1) keep things fair between processes/task groups
  2682. * 2) pick the "next" process, since someone really wants that to run
  2683. * 3) pick the "last" process, for cache locality
  2684. * 4) do not run the "skip" process, if something else is available
  2685. */
  2686. static struct sched_entity *
  2687. pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2688. {
  2689. struct sched_entity *left = __pick_first_entity(cfs_rq);
  2690. struct sched_entity *se;
  2691. /*
  2692. * If curr is set we have to see if its left of the leftmost entity
  2693. * still in the tree, provided there was anything in the tree at all.
  2694. */
  2695. if (!left || (curr && entity_before(curr, left)))
  2696. left = curr;
  2697. se = left; /* ideally we run the leftmost entity */
  2698. /*
  2699. * Avoid running the skip buddy, if running something else can
  2700. * be done without getting too unfair.
  2701. */
  2702. if (cfs_rq->skip == se) {
  2703. struct sched_entity *second;
  2704. if (se == curr) {
  2705. second = __pick_first_entity(cfs_rq);
  2706. } else {
  2707. second = __pick_next_entity(se);
  2708. if (!second || (curr && entity_before(curr, second)))
  2709. second = curr;
  2710. }
  2711. if (second && wakeup_preempt_entity(second, left) < 1)
  2712. se = second;
  2713. }
  2714. /*
  2715. * Prefer last buddy, try to return the CPU to a preempted task.
  2716. */
  2717. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  2718. se = cfs_rq->last;
  2719. /*
  2720. * Someone really wants this to run. If it's not unfair, run it.
  2721. */
  2722. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  2723. se = cfs_rq->next;
  2724. clear_buddies(cfs_rq, se);
  2725. return se;
  2726. }
  2727. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2728. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  2729. {
  2730. /*
  2731. * If still on the runqueue then deactivate_task()
  2732. * was not called and update_curr() has to be done:
  2733. */
  2734. if (prev->on_rq)
  2735. update_curr(cfs_rq);
  2736. /* throttle cfs_rqs exceeding runtime */
  2737. check_cfs_rq_runtime(cfs_rq);
  2738. check_spread(cfs_rq, prev);
  2739. if (prev->on_rq) {
  2740. update_stats_wait_start(cfs_rq, prev);
  2741. /* Put 'current' back into the tree. */
  2742. __enqueue_entity(cfs_rq, prev);
  2743. /* in !on_rq case, update occurred at dequeue */
  2744. update_entity_load_avg(prev, 1);
  2745. }
  2746. cfs_rq->curr = NULL;
  2747. }
  2748. static void
  2749. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  2750. {
  2751. /*
  2752. * Update run-time statistics of the 'current'.
  2753. */
  2754. update_curr(cfs_rq);
  2755. /*
  2756. * Ensure that runnable average is periodically updated.
  2757. */
  2758. update_entity_load_avg(curr, 1);
  2759. update_cfs_rq_blocked_load(cfs_rq, 1);
  2760. update_cfs_shares(cfs_rq);
  2761. #ifdef CONFIG_SCHED_HRTICK
  2762. /*
  2763. * queued ticks are scheduled to match the slice, so don't bother
  2764. * validating it and just reschedule.
  2765. */
  2766. if (queued) {
  2767. resched_curr(rq_of(cfs_rq));
  2768. return;
  2769. }
  2770. /*
  2771. * don't let the period tick interfere with the hrtick preemption
  2772. */
  2773. if (!sched_feat(DOUBLE_TICK) &&
  2774. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  2775. return;
  2776. #endif
  2777. if (cfs_rq->nr_running > 1)
  2778. check_preempt_tick(cfs_rq, curr);
  2779. }
  2780. /**************************************************
  2781. * CFS bandwidth control machinery
  2782. */
  2783. #ifdef CONFIG_CFS_BANDWIDTH
  2784. #ifdef HAVE_JUMP_LABEL
  2785. static struct static_key __cfs_bandwidth_used;
  2786. static inline bool cfs_bandwidth_used(void)
  2787. {
  2788. return static_key_false(&__cfs_bandwidth_used);
  2789. }
  2790. void cfs_bandwidth_usage_inc(void)
  2791. {
  2792. static_key_slow_inc(&__cfs_bandwidth_used);
  2793. }
  2794. void cfs_bandwidth_usage_dec(void)
  2795. {
  2796. static_key_slow_dec(&__cfs_bandwidth_used);
  2797. }
  2798. #else /* HAVE_JUMP_LABEL */
  2799. static bool cfs_bandwidth_used(void)
  2800. {
  2801. return true;
  2802. }
  2803. void cfs_bandwidth_usage_inc(void) {}
  2804. void cfs_bandwidth_usage_dec(void) {}
  2805. #endif /* HAVE_JUMP_LABEL */
  2806. /*
  2807. * default period for cfs group bandwidth.
  2808. * default: 0.1s, units: nanoseconds
  2809. */
  2810. static inline u64 default_cfs_period(void)
  2811. {
  2812. return 100000000ULL;
  2813. }
  2814. static inline u64 sched_cfs_bandwidth_slice(void)
  2815. {
  2816. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  2817. }
  2818. /*
  2819. * Replenish runtime according to assigned quota and update expiration time.
  2820. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  2821. * additional synchronization around rq->lock.
  2822. *
  2823. * requires cfs_b->lock
  2824. */
  2825. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  2826. {
  2827. u64 now;
  2828. if (cfs_b->quota == RUNTIME_INF)
  2829. return;
  2830. now = sched_clock_cpu(smp_processor_id());
  2831. cfs_b->runtime = cfs_b->quota;
  2832. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  2833. }
  2834. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2835. {
  2836. return &tg->cfs_bandwidth;
  2837. }
  2838. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  2839. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2840. {
  2841. if (unlikely(cfs_rq->throttle_count))
  2842. return cfs_rq->throttled_clock_task;
  2843. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  2844. }
  2845. /* returns 0 on failure to allocate runtime */
  2846. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2847. {
  2848. struct task_group *tg = cfs_rq->tg;
  2849. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  2850. u64 amount = 0, min_amount, expires;
  2851. /* note: this is a positive sum as runtime_remaining <= 0 */
  2852. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  2853. raw_spin_lock(&cfs_b->lock);
  2854. if (cfs_b->quota == RUNTIME_INF)
  2855. amount = min_amount;
  2856. else {
  2857. /*
  2858. * If the bandwidth pool has become inactive, then at least one
  2859. * period must have elapsed since the last consumption.
  2860. * Refresh the global state and ensure bandwidth timer becomes
  2861. * active.
  2862. */
  2863. if (!cfs_b->timer_active) {
  2864. __refill_cfs_bandwidth_runtime(cfs_b);
  2865. __start_cfs_bandwidth(cfs_b, false);
  2866. }
  2867. if (cfs_b->runtime > 0) {
  2868. amount = min(cfs_b->runtime, min_amount);
  2869. cfs_b->runtime -= amount;
  2870. cfs_b->idle = 0;
  2871. }
  2872. }
  2873. expires = cfs_b->runtime_expires;
  2874. raw_spin_unlock(&cfs_b->lock);
  2875. cfs_rq->runtime_remaining += amount;
  2876. /*
  2877. * we may have advanced our local expiration to account for allowed
  2878. * spread between our sched_clock and the one on which runtime was
  2879. * issued.
  2880. */
  2881. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  2882. cfs_rq->runtime_expires = expires;
  2883. return cfs_rq->runtime_remaining > 0;
  2884. }
  2885. /*
  2886. * Note: This depends on the synchronization provided by sched_clock and the
  2887. * fact that rq->clock snapshots this value.
  2888. */
  2889. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2890. {
  2891. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2892. /* if the deadline is ahead of our clock, nothing to do */
  2893. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  2894. return;
  2895. if (cfs_rq->runtime_remaining < 0)
  2896. return;
  2897. /*
  2898. * If the local deadline has passed we have to consider the
  2899. * possibility that our sched_clock is 'fast' and the global deadline
  2900. * has not truly expired.
  2901. *
  2902. * Fortunately we can check determine whether this the case by checking
  2903. * whether the global deadline has advanced. It is valid to compare
  2904. * cfs_b->runtime_expires without any locks since we only care about
  2905. * exact equality, so a partial write will still work.
  2906. */
  2907. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
  2908. /* extend local deadline, drift is bounded above by 2 ticks */
  2909. cfs_rq->runtime_expires += TICK_NSEC;
  2910. } else {
  2911. /* global deadline is ahead, expiration has passed */
  2912. cfs_rq->runtime_remaining = 0;
  2913. }
  2914. }
  2915. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2916. {
  2917. /* dock delta_exec before expiring quota (as it could span periods) */
  2918. cfs_rq->runtime_remaining -= delta_exec;
  2919. expire_cfs_rq_runtime(cfs_rq);
  2920. if (likely(cfs_rq->runtime_remaining > 0))
  2921. return;
  2922. /*
  2923. * if we're unable to extend our runtime we resched so that the active
  2924. * hierarchy can be throttled
  2925. */
  2926. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  2927. resched_curr(rq_of(cfs_rq));
  2928. }
  2929. static __always_inline
  2930. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2931. {
  2932. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  2933. return;
  2934. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  2935. }
  2936. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2937. {
  2938. return cfs_bandwidth_used() && cfs_rq->throttled;
  2939. }
  2940. /* check whether cfs_rq, or any parent, is throttled */
  2941. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2942. {
  2943. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  2944. }
  2945. /*
  2946. * Ensure that neither of the group entities corresponding to src_cpu or
  2947. * dest_cpu are members of a throttled hierarchy when performing group
  2948. * load-balance operations.
  2949. */
  2950. static inline int throttled_lb_pair(struct task_group *tg,
  2951. int src_cpu, int dest_cpu)
  2952. {
  2953. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  2954. src_cfs_rq = tg->cfs_rq[src_cpu];
  2955. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  2956. return throttled_hierarchy(src_cfs_rq) ||
  2957. throttled_hierarchy(dest_cfs_rq);
  2958. }
  2959. /* updated child weight may affect parent so we have to do this bottom up */
  2960. static int tg_unthrottle_up(struct task_group *tg, void *data)
  2961. {
  2962. struct rq *rq = data;
  2963. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2964. cfs_rq->throttle_count--;
  2965. #ifdef CONFIG_SMP
  2966. if (!cfs_rq->throttle_count) {
  2967. /* adjust cfs_rq_clock_task() */
  2968. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  2969. cfs_rq->throttled_clock_task;
  2970. }
  2971. #endif
  2972. return 0;
  2973. }
  2974. static int tg_throttle_down(struct task_group *tg, void *data)
  2975. {
  2976. struct rq *rq = data;
  2977. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2978. /* group is entering throttled state, stop time */
  2979. if (!cfs_rq->throttle_count)
  2980. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  2981. cfs_rq->throttle_count++;
  2982. return 0;
  2983. }
  2984. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  2985. {
  2986. struct rq *rq = rq_of(cfs_rq);
  2987. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2988. struct sched_entity *se;
  2989. long task_delta, dequeue = 1;
  2990. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  2991. /* freeze hierarchy runnable averages while throttled */
  2992. rcu_read_lock();
  2993. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  2994. rcu_read_unlock();
  2995. task_delta = cfs_rq->h_nr_running;
  2996. for_each_sched_entity(se) {
  2997. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  2998. /* throttled entity or throttle-on-deactivate */
  2999. if (!se->on_rq)
  3000. break;
  3001. if (dequeue)
  3002. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  3003. qcfs_rq->h_nr_running -= task_delta;
  3004. if (qcfs_rq->load.weight)
  3005. dequeue = 0;
  3006. }
  3007. if (!se)
  3008. sub_nr_running(rq, task_delta);
  3009. cfs_rq->throttled = 1;
  3010. cfs_rq->throttled_clock = rq_clock(rq);
  3011. raw_spin_lock(&cfs_b->lock);
  3012. /*
  3013. * Add to the _head_ of the list, so that an already-started
  3014. * distribute_cfs_runtime will not see us
  3015. */
  3016. list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  3017. if (!cfs_b->timer_active)
  3018. __start_cfs_bandwidth(cfs_b, false);
  3019. raw_spin_unlock(&cfs_b->lock);
  3020. }
  3021. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  3022. {
  3023. struct rq *rq = rq_of(cfs_rq);
  3024. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3025. struct sched_entity *se;
  3026. int enqueue = 1;
  3027. long task_delta;
  3028. se = cfs_rq->tg->se[cpu_of(rq)];
  3029. cfs_rq->throttled = 0;
  3030. update_rq_clock(rq);
  3031. raw_spin_lock(&cfs_b->lock);
  3032. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  3033. list_del_rcu(&cfs_rq->throttled_list);
  3034. raw_spin_unlock(&cfs_b->lock);
  3035. /* update hierarchical throttle state */
  3036. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  3037. if (!cfs_rq->load.weight)
  3038. return;
  3039. task_delta = cfs_rq->h_nr_running;
  3040. for_each_sched_entity(se) {
  3041. if (se->on_rq)
  3042. enqueue = 0;
  3043. cfs_rq = cfs_rq_of(se);
  3044. if (enqueue)
  3045. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  3046. cfs_rq->h_nr_running += task_delta;
  3047. if (cfs_rq_throttled(cfs_rq))
  3048. break;
  3049. }
  3050. if (!se)
  3051. add_nr_running(rq, task_delta);
  3052. /* determine whether we need to wake up potentially idle cpu */
  3053. if (rq->curr == rq->idle && rq->cfs.nr_running)
  3054. resched_curr(rq);
  3055. }
  3056. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  3057. u64 remaining, u64 expires)
  3058. {
  3059. struct cfs_rq *cfs_rq;
  3060. u64 runtime;
  3061. u64 starting_runtime = remaining;
  3062. rcu_read_lock();
  3063. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  3064. throttled_list) {
  3065. struct rq *rq = rq_of(cfs_rq);
  3066. raw_spin_lock(&rq->lock);
  3067. if (!cfs_rq_throttled(cfs_rq))
  3068. goto next;
  3069. runtime = -cfs_rq->runtime_remaining + 1;
  3070. if (runtime > remaining)
  3071. runtime = remaining;
  3072. remaining -= runtime;
  3073. cfs_rq->runtime_remaining += runtime;
  3074. cfs_rq->runtime_expires = expires;
  3075. /* we check whether we're throttled above */
  3076. if (cfs_rq->runtime_remaining > 0)
  3077. unthrottle_cfs_rq(cfs_rq);
  3078. next:
  3079. raw_spin_unlock(&rq->lock);
  3080. if (!remaining)
  3081. break;
  3082. }
  3083. rcu_read_unlock();
  3084. return starting_runtime - remaining;
  3085. }
  3086. /*
  3087. * Responsible for refilling a task_group's bandwidth and unthrottling its
  3088. * cfs_rqs as appropriate. If there has been no activity within the last
  3089. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  3090. * used to track this state.
  3091. */
  3092. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  3093. {
  3094. u64 runtime, runtime_expires;
  3095. int throttled;
  3096. /* no need to continue the timer with no bandwidth constraint */
  3097. if (cfs_b->quota == RUNTIME_INF)
  3098. goto out_deactivate;
  3099. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3100. cfs_b->nr_periods += overrun;
  3101. /*
  3102. * idle depends on !throttled (for the case of a large deficit), and if
  3103. * we're going inactive then everything else can be deferred
  3104. */
  3105. if (cfs_b->idle && !throttled)
  3106. goto out_deactivate;
  3107. /*
  3108. * if we have relooped after returning idle once, we need to update our
  3109. * status as actually running, so that other cpus doing
  3110. * __start_cfs_bandwidth will stop trying to cancel us.
  3111. */
  3112. cfs_b->timer_active = 1;
  3113. __refill_cfs_bandwidth_runtime(cfs_b);
  3114. if (!throttled) {
  3115. /* mark as potentially idle for the upcoming period */
  3116. cfs_b->idle = 1;
  3117. return 0;
  3118. }
  3119. /* account preceding periods in which throttling occurred */
  3120. cfs_b->nr_throttled += overrun;
  3121. runtime_expires = cfs_b->runtime_expires;
  3122. /*
  3123. * This check is repeated as we are holding onto the new bandwidth while
  3124. * we unthrottle. This can potentially race with an unthrottled group
  3125. * trying to acquire new bandwidth from the global pool. This can result
  3126. * in us over-using our runtime if it is all used during this loop, but
  3127. * only by limited amounts in that extreme case.
  3128. */
  3129. while (throttled && cfs_b->runtime > 0) {
  3130. runtime = cfs_b->runtime;
  3131. raw_spin_unlock(&cfs_b->lock);
  3132. /* we can't nest cfs_b->lock while distributing bandwidth */
  3133. runtime = distribute_cfs_runtime(cfs_b, runtime,
  3134. runtime_expires);
  3135. raw_spin_lock(&cfs_b->lock);
  3136. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  3137. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3138. }
  3139. /*
  3140. * While we are ensured activity in the period following an
  3141. * unthrottle, this also covers the case in which the new bandwidth is
  3142. * insufficient to cover the existing bandwidth deficit. (Forcing the
  3143. * timer to remain active while there are any throttled entities.)
  3144. */
  3145. cfs_b->idle = 0;
  3146. return 0;
  3147. out_deactivate:
  3148. cfs_b->timer_active = 0;
  3149. return 1;
  3150. }
  3151. /* a cfs_rq won't donate quota below this amount */
  3152. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  3153. /* minimum remaining period time to redistribute slack quota */
  3154. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  3155. /* how long we wait to gather additional slack before distributing */
  3156. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  3157. /*
  3158. * Are we near the end of the current quota period?
  3159. *
  3160. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  3161. * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
  3162. * migrate_hrtimers, base is never cleared, so we are fine.
