tree_plugin.h 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "../time/tick-internal.h"
  31. #ifdef CONFIG_RCU_BOOST
  32. #include "../locking/rtmutex_common.h"
  33. /* rcuc/rcub kthread realtime priority */
  34. static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
  35. module_param(kthread_prio, int, 0644);
  36. /*
  37. * Control variables for per-CPU and per-rcu_node kthreads. These
  38. * handle all flavors of RCU.
  39. */
  40. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  41. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  42. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  43. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  44. #endif /* #ifdef CONFIG_RCU_BOOST */
  45. #ifdef CONFIG_RCU_NOCB_CPU
  46. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  47. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  48. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  49. static char __initdata nocb_buf[NR_CPUS * 5];
  50. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  51. /*
  52. * Check the RCU kernel configuration parameters and print informative
  53. * messages about anything out of the ordinary. If you like #ifdef, you
  54. * will love this function.
  55. */
  56. static void __init rcu_bootup_announce_oddness(void)
  57. {
  58. #ifdef CONFIG_RCU_TRACE
  59. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  60. #endif
  61. #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  62. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  63. CONFIG_RCU_FANOUT);
  64. #endif
  65. #ifdef CONFIG_RCU_FANOUT_EXACT
  66. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  67. #endif
  68. #ifdef CONFIG_RCU_FAST_NO_HZ
  69. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  70. #endif
  71. #ifdef CONFIG_PROVE_RCU
  72. pr_info("\tRCU lockdep checking is enabled.\n");
  73. #endif
  74. #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  75. pr_info("\tRCU torture testing starts during boot.\n");
  76. #endif
  77. #if defined(CONFIG_RCU_CPU_STALL_INFO)
  78. pr_info("\tAdditional per-CPU info printed with stalls.\n");
  79. #endif
  80. #if NUM_RCU_LVL_4 != 0
  81. pr_info("\tFour-level hierarchy is enabled.\n");
  82. #endif
  83. if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
  84. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  85. if (nr_cpu_ids != NR_CPUS)
  86. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  87. #ifdef CONFIG_RCU_BOOST
  88. pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  89. #endif
  90. }
  91. #ifdef CONFIG_PREEMPT_RCU
  92. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  93. static struct rcu_state *rcu_state_p = &rcu_preempt_state;
  94. static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  95. /*
  96. * Tell them what RCU they are running.
  97. */
  98. static void __init rcu_bootup_announce(void)
  99. {
  100. pr_info("Preemptible hierarchical RCU implementation.\n");
  101. rcu_bootup_announce_oddness();
  102. }
  103. /*
  104. * Return the number of RCU-preempt batches processed thus far
  105. * for debug and statistics.
  106. */
  107. static long rcu_batches_completed_preempt(void)
  108. {
  109. return rcu_preempt_state.completed;
  110. }
  111. EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
  112. /*
  113. * Return the number of RCU batches processed thus far for debug & stats.
  114. */
  115. long rcu_batches_completed(void)
  116. {
  117. return rcu_batches_completed_preempt();
  118. }
  119. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  120. /*
  121. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  122. * that this just means that the task currently running on the CPU is
  123. * not in a quiescent state. There might be any number of tasks blocked
  124. * while in an RCU read-side critical section.
  125. *
  126. * As with the other rcu_*_qs() functions, callers to this function
  127. * must disable preemption.
  128. */
  129. static void rcu_preempt_qs(void)
  130. {
  131. if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
  132. trace_rcu_grace_period(TPS("rcu_preempt"),
  133. __this_cpu_read(rcu_preempt_data.gpnum),
  134. TPS("cpuqs"));
  135. __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
  136. barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
  137. current->rcu_read_unlock_special.b.need_qs = false;
  138. }
  139. }
  140. /*
  141. * We have entered the scheduler, and the current task might soon be
  142. * context-switched away from. If this task is in an RCU read-side
  143. * critical section, we will no longer be able to rely on the CPU to
  144. * record that fact, so we enqueue the task on the blkd_tasks list.
  145. * The task will dequeue itself when it exits the outermost enclosing
  146. * RCU read-side critical section. Therefore, the current grace period
  147. * cannot be permitted to complete until the blkd_tasks list entries
  148. * predating the current grace period drain, in other words, until
  149. * rnp->gp_tasks becomes NULL.
  150. *
  151. * Caller must disable preemption.
  152. */
  153. static void rcu_preempt_note_context_switch(void)
  154. {
  155. struct task_struct *t = current;
  156. unsigned long flags;
  157. struct rcu_data *rdp;
  158. struct rcu_node *rnp;
  159. if (t->rcu_read_lock_nesting > 0 &&
  160. !t->rcu_read_unlock_special.b.blocked) {
  161. /* Possibly blocking in an RCU read-side critical section. */
  162. rdp = this_cpu_ptr(rcu_preempt_state.rda);
  163. rnp = rdp->mynode;
  164. raw_spin_lock_irqsave(&rnp->lock, flags);
  165. smp_mb__after_unlock_lock();
  166. t->rcu_read_unlock_special.b.blocked = true;
  167. t->rcu_blocked_node = rnp;
  168. /*
  169. * If this CPU has already checked in, then this task
  170. * will hold up the next grace period rather than the
  171. * current grace period. Queue the task accordingly.
  172. * If the task is queued for the current grace period
  173. * (i.e., this CPU has not yet passed through a quiescent
  174. * state for the current grace period), then as long
  175. * as that task remains queued, the current grace period
  176. * cannot end. Note that there is some uncertainty as
  177. * to exactly when the current grace period started.
  178. * We take a conservative approach, which can result
  179. * in unnecessarily waiting on tasks that started very
  180. * slightly after the current grace period began. C'est
  181. * la vie!!!
  182. *
  183. * But first, note that the current CPU must still be
  184. * on line!
  185. */
  186. WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
  187. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  188. if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
  189. list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
  190. rnp->gp_tasks = &t->rcu_node_entry;
  191. #ifdef CONFIG_RCU_BOOST
  192. if (rnp->boost_tasks != NULL)
  193. rnp->boost_tasks = rnp->gp_tasks;
  194. #endif /* #ifdef CONFIG_RCU_BOOST */
  195. } else {
  196. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  197. if (rnp->qsmask & rdp->grpmask)
  198. rnp->gp_tasks = &t->rcu_node_entry;
  199. }
  200. trace_rcu_preempt_task(rdp->rsp->name,
  201. t->pid,
  202. (rnp->qsmask & rdp->grpmask)
  203. ? rnp->gpnum
  204. : rnp->gpnum + 1);
  205. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  206. } else if (t->rcu_read_lock_nesting < 0 &&
  207. t->rcu_read_unlock_special.s) {
  208. /*
  209. * Complete exit from RCU read-side critical section on
  210. * behalf of preempted instance of __rcu_read_unlock().
  211. */
  212. rcu_read_unlock_special(t);
  213. }
  214. /*
  215. * Either we were not in an RCU read-side critical section to
  216. * begin with, or we have now recorded that critical section
  217. * globally. Either way, we can now note a quiescent state
  218. * for this CPU. Again, if we were in an RCU read-side critical
  219. * section, and if that critical section was blocking the current
  220. * grace period, then the fact that the task has been enqueued
  221. * means that we continue to block the current grace period.
  222. */
  223. rcu_preempt_qs();
  224. }
  225. /*
  226. * Check for preempted RCU readers blocking the current grace period
  227. * for the specified rcu_node structure. If the caller needs a reliable
  228. * answer, it must hold the rcu_node's ->lock.