  3163. */
  3164. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  3165. {
  3166. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  3167. u64 remaining;
  3168. /* if the call-back is running a quota refresh is already occurring */
  3169. if (hrtimer_callback_running(refresh_timer))
  3170. return 1;
  3171. /* is a quota refresh about to occur? */
  3172. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  3173. if (remaining < min_expire)
  3174. return 1;
  3175. return 0;
  3176. }
  3177. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  3178. {
  3179. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  3180. /* if there's a quota refresh soon don't bother with slack */
  3181. if (runtime_refresh_within(cfs_b, min_left))
  3182. return;
  3183. start_bandwidth_timer(&cfs_b->slack_timer,
  3184. ns_to_ktime(cfs_bandwidth_slack_period));
  3185. }
  3186. /* we know any runtime found here is valid as update_curr() precedes return */
  3187. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3188. {
  3189. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  3190. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  3191. if (slack_runtime <= 0)
  3192. return;
  3193. raw_spin_lock(&cfs_b->lock);
  3194. if (cfs_b->quota != RUNTIME_INF &&
  3195. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  3196. cfs_b->runtime += slack_runtime;
  3197. /* we are under rq->lock, defer unthrottling using a timer */
  3198. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  3199. !list_empty(&cfs_b->throttled_cfs_rq))
  3200. start_cfs_slack_bandwidth(cfs_b);
  3201. }
  3202. raw_spin_unlock(&cfs_b->lock);
  3203. /* even if it's not valid for return we don't want to try again */
  3204. cfs_rq->runtime_remaining -= slack_runtime;
  3205. }
  3206. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3207. {
  3208. if (!cfs_bandwidth_used())
  3209. return;
  3210. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  3211. return;
  3212. __return_cfs_rq_runtime(cfs_rq);
  3213. }
  3214. /*
  3215. * This is done with a timer (instead of inline with bandwidth return) since
  3216. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  3217. */
  3218. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  3219. {
  3220. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  3221. u64 expires;
  3222. /* confirm we're still not at a refresh boundary */
  3223. raw_spin_lock(&cfs_b->lock);
  3224. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  3225. raw_spin_unlock(&cfs_b->lock);
  3226. return;
  3227. }
  3228. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
  3229. runtime = cfs_b->runtime;
  3230. expires = cfs_b->runtime_expires;
  3231. raw_spin_unlock(&cfs_b->lock);
  3232. if (!runtime)
  3233. return;
  3234. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  3235. raw_spin_lock(&cfs_b->lock);
  3236. if (expires == cfs_b->runtime_expires)
  3237. cfs_b->runtime -= min(runtime, cfs_b->runtime);
  3238. raw_spin_unlock(&cfs_b->lock);
  3239. }
  3240. /*
  3241. * When a group wakes up we want to make sure that its quota is not already
  3242. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  3243. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  3244. */
  3245. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  3246. {
  3247. if (!cfs_bandwidth_used())
  3248. return;
  3249. /* an active group must be handled by the update_curr()->put() path */
  3250. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  3251. return;
  3252. /* ensure the group is not already throttled */
  3253. if (cfs_rq_throttled(cfs_rq))
  3254. return;
  3255. /* update runtime allocation */
  3256. account_cfs_rq_runtime(cfs_rq, 0);
  3257. if (cfs_rq->runtime_remaining <= 0)
  3258. throttle_cfs_rq(cfs_rq);
  3259. }
  3260. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  3261. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3262. {
  3263. if (!cfs_bandwidth_used())
  3264. return false;
  3265. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  3266. return false;
  3267. /*
  3268. * it's possible for a throttled entity to be forced into a running
  3269. * state (e.g. set_curr_task), in this case we're finished.
  3270. */
  3271. if (cfs_rq_throttled(cfs_rq))
  3272. return true;
  3273. throttle_cfs_rq(cfs_rq);
  3274. return true;
  3275. }
  3276. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  3277. {
  3278. struct cfs_bandwidth *cfs_b =
  3279. container_of(timer, struct cfs_bandwidth, slack_timer);
  3280. do_sched_cfs_slack_timer(cfs_b);
  3281. return HRTIMER_NORESTART;
  3282. }
  3283. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  3284. {
  3285. struct cfs_bandwidth *cfs_b =
  3286. container_of(timer, struct cfs_bandwidth, period_timer);
  3287. ktime_t now;
  3288. int overrun;
  3289. int idle = 0;
  3290. raw_spin_lock(&cfs_b->lock);
  3291. for (;;) {
  3292. now = hrtimer_cb_get_time(timer);
  3293. overrun = hrtimer_forward(timer, now, cfs_b->period);
  3294. if (!overrun)
  3295. break;
  3296. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  3297. }
  3298. raw_spin_unlock(&cfs_b->lock);
  3299. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  3300. }
  3301. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3302. {
  3303. raw_spin_lock_init(&cfs_b->lock);
  3304. cfs_b->runtime = 0;
  3305. cfs_b->quota = RUNTIME_INF;
  3306. cfs_b->period = ns_to_ktime(default_cfs_period());
  3307. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  3308. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3309. cfs_b->period_timer.function = sched_cfs_period_timer;
  3310. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3311. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  3312. }
  3313. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  3314. {
  3315. cfs_rq->runtime_enabled = 0;
  3316. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  3317. }
  3318. /* requires cfs_b->lock, may release to reprogram timer */
  3319. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
  3320. {
  3321. /*
  3322. * The timer may be active because we're trying to set a new bandwidth
  3323. * period or because we're racing with the tear-down path
  3324. * (timer_active==0 becomes visible before the hrtimer call-back
  3325. * terminates). In either case we ensure that it's re-programmed
  3326. */
  3327. while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
  3328. hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
  3329. /* bounce the lock to allow do_sched_cfs_period_timer to run */
  3330. raw_spin_unlock(&cfs_b->lock);
  3331. cpu_relax();
  3332. raw_spin_lock(&cfs_b->lock);
  3333. /* if someone else restarted the timer then we're done */
  3334. if (!force && cfs_b->timer_active)
  3335. return;
  3336. }
  3337. cfs_b->timer_active = 1;
  3338. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  3339. }
  3340. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  3341. {
  3342. /* init_cfs_bandwidth() was not called */
  3343. if (!cfs_b->throttled_cfs_rq.next)
  3344. return;
  3345. hrtimer_cancel(&cfs_b->period_timer);
  3346. hrtimer_cancel(&cfs_b->slack_timer);
  3347. }
  3348. static void __maybe_unused update_runtime_enabled(struct rq *rq)
  3349. {
  3350. struct cfs_rq *cfs_rq;
  3351. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3352. struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
  3353. raw_spin_lock(&cfs_b->lock);
  3354. cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
  3355. raw_spin_unlock(&cfs_b->lock);
  3356. }
  3357. }
  3358. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  3359. {
  3360. struct cfs_rq *cfs_rq;
  3361. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3362. if (!cfs_rq->runtime_enabled)
  3363. continue;
  3364. /*
  3365. * clock_task is not advancing so we just need to make sure
  3366. * there's some valid quota amount
  3367. */
  3368. cfs_rq->runtime_remaining = 1;
  3369. /*
  3370. * Offline rq is schedulable till cpu is completely disabled
  3371. * in take_cpu_down(), so we prevent new cfs throttling here.
  3372. */
  3373. cfs_rq->runtime_enabled = 0;
  3374. if (cfs_rq_throttled(cfs_rq))
  3375. unthrottle_cfs_rq(cfs_rq);
  3376. }
  3377. }
  3378. #else /* CONFIG_CFS_BANDWIDTH */
  3379. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  3380. {
  3381. return rq_clock_task(rq_of(cfs_rq));
  3382. }
  3383. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  3384. static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
  3385. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  3386. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3387. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  3388. {
  3389. return 0;
  3390. }
  3391. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  3392. {
  3393. return 0;
  3394. }
  3395. static inline int throttled_lb_pair(struct task_group *tg,
  3396. int src_cpu, int dest_cpu)
  3397. {
  3398. return 0;
  3399. }
  3400. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3401. #ifdef CONFIG_FAIR_GROUP_SCHED
  3402. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  3403. #endif
  3404. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  3405. {
  3406. return NULL;
  3407. }
  3408. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  3409. static inline void update_runtime_enabled(struct rq *rq) {}
  3410. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  3411. #endif /* CONFIG_CFS_BANDWIDTH */
  3412. /**************************************************
  3413. * CFS operations on tasks:
  3414. */
  3415. #ifdef CONFIG_SCHED_HRTICK
  3416. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3417. {
  3418. struct sched_entity *se = &p->se;
  3419. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3420. WARN_ON(task_rq(p) != rq);
  3421. if (cfs_rq->nr_running > 1) {
  3422. u64 slice = sched_slice(cfs_rq, se);
  3423. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  3424. s64 delta = slice - ran;
  3425. if (delta < 0) {
  3426. if (rq->curr == p)
  3427. resched_curr(rq);
  3428. return;
  3429. }
  3430. hrtick_start(rq, delta);
  3431. }
  3432. }
  3433. /*
  3434. * called from enqueue/dequeue and updates the hrtick when the
  3435. * current task is from our class and nr_running is low enough
  3436. * to matter.
  3437. */
  3438. static void hrtick_update(struct rq *rq)
  3439. {
  3440. struct task_struct *curr = rq->curr;
  3441. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  3442. return;
  3443. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  3444. hrtick_start_fair(rq, curr);
  3445. }
  3446. #else /* !CONFIG_SCHED_HRTICK */
  3447. static inline void
  3448. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3449. {
  3450. }
  3451. static inline void hrtick_update(struct rq *rq)
  3452. {
  3453. }
  3454. #endif
  3455. /*
  3456. * The enqueue_task method is called before nr_running is
  3457. * increased. Here we update the fair scheduling stats and
  3458. * then put the task into the rbtree:
  3459. */
  3460. static void
  3461. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3462. {
  3463. struct cfs_rq *cfs_rq;
  3464. struct sched_entity *se = &p->se;
  3465. for_each_sched_entity(se) {
  3466. if (se->on_rq)
  3467. break;
  3468. cfs_rq = cfs_rq_of(se);
  3469. enqueue_entity(cfs_rq, se, flags);
  3470. /*
  3471. * end evaluation on encountering a throttled cfs_rq
  3472. *
  3473. * note: in the case of encountering a throttled cfs_rq we will
  3474. * post the final h_nr_running increment below.
  3475. */
  3476. if (cfs_rq_throttled(cfs_rq))
  3477. break;
  3478. cfs_rq->h_nr_running++;
  3479. flags = ENQUEUE_WAKEUP;
  3480. }
  3481. for_each_sched_entity(se) {
  3482. cfs_rq = cfs_rq_of(se);
  3483. cfs_rq->h_nr_running++;
  3484. if (cfs_rq_throttled(cfs_rq))
  3485. break;
  3486. update_cfs_shares(cfs_rq);
  3487. update_entity_load_avg(se, 1);
  3488. }
  3489. if (!se) {
  3490. update_rq_runnable_avg(rq, rq->nr_running);
  3491. add_nr_running(rq, 1);
  3492. }
  3493. hrtick_update(rq);
  3494. }
  3495. static void set_next_buddy(struct sched_entity *se);
  3496. /*
  3497. * The dequeue_task method is called before nr_running is
  3498. * decreased. We remove the task from the rbtree and
  3499. * update the fair scheduling stats:
  3500. */
  3501. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3502. {
  3503. struct cfs_rq *cfs_rq;
  3504. struct sched_entity *se = &p->se;
  3505. int task_sleep = flags & DEQUEUE_SLEEP;
  3506. for_each_sched_entity(se) {
  3507. cfs_rq = cfs_rq_of(se);
  3508. dequeue_entity(cfs_rq, se, flags);
  3509. /*
  3510. * end evaluation on encountering a throttled cfs_rq
  3511. *
  3512. * note: in the case of encountering a throttled cfs_rq we will
  3513. * post the final h_nr_running decrement below.
  3514. */
  3515. if (cfs_rq_throttled(cfs_rq))
  3516. break;
  3517. cfs_rq->h_nr_running--;
  3518. /* Don't dequeue parent if it has other entities besides us */
  3519. if (cfs_rq->load.weight) {
  3520. /*
  3521. * Bias pick_next to pick a task from this cfs_rq, as
  3522. * p is sleeping when it is within its sched_slice.
  3523. */
  3524. if (task_sleep && parent_entity(se))
  3525. set_next_buddy(parent_entity(se));
  3526. /* avoid re-evaluating load for this entity */
  3527. se = parent_entity(se);
  3528. break;
  3529. }
  3530. flags |= DEQUEUE_SLEEP;
  3531. }
  3532. for_each_sched_entity(se) {
  3533. cfs_rq = cfs_rq_of(se);
  3534. cfs_rq->h_nr_running--;
  3535. if (cfs_rq_throttled(cfs_rq))
  3536. break;
  3537. update_cfs_shares(cfs_rq);
  3538. update_entity_load_avg(se, 1);
  3539. }
  3540. if (!se) {
  3541. sub_nr_running(rq, 1);
  3542. update_rq_runnable_avg(rq, 1);
  3543. }
  3544. hrtick_update(rq);
  3545. }
  3546. #ifdef CONFIG_SMP
  3547. /* Used instead of source_load when we know the type == 0 */
  3548. static unsigned long weighted_cpuload(const int cpu)
  3549. {
  3550. return cpu_rq(cpu)->cfs.runnable_load_avg;
  3551. }
  3552. /*
  3553. * Return a low guess at the load of a migration-source cpu weighted
  3554. * according to the scheduling class and "nice" value.
  3555. *
  3556. * We want to under-estimate the load of migration sources, to
  3557. * balance conservatively.
  3558. */
  3559. static unsigned long source_load(int cpu, int type)
  3560. {
  3561. struct rq *rq = cpu_rq(cpu);
  3562. unsigned long total = weighted_cpuload(cpu);
  3563. if (type == 0 || !sched_feat(LB_BIAS))
  3564. return total;
  3565. return min(rq->cpu_load[type-1], total);
  3566. }
  3567. /*
  3568. * Return a high guess at the load of a migration-target cpu weighted
  3569. * according to the scheduling class and "nice" value.
  3570. */
  3571. static unsigned long target_load(int cpu, int type)
  3572. {
  3573. struct rq *rq = cpu_rq(cpu);
  3574. unsigned long total = weighted_cpuload(cpu);
  3575. if (type == 0 || !sched_feat(LB_BIAS))
  3576. return total;
  3577. return max(rq->cpu_load[type-1], total);
  3578. }
  3579. static unsigned long capacity_of(int cpu)
  3580. {
  3581. return cpu_rq(cpu)->cpu_capacity;
  3582. }
  3583. static unsigned long cpu_avg_load_per_task(int cpu)
  3584. {
  3585. struct rq *rq = cpu_rq(cpu);
  3586. unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
  3587. unsigned long load_avg = rq->cfs.runnable_load_avg;
  3588. if (nr_running)
  3589. return load_avg / nr_running;
  3590. return 0;
  3591. }
  3592. static void record_wakee(struct task_struct *p)
  3593. {
  3594. /*
  3595. * Rough decay (wiping) for cost saving, don't worry
  3596. * about the boundary, really active task won't care
  3597. * about the loss.
  3598. */
  3599. if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
  3600. current->wakee_flips >>= 1;
  3601. current->wakee_flip_decay_ts = jiffies;
  3602. }
  3603. if (current->last_wakee != p) {
  3604. current->last_wakee = p;
  3605. current->wakee_flips++;
  3606. }
  3607. }
  3608. static void task_waking_fair(struct task_struct *p)
  3609. {
  3610. struct sched_entity *se = &p->se;
  3611. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3612. u64 min_vruntime;
  3613. #ifndef CONFIG_64BIT
  3614. u64 min_vruntime_copy;
  3615. do {
  3616. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  3617. smp_rmb();
  3618. min_vruntime = cfs_rq->min_vruntime;
  3619. } while (min_vruntime != min_vruntime_copy);
  3620. #else
  3621. min_vruntime = cfs_rq->min_vruntime;
  3622. #endif
  3623. se->vruntime -= min_vruntime;
  3624. record_wakee(p);
  3625. }
  3626. #ifdef CONFIG_FAIR_GROUP_SCHED
  3627. /*
  3628. * effective_load() calculates the load change as seen from the root_task_group
  3629. *
  3630. * Adding load to a group doesn't make a group heavier, but can cause movement
  3631. * of group shares between cpus. Assuming the shares were perfectly aligned one
  3632. * can calculate the shift in shares.
  3633. *
  3634. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  3635. * on this @cpu and results in a total addition (subtraction) of @wg to the
  3636. * total group weight.
  3637. *
  3638. * Given a runqueue weight distribution (rw_i) we can compute a shares
  3639. * distribution (s_i) using:
  3640. *
  3641. * s_i = rw_i / \Sum rw_j (1)
  3642. *
  3643. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  3644. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  3645. * shares distribution (s_i):
  3646. *
  3647. * rw_i = { 2, 4, 1, 0 }
  3648. * s_i = { 2/7, 4/7, 1/7, 0 }
  3649. *
  3650. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  3651. * task used to run on and the CPU the waker is running on), we need to
  3652. * compute the effect of waking a task on either CPU and, in case of a sync
  3653. * wakeup, compute the effect of the current task going to sleep.
  3654. *
  3655. * So for a change of @wl to the local @cpu with an overall group weight change
  3656. * of @wl we can compute the new shares distribution (s'_i) using:
  3657. *
  3658. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  3659. *
  3660. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  3661. * differences in waking a task to CPU 0. The additional task changes the
  3662. * weight and shares distributions like:
  3663. *
  3664. * rw'_i = { 3, 4, 1, 0 }
  3665. * s'_i = { 3/8, 4/8, 1/8, 0 }
  3666. *
  3667. * We can then compute the difference in effective weight by using:
  3668. *
  3669. * dw_i = S * (s'_i - s_i) (3)
  3670. *
  3671. * Where 'S' is the group weight as seen by its parent.
  3672. *
  3673. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  3674. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  3675. * 4/7) times the weight of the group.
  3676. */
  3677. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3678. {
  3679. struct sched_entity *se = tg->se[cpu];
  3680. if (!tg->parent) /* the trivial, non-cgroup case */
  3681. return wl;
  3682. for_each_sched_entity(se) {
  3683. long w, W;
  3684. tg = se->my_q->tg;
  3685. /*
  3686. * W = @wg + \Sum rw_j
  3687. */
  3688. W = wg + calc_tg_weight(tg, se->my_q);
  3689. /*
  3690. * w = rw_i + @wl
  3691. */
  3692. w = se->my_q->load.weight + wl;
  3693. /*
  3694. * wl = S * s'_i; see (2)
  3695. */
  3696. if (W > 0 && w < W)
  3697. wl = (w * (long)tg->shares) / W;
  3698. else
  3699. wl = tg->shares;
  3700. /*
  3701. * Per the above, wl is the new se->load.weight value; since
  3702. * those are clipped to [MIN_SHARES, ...) do so now. See
  3703. * calc_cfs_shares().
  3704. */
  3705. if (wl < MIN_SHARES)
  3706. wl = MIN_SHARES;
  3707. /*
  3708. * wl = dw_i = S * (s'_i - s_i); see (3)
  3709. */
  3710. wl -= se->load.weight;
  3711. /*
  3712. * Recursively apply this logic to all parent groups to compute
  3713. * the final effective load change on the root group. Since
  3714. * only the @tg group gets extra weight, all parent groups can
  3715. * only redistribute existing shares. @wl is the shift in shares
  3716. * resulting from this level per the above.
  3717. */
  3718. wg = 0;
  3719. }
  3720. return wl;
  3721. }
  3722. #else
  3723. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3724. {
  3725. return wl;
  3726. }
  3727. #endif
  3728. static int wake_wide(struct task_struct *p)
  3729. {
  3730. int factor = this_cpu_read(sd_llc_size);
  3731. /*
  3732. * Yeah, it's the switching-frequency, could means many wakee or
  3733. * rapidly switch, use factor here will just help to automatically
  3734. * adjust the loose-degree, so bigger node will lead to more pull.
  3735. */
  3736. if (p->wakee_flips > factor) {
  3737. /*
  3738. * wakee is somewhat hot, it needs certain amount of cpu
  3739. * resource, so if waker is far more hot, prefer to leave
  3740. * it alone.
  3741. */
  3742. if (current->wakee_flips > (factor * p->wakee_flips))
  3743. return 1;
  3744. }
  3745. return 0;
  3746. }
  3747. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  3748. {
  3749. s64 this_load, load;
  3750. s64 this_eff_load, prev_eff_load;
  3751. int idx, this_cpu, prev_cpu;
  3752. struct task_group *tg;
  3753. unsigned long weight;
  3754. int balanced;
  3755. /*
  3756. * If we wake multiple tasks be careful to not bounce
  3757. * ourselves around too much.
  3758. */
  3759. if (wake_wide(p))
  3760. return 0;
  3761. idx = sd->wake_idx;
  3762. this_cpu = smp_processor_id();
  3763. prev_cpu = task_cpu(p);
  3764. load = source_load(prev_cpu, idx);
  3765. this_load = target_load(this_cpu, idx);
  3766. /*
  3767. * If sync wakeup then subtract the (maximum possible)
  3768. * effect of the currently running task from the load
  3769. * of the current CPU:
  3770. */
  3771. if (sync) {
  3772. tg = task_group(current);
  3773. weight = current->se.load.weight;
  3774. this_load += effective_load(tg, this_cpu, -weight, -weight);
  3775. load += effective_load(tg, prev_cpu, 0, -weight);
  3776. }
  3777. tg = task_group(p);
  3778. weight = p->se.load.weight;
  3779. /*
  3780. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  3781. * due to the sync cause above having dropped this_load to 0, we'll
  3782. * always have an imbalance, but there's really nothing you can do
  3783. * about that, so that's good too.
  3784. *
  3785. * Otherwise check if either cpus are near enough in load to allow this
  3786. * task to be woken on this_cpu.
  3787. */
  3788. this_eff_load = 100;
  3789. this_eff_load *= capacity_of(prev_cpu);
  3790. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  3791. prev_eff_load *= capacity_of(this_cpu);
  3792. if (this_load > 0) {
  3793. this_eff_load *= this_load +
  3794. effective_load(tg, this_cpu, weight, weight);
  3795. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  3796. }
  3797. balanced = this_eff_load <= prev_eff_load;
  3798. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  3799. if (!balanced)
  3800. return 0;
  3801. schedstat_inc(sd, ttwu_move_affine);
  3802. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  3803. return 1;
  3804. }
  3805. /*
  3806. * find_idlest_group finds and returns the least busy CPU group within the
  3807. * domain.
  3808. */
  3809. static struct sched_group *
  3810. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  3811. int this_cpu, int sd_flag)
  3812. {
  3813. struct sched_group *idlest = NULL, *group = sd->groups;
  3814. unsigned long min_load = ULONG_MAX, this_load = 0;
  3815. int load_idx = sd->forkexec_idx;
  3816. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  3817. if (sd_flag & SD_BALANCE_WAKE)
  3818. load_idx = sd->wake_idx;
  3819. do {
  3820. unsigned long load, avg_load;
  3821. int local_group;
  3822. int i;
  3823. /* Skip over this group if it has no CPUs allowed */
  3824. if (!cpumask_intersects(sched_group_cpus(group),
  3825. tsk_cpus_allowed(p)))
  3826. continue;
  3827. local_group = cpumask_test_cpu(this_cpu,
  3828. sched_group_cpus(group));
  3829. /* Tally up the load of all CPUs in the group */
  3830. avg_load = 0;
  3831. for_each_cpu(i, sched_group_cpus(group)) {
  3832. /* Bias balancing toward cpus of our domain */
  3833. if (local_group)
  3834. load = source_load(i, load_idx);
  3835. else
  3836. load = target_load(i, load_idx);
  3837. avg_load += load;
  3838. }
  3839. /* Adjust by relative CPU capacity of the group */
  3840. avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
  3841. if (local_group) {
  3842. this_load = avg_load;
  3843. } else if (avg_load < min_load) {
  3844. min_load = avg_load;
  3845. idlest = group;
  3846. }
  3847. } while (group = group->next, group != sd->groups);
  3848. if (!idlest || 100*this_load < imbalance*min_load)
  3849. return NULL;
  3850. return idlest;
  3851. }
  3852. /*
  3853. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  3854. */
  3855. static int
  3856. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  3857. {
  3858. unsigned long load, min_load = ULONG_MAX;
  3859. unsigned int min_exit_latency = UINT_MAX;
  3860. u64 latest_idle_timestamp = 0;
  3861. int least_loaded_cpu = this_cpu;
  3862. int shallowest_idle_cpu = -1;
  3863. int i;
  3864. /* Traverse only the allowed CPUs */
  3865. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  3866. if (idle_cpu(i)) {
  3867. struct rq *rq = cpu_rq(i);
  3868. struct cpuidle_state *idle = idle_get_state(rq);
  3869. if (idle && idle->exit_latency < min_exit_latency) {
  3870. /*
  3871. * We give priority to a CPU whose idle state
  3872. * has the smallest exit latency irrespective
  3873. * of any idle timestamp.
  3874. */
  3875. min_exit_latency = idle->exit_latency;
  3876. latest_idle_timestamp = rq->idle_stamp;
  3877. shallowest_idle_cpu = i;
  3878. } else if ((!idle || idle->exit_latency == min_exit_latency) &&
  3879. rq->idle_stamp > latest_idle_timestamp) {
  3880. /*
  3881. * If equal or no active idle state, then
  3882. * the most recently idled CPU might have
  3883. * a warmer cache.
  3884. */
  3885. latest_idle_timestamp = rq->idle_stamp;
  3886. shallowest_idle_cpu = i;
  3887. }
  3888. } else if (shallowest_idle_cpu == -1) {
  3889. load = weighted_cpuload(i);
  3890. if (load < min_load || (load == min_load && i == this_cpu)) {
  3891. min_load = load;
  3892. least_loaded_cpu = i;
  3893. }
  3894. }
  3895. }
  3896. return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
  3897. }
  3898. /*
  3899. * Try and locate an idle CPU in the sched_domain.
  3900. */
  3901. static int select_idle_sibling(struct task_struct *p, int target)
  3902. {
  3903. struct sched_domain *sd;
  3904. struct sched_group *sg;
  3905. int i = task_cpu(p);
  3906. if (idle_cpu(target))
  3907. return target;
  3908. /*
  3909. * If the prevous cpu is cache affine and idle, don't be stupid.
  3910. */
  3911. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  3912. return i;
  3913. /*
  3914. * Otherwise, iterate the domains and find an elegible idle cpu.
  3915. */
  3916. sd = rcu_dereference(per_cpu(sd_llc, target));
  3917. for_each_lower_domain(sd) {
  3918. sg = sd->groups;
  3919. do {
  3920. if (!cpumask_intersects(sched_group_cpus(sg),
  3921. tsk_cpus_allowed(p)))
  3922. goto next;
  3923. for_each_cpu(i, sched_group_cpus(sg)) {
  3924. if (i == target || !idle_cpu(i))
  3925. goto next;
  3926. }
  3927. target = cpumask_first_and(sched_group_cpus(sg),
  3928. tsk_cpus_allowed(p));
  3929. goto done;
  3930. next:
  3931. sg = sg->next;
  3932. } while (sg != sd->groups);
  3933. }
  3934. done:
  3935. return target;
  3936. }
  3937. /*
  3938. * select_task_rq_fair: Select target runqueue for the waking task in domains
  3939. * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
  3940. * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
  3941. *
  3942. * Balances load by selecting the idlest cpu in the idlest group, or under
  3943. * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
  3944. *
  3945. * Returns the target cpu number.
  3946. *
  3947. * preempt must be disabled.
  3948. */
  3949. static int
  3950. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  3951. {
  3952. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  3953. int cpu = smp_processor_id();
  3954. int new_cpu = cpu;
  3955. int want_affine = 0;
  3956. int sync = wake_flags & WF_SYNC;
  3957. if (sd_flag & SD_BALANCE_WAKE)
  3958. want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
  3959. rcu_read_lock();
  3960. for_each_domain(cpu, tmp) {
  3961. if (!(tmp->flags & SD_LOAD_BALANCE))
  3962. continue;
  3963. /*
  3964. * If both cpu and prev_cpu are part of this domain,
  3965. * cpu is a valid SD_WAKE_AFFINE target.
  3966. */
  3967. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  3968. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  3969. affine_sd = tmp;
  3970. break;
  3971. }
  3972. if (tmp->flags & sd_flag)
  3973. sd = tmp;
  3974. }
  3975. if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  3976. prev_cpu = cpu;
  3977. if (sd_flag & SD_BALANCE_WAKE) {
  3978. new_cpu = select_idle_sibling(p, prev_cpu);
  3979. goto unlock;
  3980. }
  3981. while (sd) {
  3982. struct sched_group *group;
  3983. int weight;
  3984. if (!(sd->flags & sd_flag)) {
  3985. sd = sd->child;
  3986. continue;
  3987. }
  3988. group = find_idlest_group(sd, p, cpu, sd_flag);
  3989. if (!group) {
  3990. sd = sd->child;
  3991. continue;
  3992. }
  3993. new_cpu = find_idlest_cpu(group, p, cpu);
  3994. if (new_cpu == -1 || new_cpu == cpu) {
  3995. /* Now try balancing at a lower domain level of cpu */
  3996. sd = sd->child;
  3997. continue;
  3998. }
  3999. /* Now try balancing at a lower domain level of new_cpu */
  4000. cpu = new_cpu;
  4001. weight = sd->span_weight;
  4002. sd = NULL;
  4003. for_each_domain(cpu, tmp) {
  4004. if (weight <= tmp->span_weight)
  4005. break;
  4006. if (tmp->flags & sd_flag)
  4007. sd = tmp;
  4008. }
  4009. /* while loop will break here if sd == NULL */
  4010. }
  4011. unlock:
  4012. rcu_read_unlock();
  4013. return new_cpu;
  4014. }
  4015. /*
  4016. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  4017. * cfs_rq_of(p) references at time of call are still valid and identify the
  4018. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  4019. * other assumptions, including the state of rq->lock, should be made.
  4020. */
  4021. static void
  4022. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  4023. {
  4024. struct sched_entity *se = &p->se;
  4025. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4026. /*
  4027. * Load tracking: accumulate removed load so that it can be processed
  4028. * when we next update owning cfs_rq under rq->lock. Tasks contribute
  4029. * to blocked load iff they have a positive decay-count. It can never
  4030. * be negative here since on-rq tasks have decay-count == 0.
  4031. */
  4032. if (se->avg.decay_count) {
  4033. se->avg.decay_count = -__synchronize_entity_decay(se);
  4034. atomic_long_add(se->avg.load_avg_contrib,
  4035. &cfs_rq->removed_load);
  4036. }
  4037. /* We have migrated, no longer consider this task hot */
  4038. se->exec_start = 0;
  4039. }
  4040. #endif /* CONFIG_SMP */
  4041. static unsigned long
  4042. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  4043. {
  4044. unsigned long gran = sysctl_sched_wakeup_granularity;
  4045. /*
  4046. * Since its curr running now, convert the gran from real-time
  4047. * to virtual-time in his units.
  4048. *
  4049. * By using 'se' instead of 'curr' we penalize light tasks, so
  4050. * they get preempted easier. That is, if 'se' < 'curr' then
  4051. * the resulting gran will be larger, therefore penalizing the
  4052. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  4053. * be smaller, again penalizing the lighter task.
  4054. *
  4055. * This is especially important for buddies when the leftmost
  4056. * task is higher priority than the buddy.
  4057. */
  4058. return calc_delta_fair(gran, se);
  4059. }
  4060. /*
  4061. * Should 'se' preempt 'curr'.
  4062. *
  4063. * |s1
  4064. * |s2
  4065. * |s3
  4066. * g
  4067. * |<--->|c
  4068. *
  4069. * w(c, s1) = -1
  4070. * w(c, s2) = 0
  4071. * w(c, s3) = 1
  4072. *
  4073. */
  4074. static int
  4075. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  4076. {
  4077. s64 gran, vdiff = curr->vruntime - se->vruntime;
  4078. if (vdiff <= 0)
  4079. return -1;
  4080. gran = wakeup_gran(curr, se);
  4081. if (vdiff > gran)
  4082. return 1;
  4083. return 0;
  4084. }
  4085. static void set_last_buddy(struct sched_entity *se)
  4086. {
  4087. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4088. return;
  4089. for_each_sched_entity(se)
  4090. cfs_rq_of(se)->last = se;
  4091. }
  4092. static void set_next_buddy(struct sched_entity *se)
  4093. {
  4094. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  4095. return;
  4096. for_each_sched_entity(se)
  4097. cfs_rq_of(se)->next = se;
  4098. }
  4099. static void set_skip_buddy(struct sched_entity *se)
  4100. {
  4101. for_each_sched_entity(se)
  4102. cfs_rq_of(se)->skip = se;
  4103. }
  4104. /*
  4105. * Preempt the current task with a newly woken task if needed:
  4106. */
  4107. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  4108. {
  4109. struct task_struct *curr = rq->curr;
  4110. struct sched_entity *se = &curr->se, *pse = &p->se;
  4111. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4112. int scale = cfs_rq->nr_running >= sched_nr_latency;
  4113. int next_buddy_marked = 0;
  4114. if (unlikely(se == pse))
  4115. return;
  4116. /*
  4117. * This is possible from callers such as attach_tasks(), in which we
  4118. * unconditionally check_prempt_curr() after an enqueue (which may have
  4119. * lead to a throttle). This both saves work and prevents false
  4120. * next-buddy nomination below.
  4121. */
  4122. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  4123. return;
  4124. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  4125. set_next_buddy(pse);
  4126. next_buddy_marked = 1;
  4127. }
  4128. /*
  4129. * We can come here with TIF_NEED_RESCHED already set from new task
  4130. * wake up path.
  4131. *
  4132. * Note: this also catches the edge-case of curr being in a throttled
  4133. * group (e.g. via set_curr_task), since update_curr() (in the
  4134. * enqueue of curr) will have resulted in resched being set. This
  4135. * prevents us from potentially nominating it as a false LAST_BUDDY
  4136. * below.
  4137. */
  4138. if (test_tsk_need_resched(curr))
  4139. return;
  4140. /* Idle tasks are by definition preempted by non-idle tasks. */
  4141. if (unlikely(curr->policy == SCHED_IDLE) &&
  4142. likely(p->policy != SCHED_IDLE))
  4143. goto preempt;
  4144. /*
  4145. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  4146. * is driven by the tick):
  4147. */
  4148. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  4149. return;
  4150. find_matching_se(&se, &pse);
  4151. update_curr(cfs_rq_of(se));
  4152. BUG_ON(!pse);
  4153. if (wakeup_preempt_entity(se, pse) == 1) {
  4154. /*
  4155. * Bias pick_next to pick the sched entity that is
  4156. * triggering this preemption.
  4157. */
  4158. if (!next_buddy_marked)
  4159. set_next_buddy(pse);
  4160. goto preempt;
  4161. }
  4162. return;
  4163. preempt:
  4164. resched_curr(rq);
  4165. /*
  4166. * Only set the backward buddy when the current task is still
  4167. * on the rq. This can happen when a wakeup gets interleaved
  4168. * with schedule on the ->pre_schedule() or idle_balance()
  4169. * point, either of which can * drop the rq lock.
  4170. *
  4171. * Also, during early boot the idle thread is in the fair class,
  4172. * for obvious reasons its a bad idea to schedule back to it.
  4173. */
  4174. if (unlikely(!se->on_rq || curr == rq->idle))
  4175. return;
  4176. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  4177. set_last_buddy(se);
  4178. }
  4179. static struct task_struct *
  4180. pick_next_task_fair(struct rq *rq, struct task_struct *prev)
  4181. {
  4182. struct cfs_rq *cfs_rq = &rq->cfs;
  4183. struct sched_entity *se;
  4184. struct task_struct *p;
  4185. int new_tasks;
  4186. again:
  4187. #ifdef CONFIG_FAIR_GROUP_SCHED
  4188. if (!cfs_rq->nr_running)
  4189. goto idle;
  4190. if (prev->sched_class != &fair_sched_class)
  4191. goto simple;
  4192. /*
  4193. * Because of the set_next_buddy() in dequeue_task_fair() it is rather
  4194. * likely that a next task is from the same cgroup as the current.
  4195. *
  4196. * Therefore attempt to avoid putting and setting the entire cgroup
  4197. * hierarchy, only change the part that actually changes.
  4198. */
  4199. do {
  4200. struct sched_entity *curr = cfs_rq->curr;
  4201. /*
  4202. * Since we got here without doing put_prev_entity() we also
  4203. * have to consider cfs_rq->curr. If it is still a runnable
  4204. * entity, update_curr() will update its vruntime, otherwise
  4205. * forget we've ever seen it.
  4206. */
  4207. if (curr && curr->on_rq)
  4208. update_curr(cfs_rq);
  4209. else
  4210. curr = NULL;
  4211. /*
  4212. * This call to check_cfs_rq_runtime() will do the throttle and
  4213. * dequeue its entity in the parent(s). Therefore the 'simple'
  4214. * nr_running test will indeed be correct.
  4215. */
  4216. if (unlikely(check_cfs_rq_runtime(cfs_rq)))
  4217. goto simple;
  4218. se = pick_next_entity(cfs_rq, curr);
  4219. cfs_rq = group_cfs_rq(se);
  4220. } while (cfs_rq);
  4221. p = task_of(se);
  4222. /*
  4223. * Since we haven't yet done put_prev_entity and if the selected task
  4224. * is a different task than we started out with, try and touch the
  4225. * least amount of cfs_rqs.
  4226. */
  4227. if (prev != p) {
  4228. struct sched_entity *pse = &prev->se;
  4229. while (!(cfs_rq = is_same_group(se, pse))) {
  4230. int se_depth = se->depth;
  4231. int pse_depth = pse->depth;
  4232. if (se_depth <= pse_depth) {
  4233. put_prev_entity(cfs_rq_of(pse), pse);
  4234. pse = parent_entity(pse);
  4235. }
  4236. if (se_depth >= pse_depth) {
  4237. set_next_entity(cfs_rq_of(se), se);
  4238. se = parent_entity(se);
  4239. }
  4240. }
  4241. put_prev_entity(cfs_rq, pse);
  4242. set_next_entity(cfs_rq, se);
  4243. }
  4244. if (hrtick_enabled(rq))
  4245. hrtick_start_fair(rq, p);
  4246. return p;
  4247. simple:
  4248. cfs_rq = &rq->cfs;
  4249. #endif
  4250. if (!cfs_rq->nr_running)
  4251. goto idle;
  4252. put_prev_task(rq, prev);
  4253. do {
  4254. se = pick_next_entity(cfs_rq, NULL);
  4255. set_next_entity(cfs_rq, se);
  4256. cfs_rq = group_cfs_rq(se);
  4257. } while (cfs_rq);
  4258. p = task_of(se);
  4259. if (hrtick_enabled(rq))
  4260. hrtick_start_fair(rq, p);
  4261. return p;
  4262. idle:
  4263. new_tasks = idle_balance(rq);
  4264. /*
  4265. * Because idle_balance() releases (and re-acquires) rq->lock, it is
  4266. * possible for any higher priority task to appear. In that case we
  4267. * must re-start the pick_next_entity() loop.