  229. */
  230. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  231. {
  232. return rnp->gp_tasks != NULL;
  233. }
  234. /*
  235. * Record a quiescent state for all tasks that were previously queued
  236. * on the specified rcu_node structure and that were blocking the current
  237. * RCU grace period. The caller must hold the specified rnp->lock with
  238. * irqs disabled, and this lock is released upon return, but irqs remain
  239. * disabled.
  240. */
  241. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  242. __releases(rnp->lock)
  243. {
  244. unsigned long mask;
  245. struct rcu_node *rnp_p;
  246. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  247. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  248. return; /* Still need more quiescent states! */
  249. }
  250. rnp_p = rnp->parent;
  251. if (rnp_p == NULL) {
  252. /*
  253. * Either there is only one rcu_node in the tree,
  254. * or tasks were kicked up to root rcu_node due to
  255. * CPUs going offline.
  256. */
  257. rcu_report_qs_rsp(&rcu_preempt_state, flags);
  258. return;
  259. }
  260. /* Report up the rest of the hierarchy. */
  261. mask = rnp->grpmask;
  262. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  263. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  264. smp_mb__after_unlock_lock();
  265. rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
  266. }
  267. /*
  268. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  269. * returning NULL if at the end of the list.
  270. */
  271. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  272. struct rcu_node *rnp)
  273. {
  274. struct list_head *np;
  275. np = t->rcu_node_entry.next;
  276. if (np == &rnp->blkd_tasks)
  277. np = NULL;
  278. return np;
  279. }
  280. /*
  281. * Handle special cases during rcu_read_unlock(), such as needing to
  282. * notify RCU core processing or task having blocked during the RCU
  283. * read-side critical section.
  284. */
  285. void rcu_read_unlock_special(struct task_struct *t)
  286. {
  287. int empty;
  288. int empty_exp;
  289. int empty_exp_now;
  290. unsigned long flags;
  291. struct list_head *np;
  292. #ifdef CONFIG_RCU_BOOST
  293. bool drop_boost_mutex = false;
  294. #endif /* #ifdef CONFIG_RCU_BOOST */
  295. struct rcu_node *rnp;
  296. union rcu_special special;
  297. /* NMI handlers cannot block and cannot safely manipulate state. */
  298. if (in_nmi())
  299. return;
  300. local_irq_save(flags);
  301. /*
  302. * If RCU core is waiting for this CPU to exit critical section,
  303. * let it know that we have done so. Because irqs are disabled,
  304. * t->rcu_read_unlock_special cannot change.
  305. */
  306. special = t->rcu_read_unlock_special;
  307. if (special.b.need_qs) {
  308. rcu_preempt_qs();
  309. if (!t->rcu_read_unlock_special.s) {
  310. local_irq_restore(flags);
  311. return;
  312. }
  313. }
  314. /* Hardware IRQ handlers cannot block, complain if they get here. */
  315. if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
  316. local_irq_restore(flags);
  317. return;
  318. }
  319. /* Clean up if blocked during RCU read-side critical section. */
  320. if (special.b.blocked) {
  321. t->rcu_read_unlock_special.b.blocked = false;
  322. /*
  323. * Remove this task from the list it blocked on. The
  324. * task can migrate while we acquire the lock, but at
  325. * most one time. So at most two passes through loop.
  326. */
  327. for (;;) {
  328. rnp = t->rcu_blocked_node;
  329. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  330. smp_mb__after_unlock_lock();
  331. if (rnp == t->rcu_blocked_node)
  332. break;
  333. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  334. }
  335. empty = !rcu_preempt_blocked_readers_cgp(rnp);
  336. empty_exp = !rcu_preempted_readers_exp(rnp);
  337. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  338. np = rcu_next_node_entry(t, rnp);
  339. list_del_init(&t->rcu_node_entry);
  340. t->rcu_blocked_node = NULL;
  341. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  342. rnp->gpnum, t->pid);
  343. if (&t->rcu_node_entry == rnp->gp_tasks)
  344. rnp->gp_tasks = np;
  345. if (&t->rcu_node_entry == rnp->exp_tasks)
  346. rnp->exp_tasks = np;
  347. #ifdef CONFIG_RCU_BOOST
  348. if (&t->rcu_node_entry == rnp->boost_tasks)
  349. rnp->boost_tasks = np;
  350. /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
  351. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  352. #endif /* #ifdef CONFIG_RCU_BOOST */
  353. /*
  354. * If this was the last task on the current list, and if
  355. * we aren't waiting on any CPUs, report the quiescent state.
  356. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  357. * so we must take a snapshot of the expedited state.
  358. */
  359. empty_exp_now = !rcu_preempted_readers_exp(rnp);
  360. if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
  361. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  362. rnp->gpnum,
  363. 0, rnp->qsmask,
  364. rnp->level,
  365. rnp->grplo,
  366. rnp->grphi,
  367. !!rnp->gp_tasks);
  368. rcu_report_unblock_qs_rnp(rnp, flags);
  369. } else {
  370. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  371. }
  372. #ifdef CONFIG_RCU_BOOST
  373. /* Unboost if we were boosted. */
  374. if (drop_boost_mutex) {
  375. rt_mutex_unlock(&rnp->boost_mtx);
  376. complete(&rnp->boost_completion);
  377. }
  378. #endif /* #ifdef CONFIG_RCU_BOOST */
  379. /*
  380. * If this was the last task on the expedited lists,
  381. * then we need to report up the rcu_node hierarchy.
  382. */
  383. if (!empty_exp && empty_exp_now)
  384. rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
  385. } else {
  386. local_irq_restore(flags);
  387. }
  388. }
  389. /*
  390. * Dump detailed information for all tasks blocking the current RCU
  391. * grace period on the specified rcu_node structure.
  392. */
  393. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  394. {
  395. unsigned long flags;
  396. struct task_struct *t;
  397. raw_spin_lock_irqsave(&rnp->lock, flags);
  398. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  399. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  400. return;
  401. }
  402. t = list_entry(rnp->gp_tasks,
  403. struct task_struct, rcu_node_entry);
  404. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  405. sched_show_task(t);
  406. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  407. }
  408. /*
  409. * Dump detailed information for all tasks blocking the current RCU
  410. * grace period.
  411. */
  412. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  413. {
  414. struct rcu_node *rnp = rcu_get_root(rsp);
  415. rcu_print_detail_task_stall_rnp(rnp);
  416. rcu_for_each_leaf_node(rsp, rnp)
  417. rcu_print_detail_task_stall_rnp(rnp);
  418. }
  419. #ifdef CONFIG_RCU_CPU_STALL_INFO
  420. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  421. {
  422. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  423. rnp->level, rnp->grplo, rnp->grphi);
  424. }
  425. static void rcu_print_task_stall_end(void)
  426. {
  427. pr_cont("\n");
  428. }
  429. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  430. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  431. {
  432. }
  433. static void rcu_print_task_stall_end(void)
  434. {
  435. }
  436. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  437. /*
  438. * Scan the current list of tasks blocked within RCU read-side critical
  439. * sections, printing out the tid of each.
  440. */
  441. static int rcu_print_task_stall(struct rcu_node *rnp)
  442. {
  443. struct task_struct *t;
  444. int ndetected = 0;
  445. if (!rcu_preempt_blocked_readers_cgp(rnp))
  446. return 0;
  447. rcu_print_task_stall_begin(rnp);
  448. t = list_entry(rnp->gp_tasks,
  449. struct task_struct, rcu_node_entry);
  450. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  451. pr_cont(" P%d", t->pid);
  452. ndetected++;
  453. }
  454. rcu_print_task_stall_end();
  455. return ndetected;
  456. }
  457. /*
  458. * Check that the list of blocked tasks for the newly completed grace
  459. * period is in fact empty. It is a serious bug to complete a grace
  460. * period that still has RCU readers blocked! This function must be
  461. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  462. * must be held by the caller.