  4268. */
  4269. if (new_tasks < 0)
  4270. return RETRY_TASK;
  4271. if (new_tasks > 0)
  4272. goto again;
  4273. return NULL;
  4274. }
  4275. /*
  4276. * Account for a descheduled task:
  4277. */
  4278. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  4279. {
  4280. struct sched_entity *se = &prev->se;
  4281. struct cfs_rq *cfs_rq;
  4282. for_each_sched_entity(se) {
  4283. cfs_rq = cfs_rq_of(se);
  4284. put_prev_entity(cfs_rq, se);
  4285. }
  4286. }
  4287. /*
  4288. * sched_yield() is very simple
  4289. *
  4290. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  4291. */
  4292. static void yield_task_fair(struct rq *rq)
  4293. {
  4294. struct task_struct *curr = rq->curr;
  4295. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  4296. struct sched_entity *se = &curr->se;
  4297. /*
  4298. * Are we the only task in the tree?
  4299. */
  4300. if (unlikely(rq->nr_running == 1))
  4301. return;
  4302. clear_buddies(cfs_rq, se);
  4303. if (curr->policy != SCHED_BATCH) {
  4304. update_rq_clock(rq);
  4305. /*
  4306. * Update run-time statistics of the 'current'.
  4307. */
  4308. update_curr(cfs_rq);
  4309. /*
  4310. * Tell update_rq_clock() that we've just updated,
  4311. * so we don't do microscopic update in schedule()
  4312. * and double the fastpath cost.
  4313. */
  4314. rq->skip_clock_update = 1;
  4315. }
  4316. set_skip_buddy(se);
  4317. }
  4318. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  4319. {
  4320. struct sched_entity *se = &p->se;
  4321. /* throttled hierarchies are not runnable */
  4322. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  4323. return false;
  4324. /* Tell the scheduler that we'd really like pse to run next. */
  4325. set_next_buddy(se);
  4326. yield_task_fair(rq);
  4327. return true;
  4328. }
  4329. #ifdef CONFIG_SMP
  4330. /**************************************************
  4331. * Fair scheduling class load-balancing methods.
  4332. *
  4333. * BASICS
  4334. *
  4335. * The purpose of load-balancing is to achieve the same basic fairness the
  4336. * per-cpu scheduler provides, namely provide a proportional amount of compute
  4337. * time to each task. This is expressed in the following equation:
  4338. *
  4339. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  4340. *
  4341. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  4342. * W_i,0 is defined as:
  4343. *
  4344. * W_i,0 = \Sum_j w_i,j (2)
  4345. *
  4346. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  4347. * is derived from the nice value as per prio_to_weight[].
  4348. *
  4349. * The weight average is an exponential decay average of the instantaneous
  4350. * weight:
  4351. *
  4352. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  4353. *
  4354. * C_i is the compute capacity of cpu i, typically it is the
  4355. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  4356. * can also include other factors [XXX].
  4357. *
  4358. * To achieve this balance we define a measure of imbalance which follows
  4359. * directly from (1):
  4360. *
  4361. * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
  4362. *
  4363. * We them move tasks around to minimize the imbalance. In the continuous
  4364. * function space it is obvious this converges, in the discrete case we get
  4365. * a few fun cases generally called infeasible weight scenarios.
  4366. *
  4367. * [XXX expand on:
  4368. * - infeasible weights;
  4369. * - local vs global optima in the discrete case. ]
  4370. *
  4371. *
  4372. * SCHED DOMAINS
  4373. *
  4374. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  4375. * for all i,j solution, we create a tree of cpus that follows the hardware
  4376. * topology where each level pairs two lower groups (or better). This results
  4377. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  4378. * tree to only the first of the previous level and we decrease the frequency
  4379. * of load-balance at each level inv. proportional to the number of cpus in
  4380. * the groups.
  4381. *
  4382. * This yields:
  4383. *
  4384. * log_2 n 1 n
  4385. * \Sum { --- * --- * 2^i } = O(n) (5)
  4386. * i = 0 2^i 2^i
  4387. * `- size of each group
  4388. * | | `- number of cpus doing load-balance
  4389. * | `- freq
  4390. * `- sum over all levels
  4391. *
  4392. * Coupled with a limit on how many tasks we can migrate every balance pass,
  4393. * this makes (5) the runtime complexity of the balancer.
  4394. *
  4395. * An important property here is that each CPU is still (indirectly) connected
  4396. * to every other cpu in at most O(log n) steps:
  4397. *
  4398. * The adjacency matrix of the resulting graph is given by:
  4399. *
  4400. * log_2 n
  4401. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  4402. * k = 0
  4403. *
  4404. * And you'll find that:
  4405. *
  4406. * A^(log_2 n)_i,j != 0 for all i,j (7)
  4407. *
  4408. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  4409. * The task movement gives a factor of O(m), giving a convergence complexity
  4410. * of:
  4411. *
  4412. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  4413. *
  4414. *
  4415. * WORK CONSERVING
  4416. *
  4417. * In order to avoid CPUs going idle while there's still work to do, new idle
  4418. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  4419. * tree itself instead of relying on other CPUs to bring it work.
  4420. *
  4421. * This adds some complexity to both (5) and (8) but it reduces the total idle
  4422. * time.
  4423. *
  4424. * [XXX more?]
  4425. *
  4426. *
  4427. * CGROUPS
  4428. *
  4429. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  4430. *
  4431. * s_k,i
  4432. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  4433. * S_k
  4434. *
  4435. * Where
  4436. *
  4437. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  4438. *
  4439. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  4440. *
  4441. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  4442. * property.
  4443. *
  4444. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  4445. * rewrite all of this once again.]
  4446. */
  4447. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  4448. enum fbq_type { regular, remote, all };
  4449. #define LBF_ALL_PINNED 0x01
  4450. #define LBF_NEED_BREAK 0x02
  4451. #define LBF_DST_PINNED 0x04
  4452. #define LBF_SOME_PINNED 0x08
  4453. struct lb_env {
  4454. struct sched_domain *sd;
  4455. struct rq *src_rq;
  4456. int src_cpu;
  4457. int dst_cpu;
  4458. struct rq *dst_rq;
  4459. struct cpumask *dst_grpmask;
  4460. int new_dst_cpu;
  4461. enum cpu_idle_type idle;
  4462. long imbalance;
  4463. /* The set of CPUs under consideration for load-balancing */
  4464. struct cpumask *cpus;
  4465. unsigned int flags;
  4466. unsigned int loop;
  4467. unsigned int loop_break;
  4468. unsigned int loop_max;
  4469. enum fbq_type fbq_type;
  4470. struct list_head tasks;
  4471. };
  4472. /*
  4473. * Is this task likely cache-hot:
  4474. */
  4475. static int task_hot(struct task_struct *p, struct lb_env *env)
  4476. {
  4477. s64 delta;
  4478. lockdep_assert_held(&env->src_rq->lock);
  4479. if (p->sched_class != &fair_sched_class)
  4480. return 0;
  4481. if (unlikely(p->policy == SCHED_IDLE))
  4482. return 0;
  4483. /*
  4484. * Buddy candidates are cache hot:
  4485. */
  4486. if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
  4487. (&p->se == cfs_rq_of(&p->se)->next ||
  4488. &p->se == cfs_rq_of(&p->se)->last))
  4489. return 1;
  4490. if (sysctl_sched_migration_cost == -1)
  4491. return 1;
  4492. if (sysctl_sched_migration_cost == 0)
  4493. return 0;
  4494. delta = rq_clock_task(env->src_rq) - p->se.exec_start;
  4495. return delta < (s64)sysctl_sched_migration_cost;
  4496. }
  4497. #ifdef CONFIG_NUMA_BALANCING
  4498. /* Returns true if the destination node has incurred more faults */
  4499. static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
  4500. {
  4501. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  4502. int src_nid, dst_nid;
  4503. if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
  4504. !(env->sd->flags & SD_NUMA)) {
  4505. return false;
  4506. }
  4507. src_nid = cpu_to_node(env->src_cpu);
  4508. dst_nid = cpu_to_node(env->dst_cpu);
  4509. if (src_nid == dst_nid)
  4510. return false;
  4511. if (numa_group) {
  4512. /* Task is already in the group's interleave set. */
  4513. if (node_isset(src_nid, numa_group->active_nodes))
  4514. return false;
  4515. /* Task is moving into the group's interleave set. */
  4516. if (node_isset(dst_nid, numa_group->active_nodes))
  4517. return true;
  4518. return group_faults(p, dst_nid) > group_faults(p, src_nid);
  4519. }
  4520. /* Encourage migration to the preferred node. */
  4521. if (dst_nid == p->numa_preferred_nid)
  4522. return true;
  4523. return task_faults(p, dst_nid) > task_faults(p, src_nid);
  4524. }
  4525. static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  4526. {
  4527. struct numa_group *numa_group = rcu_dereference(p->numa_group);
  4528. int src_nid, dst_nid;
  4529. if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
  4530. return false;
  4531. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  4532. return false;
  4533. src_nid = cpu_to_node(env->src_cpu);
  4534. dst_nid = cpu_to_node(env->dst_cpu);
  4535. if (src_nid == dst_nid)
  4536. return false;
  4537. if (numa_group) {
  4538. /* Task is moving within/into the group's interleave set. */
  4539. if (node_isset(dst_nid, numa_group->active_nodes))
  4540. return false;
  4541. /* Task is moving out of the group's interleave set. */
  4542. if (node_isset(src_nid, numa_group->active_nodes))
  4543. return true;
  4544. return group_faults(p, dst_nid) < group_faults(p, src_nid);
  4545. }
  4546. /* Migrating away from the preferred node is always bad. */
  4547. if (src_nid == p->numa_preferred_nid)
  4548. return true;
  4549. return task_faults(p, dst_nid) < task_faults(p, src_nid);
  4550. }
  4551. #else
  4552. static inline bool migrate_improves_locality(struct task_struct *p,
  4553. struct lb_env *env)
  4554. {
  4555. return false;
  4556. }
  4557. static inline bool migrate_degrades_locality(struct task_struct *p,
  4558. struct lb_env *env)
  4559. {
  4560. return false;
  4561. }
  4562. #endif
  4563. /*
  4564. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  4565. */
  4566. static
  4567. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  4568. {
  4569. int tsk_cache_hot = 0;
  4570. lockdep_assert_held(&env->src_rq->lock);
  4571. /*
  4572. * We do not migrate tasks that are:
  4573. * 1) throttled_lb_pair, or
  4574. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  4575. * 3) running (obviously), or
  4576. * 4) are cache-hot on their current CPU.
  4577. */
  4578. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  4579. return 0;
  4580. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  4581. int cpu;
  4582. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  4583. env->flags |= LBF_SOME_PINNED;
  4584. /*
  4585. * Remember if this task can be migrated to any other cpu in
  4586. * our sched_group. We may want to revisit it if we couldn't
  4587. * meet load balance goals by pulling other tasks on src_cpu.
  4588. *
  4589. * Also avoid computing new_dst_cpu if we have already computed
  4590. * one in current iteration.
  4591. */
  4592. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  4593. return 0;
  4594. /* Prevent to re-select dst_cpu via env's cpus */
  4595. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  4596. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  4597. env->flags |= LBF_DST_PINNED;
  4598. env->new_dst_cpu = cpu;
  4599. break;
  4600. }
  4601. }
  4602. return 0;
  4603. }
  4604. /* Record that we found atleast one task that could run on dst_cpu */
  4605. env->flags &= ~LBF_ALL_PINNED;
  4606. if (task_running(env->src_rq, p)) {
  4607. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  4608. return 0;
  4609. }
  4610. /*
  4611. * Aggressive migration if:
  4612. * 1) destination numa is preferred
  4613. * 2) task is cache cold, or
  4614. * 3) too many balance attempts have failed.
  4615. */
  4616. tsk_cache_hot = task_hot(p, env);
  4617. if (!tsk_cache_hot)
  4618. tsk_cache_hot = migrate_degrades_locality(p, env);
  4619. if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
  4620. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  4621. if (tsk_cache_hot) {
  4622. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4623. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4624. }
  4625. return 1;
  4626. }
  4627. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  4628. return 0;
  4629. }
  4630. /*
  4631. * detach_task() -- detach the task for the migration specified in env
  4632. */
  4633. static void detach_task(struct task_struct *p, struct lb_env *env)
  4634. {
  4635. lockdep_assert_held(&env->src_rq->lock);
  4636. deactivate_task(env->src_rq, p, 0);
  4637. p->on_rq = TASK_ON_RQ_MIGRATING;
  4638. set_task_cpu(p, env->dst_cpu);
  4639. }
  4640. /*
  4641. * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
  4642. * part of active balancing operations within "domain".
  4643. *
  4644. * Returns a task if successful and NULL otherwise.
  4645. */
  4646. static struct task_struct *detach_one_task(struct lb_env *env)
  4647. {
  4648. struct task_struct *p, *n;
  4649. lockdep_assert_held(&env->src_rq->lock);
  4650. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  4651. if (!can_migrate_task(p, env))
  4652. continue;
  4653. detach_task(p, env);
  4654. /*
  4655. * Right now, this is only the second place where
  4656. * lb_gained[env->idle] is updated (other is detach_tasks)
  4657. * so we can safely collect stats here rather than
  4658. * inside detach_tasks().
  4659. */
  4660. schedstat_inc(env->sd, lb_gained[env->idle]);
  4661. return p;
  4662. }
  4663. return NULL;
  4664. }
  4665. static const unsigned int sched_nr_migrate_break = 32;
  4666. /*
  4667. * detach_tasks() -- tries to detach up to imbalance weighted load from
  4668. * busiest_rq, as part of a balancing operation within domain "sd".
  4669. *
  4670. * Returns number of detached tasks if successful and 0 otherwise.
  4671. */
  4672. static int detach_tasks(struct lb_env *env)
  4673. {
  4674. struct list_head *tasks = &env->src_rq->cfs_tasks;
  4675. struct task_struct *p;
  4676. unsigned long load;
  4677. int detached = 0;
  4678. lockdep_assert_held(&env->src_rq->lock);
  4679. if (env->imbalance <= 0)
  4680. return 0;
  4681. while (!list_empty(tasks)) {
  4682. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4683. env->loop++;
  4684. /* We've more or less seen every task there is, call it quits */
  4685. if (env->loop > env->loop_max)
  4686. break;
  4687. /* take a breather every nr_migrate tasks */
  4688. if (env->loop > env->loop_break) {
  4689. env->loop_break += sched_nr_migrate_break;
  4690. env->flags |= LBF_NEED_BREAK;
  4691. break;
  4692. }
  4693. if (!can_migrate_task(p, env))
  4694. goto next;
  4695. load = task_h_load(p);
  4696. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  4697. goto next;
  4698. if ((load / 2) > env->imbalance)
  4699. goto next;
  4700. detach_task(p, env);
  4701. list_add(&p->se.group_node, &env->tasks);
  4702. detached++;
  4703. env->imbalance -= load;
  4704. #ifdef CONFIG_PREEMPT
  4705. /*
  4706. * NEWIDLE balancing is a source of latency, so preemptible
  4707. * kernels will stop after the first task is detached to minimize
  4708. * the critical section.
  4709. */
  4710. if (env->idle == CPU_NEWLY_IDLE)
  4711. break;
  4712. #endif
  4713. /*
  4714. * We only want to steal up to the prescribed amount of
  4715. * weighted load.
  4716. */
  4717. if (env->imbalance <= 0)
  4718. break;
  4719. continue;
  4720. next:
  4721. list_move_tail(&p->se.group_node, tasks);
  4722. }
  4723. /*
  4724. * Right now, this is one of only two places we collect this stat
  4725. * so we can safely collect detach_one_task() stats here rather
  4726. * than inside detach_one_task().
  4727. */
  4728. schedstat_add(env->sd, lb_gained[env->idle], detached);
  4729. return detached;
  4730. }
  4731. /*
  4732. * attach_task() -- attach the task detached by detach_task() to its new rq.
  4733. */
  4734. static void attach_task(struct rq *rq, struct task_struct *p)
  4735. {
  4736. lockdep_assert_held(&rq->lock);
  4737. BUG_ON(task_rq(p) != rq);
  4738. p->on_rq = TASK_ON_RQ_QUEUED;
  4739. activate_task(rq, p, 0);
  4740. check_preempt_curr(rq, p, 0);
  4741. }
  4742. /*
  4743. * attach_one_task() -- attaches the task returned from detach_one_task() to
  4744. * its new rq.
  4745. */
  4746. static void attach_one_task(struct rq *rq, struct task_struct *p)
  4747. {
  4748. raw_spin_lock(&rq->lock);
  4749. attach_task(rq, p);
  4750. raw_spin_unlock(&rq->lock);
  4751. }
  4752. /*
  4753. * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
  4754. * new rq.
  4755. */
  4756. static void attach_tasks(struct lb_env *env)
  4757. {
  4758. struct list_head *tasks = &env->tasks;
  4759. struct task_struct *p;
  4760. raw_spin_lock(&env->dst_rq->lock);
  4761. while (!list_empty(tasks)) {
  4762. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4763. list_del_init(&p->se.group_node);
  4764. attach_task(env->dst_rq, p);
  4765. }
  4766. raw_spin_unlock(&env->dst_rq->lock);
  4767. }
  4768. #ifdef CONFIG_FAIR_GROUP_SCHED
  4769. /*
  4770. * update tg->load_weight by folding this cpu's load_avg
  4771. */
  4772. static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
  4773. {
  4774. struct sched_entity *se = tg->se[cpu];
  4775. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
  4776. /* throttled entities do not contribute to load */
  4777. if (throttled_hierarchy(cfs_rq))
  4778. return;
  4779. update_cfs_rq_blocked_load(cfs_rq, 1);
  4780. if (se) {
  4781. update_entity_load_avg(se, 1);
  4782. /*
  4783. * We pivot on our runnable average having decayed to zero for
  4784. * list removal. This generally implies that all our children
  4785. * have also been removed (modulo rounding error or bandwidth
  4786. * control); however, such cases are rare and we can fix these
  4787. * at enqueue.
  4788. *
  4789. * TODO: fix up out-of-order children on enqueue.
  4790. */
  4791. if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
  4792. list_del_leaf_cfs_rq(cfs_rq);
  4793. } else {
  4794. struct rq *rq = rq_of(cfs_rq);
  4795. update_rq_runnable_avg(rq, rq->nr_running);
  4796. }
  4797. }
  4798. static void update_blocked_averages(int cpu)
  4799. {
  4800. struct rq *rq = cpu_rq(cpu);
  4801. struct cfs_rq *cfs_rq;
  4802. unsigned long flags;
  4803. raw_spin_lock_irqsave(&rq->lock, flags);
  4804. update_rq_clock(rq);
  4805. /*
  4806. * Iterates the task_group tree in a bottom up fashion, see
  4807. * list_add_leaf_cfs_rq() for details.
  4808. */
  4809. for_each_leaf_cfs_rq(rq, cfs_rq) {
  4810. /*
  4811. * Note: We may want to consider periodically releasing
  4812. * rq->lock about these updates so that creating many task
  4813. * groups does not result in continually extending hold time.
  4814. */
  4815. __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
  4816. }
  4817. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4818. }
  4819. /*
  4820. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  4821. * This needs to be done in a top-down fashion because the load of a child
  4822. * group is a fraction of its parents load.