  463. *
  464. * Also, if there are blocked tasks on the list, they automatically
  465. * block the newly created grace period, so set up ->gp_tasks accordingly.
  466. */
  467. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  468. {
  469. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  470. if (!list_empty(&rnp->blkd_tasks))
  471. rnp->gp_tasks = rnp->blkd_tasks.next;
  472. WARN_ON_ONCE(rnp->qsmask);
  473. }
  474. #ifdef CONFIG_HOTPLUG_CPU
  475. /*
  476. * Handle tasklist migration for case in which all CPUs covered by the
  477. * specified rcu_node have gone offline. Move them up to the root
  478. * rcu_node. The reason for not just moving them to the immediate
  479. * parent is to remove the need for rcu_read_unlock_special() to
  480. * make more than two attempts to acquire the target rcu_node's lock.
  481. * Returns true if there were tasks blocking the current RCU grace
  482. * period.
  483. *
  484. * Returns 1 if there was previously a task blocking the current grace
  485. * period on the specified rcu_node structure.
  486. *
  487. * The caller must hold rnp->lock with irqs disabled.
  488. */
  489. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  490. struct rcu_node *rnp,
  491. struct rcu_data *rdp)
  492. {
  493. struct list_head *lp;
  494. struct list_head *lp_root;
  495. int retval = 0;
  496. struct rcu_node *rnp_root = rcu_get_root(rsp);
  497. struct task_struct *t;
  498. if (rnp == rnp_root) {
  499. WARN_ONCE(1, "Last CPU thought to be offlined?");
  500. return 0; /* Shouldn't happen: at least one CPU online. */
  501. }
  502. /* If we are on an internal node, complain bitterly. */
  503. WARN_ON_ONCE(rnp != rdp->mynode);
  504. /*
  505. * Move tasks up to root rcu_node. Don't try to get fancy for
  506. * this corner-case operation -- just put this node's tasks
  507. * at the head of the root node's list, and update the root node's
  508. * ->gp_tasks and ->exp_tasks pointers to those of this node's,
  509. * if non-NULL. This might result in waiting for more tasks than
  510. * absolutely necessary, but this is a good performance/complexity
  511. * tradeoff.
  512. */
  513. if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
  514. retval |= RCU_OFL_TASKS_NORM_GP;
  515. if (rcu_preempted_readers_exp(rnp))
  516. retval |= RCU_OFL_TASKS_EXP_GP;
  517. lp = &rnp->blkd_tasks;
  518. lp_root = &rnp_root->blkd_tasks;
  519. while (!list_empty(lp)) {
  520. t = list_entry(lp->next, typeof(*t), rcu_node_entry);
  521. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  522. smp_mb__after_unlock_lock();
  523. list_del(&t->rcu_node_entry);
  524. t->rcu_blocked_node = rnp_root;
  525. list_add(&t->rcu_node_entry, lp_root);
  526. if (&t->rcu_node_entry == rnp->gp_tasks)
  527. rnp_root->gp_tasks = rnp->gp_tasks;
  528. if (&t->rcu_node_entry == rnp->exp_tasks)
  529. rnp_root->exp_tasks = rnp->exp_tasks;
  530. #ifdef CONFIG_RCU_BOOST
  531. if (&t->rcu_node_entry == rnp->boost_tasks)
  532. rnp_root->boost_tasks = rnp->boost_tasks;
  533. #endif /* #ifdef CONFIG_RCU_BOOST */
  534. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  535. }
  536. rnp->gp_tasks = NULL;
  537. rnp->exp_tasks = NULL;
  538. #ifdef CONFIG_RCU_BOOST
  539. rnp->boost_tasks = NULL;
  540. /*
  541. * In case root is being boosted and leaf was not. Make sure
  542. * that we boost the tasks blocking the current grace period
  543. * in this case.
  544. */
  545. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  546. smp_mb__after_unlock_lock();
  547. if (rnp_root->boost_tasks != NULL &&
  548. rnp_root->boost_tasks != rnp_root->gp_tasks &&
  549. rnp_root->boost_tasks != rnp_root->exp_tasks)
  550. rnp_root->boost_tasks = rnp_root->gp_tasks;
  551. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  552. #endif /* #ifdef CONFIG_RCU_BOOST */
  553. return retval;
  554. }
  555. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  556. /*
  557. * Check for a quiescent state from the current CPU. When a task blocks,
  558. * the task is recorded in the corresponding CPU's rcu_node structure,
  559. * which is checked elsewhere.
  560. *
  561. * Caller must disable hard irqs.
  562. */
  563. static void rcu_preempt_check_callbacks(void)
  564. {
  565. struct task_struct *t = current;
  566. if (t->rcu_read_lock_nesting == 0) {
  567. rcu_preempt_qs();
  568. return;
  569. }
  570. if (t->rcu_read_lock_nesting > 0 &&
  571. __this_cpu_read(rcu_preempt_data.qs_pending) &&
  572. !__this_cpu_read(rcu_preempt_data.passed_quiesce))
  573. t->rcu_read_unlock_special.b.need_qs = true;
  574. }
  575. #ifdef CONFIG_RCU_BOOST
  576. static void rcu_preempt_do_callbacks(void)
  577. {
  578. rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
  579. }
  580. #endif /* #ifdef CONFIG_RCU_BOOST */
  581. /*
  582. * Queue a preemptible-RCU callback for invocation after a grace period.
  583. */
  584. void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  585. {
  586. __call_rcu(head, func, &rcu_preempt_state, -1, 0);
  587. }
  588. EXPORT_SYMBOL_GPL(call_rcu);
  589. /**
  590. * synchronize_rcu - wait until a grace period has elapsed.
  591. *
  592. * Control will return to the caller some time after a full grace
  593. * period has elapsed, in other words after all currently executing RCU
  594. * read-side critical sections have completed. Note, however, that
  595. * upon return from synchronize_rcu(), the caller might well be executing
  596. * concurrently with new RCU read-side critical sections that began while
  597. * synchronize_rcu() was waiting. RCU read-side critical sections are
  598. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  599. *
  600. * See the description of synchronize_sched() for more detailed information
  601. * on memory ordering guarantees.
  602. */
  603. void synchronize_rcu(void)
  604. {
  605. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  606. !lock_is_held(&rcu_lock_map) &&
  607. !lock_is_held(&rcu_sched_lock_map),
  608. "Illegal synchronize_rcu() in RCU read-side critical section");
  609. if (!rcu_scheduler_active)
  610. return;
  611. if (rcu_expedited)
  612. synchronize_rcu_expedited();
  613. else
  614. wait_rcu_gp(call_rcu);
  615. }
  616. EXPORT_SYMBOL_GPL(synchronize_rcu);
  617. static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
  618. static unsigned long sync_rcu_preempt_exp_count;
  619. static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
  620. /*
  621. * Return non-zero if there are any tasks in RCU read-side critical
  622. * sections blocking the current preemptible-RCU expedited grace period.
  623. * If there is no preemptible-RCU expedited grace period currently in
  624. * progress, returns zero unconditionally.
  625. */
  626. static int rcu_preempted_readers_exp(struct rcu_node *rnp)
  627. {
  628. return rnp->exp_tasks != NULL;
  629. }
  630. /*
  631. * return non-zero if there is no RCU expedited grace period in progress
  632. * for the specified rcu_node structure, in other words, if all CPUs and
  633. * tasks covered by the specified rcu_node structure have done their bit
  634. * for the current expedited grace period. Works only for preemptible
  635. * RCU -- other RCU implementation use other means.