  4823. */
  4824. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  4825. {
  4826. struct rq *rq = rq_of(cfs_rq);
  4827. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  4828. unsigned long now = jiffies;
  4829. unsigned long load;
  4830. if (cfs_rq->last_h_load_update == now)
  4831. return;
  4832. cfs_rq->h_load_next = NULL;
  4833. for_each_sched_entity(se) {
  4834. cfs_rq = cfs_rq_of(se);
  4835. cfs_rq->h_load_next = se;
  4836. if (cfs_rq->last_h_load_update == now)
  4837. break;
  4838. }
  4839. if (!se) {
  4840. cfs_rq->h_load = cfs_rq->runnable_load_avg;
  4841. cfs_rq->last_h_load_update = now;
  4842. }
  4843. while ((se = cfs_rq->h_load_next) != NULL) {
  4844. load = cfs_rq->h_load;
  4845. load = div64_ul(load * se->avg.load_avg_contrib,
  4846. cfs_rq->runnable_load_avg + 1);
  4847. cfs_rq = group_cfs_rq(se);
  4848. cfs_rq->h_load = load;
  4849. cfs_rq->last_h_load_update = now;
  4850. }
  4851. }
  4852. static unsigned long task_h_load(struct task_struct *p)
  4853. {
  4854. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  4855. update_cfs_rq_h_load(cfs_rq);
  4856. return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
  4857. cfs_rq->runnable_load_avg + 1);
  4858. }
  4859. #else
  4860. static inline void update_blocked_averages(int cpu)
  4861. {
  4862. }
  4863. static unsigned long task_h_load(struct task_struct *p)
  4864. {
  4865. return p->se.avg.load_avg_contrib;
  4866. }
  4867. #endif
  4868. /********** Helpers for find_busiest_group ************************/
  4869. enum group_type {
  4870. group_other = 0,
  4871. group_imbalanced,
  4872. group_overloaded,
  4873. };
  4874. /*
  4875. * sg_lb_stats - stats of a sched_group required for load_balancing
  4876. */
  4877. struct sg_lb_stats {
  4878. unsigned long avg_load; /*Avg load across the CPUs of the group */
  4879. unsigned long group_load; /* Total load over the CPUs of the group */
  4880. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  4881. unsigned long load_per_task;
  4882. unsigned long group_capacity;
  4883. unsigned int sum_nr_running; /* Nr tasks running in the group */
  4884. unsigned int group_capacity_factor;
  4885. unsigned int idle_cpus;
  4886. unsigned int group_weight;
  4887. enum group_type group_type;
  4888. int group_has_free_capacity;
  4889. #ifdef CONFIG_NUMA_BALANCING
  4890. unsigned int nr_numa_running;
  4891. unsigned int nr_preferred_running;
  4892. #endif
  4893. };
  4894. /*
  4895. * sd_lb_stats - Structure to store the statistics of a sched_domain
  4896. * during load balancing.
  4897. */
  4898. struct sd_lb_stats {
  4899. struct sched_group *busiest; /* Busiest group in this sd */
  4900. struct sched_group *local; /* Local group in this sd */
  4901. unsigned long total_load; /* Total load of all groups in sd */
  4902. unsigned long total_capacity; /* Total capacity of all groups in sd */
  4903. unsigned long avg_load; /* Average load across all groups in sd */
  4904. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  4905. struct sg_lb_stats local_stat; /* Statistics of the local group */
  4906. };
  4907. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  4908. {
  4909. /*
  4910. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  4911. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  4912. * We must however clear busiest_stat::avg_load because
  4913. * update_sd_pick_busiest() reads this before assignment.
  4914. */
  4915. *sds = (struct sd_lb_stats){
  4916. .busiest = NULL,
  4917. .local = NULL,
  4918. .total_load = 0UL,
  4919. .total_capacity = 0UL,
  4920. .busiest_stat = {
  4921. .avg_load = 0UL,
  4922. .sum_nr_running = 0,
  4923. .group_type = group_other,
  4924. },
  4925. };
  4926. }
  4927. /**
  4928. * get_sd_load_idx - Obtain the load index for a given sched domain.
  4929. * @sd: The sched_domain whose load_idx is to be obtained.
  4930. * @idle: The idle status of the CPU for whose sd load_idx is obtained.
  4931. *
  4932. * Return: The load index.
  4933. */
  4934. static inline int get_sd_load_idx(struct sched_domain *sd,
  4935. enum cpu_idle_type idle)
  4936. {
  4937. int load_idx;
  4938. switch (idle) {
  4939. case CPU_NOT_IDLE:
  4940. load_idx = sd->busy_idx;
  4941. break;
  4942. case CPU_NEWLY_IDLE:
  4943. load_idx = sd->newidle_idx;
  4944. break;
  4945. default:
  4946. load_idx = sd->idle_idx;
  4947. break;
  4948. }
  4949. return load_idx;
  4950. }
  4951. static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
  4952. {
  4953. return SCHED_CAPACITY_SCALE;
  4954. }
  4955. unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
  4956. {
  4957. return default_scale_capacity(sd, cpu);
  4958. }
  4959. static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
  4960. {
  4961. if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
  4962. return sd->smt_gain / sd->span_weight;
  4963. return SCHED_CAPACITY_SCALE;
  4964. }
  4965. unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
  4966. {
  4967. return default_scale_cpu_capacity(sd, cpu);
  4968. }
  4969. static unsigned long scale_rt_capacity(int cpu)
  4970. {
  4971. struct rq *rq = cpu_rq(cpu);
  4972. u64 total, available, age_stamp, avg;
  4973. s64 delta;
  4974. /*
  4975. * Since we're reading these variables without serialization make sure
  4976. * we read them once before doing sanity checks on them.
  4977. */
  4978. age_stamp = ACCESS_ONCE(rq->age_stamp);
  4979. avg = ACCESS_ONCE(rq->rt_avg);
  4980. delta = rq_clock(rq) - age_stamp;
  4981. if (unlikely(delta < 0))
  4982. delta = 0;
  4983. total = sched_avg_period() + delta;
  4984. if (unlikely(total < avg)) {
  4985. /* Ensures that capacity won't end up being negative */
  4986. available = 0;
  4987. } else {
  4988. available = total - avg;
  4989. }
  4990. if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
  4991. total = SCHED_CAPACITY_SCALE;
  4992. total >>= SCHED_CAPACITY_SHIFT;
  4993. return div_u64(available, total);
  4994. }
  4995. static void update_cpu_capacity(struct sched_domain *sd, int cpu)
  4996. {
  4997. unsigned long capacity = SCHED_CAPACITY_SCALE;
  4998. struct sched_group *sdg = sd->groups;
  4999. if (sched_feat(ARCH_CAPACITY))
  5000. capacity *= arch_scale_cpu_capacity(sd, cpu);
  5001. else
  5002. capacity *= default_scale_cpu_capacity(sd, cpu);
  5003. capacity >>= SCHED_CAPACITY_SHIFT;
  5004. sdg->sgc->capacity_orig = capacity;
  5005. if (sched_feat(ARCH_CAPACITY))
  5006. capacity *= arch_scale_freq_capacity(sd, cpu);
  5007. else
  5008. capacity *= default_scale_capacity(sd, cpu);
  5009. capacity >>= SCHED_CAPACITY_SHIFT;
  5010. capacity *= scale_rt_capacity(cpu);
  5011. capacity >>= SCHED_CAPACITY_SHIFT;
  5012. if (!capacity)
  5013. capacity = 1;
  5014. cpu_rq(cpu)->cpu_capacity = capacity;
  5015. sdg->sgc->capacity = capacity;
  5016. }
  5017. void update_group_capacity(struct sched_domain *sd, int cpu)
  5018. {
  5019. struct sched_domain *child = sd->child;
  5020. struct sched_group *group, *sdg = sd->groups;
  5021. unsigned long capacity, capacity_orig;
  5022. unsigned long interval;
  5023. interval = msecs_to_jiffies(sd->balance_interval);
  5024. interval = clamp(interval, 1UL, max_load_balance_interval);
  5025. sdg->sgc->next_update = jiffies + interval;
  5026. if (!child) {
  5027. update_cpu_capacity(sd, cpu);
  5028. return;
  5029. }
  5030. capacity_orig = capacity = 0;
  5031. if (child->flags & SD_OVERLAP) {
  5032. /*
  5033. * SD_OVERLAP domains cannot assume that child groups
  5034. * span the current group.
  5035. */
  5036. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  5037. struct sched_group_capacity *sgc;
  5038. struct rq *rq = cpu_rq(cpu);
  5039. /*
  5040. * build_sched_domains() -> init_sched_groups_capacity()
  5041. * gets here before we've attached the domains to the
  5042. * runqueues.
  5043. *
  5044. * Use capacity_of(), which is set irrespective of domains
  5045. * in update_cpu_capacity().
  5046. *
  5047. * This avoids capacity/capacity_orig from being 0 and
  5048. * causing divide-by-zero issues on boot.
  5049. *
  5050. * Runtime updates will correct capacity_orig.
  5051. */
  5052. if (unlikely(!rq->sd)) {
  5053. capacity_orig += capacity_of(cpu);
  5054. capacity += capacity_of(cpu);
  5055. continue;
  5056. }
  5057. sgc = rq->sd->groups->sgc;
  5058. capacity_orig += sgc->capacity_orig;
  5059. capacity += sgc->capacity;
  5060. }
  5061. } else {
  5062. /*
  5063. * !SD_OVERLAP domains can assume that child groups
  5064. * span the current group.
  5065. */
  5066. group = child->groups;
  5067. do {
  5068. capacity_orig += group->sgc->capacity_orig;
  5069. capacity += group->sgc->capacity;
  5070. group = group->next;
  5071. } while (group != child->groups);
  5072. }
  5073. sdg->sgc->capacity_orig = capacity_orig;
  5074. sdg->sgc->capacity = capacity;
  5075. }
  5076. /*
  5077. * Try and fix up capacity for tiny siblings, this is needed when
  5078. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  5079. * which on its own isn't powerful enough.
  5080. *
  5081. * See update_sd_pick_busiest() and check_asym_packing().
  5082. */
  5083. static inline int
  5084. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  5085. {
  5086. /*
  5087. * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
  5088. */
  5089. if (!(sd->flags & SD_SHARE_CPUCAPACITY))
  5090. return 0;
  5091. /*
  5092. * If ~90% of the cpu_capacity is still there, we're good.
  5093. */
  5094. if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
  5095. return 1;
  5096. return 0;
  5097. }
  5098. /*
  5099. * Group imbalance indicates (and tries to solve) the problem where balancing
  5100. * groups is inadequate due to tsk_cpus_allowed() constraints.
  5101. *
  5102. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  5103. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  5104. * Something like:
  5105. *
  5106. * { 0 1 2 3 } { 4 5 6 7 }
  5107. * * * * *
  5108. *
  5109. * If we were to balance group-wise we'd place two tasks in the first group and
  5110. * two tasks in the second group. Clearly this is undesired as it will overload
  5111. * cpu 3 and leave one of the cpus in the second group unused.
  5112. *
  5113. * The current solution to this issue is detecting the skew in the first group
  5114. * by noticing the lower domain failed to reach balance and had difficulty
  5115. * moving tasks due to affinity constraints.
  5116. *
  5117. * When this is so detected; this group becomes a candidate for busiest; see
  5118. * update_sd_pick_busiest(). And calculate_imbalance() and
  5119. * find_busiest_group() avoid some of the usual balance conditions to allow it
  5120. * to create an effective group imbalance.
  5121. *
  5122. * This is a somewhat tricky proposition since the next run might not find the
  5123. * group imbalance and decide the groups need to be balanced again. A most
  5124. * subtle and fragile situation.
  5125. */
  5126. static inline int sg_imbalanced(struct sched_group *group)
  5127. {
  5128. return group->sgc->imbalance;
  5129. }
  5130. /*
  5131. * Compute the group capacity factor.
  5132. *
  5133. * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
  5134. * first dividing out the smt factor and computing the actual number of cores
  5135. * and limit unit capacity with that.
  5136. */
  5137. static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
  5138. {
  5139. unsigned int capacity_factor, smt, cpus;
  5140. unsigned int capacity, capacity_orig;
  5141. capacity = group->sgc->capacity;
  5142. capacity_orig = group->sgc->capacity_orig;
  5143. cpus = group->group_weight;
  5144. /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
  5145. smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
  5146. capacity_factor = cpus / smt; /* cores */
  5147. capacity_factor = min_t(unsigned,
  5148. capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
  5149. if (!capacity_factor)
  5150. capacity_factor = fix_small_capacity(env->sd, group);
  5151. return capacity_factor;
  5152. }
  5153. static enum group_type
  5154. group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
  5155. {
  5156. if (sgs->sum_nr_running > sgs->group_capacity_factor)
  5157. return group_overloaded;
  5158. if (sg_imbalanced(group))
  5159. return group_imbalanced;
  5160. return group_other;
  5161. }
  5162. /**
  5163. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  5164. * @env: The load balancing environment.
  5165. * @group: sched_group whose statistics are to be updated.
  5166. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  5167. * @local_group: Does group contain this_cpu.
  5168. * @sgs: variable to hold the statistics for this group.
  5169. * @overload: Indicate more than one runnable task for any CPU.
  5170. */
  5171. static inline void update_sg_lb_stats(struct lb_env *env,
  5172. struct sched_group *group, int load_idx,
  5173. int local_group, struct sg_lb_stats *sgs,
  5174. bool *overload)
  5175. {
  5176. unsigned long load;
  5177. int i;
  5178. memset(sgs, 0, sizeof(*sgs));
  5179. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5180. struct rq *rq = cpu_rq(i);
  5181. /* Bias balancing toward cpus of our domain */
  5182. if (local_group)
  5183. load = target_load(i, load_idx);
  5184. else
  5185. load = source_load(i, load_idx);
  5186. sgs->group_load += load;
  5187. sgs->sum_nr_running += rq->cfs.h_nr_running;
  5188. if (rq->nr_running > 1)
  5189. *overload = true;
  5190. #ifdef CONFIG_NUMA_BALANCING
  5191. sgs->nr_numa_running += rq->nr_numa_running;
  5192. sgs->nr_preferred_running += rq->nr_preferred_running;
  5193. #endif
  5194. sgs->sum_weighted_load += weighted_cpuload(i);
  5195. if (idle_cpu(i))
  5196. sgs->idle_cpus++;
  5197. }
  5198. /* Adjust by relative CPU capacity of the group */
  5199. sgs->group_capacity = group->sgc->capacity;
  5200. sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
  5201. if (sgs->sum_nr_running)
  5202. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  5203. sgs->group_weight = group->group_weight;
  5204. sgs->group_capacity_factor = sg_capacity_factor(env, group);
  5205. sgs->group_type = group_classify(group, sgs);
  5206. if (sgs->group_capacity_factor > sgs->sum_nr_running)
  5207. sgs->group_has_free_capacity = 1;
  5208. }
  5209. /**
  5210. * update_sd_pick_busiest - return 1 on busiest group
  5211. * @env: The load balancing environment.
  5212. * @sds: sched_domain statistics
  5213. * @sg: sched_group candidate to be checked for being the busiest
  5214. * @sgs: sched_group statistics
  5215. *
  5216. * Determine if @sg is a busier group than the previously selected
  5217. * busiest group.
  5218. *
  5219. * Return: %true if @sg is a busier group than the previously selected
  5220. * busiest group. %false otherwise.
  5221. */
  5222. static bool update_sd_pick_busiest(struct lb_env *env,
  5223. struct sd_lb_stats *sds,
  5224. struct sched_group *sg,
  5225. struct sg_lb_stats *sgs)
  5226. {
  5227. struct sg_lb_stats *busiest = &sds->busiest_stat;
  5228. if (sgs->group_type > busiest->group_type)
  5229. return true;
  5230. if (sgs->group_type < busiest->group_type)
  5231. return false;
  5232. if (sgs->avg_load <= busiest->avg_load)
  5233. return false;
  5234. /* This is the busiest node in its class. */
  5235. if (!(env->sd->flags & SD_ASYM_PACKING))
  5236. return true;
  5237. /*
  5238. * ASYM_PACKING needs to move all the work to the lowest
  5239. * numbered CPUs in the group, therefore mark all groups
  5240. * higher than ourself as busy.
  5241. */
  5242. if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
  5243. if (!sds->busiest)
  5244. return true;
  5245. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  5246. return true;
  5247. }
  5248. return false;
  5249. }
  5250. #ifdef CONFIG_NUMA_BALANCING
  5251. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5252. {
  5253. if (sgs->sum_nr_running > sgs->nr_numa_running)
  5254. return regular;
  5255. if (sgs->sum_nr_running > sgs->nr_preferred_running)
  5256. return remote;
  5257. return all;
  5258. }
  5259. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5260. {
  5261. if (rq->nr_running > rq->nr_numa_running)
  5262. return regular;
  5263. if (rq->nr_running > rq->nr_preferred_running)
  5264. return remote;
  5265. return all;
  5266. }
  5267. #else
  5268. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  5269. {
  5270. return all;
  5271. }
  5272. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  5273. {
  5274. return regular;
  5275. }
  5276. #endif /* CONFIG_NUMA_BALANCING */
  5277. /**
  5278. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  5279. * @env: The load balancing environment.
  5280. * @sds: variable to hold the statistics for this sched_domain.
  5281. */
  5282. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  5283. {
  5284. struct sched_domain *child = env->sd->child;
  5285. struct sched_group *sg = env->sd->groups;
  5286. struct sg_lb_stats tmp_sgs;
  5287. int load_idx, prefer_sibling = 0;
  5288. bool overload = false;
  5289. if (child && child->flags & SD_PREFER_SIBLING)
  5290. prefer_sibling = 1;
  5291. load_idx = get_sd_load_idx(env->sd, env->idle);
  5292. do {
  5293. struct sg_lb_stats *sgs = &tmp_sgs;
  5294. int local_group;
  5295. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  5296. if (local_group) {
  5297. sds->local = sg;
  5298. sgs = &sds->local_stat;
  5299. if (env->idle != CPU_NEWLY_IDLE ||
  5300. time_after_eq(jiffies, sg->sgc->next_update))
  5301. update_group_capacity(env->sd, env->dst_cpu);
  5302. }
  5303. update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
  5304. &overload);
  5305. if (local_group)
  5306. goto next_group;
  5307. /*
  5308. * In case the child domain prefers tasks go to siblings
  5309. * first, lower the sg capacity factor to one so that we'll try
  5310. * and move all the excess tasks away. We lower the capacity
  5311. * of a group only if the local group has the capacity to fit
  5312. * these excess tasks, i.e. nr_running < group_capacity_factor. The
  5313. * extra check prevents the case where you always pull from the
  5314. * heaviest group when it is already under-utilized (possible
  5315. * with a large weight task outweighs the tasks on the system).
  5316. */
  5317. if (prefer_sibling && sds->local &&
  5318. sds->local_stat.group_has_free_capacity) {
  5319. sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
  5320. sgs->group_type = group_classify(sg, sgs);
  5321. }
  5322. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  5323. sds->busiest = sg;
  5324. sds->busiest_stat = *sgs;
  5325. }
  5326. next_group:
  5327. /* Now, start updating sd_lb_stats */
  5328. sds->total_load += sgs->group_load;
  5329. sds->total_capacity += sgs->group_capacity;
  5330. sg = sg->next;
  5331. } while (sg != env->sd->groups);
  5332. if (env->sd->flags & SD_NUMA)
  5333. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  5334. if (!env->sd->parent) {
  5335. /* update overload indicator if we are at root domain */
  5336. if (env->dst_rq->rd->overload != overload)
  5337. env->dst_rq->rd->overload = overload;
  5338. }
  5339. }
  5340. /**
  5341. * check_asym_packing - Check to see if the group is packed into the
  5342. * sched doman.