  636. *
  637. * Caller must hold sync_rcu_preempt_exp_mutex.
  638. */
  639. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  640. {
  641. return !rcu_preempted_readers_exp(rnp) &&
  642. ACCESS_ONCE(rnp->expmask) == 0;
  643. }
  644. /*
  645. * Report the exit from RCU read-side critical section for the last task
  646. * that queued itself during or before the current expedited preemptible-RCU
  647. * grace period. This event is reported either to the rcu_node structure on
  648. * which the task was queued or to one of that rcu_node structure's ancestors,
  649. * recursively up the tree. (Calm down, calm down, we do the recursion
  650. * iteratively!)
  651. *
  652. * Most callers will set the "wake" flag, but the task initiating the
  653. * expedited grace period need not wake itself.
  654. *
  655. * Caller must hold sync_rcu_preempt_exp_mutex.
  656. */
  657. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  658. bool wake)
  659. {
  660. unsigned long flags;
  661. unsigned long mask;
  662. raw_spin_lock_irqsave(&rnp->lock, flags);
  663. smp_mb__after_unlock_lock();
  664. for (;;) {
  665. if (!sync_rcu_preempt_exp_done(rnp)) {
  666. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  667. break;
  668. }
  669. if (rnp->parent == NULL) {
  670. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  671. if (wake) {
  672. smp_mb(); /* EGP done before wake_up(). */
  673. wake_up(&sync_rcu_preempt_exp_wq);
  674. }
  675. break;
  676. }
  677. mask = rnp->grpmask;
  678. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  679. rnp = rnp->parent;
  680. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  681. smp_mb__after_unlock_lock();
  682. rnp->expmask &= ~mask;
  683. }
  684. }
  685. /*
  686. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  687. * grace period for the specified rcu_node structure. If there are no such
  688. * tasks, report it up the rcu_node hierarchy.
  689. *
  690. * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
  691. * CPU hotplug operations.
  692. */
  693. static void
  694. sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
  695. {
  696. unsigned long flags;
  697. int must_wait = 0;
  698. raw_spin_lock_irqsave(&rnp->lock, flags);
  699. smp_mb__after_unlock_lock();
  700. if (list_empty(&rnp->blkd_tasks)) {
  701. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  702. } else {
  703. rnp->exp_tasks = rnp->blkd_tasks.next;
  704. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  705. must_wait = 1;
  706. }
  707. if (!must_wait)
  708. rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
  709. }
  710. /**
  711. * synchronize_rcu_expedited - Brute-force RCU grace period
  712. *
  713. * Wait for an RCU-preempt grace period, but expedite it. The basic
  714. * idea is to invoke synchronize_sched_expedited() to push all the tasks to
  715. * the ->blkd_tasks lists and wait for this list to drain. This consumes
  716. * significant time on all CPUs and is unfriendly to real-time workloads,
  717. * so is thus not recommended for any sort of common-case code.
  718. * In fact, if you are using synchronize_rcu_expedited() in a loop,
  719. * please restructure your code to batch your updates, and then Use a
  720. * single synchronize_rcu() instead.
  721. */
  722. void synchronize_rcu_expedited(void)
  723. {
  724. unsigned long flags;
  725. struct rcu_node *rnp;
  726. struct rcu_state *rsp = &rcu_preempt_state;
  727. unsigned long snap;
  728. int trycount = 0;
  729. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  730. snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
  731. smp_mb(); /* Above access cannot bleed into critical section. */
  732. /*
  733. * Block CPU-hotplug operations. This means that any CPU-hotplug
  734. * operation that finds an rcu_node structure with tasks in the
  735. * process of being boosted will know that all tasks blocking
  736. * this expedited grace period will already be in the process of
  737. * being boosted. This simplifies the process of moving tasks
  738. * from leaf to root rcu_node structures.
  739. */
  740. if (!try_get_online_cpus()) {
  741. /* CPU-hotplug operation in flight, fall back to normal GP. */
  742. wait_rcu_gp(call_rcu);
  743. return;
  744. }
  745. /*
  746. * Acquire lock, falling back to synchronize_rcu() if too many
  747. * lock-acquisition failures. Of course, if someone does the
  748. * expedited grace period for us, just leave.
  749. */
  750. while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
  751. if (ULONG_CMP_LT(snap,
  752. ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  753. put_online_cpus();
  754. goto mb_ret; /* Others did our work for us. */
  755. }
  756. if (trycount++ < 10) {
  757. udelay(trycount * num_online_cpus());
  758. } else {
  759. put_online_cpus();
  760. wait_rcu_gp(call_rcu);
  761. return;
  762. }
  763. }
  764. if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  765. put_online_cpus();
  766. goto unlock_mb_ret; /* Others did our work for us. */
  767. }
  768. /* force all RCU readers onto ->blkd_tasks lists. */
  769. synchronize_sched_expedited();
  770. /* Initialize ->expmask for all non-leaf rcu_node structures. */
  771. rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
  772. raw_spin_lock_irqsave(&rnp->lock, flags);
  773. smp_mb__after_unlock_lock();
  774. rnp->expmask = rnp->qsmaskinit;
  775. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  776. }
  777. /* Snapshot current state of ->blkd_tasks lists. */
  778. rcu_for_each_leaf_node(rsp, rnp)
  779. sync_rcu_preempt_exp_init(rsp, rnp);
  780. if (NUM_RCU_NODES > 1)
  781. sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
  782. put_online_cpus();
  783. /* Wait for snapshotted ->blkd_tasks lists to drain. */
  784. rnp = rcu_get_root(rsp);
  785. wait_event(sync_rcu_preempt_exp_wq,
  786. sync_rcu_preempt_exp_done(rnp));
  787. /* Clean up and exit. */
  788. smp_mb(); /* ensure expedited GP seen before counter increment. */
  789. ACCESS_ONCE(sync_rcu_preempt_exp_count) =
  790. sync_rcu_preempt_exp_count + 1;
  791. unlock_mb_ret:
  792. mutex_unlock(&sync_rcu_preempt_exp_mutex);
  793. mb_ret:
  794. smp_mb(); /* ensure subsequent action seen after grace period. */
  795. }
  796. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  797. /**
  798. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  799. *
  800. * Note that this primitive does not necessarily wait for an RCU grace period
  801. * to complete. For example, if there are no RCU callbacks queued anywhere
  802. * in the system, then rcu_barrier() is within its rights to return
  803. * immediately, without waiting for anything, much less an RCU grace period.
  804. */
  805. void rcu_barrier(void)
  806. {
  807. _rcu_barrier(&rcu_preempt_state);
  808. }
  809. EXPORT_SYMBOL_GPL(rcu_barrier);
  810. /*
  811. * Initialize preemptible RCU's state structures.
  812. */
  813. static void __init __rcu_init_preempt(void)
  814. {
  815. rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
  816. }
  817. /*
  818. * Check for a task exiting while in a preemptible-RCU read-side
  819. * critical section, clean up if so. No need to issue warnings,
  820. * as debug_check_no_locks_held() already does this if lockdep
  821. * is enabled.
  822. */
  823. void exit_rcu(void)
  824. {
  825. struct task_struct *t = current;
  826. if (likely(list_empty(&current->rcu_node_entry)))
  827. return;
  828. t->rcu_read_lock_nesting = 1;
  829. barrier();
  830. t->rcu_read_unlock_special.b.blocked = true;
  831. __rcu_read_unlock();
  832. }
  833. #else /* #ifdef CONFIG_PREEMPT_RCU */
  834. static struct rcu_state *rcu_state_p = &rcu_sched_state;
  835. /*
  836. * Tell them what RCU they are running.