  5343. *
  5344. * This is primarily intended to used at the sibling level. Some
  5345. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  5346. * case of POWER7, it can move to lower SMT modes only when higher
  5347. * threads are idle. When in lower SMT modes, the threads will
  5348. * perform better since they share less core resources. Hence when we
  5349. * have idle threads, we want them to be the higher ones.
  5350. *
  5351. * This packing function is run on idle threads. It checks to see if
  5352. * the busiest CPU in this domain (core in the P7 case) has a higher
  5353. * CPU number than the packing function is being run on. Here we are
  5354. * assuming lower CPU number will be equivalent to lower a SMT thread
  5355. * number.
  5356. *
  5357. * Return: 1 when packing is required and a task should be moved to
  5358. * this CPU. The amount of the imbalance is returned in *imbalance.
  5359. *
  5360. * @env: The load balancing environment.
  5361. * @sds: Statistics of the sched_domain which is to be packed
  5362. */
  5363. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  5364. {
  5365. int busiest_cpu;
  5366. if (!(env->sd->flags & SD_ASYM_PACKING))
  5367. return 0;
  5368. if (!sds->busiest)
  5369. return 0;
  5370. busiest_cpu = group_first_cpu(sds->busiest);
  5371. if (env->dst_cpu > busiest_cpu)
  5372. return 0;
  5373. env->imbalance = DIV_ROUND_CLOSEST(
  5374. sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
  5375. SCHED_CAPACITY_SCALE);
  5376. return 1;
  5377. }
  5378. /**
  5379. * fix_small_imbalance - Calculate the minor imbalance that exists
  5380. * amongst the groups of a sched_domain, during
  5381. * load balancing.
  5382. * @env: The load balancing environment.
  5383. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  5384. */
  5385. static inline
  5386. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5387. {
  5388. unsigned long tmp, capa_now = 0, capa_move = 0;
  5389. unsigned int imbn = 2;
  5390. unsigned long scaled_busy_load_per_task;
  5391. struct sg_lb_stats *local, *busiest;
  5392. local = &sds->local_stat;
  5393. busiest = &sds->busiest_stat;
  5394. if (!local->sum_nr_running)
  5395. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  5396. else if (busiest->load_per_task > local->load_per_task)
  5397. imbn = 1;
  5398. scaled_busy_load_per_task =
  5399. (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5400. busiest->group_capacity;
  5401. if (busiest->avg_load + scaled_busy_load_per_task >=
  5402. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  5403. env->imbalance = busiest->load_per_task;
  5404. return;
  5405. }
  5406. /*
  5407. * OK, we don't have enough imbalance to justify moving tasks,
  5408. * however we may be able to increase total CPU capacity used by
  5409. * moving them.
  5410. */
  5411. capa_now += busiest->group_capacity *
  5412. min(busiest->load_per_task, busiest->avg_load);
  5413. capa_now += local->group_capacity *
  5414. min(local->load_per_task, local->avg_load);
  5415. capa_now /= SCHED_CAPACITY_SCALE;
  5416. /* Amount of load we'd subtract */
  5417. if (busiest->avg_load > scaled_busy_load_per_task) {
  5418. capa_move += busiest->group_capacity *
  5419. min(busiest->load_per_task,
  5420. busiest->avg_load - scaled_busy_load_per_task);
  5421. }
  5422. /* Amount of load we'd add */
  5423. if (busiest->avg_load * busiest->group_capacity <
  5424. busiest->load_per_task * SCHED_CAPACITY_SCALE) {
  5425. tmp = (busiest->avg_load * busiest->group_capacity) /
  5426. local->group_capacity;
  5427. } else {
  5428. tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
  5429. local->group_capacity;
  5430. }
  5431. capa_move += local->group_capacity *
  5432. min(local->load_per_task, local->avg_load + tmp);
  5433. capa_move /= SCHED_CAPACITY_SCALE;
  5434. /* Move if we gain throughput */
  5435. if (capa_move > capa_now)
  5436. env->imbalance = busiest->load_per_task;
  5437. }
  5438. /**
  5439. * calculate_imbalance - Calculate the amount of imbalance present within the
  5440. * groups of a given sched_domain during load balance.
  5441. * @env: load balance environment
  5442. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  5443. */
  5444. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  5445. {
  5446. unsigned long max_pull, load_above_capacity = ~0UL;
  5447. struct sg_lb_stats *local, *busiest;
  5448. local = &sds->local_stat;
  5449. busiest = &sds->busiest_stat;
  5450. if (busiest->group_type == group_imbalanced) {
  5451. /*
  5452. * In the group_imb case we cannot rely on group-wide averages
  5453. * to ensure cpu-load equilibrium, look at wider averages. XXX
  5454. */
  5455. busiest->load_per_task =
  5456. min(busiest->load_per_task, sds->avg_load);
  5457. }
  5458. /*
  5459. * In the presence of smp nice balancing, certain scenarios can have
  5460. * max load less than avg load(as we skip the groups at or below
  5461. * its cpu_capacity, while calculating max_load..)
  5462. */
  5463. if (busiest->avg_load <= sds->avg_load ||
  5464. local->avg_load >= sds->avg_load) {
  5465. env->imbalance = 0;
  5466. return fix_small_imbalance(env, sds);
  5467. }
  5468. /*
  5469. * If there aren't any idle cpus, avoid creating some.
  5470. */
  5471. if (busiest->group_type == group_overloaded &&
  5472. local->group_type == group_overloaded) {
  5473. load_above_capacity =
  5474. (busiest->sum_nr_running - busiest->group_capacity_factor);
  5475. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
  5476. load_above_capacity /= busiest->group_capacity;
  5477. }
  5478. /*
  5479. * We're trying to get all the cpus to the average_load, so we don't
  5480. * want to push ourselves above the average load, nor do we wish to
  5481. * reduce the max loaded cpu below the average load. At the same time,
  5482. * we also don't want to reduce the group load below the group capacity
  5483. * (so that we can implement power-savings policies etc). Thus we look
  5484. * for the minimum possible imbalance.
  5485. */
  5486. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  5487. /* How much load to actually move to equalise the imbalance */
  5488. env->imbalance = min(
  5489. max_pull * busiest->group_capacity,
  5490. (sds->avg_load - local->avg_load) * local->group_capacity
  5491. ) / SCHED_CAPACITY_SCALE;
  5492. /*
  5493. * if *imbalance is less than the average load per runnable task
  5494. * there is no guarantee that any tasks will be moved so we'll have
  5495. * a think about bumping its value to force at least one task to be
  5496. * moved
  5497. */
  5498. if (env->imbalance < busiest->load_per_task)
  5499. return fix_small_imbalance(env, sds);
  5500. }
  5501. /******* find_busiest_group() helpers end here *********************/
  5502. /**
  5503. * find_busiest_group - Returns the busiest group within the sched_domain
  5504. * if there is an imbalance. If there isn't an imbalance, and
  5505. * the user has opted for power-savings, it returns a group whose
  5506. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  5507. * such a group exists.
  5508. *
  5509. * Also calculates the amount of weighted load which should be moved
  5510. * to restore balance.
  5511. *
  5512. * @env: The load balancing environment.
  5513. *
  5514. * Return: - The busiest group if imbalance exists.
  5515. * - If no imbalance and user has opted for power-savings balance,
  5516. * return the least loaded group whose CPUs can be
  5517. * put to idle by rebalancing its tasks onto our group.
  5518. */
  5519. static struct sched_group *find_busiest_group(struct lb_env *env)
  5520. {
  5521. struct sg_lb_stats *local, *busiest;
  5522. struct sd_lb_stats sds;
  5523. init_sd_lb_stats(&sds);
  5524. /*
  5525. * Compute the various statistics relavent for load balancing at
  5526. * this level.
  5527. */
  5528. update_sd_lb_stats(env, &sds);
  5529. local = &sds.local_stat;
  5530. busiest = &sds.busiest_stat;
  5531. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  5532. check_asym_packing(env, &sds))
  5533. return sds.busiest;
  5534. /* There is no busy sibling group to pull tasks from */
  5535. if (!sds.busiest || busiest->sum_nr_running == 0)
  5536. goto out_balanced;
  5537. sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
  5538. / sds.total_capacity;
  5539. /*
  5540. * If the busiest group is imbalanced the below checks don't
  5541. * work because they assume all things are equal, which typically
  5542. * isn't true due to cpus_allowed constraints and the like.
  5543. */
  5544. if (busiest->group_type == group_imbalanced)
  5545. goto force_balance;
  5546. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  5547. if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
  5548. !busiest->group_has_free_capacity)
  5549. goto force_balance;
  5550. /*
  5551. * If the local group is busier than the selected busiest group
  5552. * don't try and pull any tasks.
  5553. */
  5554. if (local->avg_load >= busiest->avg_load)
  5555. goto out_balanced;
  5556. /*
  5557. * Don't pull any tasks if this group is already above the domain
  5558. * average load.
  5559. */
  5560. if (local->avg_load >= sds.avg_load)
  5561. goto out_balanced;
  5562. if (env->idle == CPU_IDLE) {
  5563. /*
  5564. * This cpu is idle. If the busiest group is not overloaded
  5565. * and there is no imbalance between this and busiest group
  5566. * wrt idle cpus, it is balanced. The imbalance becomes
  5567. * significant if the diff is greater than 1 otherwise we
  5568. * might end up to just move the imbalance on another group
  5569. */
  5570. if ((busiest->group_type != group_overloaded) &&
  5571. (local->idle_cpus <= (busiest->idle_cpus + 1)))
  5572. goto out_balanced;
  5573. } else {
  5574. /*
  5575. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  5576. * imbalance_pct to be conservative.
  5577. */
  5578. if (100 * busiest->avg_load <=
  5579. env->sd->imbalance_pct * local->avg_load)
  5580. goto out_balanced;
  5581. }
  5582. force_balance:
  5583. /* Looks like there is an imbalance. Compute it */
  5584. calculate_imbalance(env, &sds);
  5585. return sds.busiest;
  5586. out_balanced:
  5587. env->imbalance = 0;
  5588. return NULL;
  5589. }
  5590. /*
  5591. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  5592. */
  5593. static struct rq *find_busiest_queue(struct lb_env *env,
  5594. struct sched_group *group)
  5595. {
  5596. struct rq *busiest = NULL, *rq;
  5597. unsigned long busiest_load = 0, busiest_capacity = 1;
  5598. int i;
  5599. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5600. unsigned long capacity, capacity_factor, wl;
  5601. enum fbq_type rt;
  5602. rq = cpu_rq(i);
  5603. rt = fbq_classify_rq(rq);
  5604. /*
  5605. * We classify groups/runqueues into three groups:
  5606. * - regular: there are !numa tasks
  5607. * - remote: there are numa tasks that run on the 'wrong' node
  5608. * - all: there is no distinction
  5609. *
  5610. * In order to avoid migrating ideally placed numa tasks,
  5611. * ignore those when there's better options.
  5612. *
  5613. * If we ignore the actual busiest queue to migrate another
  5614. * task, the next balance pass can still reduce the busiest
  5615. * queue by moving tasks around inside the node.
  5616. *
  5617. * If we cannot move enough load due to this classification
  5618. * the next pass will adjust the group classification and
  5619. * allow migration of more tasks.
  5620. *
  5621. * Both cases only affect the total convergence complexity.
  5622. */
  5623. if (rt > env->fbq_type)
  5624. continue;
  5625. capacity = capacity_of(i);
  5626. capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
  5627. if (!capacity_factor)
  5628. capacity_factor = fix_small_capacity(env->sd, group);
  5629. wl = weighted_cpuload(i);
  5630. /*
  5631. * When comparing with imbalance, use weighted_cpuload()
  5632. * which is not scaled with the cpu capacity.
  5633. */
  5634. if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
  5635. continue;
  5636. /*
  5637. * For the load comparisons with the other cpu's, consider
  5638. * the weighted_cpuload() scaled with the cpu capacity, so
  5639. * that the load can be moved away from the cpu that is
  5640. * potentially running at a lower capacity.
  5641. *
  5642. * Thus we're looking for max(wl_i / capacity_i), crosswise
  5643. * multiplication to rid ourselves of the division works out
  5644. * to: wl_i * capacity_j > wl_j * capacity_i; where j is
  5645. * our previous maximum.
  5646. */
  5647. if (wl * busiest_capacity > busiest_load * capacity) {
  5648. busiest_load = wl;
  5649. busiest_capacity = capacity;
  5650. busiest = rq;
  5651. }
  5652. }
  5653. return busiest;
  5654. }
  5655. /*
  5656. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  5657. * so long as it is large enough.
  5658. */
  5659. #define MAX_PINNED_INTERVAL 512
  5660. /* Working cpumask for load_balance and load_balance_newidle. */
  5661. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  5662. static int need_active_balance(struct lb_env *env)
  5663. {
  5664. struct sched_domain *sd = env->sd;
  5665. if (env->idle == CPU_NEWLY_IDLE) {
  5666. /*
  5667. * ASYM_PACKING needs to force migrate tasks from busy but
  5668. * higher numbered CPUs in order to pack all tasks in the
  5669. * lowest numbered CPUs.
  5670. */
  5671. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  5672. return 1;
  5673. }
  5674. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  5675. }
  5676. static int active_load_balance_cpu_stop(void *data);
  5677. static int should_we_balance(struct lb_env *env)
  5678. {
  5679. struct sched_group *sg = env->sd->groups;
  5680. struct cpumask *sg_cpus, *sg_mask;
  5681. int cpu, balance_cpu = -1;
  5682. /*
  5683. * In the newly idle case, we will allow all the cpu's
  5684. * to do the newly idle load balance.
  5685. */
  5686. if (env->idle == CPU_NEWLY_IDLE)
  5687. return 1;
  5688. sg_cpus = sched_group_cpus(sg);
  5689. sg_mask = sched_group_mask(sg);
  5690. /* Try to find first idle cpu */
  5691. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  5692. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  5693. continue;
  5694. balance_cpu = cpu;
  5695. break;
  5696. }
  5697. if (balance_cpu == -1)
  5698. balance_cpu = group_balance_cpu(sg);
  5699. /*
  5700. * First idle cpu or the first cpu(busiest) in this sched group
  5701. * is eligible for doing load balancing at this and above domains.
  5702. */
  5703. return balance_cpu == env->dst_cpu;
  5704. }
  5705. /*
  5706. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  5707. * tasks if there is an imbalance.
  5708. */
  5709. static int load_balance(int this_cpu, struct rq *this_rq,
  5710. struct sched_domain *sd, enum cpu_idle_type idle,
  5711. int *continue_balancing)
  5712. {
  5713. int ld_moved, cur_ld_moved, active_balance = 0;
  5714. struct sched_domain *sd_parent = sd->parent;
  5715. struct sched_group *group;
  5716. struct rq *busiest;
  5717. unsigned long flags;
  5718. struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
  5719. struct lb_env env = {
  5720. .sd = sd,
  5721. .dst_cpu = this_cpu,
  5722. .dst_rq = this_rq,
  5723. .dst_grpmask = sched_group_cpus(sd->groups),
  5724. .idle = idle,
  5725. .loop_break = sched_nr_migrate_break,
  5726. .cpus = cpus,
  5727. .fbq_type = all,
  5728. .tasks = LIST_HEAD_INIT(env.tasks),
  5729. };
  5730. /*
  5731. * For NEWLY_IDLE load_balancing, we don't need to consider
  5732. * other cpus in our group
  5733. */
  5734. if (idle == CPU_NEWLY_IDLE)
  5735. env.dst_grpmask = NULL;
  5736. cpumask_copy(cpus, cpu_active_mask);
  5737. schedstat_inc(sd, lb_count[idle]);
  5738. redo:
  5739. if (!should_we_balance(&env)) {
  5740. *continue_balancing = 0;
  5741. goto out_balanced;
  5742. }
  5743. group = find_busiest_group(&env);
  5744. if (!group) {
  5745. schedstat_inc(sd, lb_nobusyg[idle]);
  5746. goto out_balanced;
  5747. }
  5748. busiest = find_busiest_queue(&env, group);
  5749. if (!busiest) {
  5750. schedstat_inc(sd, lb_nobusyq[idle]);
  5751. goto out_balanced;
  5752. }
  5753. BUG_ON(busiest == env.dst_rq);
  5754. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  5755. ld_moved = 0;
  5756. if (busiest->nr_running > 1) {
  5757. /*
  5758. * Attempt to move tasks. If find_busiest_group has found
  5759. * an imbalance but busiest->nr_running <= 1, the group is
  5760. * still unbalanced. ld_moved simply stays zero, so it is
  5761. * correctly treated as an imbalance.
  5762. */
  5763. env.flags |= LBF_ALL_PINNED;
  5764. env.src_cpu = busiest->cpu;
  5765. env.src_rq = busiest;
  5766. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  5767. more_balance:
  5768. raw_spin_lock_irqsave(&busiest->lock, flags);
  5769. /*
  5770. * cur_ld_moved - load moved in current iteration
  5771. * ld_moved - cumulative load moved across iterations
  5772. */
  5773. cur_ld_moved = detach_tasks(&env);
  5774. /*
  5775. * We've detached some tasks from busiest_rq. Every
  5776. * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
  5777. * unlock busiest->lock, and we are able to be sure
  5778. * that nobody can manipulate the tasks in parallel.
  5779. * See task_rq_lock() family for the details.
  5780. */
  5781. raw_spin_unlock(&busiest->lock);
  5782. if (cur_ld_moved) {
  5783. attach_tasks(&env);
  5784. ld_moved += cur_ld_moved;
  5785. }
  5786. local_irq_restore(flags);
  5787. if (env.flags & LBF_NEED_BREAK) {
  5788. env.flags &= ~LBF_NEED_BREAK;
  5789. goto more_balance;
  5790. }
  5791. /*
  5792. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  5793. * us and move them to an alternate dst_cpu in our sched_group
  5794. * where they can run. The upper limit on how many times we
  5795. * iterate on same src_cpu is dependent on number of cpus in our
  5796. * sched_group.
  5797. *
  5798. * This changes load balance semantics a bit on who can move
  5799. * load to a given_cpu. In addition to the given_cpu itself
  5800. * (or a ilb_cpu acting on its behalf where given_cpu is
  5801. * nohz-idle), we now have balance_cpu in a position to move
  5802. * load to given_cpu. In rare situations, this may cause
  5803. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  5804. * _independently_ and at _same_ time to move some load to
  5805. * given_cpu) causing exceess load to be moved to given_cpu.
  5806. * This however should not happen so much in practice and
  5807. * moreover subsequent load balance cycles should correct the
  5808. * excess load moved.