  837. */
  838. static void __init rcu_bootup_announce(void)
  839. {
  840. pr_info("Hierarchical RCU implementation.\n");
  841. rcu_bootup_announce_oddness();
  842. }
  843. /*
  844. * Return the number of RCU batches processed thus far for debug & stats.
  845. */
  846. long rcu_batches_completed(void)
  847. {
  848. return rcu_batches_completed_sched();
  849. }
  850. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  851. /*
  852. * Because preemptible RCU does not exist, we never have to check for
  853. * CPUs being in quiescent states.
  854. */
  855. static void rcu_preempt_note_context_switch(void)
  856. {
  857. }
  858. /*
  859. * Because preemptible RCU does not exist, there are never any preempted
  860. * RCU readers.
  861. */
  862. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  863. {
  864. return 0;
  865. }
  866. #ifdef CONFIG_HOTPLUG_CPU
  867. /* Because preemptible RCU does not exist, no quieting of tasks. */
  868. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  869. __releases(rnp->lock)
  870. {
  871. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  872. }
  873. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  874. /*
  875. * Because preemptible RCU does not exist, we never have to check for
  876. * tasks blocked within RCU read-side critical sections.
  877. */
  878. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  879. {
  880. }
  881. /*
  882. * Because preemptible RCU does not exist, we never have to check for
  883. * tasks blocked within RCU read-side critical sections.
  884. */
  885. static int rcu_print_task_stall(struct rcu_node *rnp)
  886. {
  887. return 0;
  888. }
  889. /*
  890. * Because there is no preemptible RCU, there can be no readers blocked,
  891. * so there is no need to check for blocked tasks. So check only for
  892. * bogus qsmask values.
  893. */
  894. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  895. {
  896. WARN_ON_ONCE(rnp->qsmask);
  897. }
  898. #ifdef CONFIG_HOTPLUG_CPU
  899. /*
  900. * Because preemptible RCU does not exist, it never needs to migrate
  901. * tasks that were blocked within RCU read-side critical sections, and
  902. * such non-existent tasks cannot possibly have been blocking the current
  903. * grace period.
  904. */
  905. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  906. struct rcu_node *rnp,
  907. struct rcu_data *rdp)
  908. {
  909. return 0;
  910. }
  911. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  912. /*
  913. * Because preemptible RCU does not exist, it never has any callbacks
  914. * to check.
  915. */
  916. static void rcu_preempt_check_callbacks(void)
  917. {
  918. }
  919. /*
  920. * Wait for an rcu-preempt grace period, but make it happen quickly.
  921. * But because preemptible RCU does not exist, map to rcu-sched.
  922. */
  923. void synchronize_rcu_expedited(void)
  924. {
  925. synchronize_sched_expedited();
  926. }
  927. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  928. #ifdef CONFIG_HOTPLUG_CPU
  929. /*
  930. * Because preemptible RCU does not exist, there is never any need to
  931. * report on tasks preempted in RCU read-side critical sections during
  932. * expedited RCU grace periods.
  933. */
  934. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  935. bool wake)
  936. {
  937. }
  938. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  939. /*
  940. * Because preemptible RCU does not exist, rcu_barrier() is just
  941. * another name for rcu_barrier_sched().
  942. */
  943. void rcu_barrier(void)
  944. {
  945. rcu_barrier_sched();
  946. }
  947. EXPORT_SYMBOL_GPL(rcu_barrier);
  948. /*
  949. * Because preemptible RCU does not exist, it need not be initialized.
  950. */
  951. static void __init __rcu_init_preempt(void)
  952. {
  953. }
  954. /*
  955. * Because preemptible RCU does not exist, tasks cannot possibly exit
  956. * while in preemptible RCU read-side critical sections.
  957. */
  958. void exit_rcu(void)
  959. {
  960. }
  961. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  962. #ifdef CONFIG_RCU_BOOST
  963. #include "../locking/rtmutex_common.h"
  964. #ifdef CONFIG_RCU_TRACE
  965. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  966. {
  967. if (list_empty(&rnp->blkd_tasks))
  968. rnp->n_balk_blkd_tasks++;
  969. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  970. rnp->n_balk_exp_gp_tasks++;
  971. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  972. rnp->n_balk_boost_tasks++;
  973. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  974. rnp->n_balk_notblocked++;
  975. else if (rnp->gp_tasks != NULL &&
  976. ULONG_CMP_LT(jiffies, rnp->boost_time))
  977. rnp->n_balk_notyet++;
  978. else
  979. rnp->n_balk_nos++;
  980. }
  981. #else /* #ifdef CONFIG_RCU_TRACE */
  982. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  983. {
  984. }
  985. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  986. static void rcu_wake_cond(struct task_struct *t, int status)
  987. {
  988. /*
  989. * If the thread is yielding, only wake it when this
  990. * is invoked from idle
  991. */
  992. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  993. wake_up_process(t);
  994. }
  995. /*
  996. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  997. * or ->boost_tasks, advancing the pointer to the next task in the
  998. * ->blkd_tasks list.
  999. *
  1000. * Note that irqs must be enabled: boosting the task can block.
  1001. * Returns 1 if there are more tasks needing to be boosted.
  1002. */
  1003. static int rcu_boost(struct rcu_node *rnp)
  1004. {
  1005. unsigned long flags;
  1006. struct task_struct *t;
  1007. struct list_head *tb;
  1008. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
  1009. return 0; /* Nothing left to boost. */
  1010. raw_spin_lock_irqsave(&rnp->lock, flags);
  1011. smp_mb__after_unlock_lock();
  1012. /*
  1013. * Recheck under the lock: all tasks in need of boosting
  1014. * might exit their RCU read-side critical sections on their own.
  1015. */
  1016. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  1017. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1018. return 0;
  1019. }
  1020. /*
  1021. * Preferentially boost tasks blocking expedited grace periods.
  1022. * This cannot starve the normal grace periods because a second
  1023. * expedited grace period must boost all blocked tasks, including
  1024. * those blocking the pre-existing normal grace period.
  1025. */
  1026. if (rnp->exp_tasks != NULL) {
  1027. tb = rnp->exp_tasks;
  1028. rnp->n_exp_boosts++;
  1029. } else {
  1030. tb = rnp->boost_tasks;
  1031. rnp->n_normal_boosts++;
  1032. }
  1033. rnp->n_tasks_boosted++;
  1034. /*
  1035. * We boost task t by manufacturing an rt_mutex that appears to
  1036. * be held by task t. We leave a pointer to that rt_mutex where
  1037. * task t can find it, and task t will release the mutex when it
  1038. * exits its outermost RCU read-side critical section. Then
  1039. * simply acquiring this artificial rt_mutex will boost task
  1040. * t's priority. (Thanks to tglx for suggesting this approach!)
  1041. *
  1042. * Note that task t must acquire rnp->lock to remove itself from
  1043. * the ->blkd_tasks list, which it will do from exit() if from
  1044. * nowhere else. We therefore are guaranteed that task t will
  1045. * stay around at least until we drop rnp->lock. Note that
  1046. * rnp->lock also resolves races between our priority boosting
  1047. * and task t's exiting its outermost RCU read-side critical
  1048. * section.
  1049. */
  1050. t = container_of(tb, struct task_struct, rcu_node_entry);
  1051. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  1052. init_completion(&rnp->boost_completion);
  1053. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1054. /* Lock only for side effect: boosts task t's priority. */
  1055. rt_mutex_lock(&rnp->boost_mtx);
  1056. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  1057. /* Wait for boostee to be done w/boost_mtx before reinitializing. */
  1058. wait_for_completion(&rnp->boost_completion);
  1059. return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
  1060. ACCESS_ONCE(rnp->boost_tasks) != NULL;
  1061. }
  1062. /*
  1063. * Priority-boosting kthread. One per leaf rcu_node and one for the
  1064. * root rcu_node.
  1065. */
  1066. static int rcu_boost_kthread(void *arg)
  1067. {
  1068. struct rcu_node *rnp = (struct rcu_node *)arg;
  1069. int spincnt = 0;
  1070. int more2boost;
  1071. trace_rcu_utilization(TPS("Start boost kthread@init"));
  1072. for (;;) {
  1073. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  1074. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  1075. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  1076. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  1077. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  1078. more2boost = rcu_boost(rnp);
  1079. if (more2boost)
  1080. spincnt++;
  1081. else
  1082. spincnt = 0;
  1083. if (spincnt > 10) {
  1084. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  1085. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  1086. schedule_timeout_interruptible(2);
  1087. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  1088. spincnt = 0;
  1089. }
  1090. }
  1091. /* NOTREACHED */
  1092. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  1093. return 0;
  1094. }
  1095. /*
  1096. * Check to see if it is time to start boosting RCU readers that are
  1097. * blocking the current grace period, and, if so, tell the per-rcu_node
  1098. * kthread to start boosting them. If there is an expedited grace
  1099. * period in progress, it is always time to boost.
  1100. *
  1101. * The caller must hold rnp->lock, which this function releases.
  1102. * The ->boost_kthread_task is immortal, so we don't need to worry
  1103. * about it going away.
  1104. */
  1105. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1106. __releases(rnp->lock)
  1107. {
  1108. struct task_struct *t;
  1109. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  1110. rnp->n_balk_exp_gp_tasks++;
  1111. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1112. return;
  1113. }
  1114. if (rnp->exp_tasks != NULL ||
  1115. (rnp->gp_tasks != NULL &&
  1116. rnp->boost_tasks == NULL &&
  1117. rnp->qsmask == 0 &&
  1118. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  1119. if (rnp->exp_tasks == NULL)
  1120. rnp->boost_tasks = rnp->gp_tasks;
  1121. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1122. t = rnp->boost_kthread_task;
  1123. if (t)
  1124. rcu_wake_cond(t, rnp->boost_kthread_status);
  1125. } else {
  1126. rcu_initiate_boost_trace(rnp);
  1127. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1128. }
  1129. }
  1130. /*
  1131. * Wake up the per-CPU kthread to invoke RCU callbacks.
  1132. */
  1133. static void invoke_rcu_callbacks_kthread(void)
  1134. {
  1135. unsigned long flags;
  1136. local_irq_save(flags);
  1137. __this_cpu_write(rcu_cpu_has_work, 1);
  1138. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  1139. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  1140. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  1141. __this_cpu_read(rcu_cpu_kthread_status));
  1142. }
  1143. local_irq_restore(flags);
  1144. }
  1145. /*
  1146. * Is the current CPU running the RCU-callbacks kthread?
  1147. * Caller must have preemption disabled.
  1148. */
  1149. static bool rcu_is_callbacks_kthread(void)
  1150. {
  1151. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  1152. }
  1153. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  1154. /*
  1155. * Do priority-boost accounting for the start of a new grace period.
  1156. */
  1157. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1158. {
  1159. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  1160. }
  1161. /*
  1162. * Create an RCU-boost kthread for the specified node if one does not
  1163. * already exist. We only create this kthread for preemptible RCU.
  1164. * Returns zero if all is well, a negated errno otherwise.
  1165. */
  1166. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1167. struct rcu_node *rnp)
  1168. {
  1169. int rnp_index = rnp - &rsp->node[0];
  1170. unsigned long flags;
  1171. struct sched_param sp;
  1172. struct task_struct *t;
  1173. if (&rcu_preempt_state != rsp)
  1174. return 0;
  1175. if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
  1176. return 0;
  1177. rsp->boost = 1;
  1178. if (rnp->boost_kthread_task != NULL)
  1179. return 0;
  1180. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1181. "rcub/%d", rnp_index);
  1182. if (IS_ERR(t))
  1183. return PTR_ERR(t);
  1184. raw_spin_lock_irqsave(&rnp->lock, flags);
  1185. smp_mb__after_unlock_lock();
  1186. rnp->boost_kthread_task = t;
  1187. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1188. sp.sched_priority = kthread_prio;
  1189. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1190. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1191. return 0;
  1192. }
  1193. static void rcu_kthread_do_work(void)
  1194. {
  1195. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1196. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1197. rcu_preempt_do_callbacks();
  1198. }
  1199. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1200. {
  1201. struct sched_param sp;
  1202. sp.sched_priority = kthread_prio;
  1203. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1204. }
  1205. static void rcu_cpu_kthread_park(unsigned int cpu)
  1206. {
  1207. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1208. }
  1209. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1210. {
  1211. return __this_cpu_read(rcu_cpu_has_work);
  1212. }
  1213. /*
  1214. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1215. * RCU softirq used in flavors and configurations of RCU that do not
  1216. * support RCU priority boosting.
  1217. */
  1218. static void rcu_cpu_kthread(unsigned int cpu)
  1219. {
  1220. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1221. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1222. int spincnt;
  1223. for (spincnt = 0; spincnt < 10; spincnt++) {
  1224. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1225. local_bh_disable();
  1226. *statusp = RCU_KTHREAD_RUNNING;
  1227. this_cpu_inc(rcu_cpu_kthread_loops);
  1228. local_irq_disable();
  1229. work = *workp;
  1230. *workp = 0;
  1231. local_irq_enable();
  1232. if (work)
  1233. rcu_kthread_do_work();
  1234. local_bh_enable();
  1235. if (*workp == 0) {
  1236. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1237. *statusp = RCU_KTHREAD_WAITING;
  1238. return;
  1239. }
  1240. }
  1241. *statusp = RCU_KTHREAD_YIELDING;
  1242. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1243. schedule_timeout_interruptible(2);
  1244. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1245. *statusp = RCU_KTHREAD_WAITING;
  1246. }
  1247. /*
  1248. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1249. * served by the rcu_node in question. The CPU hotplug lock is still
  1250. * held, so the value of rnp->qsmaskinit will be stable.
  1251. *
  1252. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1253. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1254. * this function allows the kthread to execute on any CPU.
  1255. */
  1256. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1257. {
  1258. struct task_struct *t = rnp->boost_kthread_task;
  1259. unsigned long mask = rnp->qsmaskinit;
  1260. cpumask_var_t cm;
  1261. int cpu;
  1262. if (!t)
  1263. return;
  1264. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1265. return;
  1266. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1267. if ((mask & 0x1) && cpu != outgoingcpu)
  1268. cpumask_set_cpu(cpu, cm);
  1269. if (cpumask_weight(cm) == 0) {
  1270. cpumask_setall(cm);
  1271. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
  1272. cpumask_clear_cpu(cpu, cm);
  1273. WARN_ON_ONCE(cpumask_weight(cm) == 0);
  1274. }
  1275. set_cpus_allowed_ptr(t, cm);
  1276. free_cpumask_var(cm);
  1277. }
  1278. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1279. .store = &rcu_cpu_kthread_task,
  1280. .thread_should_run = rcu_cpu_kthread_should_run,
  1281. .thread_fn = rcu_cpu_kthread,
  1282. .thread_comm = "rcuc/%u",
  1283. .setup = rcu_cpu_kthread_setup,
  1284. .park = rcu_cpu_kthread_park,
  1285. };
  1286. /*
  1287. * Spawn boost kthreads -- called as soon as the scheduler is running.