  5809. */
  5810. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  5811. /* Prevent to re-select dst_cpu via env's cpus */
  5812. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  5813. env.dst_rq = cpu_rq(env.new_dst_cpu);
  5814. env.dst_cpu = env.new_dst_cpu;
  5815. env.flags &= ~LBF_DST_PINNED;
  5816. env.loop = 0;
  5817. env.loop_break = sched_nr_migrate_break;
  5818. /*
  5819. * Go back to "more_balance" rather than "redo" since we
  5820. * need to continue with same src_cpu.
  5821. */
  5822. goto more_balance;
  5823. }
  5824. /*
  5825. * We failed to reach balance because of affinity.
  5826. */
  5827. if (sd_parent) {
  5828. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  5829. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
  5830. *group_imbalance = 1;
  5831. }
  5832. /* All tasks on this runqueue were pinned by CPU affinity */
  5833. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  5834. cpumask_clear_cpu(cpu_of(busiest), cpus);
  5835. if (!cpumask_empty(cpus)) {
  5836. env.loop = 0;
  5837. env.loop_break = sched_nr_migrate_break;
  5838. goto redo;
  5839. }
  5840. goto out_all_pinned;
  5841. }
  5842. }
  5843. if (!ld_moved) {
  5844. schedstat_inc(sd, lb_failed[idle]);
  5845. /*
  5846. * Increment the failure counter only on periodic balance.
  5847. * We do not want newidle balance, which can be very
  5848. * frequent, pollute the failure counter causing
  5849. * excessive cache_hot migrations and active balances.
  5850. */
  5851. if (idle != CPU_NEWLY_IDLE)
  5852. sd->nr_balance_failed++;
  5853. if (need_active_balance(&env)) {
  5854. raw_spin_lock_irqsave(&busiest->lock, flags);
  5855. /* don't kick the active_load_balance_cpu_stop,
  5856. * if the curr task on busiest cpu can't be
  5857. * moved to this_cpu
  5858. */
  5859. if (!cpumask_test_cpu(this_cpu,
  5860. tsk_cpus_allowed(busiest->curr))) {
  5861. raw_spin_unlock_irqrestore(&busiest->lock,
  5862. flags);
  5863. env.flags |= LBF_ALL_PINNED;
  5864. goto out_one_pinned;
  5865. }
  5866. /*
  5867. * ->active_balance synchronizes accesses to
  5868. * ->active_balance_work. Once set, it's cleared
  5869. * only after active load balance is finished.
  5870. */
  5871. if (!busiest->active_balance) {
  5872. busiest->active_balance = 1;
  5873. busiest->push_cpu = this_cpu;
  5874. active_balance = 1;
  5875. }
  5876. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  5877. if (active_balance) {
  5878. stop_one_cpu_nowait(cpu_of(busiest),
  5879. active_load_balance_cpu_stop, busiest,
  5880. &busiest->active_balance_work);
  5881. }
  5882. /*
  5883. * We've kicked active balancing, reset the failure
  5884. * counter.
  5885. */
  5886. sd->nr_balance_failed = sd->cache_nice_tries+1;
  5887. }
  5888. } else
  5889. sd->nr_balance_failed = 0;
  5890. if (likely(!active_balance)) {
  5891. /* We were unbalanced, so reset the balancing interval */
  5892. sd->balance_interval = sd->min_interval;
  5893. } else {
  5894. /*
  5895. * If we've begun active balancing, start to back off. This
  5896. * case may not be covered by the all_pinned logic if there
  5897. * is only 1 task on the busy runqueue (because we don't call
  5898. * detach_tasks).
  5899. */
  5900. if (sd->balance_interval < sd->max_interval)
  5901. sd->balance_interval *= 2;
  5902. }
  5903. goto out;
  5904. out_balanced:
  5905. /*
  5906. * We reach balance although we may have faced some affinity
  5907. * constraints. Clear the imbalance flag if it was set.
  5908. */
  5909. if (sd_parent) {
  5910. int *group_imbalance = &sd_parent->groups->sgc->imbalance;
  5911. if (*group_imbalance)
  5912. *group_imbalance = 0;
  5913. }
  5914. out_all_pinned:
  5915. /*
  5916. * We reach balance because all tasks are pinned at this level so
  5917. * we can't migrate them. Let the imbalance flag set so parent level
  5918. * can try to migrate them.
  5919. */
  5920. schedstat_inc(sd, lb_balanced[idle]);
  5921. sd->nr_balance_failed = 0;
  5922. out_one_pinned:
  5923. /* tune up the balancing interval */
  5924. if (((env.flags & LBF_ALL_PINNED) &&
  5925. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  5926. (sd->balance_interval < sd->max_interval))
  5927. sd->balance_interval *= 2;
  5928. ld_moved = 0;
  5929. out:
  5930. return ld_moved;
  5931. }
  5932. static inline unsigned long
  5933. get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
  5934. {
  5935. unsigned long interval = sd->balance_interval;
  5936. if (cpu_busy)
  5937. interval *= sd->busy_factor;
  5938. /* scale ms to jiffies */
  5939. interval = msecs_to_jiffies(interval);
  5940. interval = clamp(interval, 1UL, max_load_balance_interval);
  5941. return interval;
  5942. }
  5943. static inline void
  5944. update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
  5945. {
  5946. unsigned long interval, next;
  5947. interval = get_sd_balance_interval(sd, cpu_busy);
  5948. next = sd->last_balance + interval;
  5949. if (time_after(*next_balance, next))
  5950. *next_balance = next;
  5951. }
  5952. /*
  5953. * idle_balance is called by schedule() if this_cpu is about to become
  5954. * idle. Attempts to pull tasks from other CPUs.
  5955. */
  5956. static int idle_balance(struct rq *this_rq)
  5957. {
  5958. unsigned long next_balance = jiffies + HZ;
  5959. int this_cpu = this_rq->cpu;
  5960. struct sched_domain *sd;
  5961. int pulled_task = 0;
  5962. u64 curr_cost = 0;
  5963. idle_enter_fair(this_rq);
  5964. /*
  5965. * We must set idle_stamp _before_ calling idle_balance(), such that we
  5966. * measure the duration of idle_balance() as idle time.
  5967. */
  5968. this_rq->idle_stamp = rq_clock(this_rq);
  5969. if (this_rq->avg_idle < sysctl_sched_migration_cost ||
  5970. !this_rq->rd->overload) {
  5971. rcu_read_lock();
  5972. sd = rcu_dereference_check_sched_domain(this_rq->sd);
  5973. if (sd)
  5974. update_next_balance(sd, 0, &next_balance);
  5975. rcu_read_unlock();
  5976. goto out;
  5977. }
  5978. /*
  5979. * Drop the rq->lock, but keep IRQ/preempt disabled.
  5980. */
  5981. raw_spin_unlock(&this_rq->lock);
  5982. update_blocked_averages(this_cpu);
  5983. rcu_read_lock();
  5984. for_each_domain(this_cpu, sd) {
  5985. int continue_balancing = 1;
  5986. u64 t0, domain_cost;
  5987. if (!(sd->flags & SD_LOAD_BALANCE))
  5988. continue;
  5989. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
  5990. update_next_balance(sd, 0, &next_balance);
  5991. break;
  5992. }
  5993. if (sd->flags & SD_BALANCE_NEWIDLE) {
  5994. t0 = sched_clock_cpu(this_cpu);
  5995. pulled_task = load_balance(this_cpu, this_rq,
  5996. sd, CPU_NEWLY_IDLE,
  5997. &continue_balancing);
  5998. domain_cost = sched_clock_cpu(this_cpu) - t0;
  5999. if (domain_cost > sd->max_newidle_lb_cost)
  6000. sd->max_newidle_lb_cost = domain_cost;
  6001. curr_cost += domain_cost;
  6002. }
  6003. update_next_balance(sd, 0, &next_balance);
  6004. /*
  6005. * Stop searching for tasks to pull if there are
  6006. * now runnable tasks on this rq.
  6007. */
  6008. if (pulled_task || this_rq->nr_running > 0)
  6009. break;
  6010. }
  6011. rcu_read_unlock();
  6012. raw_spin_lock(&this_rq->lock);
  6013. if (curr_cost > this_rq->max_idle_balance_cost)
  6014. this_rq->max_idle_balance_cost = curr_cost;
  6015. /*
  6016. * While browsing the domains, we released the rq lock, a task could
  6017. * have been enqueued in the meantime. Since we're not going idle,
  6018. * pretend we pulled a task.
  6019. */
  6020. if (this_rq->cfs.h_nr_running && !pulled_task)
  6021. pulled_task = 1;
  6022. out:
  6023. /* Move the next balance forward */
  6024. if (time_after(this_rq->next_balance, next_balance))
  6025. this_rq->next_balance = next_balance;
  6026. /* Is there a task of a high priority class? */
  6027. if (this_rq->nr_running != this_rq->cfs.h_nr_running)
  6028. pulled_task = -1;
  6029. if (pulled_task) {
  6030. idle_exit_fair(this_rq);
  6031. this_rq->idle_stamp = 0;
  6032. }
  6033. return pulled_task;
  6034. }
  6035. /*
  6036. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  6037. * running tasks off the busiest CPU onto idle CPUs. It requires at
  6038. * least 1 task to be running on each physical CPU where possible, and
  6039. * avoids physical / logical imbalances.
  6040. */
  6041. static int active_load_balance_cpu_stop(void *data)
  6042. {
  6043. struct rq *busiest_rq = data;
  6044. int busiest_cpu = cpu_of(busiest_rq);
  6045. int target_cpu = busiest_rq->push_cpu;
  6046. struct rq *target_rq = cpu_rq(target_cpu);
  6047. struct sched_domain *sd;
  6048. struct task_struct *p = NULL;
  6049. raw_spin_lock_irq(&busiest_rq->lock);
  6050. /* make sure the requested cpu hasn't gone down in the meantime */
  6051. if (unlikely(busiest_cpu != smp_processor_id() ||
  6052. !busiest_rq->active_balance))
  6053. goto out_unlock;
  6054. /* Is there any task to move? */
  6055. if (busiest_rq->nr_running <= 1)
  6056. goto out_unlock;
  6057. /*
  6058. * This condition is "impossible", if it occurs
  6059. * we need to fix it. Originally reported by
  6060. * Bjorn Helgaas on a 128-cpu setup.
  6061. */
  6062. BUG_ON(busiest_rq == target_rq);
  6063. /* Search for an sd spanning us and the target CPU. */
  6064. rcu_read_lock();
  6065. for_each_domain(target_cpu, sd) {
  6066. if ((sd->flags & SD_LOAD_BALANCE) &&
  6067. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  6068. break;
  6069. }
  6070. if (likely(sd)) {
  6071. struct lb_env env = {
  6072. .sd = sd,
  6073. .dst_cpu = target_cpu,
  6074. .dst_rq = target_rq,
  6075. .src_cpu = busiest_rq->cpu,
  6076. .src_rq = busiest_rq,
  6077. .idle = CPU_IDLE,
  6078. };
  6079. schedstat_inc(sd, alb_count);
  6080. p = detach_one_task(&env);
  6081. if (p)
  6082. schedstat_inc(sd, alb_pushed);
  6083. else
  6084. schedstat_inc(sd, alb_failed);
  6085. }
  6086. rcu_read_unlock();
  6087. out_unlock:
  6088. busiest_rq->active_balance = 0;
  6089. raw_spin_unlock(&busiest_rq->lock);
  6090. if (p)
  6091. attach_one_task(target_rq, p);
  6092. local_irq_enable();
  6093. return 0;
  6094. }
  6095. static inline int on_null_domain(struct rq *rq)
  6096. {
  6097. return unlikely(!rcu_dereference_sched(rq->sd));
  6098. }
  6099. #ifdef CONFIG_NO_HZ_COMMON
  6100. /*
  6101. * idle load balancing details
  6102. * - When one of the busy CPUs notice that there may be an idle rebalancing
  6103. * needed, they will kick the idle load balancer, which then does idle
  6104. * load balancing for all the idle CPUs.
  6105. */
  6106. static struct {
  6107. cpumask_var_t idle_cpus_mask;
  6108. atomic_t nr_cpus;
  6109. unsigned long next_balance; /* in jiffy units */
  6110. } nohz ____cacheline_aligned;
  6111. static inline int find_new_ilb(void)
  6112. {
  6113. int ilb = cpumask_first(nohz.idle_cpus_mask);
  6114. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  6115. return ilb;
  6116. return nr_cpu_ids;
  6117. }
  6118. /*
  6119. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  6120. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  6121. * CPU (if there is one).
  6122. */
  6123. static void nohz_balancer_kick(void)
  6124. {
  6125. int ilb_cpu;
  6126. nohz.next_balance++;
  6127. ilb_cpu = find_new_ilb();
  6128. if (ilb_cpu >= nr_cpu_ids)
  6129. return;
  6130. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  6131. return;
  6132. /*
  6133. * Use smp_send_reschedule() instead of resched_cpu().
  6134. * This way we generate a sched IPI on the target cpu which
  6135. * is idle. And the softirq performing nohz idle load balance
  6136. * will be run before returning from the IPI.
  6137. */
  6138. smp_send_reschedule(ilb_cpu);
  6139. return;
  6140. }
  6141. static inline void nohz_balance_exit_idle(int cpu)
  6142. {
  6143. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  6144. /*
  6145. * Completely isolated CPUs don't ever set, so we must test.
  6146. */
  6147. if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
  6148. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  6149. atomic_dec(&nohz.nr_cpus);
  6150. }
  6151. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6152. }
  6153. }
  6154. static inline void set_cpu_sd_state_busy(void)
  6155. {
  6156. struct sched_domain *sd;
  6157. int cpu = smp_processor_id();
  6158. rcu_read_lock();
  6159. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6160. if (!sd || !sd->nohz_idle)
  6161. goto unlock;
  6162. sd->nohz_idle = 0;
  6163. atomic_inc(&sd->groups->sgc->nr_busy_cpus);
  6164. unlock:
  6165. rcu_read_unlock();
  6166. }
  6167. void set_cpu_sd_state_idle(void)
  6168. {
  6169. struct sched_domain *sd;
  6170. int cpu = smp_processor_id();
  6171. rcu_read_lock();
  6172. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6173. if (!sd || sd->nohz_idle)
  6174. goto unlock;
  6175. sd->nohz_idle = 1;
  6176. atomic_dec(&sd->groups->sgc->nr_busy_cpus);
  6177. unlock:
  6178. rcu_read_unlock();
  6179. }
  6180. /*
  6181. * This routine will record that the cpu is going idle with tick stopped.
  6182. * This info will be used in performing idle load balancing in the future.
  6183. */
  6184. void nohz_balance_enter_idle(int cpu)
  6185. {
  6186. /*
  6187. * If this cpu is going down, then nothing needs to be done.
  6188. */
  6189. if (!cpu_active(cpu))
  6190. return;
  6191. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  6192. return;
  6193. /*
  6194. * If we're a completely isolated CPU, we don't play.
  6195. */
  6196. if (on_null_domain(cpu_rq(cpu)))
  6197. return;
  6198. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  6199. atomic_inc(&nohz.nr_cpus);
  6200. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  6201. }
  6202. static int sched_ilb_notifier(struct notifier_block *nfb,
  6203. unsigned long action, void *hcpu)
  6204. {
  6205. switch (action & ~CPU_TASKS_FROZEN) {
  6206. case CPU_DYING:
  6207. nohz_balance_exit_idle(smp_processor_id());
  6208. return NOTIFY_OK;
  6209. default:
  6210. return NOTIFY_DONE;
  6211. }
  6212. }
  6213. #endif
  6214. static DEFINE_SPINLOCK(balancing);
  6215. /*
  6216. * Scale the max load_balance interval with the number of CPUs in the system.
  6217. * This trades load-balance latency on larger machines for less cross talk.
  6218. */
  6219. void update_max_interval(void)
  6220. {
  6221. max_load_balance_interval = HZ*num_online_cpus()/10;
  6222. }
  6223. /*
  6224. * It checks each scheduling domain to see if it is due to be balanced,
  6225. * and initiates a balancing operation if so.
  6226. *
  6227. * Balancing parameters are set up in init_sched_domains.
  6228. */
  6229. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  6230. {
  6231. int continue_balancing = 1;
  6232. int cpu = rq->cpu;
  6233. unsigned long interval;
  6234. struct sched_domain *sd;
  6235. /* Earliest time when we have to do rebalance again */
  6236. unsigned long next_balance = jiffies + 60*HZ;
  6237. int update_next_balance = 0;
  6238. int need_serialize, need_decay = 0;
  6239. u64 max_cost = 0;
  6240. update_blocked_averages(cpu);
  6241. rcu_read_lock();
  6242. for_each_domain(cpu, sd) {
  6243. /*
  6244. * Decay the newidle max times here because this is a regular
  6245. * visit to all the domains. Decay ~1% per second.
  6246. */
  6247. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  6248. sd->max_newidle_lb_cost =
  6249. (sd->max_newidle_lb_cost * 253) / 256;
  6250. sd->next_decay_max_lb_cost = jiffies + HZ;
  6251. need_decay = 1;
  6252. }
  6253. max_cost += sd->max_newidle_lb_cost;
  6254. if (!(sd->flags & SD_LOAD_BALANCE))
  6255. continue;
  6256. /*
  6257. * Stop the load balance at this level. There is another
  6258. * CPU in our sched group which is doing load balancing more
  6259. * actively.
  6260. */
  6261. if (!continue_balancing) {
  6262. if (need_decay)
  6263. continue;
  6264. break;
  6265. }
  6266. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6267. need_serialize = sd->flags & SD_SERIALIZE;
  6268. if (need_serialize) {
  6269. if (!spin_trylock(&balancing))
  6270. goto out;
  6271. }
  6272. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  6273. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  6274. /*
  6275. * The LBF_DST_PINNED logic could have changed
  6276. * env->dst_cpu, so we can't know our idle
  6277. * state even if we migrated tasks. Update it.
  6278. */
  6279. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  6280. }
  6281. sd->last_balance = jiffies;
  6282. interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
  6283. }
  6284. if (need_serialize)
  6285. spin_unlock(&balancing);
  6286. out:
  6287. if (time_after(next_balance, sd->last_balance + interval)) {
  6288. next_balance = sd->last_balance + interval;
  6289. update_next_balance = 1;
  6290. }
  6291. }
  6292. if (need_decay) {
  6293. /*
  6294. * Ensure the rq-wide value also decays but keep it at a
  6295. * reasonable floor to avoid funnies with rq->avg_idle.
  6296. */
  6297. rq->max_idle_balance_cost =
  6298. max((u64)sysctl_sched_migration_cost, max_cost);
  6299. }
  6300. rcu_read_unlock();
  6301. /*
  6302. * next_balance will be updated only when there is a need.
  6303. * When the cpu is attached to null domain for ex, it will not be
  6304. * updated.
  6305. */
  6306. if (likely(update_next_balance))
  6307. rq->next_balance = next_balance;
  6308. }
  6309. #ifdef CONFIG_NO_HZ_COMMON
  6310. /*
  6311. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  6312. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  6313. */
  6314. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  6315. {
  6316. int this_cpu = this_rq->cpu;
  6317. struct rq *rq;
  6318. int balance_cpu;
  6319. if (idle != CPU_IDLE ||
  6320. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  6321. goto end;
  6322. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  6323. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  6324. continue;
  6325. /*
  6326. * If this cpu gets work to do, stop the load balancing
  6327. * work being done for other cpus. Next load
  6328. * balancing owner will pick it up.