  1288. */
  1289. static void __init rcu_spawn_boost_kthreads(void)
  1290. {
  1291. struct rcu_node *rnp;
  1292. int cpu;
  1293. for_each_possible_cpu(cpu)
  1294. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1295. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1296. rnp = rcu_get_root(rcu_state_p);
  1297. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1298. if (NUM_RCU_NODES > 1) {
  1299. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1300. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1301. }
  1302. }
  1303. static void rcu_prepare_kthreads(int cpu)
  1304. {
  1305. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1306. struct rcu_node *rnp = rdp->mynode;
  1307. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1308. if (rcu_scheduler_fully_active)
  1309. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1310. }
  1311. #else /* #ifdef CONFIG_RCU_BOOST */
  1312. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1313. __releases(rnp->lock)
  1314. {
  1315. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1316. }
  1317. static void invoke_rcu_callbacks_kthread(void)
  1318. {
  1319. WARN_ON_ONCE(1);
  1320. }
  1321. static bool rcu_is_callbacks_kthread(void)
  1322. {
  1323. return false;
  1324. }
  1325. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1326. {
  1327. }
  1328. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1329. {
  1330. }
  1331. static void __init rcu_spawn_boost_kthreads(void)
  1332. {
  1333. }
  1334. static void rcu_prepare_kthreads(int cpu)
  1335. {
  1336. }
  1337. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1338. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1339. /*
  1340. * Check to see if any future RCU-related work will need to be done
  1341. * by the current CPU, even if none need be done immediately, returning
  1342. * 1 if so. This function is part of the RCU implementation; it is -not-
  1343. * an exported member of the RCU API.
  1344. *
  1345. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1346. * any flavor of RCU.
  1347. */
  1348. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1349. int rcu_needs_cpu(unsigned long *delta_jiffies)
  1350. {
  1351. *delta_jiffies = ULONG_MAX;
  1352. return rcu_cpu_has_callbacks(NULL);
  1353. }
  1354. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1355. /*
  1356. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1357. * after it.
  1358. */
  1359. static void rcu_cleanup_after_idle(void)
  1360. {
  1361. }
  1362. /*
  1363. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1364. * is nothing.
  1365. */
  1366. static void rcu_prepare_for_idle(void)
  1367. {
  1368. }
  1369. /*
  1370. * Don't bother keeping a running count of the number of RCU callbacks
  1371. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1372. */
  1373. static void rcu_idle_count_callbacks_posted(void)
  1374. {
  1375. }
  1376. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1377. /*
  1378. * This code is invoked when a CPU goes idle, at which point we want
  1379. * to have the CPU do everything required for RCU so that it can enter
  1380. * the energy-efficient dyntick-idle mode. This is handled by a
  1381. * state machine implemented by rcu_prepare_for_idle() below.
  1382. *
  1383. * The following three proprocessor symbols control this state machine:
  1384. *
  1385. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1386. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1387. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1388. * benchmarkers who might otherwise be tempted to set this to a large
  1389. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1390. * system. And if you are -that- concerned about energy efficiency,
  1391. * just power the system down and be done with it!
  1392. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1393. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1394. * callbacks pending. Setting this too high can OOM your system.
  1395. *
  1396. * The values below work well in practice. If future workloads require
  1397. * adjustment, they can be converted into kernel config parameters, though
  1398. * making the state machine smarter might be a better option.
  1399. */
  1400. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1401. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1402. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1403. module_param(rcu_idle_gp_delay, int, 0644);
  1404. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1405. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1406. extern int tick_nohz_active;
  1407. /*
  1408. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1409. * only if it has been awhile since the last time we did so. Afterwards,
  1410. * if there are any callbacks ready for immediate invocation, return true.
  1411. */
  1412. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1413. {
  1414. bool cbs_ready = false;
  1415. struct rcu_data *rdp;
  1416. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1417. struct rcu_node *rnp;
  1418. struct rcu_state *rsp;
  1419. /* Exit early if we advanced recently. */
  1420. if (jiffies == rdtp->last_advance_all)
  1421. return false;
  1422. rdtp->last_advance_all = jiffies;
  1423. for_each_rcu_flavor(rsp) {
  1424. rdp = this_cpu_ptr(rsp->rda);
  1425. rnp = rdp->mynode;
  1426. /*
  1427. * Don't bother checking unless a grace period has
  1428. * completed since we last checked and there are
  1429. * callbacks not yet ready to invoke.
  1430. */
  1431. if (rdp->completed != rnp->completed &&
  1432. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1433. note_gp_changes(rsp, rdp);
  1434. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1435. cbs_ready = true;
  1436. }
  1437. return cbs_ready;
  1438. }
  1439. /*
  1440. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1441. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1442. * caller to set the timeout based on whether or not there are non-lazy
  1443. * callbacks.
  1444. *
  1445. * The caller must have disabled interrupts.
  1446. */
  1447. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1448. int rcu_needs_cpu(unsigned long *dj)
  1449. {
  1450. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1451. /* Snapshot to detect later posting of non-lazy callback. */
  1452. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1453. /* If no callbacks, RCU doesn't need the CPU. */
  1454. if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
  1455. *dj = ULONG_MAX;
  1456. return 0;
  1457. }
  1458. /* Attempt to advance callbacks. */
  1459. if (rcu_try_advance_all_cbs()) {
  1460. /* Some ready to invoke, so initiate later invocation. */
  1461. invoke_rcu_core();
  1462. return 1;
  1463. }
  1464. rdtp->last_accelerate = jiffies;
  1465. /* Request timer delay depending on laziness, and round. */
  1466. if (!rdtp->all_lazy) {
  1467. *dj = round_up(rcu_idle_gp_delay + jiffies,
  1468. rcu_idle_gp_delay) - jiffies;
  1469. } else {
  1470. *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1471. }
  1472. return 0;
  1473. }
  1474. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1475. /*
  1476. * Prepare a CPU for idle from an RCU perspective. The first major task
  1477. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1478. * The second major task is to check to see if a non-lazy callback has
  1479. * arrived at a CPU that previously had only lazy callbacks. The third
  1480. * major task is to accelerate (that is, assign grace-period numbers to)
  1481. * any recently arrived callbacks.
  1482. *
  1483. * The caller must have disabled interrupts.
  1484. */
  1485. static void rcu_prepare_for_idle(void)
  1486. {
  1487. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1488. bool needwake;
  1489. struct rcu_data *rdp;
  1490. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1491. struct rcu_node *rnp;
  1492. struct rcu_state *rsp;
  1493. int tne;
  1494. /* Handle nohz enablement switches conservatively. */
  1495. tne = ACCESS_ONCE(tick_nohz_active);
  1496. if (tne != rdtp->tick_nohz_enabled_snap) {
  1497. if (rcu_cpu_has_callbacks(NULL))
  1498. invoke_rcu_core(); /* force nohz to see update. */
  1499. rdtp->tick_nohz_enabled_snap = tne;
  1500. return;
  1501. }
  1502. if (!tne)
  1503. return;
  1504. /* If this is a no-CBs CPU, no callbacks, just return. */
  1505. if (rcu_is_nocb_cpu(smp_processor_id()))
  1506. return;
  1507. /*
  1508. * If a non-lazy callback arrived at a CPU having only lazy
  1509. * callbacks, invoke RCU core for the side-effect of recalculating
  1510. * idle duration on re-entry to idle.