  6329. */
  6330. if (need_resched())
  6331. break;
  6332. rq = cpu_rq(balance_cpu);
  6333. /*
  6334. * If time for next balance is due,
  6335. * do the balance.
  6336. */
  6337. if (time_after_eq(jiffies, rq->next_balance)) {
  6338. raw_spin_lock_irq(&rq->lock);
  6339. update_rq_clock(rq);
  6340. update_idle_cpu_load(rq);
  6341. raw_spin_unlock_irq(&rq->lock);
  6342. rebalance_domains(rq, CPU_IDLE);
  6343. }
  6344. if (time_after(this_rq->next_balance, rq->next_balance))
  6345. this_rq->next_balance = rq->next_balance;
  6346. }
  6347. nohz.next_balance = this_rq->next_balance;
  6348. end:
  6349. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  6350. }
  6351. /*
  6352. * Current heuristic for kicking the idle load balancer in the presence
  6353. * of an idle cpu is the system.
  6354. * - This rq has more than one task.
  6355. * - At any scheduler domain level, this cpu's scheduler group has multiple
  6356. * busy cpu's exceeding the group's capacity.
  6357. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  6358. * domain span are idle.
  6359. */
  6360. static inline int nohz_kick_needed(struct rq *rq)
  6361. {
  6362. unsigned long now = jiffies;
  6363. struct sched_domain *sd;
  6364. struct sched_group_capacity *sgc;
  6365. int nr_busy, cpu = rq->cpu;
  6366. if (unlikely(rq->idle_balance))
  6367. return 0;
  6368. /*
  6369. * We may be recently in ticked or tickless idle mode. At the first
  6370. * busy tick after returning from idle, we will update the busy stats.
  6371. */
  6372. set_cpu_sd_state_busy();
  6373. nohz_balance_exit_idle(cpu);
  6374. /*
  6375. * None are in tickless mode and hence no need for NOHZ idle load
  6376. * balancing.
  6377. */
  6378. if (likely(!atomic_read(&nohz.nr_cpus)))
  6379. return 0;
  6380. if (time_before(now, nohz.next_balance))
  6381. return 0;
  6382. if (rq->nr_running >= 2)
  6383. goto need_kick;
  6384. rcu_read_lock();
  6385. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  6386. if (sd) {
  6387. sgc = sd->groups->sgc;
  6388. nr_busy = atomic_read(&sgc->nr_busy_cpus);
  6389. if (nr_busy > 1)
  6390. goto need_kick_unlock;
  6391. }
  6392. sd = rcu_dereference(per_cpu(sd_asym, cpu));
  6393. if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
  6394. sched_domain_span(sd)) < cpu))
  6395. goto need_kick_unlock;
  6396. rcu_read_unlock();
  6397. return 0;
  6398. need_kick_unlock:
  6399. rcu_read_unlock();
  6400. need_kick:
  6401. return 1;
  6402. }
  6403. #else
  6404. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
  6405. #endif
  6406. /*
  6407. * run_rebalance_domains is triggered when needed from the scheduler tick.
  6408. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  6409. */
  6410. static void run_rebalance_domains(struct softirq_action *h)
  6411. {
  6412. struct rq *this_rq = this_rq();
  6413. enum cpu_idle_type idle = this_rq->idle_balance ?
  6414. CPU_IDLE : CPU_NOT_IDLE;
  6415. rebalance_domains(this_rq, idle);
  6416. /*
  6417. * If this cpu has a pending nohz_balance_kick, then do the
  6418. * balancing on behalf of the other idle cpus whose ticks are
  6419. * stopped.
  6420. */
  6421. nohz_idle_balance(this_rq, idle);
  6422. }
  6423. /*
  6424. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  6425. */
  6426. void trigger_load_balance(struct rq *rq)
  6427. {
  6428. /* Don't need to rebalance while attached to NULL domain */
  6429. if (unlikely(on_null_domain(rq)))
  6430. return;
  6431. if (time_after_eq(jiffies, rq->next_balance))
  6432. raise_softirq(SCHED_SOFTIRQ);
  6433. #ifdef CONFIG_NO_HZ_COMMON
  6434. if (nohz_kick_needed(rq))
  6435. nohz_balancer_kick();
  6436. #endif
  6437. }
  6438. static void rq_online_fair(struct rq *rq)
  6439. {
  6440. update_sysctl();
  6441. update_runtime_enabled(rq);
  6442. }
  6443. static void rq_offline_fair(struct rq *rq)
  6444. {
  6445. update_sysctl();
  6446. /* Ensure any throttled groups are reachable by pick_next_task */
  6447. unthrottle_offline_cfs_rqs(rq);
  6448. }
  6449. #endif /* CONFIG_SMP */
  6450. /*
  6451. * scheduler tick hitting a task of our scheduling class:
  6452. */
  6453. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  6454. {
  6455. struct cfs_rq *cfs_rq;
  6456. struct sched_entity *se = &curr->se;
  6457. for_each_sched_entity(se) {
  6458. cfs_rq = cfs_rq_of(se);
  6459. entity_tick(cfs_rq, se, queued);
  6460. }
  6461. if (numabalancing_enabled)
  6462. task_tick_numa(rq, curr);
  6463. update_rq_runnable_avg(rq, 1);
  6464. }
  6465. /*
  6466. * called on fork with the child task as argument from the parent's context
  6467. * - child not yet on the tasklist
  6468. * - preemption disabled
  6469. */
  6470. static void task_fork_fair(struct task_struct *p)
  6471. {
  6472. struct cfs_rq *cfs_rq;
  6473. struct sched_entity *se = &p->se, *curr;
  6474. int this_cpu = smp_processor_id();
  6475. struct rq *rq = this_rq();
  6476. unsigned long flags;
  6477. raw_spin_lock_irqsave(&rq->lock, flags);
  6478. update_rq_clock(rq);
  6479. cfs_rq = task_cfs_rq(current);
  6480. curr = cfs_rq->curr;
  6481. /*
  6482. * Not only the cpu but also the task_group of the parent might have
  6483. * been changed after parent->se.parent,cfs_rq were copied to
  6484. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  6485. * of child point to valid ones.
  6486. */
  6487. rcu_read_lock();
  6488. __set_task_cpu(p, this_cpu);
  6489. rcu_read_unlock();
  6490. update_curr(cfs_rq);
  6491. if (curr)
  6492. se->vruntime = curr->vruntime;
  6493. place_entity(cfs_rq, se, 1);
  6494. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  6495. /*
  6496. * Upon rescheduling, sched_class::put_prev_task() will place
  6497. * 'current' within the tree based on its new key value.
  6498. */
  6499. swap(curr->vruntime, se->vruntime);
  6500. resched_curr(rq);
  6501. }
  6502. se->vruntime -= cfs_rq->min_vruntime;
  6503. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6504. }
  6505. /*
  6506. * Priority of the task has changed. Check to see if we preempt
  6507. * the current task.
  6508. */
  6509. static void
  6510. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  6511. {
  6512. if (!task_on_rq_queued(p))
  6513. return;
  6514. /*
  6515. * Reschedule if we are currently running on this runqueue and
  6516. * our priority decreased, or if we are not currently running on
  6517. * this runqueue and our priority is higher than the current's
  6518. */
  6519. if (rq->curr == p) {
  6520. if (p->prio > oldprio)
  6521. resched_curr(rq);
  6522. } else
  6523. check_preempt_curr(rq, p, 0);
  6524. }
  6525. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  6526. {
  6527. struct sched_entity *se = &p->se;
  6528. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6529. /*
  6530. * Ensure the task's vruntime is normalized, so that when it's
  6531. * switched back to the fair class the enqueue_entity(.flags=0) will
  6532. * do the right thing.
  6533. *
  6534. * If it's queued, then the dequeue_entity(.flags=0) will already
  6535. * have normalized the vruntime, if it's !queued, then only when
  6536. * the task is sleeping will it still have non-normalized vruntime.
  6537. */
  6538. if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
  6539. /*
  6540. * Fix up our vruntime so that the current sleep doesn't
  6541. * cause 'unlimited' sleep bonus.
  6542. */
  6543. place_entity(cfs_rq, se, 0);
  6544. se->vruntime -= cfs_rq->min_vruntime;
  6545. }
  6546. #ifdef CONFIG_SMP
  6547. /*
  6548. * Remove our load from contribution when we leave sched_fair
  6549. * and ensure we don't carry in an old decay_count if we
  6550. * switch back.
  6551. */
  6552. if (se->avg.decay_count) {
  6553. __synchronize_entity_decay(se);
  6554. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  6555. }
  6556. #endif
  6557. }
  6558. /*
  6559. * We switched to the sched_fair class.
  6560. */
  6561. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  6562. {
  6563. #ifdef CONFIG_FAIR_GROUP_SCHED
  6564. struct sched_entity *se = &p->se;
  6565. /*
  6566. * Since the real-depth could have been changed (only FAIR
  6567. * class maintain depth value), reset depth properly.
  6568. */
  6569. se->depth = se->parent ? se->parent->depth + 1 : 0;
  6570. #endif
  6571. if (!task_on_rq_queued(p))
  6572. return;
  6573. /*
  6574. * We were most likely switched from sched_rt, so
  6575. * kick off the schedule if running, otherwise just see
  6576. * if we can still preempt the current task.
  6577. */
  6578. if (rq->curr == p)
  6579. resched_curr(rq);
  6580. else
  6581. check_preempt_curr(rq, p, 0);
  6582. }
  6583. /* Account for a task changing its policy or group.
  6584. *
  6585. * This routine is mostly called to set cfs_rq->curr field when a task
  6586. * migrates between groups/classes.
  6587. */
  6588. static void set_curr_task_fair(struct rq *rq)
  6589. {
  6590. struct sched_entity *se = &rq->curr->se;
  6591. for_each_sched_entity(se) {
  6592. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  6593. set_next_entity(cfs_rq, se);
  6594. /* ensure bandwidth has been allocated on our new cfs_rq */
  6595. account_cfs_rq_runtime(cfs_rq, 0);
  6596. }
  6597. }
  6598. void init_cfs_rq(struct cfs_rq *cfs_rq)
  6599. {
  6600. cfs_rq->tasks_timeline = RB_ROOT;
  6601. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6602. #ifndef CONFIG_64BIT
  6603. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6604. #endif
  6605. #ifdef CONFIG_SMP
  6606. atomic64_set(&cfs_rq->decay_counter, 1);
  6607. atomic_long_set(&cfs_rq->removed_load, 0);
  6608. #endif
  6609. }
  6610. #ifdef CONFIG_FAIR_GROUP_SCHED
  6611. static void task_move_group_fair(struct task_struct *p, int queued)
  6612. {
  6613. struct sched_entity *se = &p->se;
  6614. struct cfs_rq *cfs_rq;
  6615. /*
  6616. * If the task was not on the rq at the time of this cgroup movement
  6617. * it must have been asleep, sleeping tasks keep their ->vruntime
  6618. * absolute on their old rq until wakeup (needed for the fair sleeper
  6619. * bonus in place_entity()).
  6620. *
  6621. * If it was on the rq, we've just 'preempted' it, which does convert
  6622. * ->vruntime to a relative base.
  6623. *
  6624. * Make sure both cases convert their relative position when migrating
  6625. * to another cgroup's rq. This does somewhat interfere with the
  6626. * fair sleeper stuff for the first placement, but who cares.
  6627. */
  6628. /*
  6629. * When !queued, vruntime of the task has usually NOT been normalized.
  6630. * But there are some cases where it has already been normalized:
  6631. *
  6632. * - Moving a forked child which is waiting for being woken up by
  6633. * wake_up_new_task().
  6634. * - Moving a task which has been woken up by try_to_wake_up() and
  6635. * waiting for actually being woken up by sched_ttwu_pending().
  6636. *
  6637. * To prevent boost or penalty in the new cfs_rq caused by delta
  6638. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  6639. */
  6640. if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
  6641. queued = 1;
  6642. if (!queued)
  6643. se->vruntime -= cfs_rq_of(se)->min_vruntime;
  6644. set_task_rq(p, task_cpu(p));
  6645. se->depth = se->parent ? se->parent->depth + 1 : 0;
  6646. if (!queued) {
  6647. cfs_rq = cfs_rq_of(se);
  6648. se->vruntime += cfs_rq->min_vruntime;
  6649. #ifdef CONFIG_SMP
  6650. /*
  6651. * migrate_task_rq_fair() will have removed our previous
  6652. * contribution, but we must synchronize for ongoing future
  6653. * decay.
  6654. */
  6655. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  6656. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  6657. #endif
  6658. }
  6659. }
  6660. void free_fair_sched_group(struct task_group *tg)
  6661. {
  6662. int i;
  6663. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6664. for_each_possible_cpu(i) {
  6665. if (tg->cfs_rq)
  6666. kfree(tg->cfs_rq[i]);
  6667. if (tg->se)
  6668. kfree(tg->se[i]);
  6669. }
  6670. kfree(tg->cfs_rq);
  6671. kfree(tg->se);
  6672. }
  6673. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6674. {
  6675. struct cfs_rq *cfs_rq;
  6676. struct sched_entity *se;
  6677. int i;
  6678. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6679. if (!tg->cfs_rq)
  6680. goto err;
  6681. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6682. if (!tg->se)
  6683. goto err;
  6684. tg->shares = NICE_0_LOAD;
  6685. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6686. for_each_possible_cpu(i) {
  6687. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6688. GFP_KERNEL, cpu_to_node(i));
  6689. if (!cfs_rq)
  6690. goto err;
  6691. se = kzalloc_node(sizeof(struct sched_entity),
  6692. GFP_KERNEL, cpu_to_node(i));
  6693. if (!se)
  6694. goto err_free_rq;
  6695. init_cfs_rq(cfs_rq);
  6696. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6697. }
  6698. return 1;
  6699. err_free_rq:
  6700. kfree(cfs_rq);
  6701. err:
  6702. return 0;
  6703. }
  6704. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6705. {
  6706. struct rq *rq = cpu_rq(cpu);
  6707. unsigned long flags;
  6708. /*
  6709. * Only empty task groups can be destroyed; so we can speculatively
  6710. * check on_list without danger of it being re-added.
  6711. */
  6712. if (!tg->cfs_rq[cpu]->on_list)
  6713. return;
  6714. raw_spin_lock_irqsave(&rq->lock, flags);
  6715. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6716. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6717. }
  6718. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6719. struct sched_entity *se, int cpu,
  6720. struct sched_entity *parent)
  6721. {
  6722. struct rq *rq = cpu_rq(cpu);
  6723. cfs_rq->tg = tg;
  6724. cfs_rq->rq = rq;
  6725. init_cfs_rq_runtime(cfs_rq);
  6726. tg->cfs_rq[cpu] = cfs_rq;
  6727. tg->se[cpu] = se;
  6728. /* se could be NULL for root_task_group */
  6729. if (!se)
  6730. return;
  6731. if (!parent) {
  6732. se->cfs_rq = &rq->cfs;
  6733. se->depth = 0;
  6734. } else {
  6735. se->cfs_rq = parent->my_q;
  6736. se->depth = parent->depth + 1;
  6737. }
  6738. se->my_q = cfs_rq;
  6739. /* guarantee group entities always have weight */
  6740. update_load_set(&se->load, NICE_0_LOAD);
  6741. se->parent = parent;
  6742. }
  6743. static DEFINE_MUTEX(shares_mutex);
  6744. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6745. {
  6746. int i;
  6747. unsigned long flags;
  6748. /*
  6749. * We can't change the weight of the root cgroup.
  6750. */
  6751. if (!tg->se[0])
  6752. return -EINVAL;
  6753. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  6754. mutex_lock(&shares_mutex);
  6755. if (tg->shares == shares)
  6756. goto done;
  6757. tg->shares = shares;
  6758. for_each_possible_cpu(i) {
  6759. struct rq *rq = cpu_rq(i);
  6760. struct sched_entity *se;
  6761. se = tg->se[i];
  6762. /* Propagate contribution to hierarchy */
  6763. raw_spin_lock_irqsave(&rq->lock, flags);
  6764. /* Possible calls to update_curr() need rq clock */
  6765. update_rq_clock(rq);
  6766. for_each_sched_entity(se)
  6767. update_cfs_shares(group_cfs_rq(se));
  6768. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6769. }
  6770. done:
  6771. mutex_unlock(&shares_mutex);
  6772. return 0;
  6773. }
  6774. #else /* CONFIG_FAIR_GROUP_SCHED */
  6775. void free_fair_sched_group(struct task_group *tg) { }
  6776. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6777. {
  6778. return 1;
  6779. }
  6780. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  6781. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6782. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  6783. {
  6784. struct sched_entity *se = &task->se;
  6785. unsigned int rr_interval = 0;
  6786. /*
  6787. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  6788. * idle runqueue:
  6789. */
  6790. if (rq->cfs.load.weight)
  6791. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  6792. return rr_interval;
  6793. }
  6794. /*
  6795. * All the scheduling class methods:
  6796. */
  6797. const struct sched_class fair_sched_class = {
  6798. .next = &idle_sched_class,
  6799. .enqueue_task = enqueue_task_fair,
  6800. .dequeue_task = dequeue_task_fair,
  6801. .yield_task = yield_task_fair,
  6802. .yield_to_task = yield_to_task_fair,
  6803. .check_preempt_curr = check_preempt_wakeup,
  6804. .pick_next_task = pick_next_task_fair,
  6805. .put_prev_task = put_prev_task_fair,
  6806. #ifdef CONFIG_SMP
  6807. .select_task_rq = select_task_rq_fair,
  6808. .migrate_task_rq = migrate_task_rq_fair,
  6809. .rq_online = rq_online_fair,
  6810. .rq_offline = rq_offline_fair,
  6811. .task_waking = task_waking_fair,
  6812. #endif
  6813. .set_curr_task = set_curr_task_fair,
  6814. .task_tick = task_tick_fair,
  6815. .task_fork = task_fork_fair,
  6816. .prio_changed = prio_changed_fair,
  6817. .switched_from = switched_from_fair,
  6818. .switched_to = switched_to_fair,
  6819. .get_rr_interval = get_rr_interval_fair,
  6820. .update_curr = update_curr_fair,
  6821. #ifdef CONFIG_FAIR_GROUP_SCHED
  6822. .task_move_group = task_move_group_fair,
  6823. #endif
  6824. };
  6825. #ifdef CONFIG_SCHED_DEBUG
  6826. void print_cfs_stats(struct seq_file *m, int cpu)
  6827. {
  6828. struct cfs_rq *cfs_rq;
  6829. rcu_read_lock();
  6830. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  6831. print_cfs_rq(m, cpu, cfs_rq);
  6832. rcu_read_unlock();
  6833. }
  6834. #endif
  6835. __init void init_sched_fair_class(void)
  6836. {
  6837. #ifdef CONFIG_SMP
  6838. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6839. #ifdef CONFIG_NO_HZ_COMMON
  6840. nohz.next_balance = jiffies;
  6841. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6842. cpu_notifier(sched_ilb_notifier, 0);
  6843. #endif
  6844. #endif /* SMP */
  6845. }