  1511. */
  1512. if (rdtp->all_lazy &&
  1513. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1514. rdtp->all_lazy = false;
  1515. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1516. invoke_rcu_core();
  1517. return;
  1518. }
  1519. /*
  1520. * If we have not yet accelerated this jiffy, accelerate all
  1521. * callbacks on this CPU.
  1522. */
  1523. if (rdtp->last_accelerate == jiffies)
  1524. return;
  1525. rdtp->last_accelerate = jiffies;
  1526. for_each_rcu_flavor(rsp) {
  1527. rdp = this_cpu_ptr(rsp->rda);
  1528. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1529. continue;
  1530. rnp = rdp->mynode;
  1531. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1532. smp_mb__after_unlock_lock();
  1533. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1534. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1535. if (needwake)
  1536. rcu_gp_kthread_wake(rsp);
  1537. }
  1538. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1539. }
  1540. /*
  1541. * Clean up for exit from idle. Attempt to advance callbacks based on
  1542. * any grace periods that elapsed while the CPU was idle, and if any
  1543. * callbacks are now ready to invoke, initiate invocation.
  1544. */
  1545. static void rcu_cleanup_after_idle(void)
  1546. {
  1547. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1548. if (rcu_is_nocb_cpu(smp_processor_id()))
  1549. return;
  1550. if (rcu_try_advance_all_cbs())
  1551. invoke_rcu_core();
  1552. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1553. }
  1554. /*
  1555. * Keep a running count of the number of non-lazy callbacks posted
  1556. * on this CPU. This running counter (which is never decremented) allows
  1557. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1558. * posts a callback, even if an equal number of callbacks are invoked.
  1559. * Of course, callbacks should only be posted from within a trace event
  1560. * designed to be called from idle or from within RCU_NONIDLE().
  1561. */
  1562. static void rcu_idle_count_callbacks_posted(void)
  1563. {
  1564. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1565. }
  1566. /*
  1567. * Data for flushing lazy RCU callbacks at OOM time.
  1568. */
  1569. static atomic_t oom_callback_count;
  1570. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1571. /*
  1572. * RCU OOM callback -- decrement the outstanding count and deliver the
  1573. * wake-up if we are the last one.
  1574. */
  1575. static void rcu_oom_callback(struct rcu_head *rhp)
  1576. {
  1577. if (atomic_dec_and_test(&oom_callback_count))
  1578. wake_up(&oom_callback_wq);
  1579. }
  1580. /*
  1581. * Post an rcu_oom_notify callback on the current CPU if it has at
  1582. * least one lazy callback. This will unnecessarily post callbacks
  1583. * to CPUs that already have a non-lazy callback at the end of their
  1584. * callback list, but this is an infrequent operation, so accept some
  1585. * extra overhead to keep things simple.
  1586. */
  1587. static void rcu_oom_notify_cpu(void *unused)
  1588. {
  1589. struct rcu_state *rsp;
  1590. struct rcu_data *rdp;
  1591. for_each_rcu_flavor(rsp) {
  1592. rdp = raw_cpu_ptr(rsp->rda);
  1593. if (rdp->qlen_lazy != 0) {
  1594. atomic_inc(&oom_callback_count);
  1595. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1596. }
  1597. }
  1598. }
  1599. /*
  1600. * If low on memory, ensure that each CPU has a non-lazy callback.
  1601. * This will wake up CPUs that have only lazy callbacks, in turn
  1602. * ensuring that they free up the corresponding memory in a timely manner.
  1603. * Because an uncertain amount of memory will be freed in some uncertain
  1604. * timeframe, we do not claim to have freed anything.
  1605. */
  1606. static int rcu_oom_notify(struct notifier_block *self,
  1607. unsigned long notused, void *nfreed)
  1608. {
  1609. int cpu;
  1610. /* Wait for callbacks from earlier instance to complete. */
  1611. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1612. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1613. /*
  1614. * Prevent premature wakeup: ensure that all increments happen
  1615. * before there is a chance of the counter reaching zero.
  1616. */
  1617. atomic_set(&oom_callback_count, 1);
  1618. get_online_cpus();
  1619. for_each_online_cpu(cpu) {
  1620. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1621. cond_resched_rcu_qs();
  1622. }
  1623. put_online_cpus();
  1624. /* Unconditionally decrement: no need to wake ourselves up. */
  1625. atomic_dec(&oom_callback_count);
  1626. return NOTIFY_OK;
  1627. }
  1628. static struct notifier_block rcu_oom_nb = {
  1629. .notifier_call = rcu_oom_notify
  1630. };
  1631. static int __init rcu_register_oom_notifier(void)
  1632. {
  1633. register_oom_notifier(&rcu_oom_nb);
  1634. return 0;
  1635. }
  1636. early_initcall(rcu_register_oom_notifier);
  1637. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1638. #ifdef CONFIG_RCU_CPU_STALL_INFO
  1639. #ifdef CONFIG_RCU_FAST_NO_HZ
  1640. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1641. {
  1642. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1643. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1644. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1645. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1646. ulong2long(nlpd),
  1647. rdtp->all_lazy ? 'L' : '.',
  1648. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1649. }
  1650. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1651. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1652. {
  1653. *cp = '\0';
  1654. }
  1655. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1656. /* Initiate the stall-info list. */
  1657. static void print_cpu_stall_info_begin(void)
  1658. {
  1659. pr_cont("\n");
  1660. }
  1661. /*
  1662. * Print out diagnostic information for the specified stalled CPU.
  1663. *
  1664. * If the specified CPU is aware of the current RCU grace period
  1665. * (flavor specified by rsp), then print the number of scheduling
  1666. * clock interrupts the CPU has taken during the time that it has
  1667. * been aware. Otherwise, print the number of RCU grace periods
  1668. * that this CPU is ignorant of, for example, "1" if the CPU was
  1669. * aware of the previous grace period.
  1670. *
  1671. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1672. */
  1673. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1674. {
  1675. char fast_no_hz[72];
  1676. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1677. struct rcu_dynticks *rdtp = rdp->dynticks;
  1678. char *ticks_title;
  1679. unsigned long ticks_value;
  1680. if (rsp->gpnum == rdp->gpnum) {
  1681. ticks_title = "ticks this GP";
  1682. ticks_value = rdp->ticks_this_gp;
  1683. } else {
  1684. ticks_title = "GPs behind";
  1685. ticks_value = rsp->gpnum - rdp->gpnum;
  1686. }
  1687. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1688. pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
  1689. cpu, ticks_value, ticks_title,
  1690. atomic_read(&rdtp->dynticks) & 0xfff,
  1691. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1692. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1693. fast_no_hz);
  1694. }
  1695. /* Terminate the stall-info list. */
  1696. static void print_cpu_stall_info_end(void)
  1697. {
  1698. pr_err("\t");
  1699. }
  1700. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1701. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1702. {
  1703. rdp->ticks_this_gp = 0;
  1704. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1705. }
  1706. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1707. static void increment_cpu_stall_ticks(void)
  1708. {
  1709. struct rcu_state *rsp;
  1710. for_each_rcu_flavor(rsp)
  1711. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1712. }
  1713. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1714. static void print_cpu_stall_info_begin(void)
  1715. {
  1716. pr_cont(" {");
  1717. }
  1718. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1719. {
  1720. pr_cont(" %d", cpu);
  1721. }
  1722. static void print_cpu_stall_info_end(void)
  1723. {
  1724. pr_cont("} ");
  1725. }
  1726. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1727. {
  1728. }
  1729. static void increment_cpu_stall_ticks(void)
  1730. {
  1731. }
  1732. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1733. #ifdef CONFIG_RCU_NOCB_CPU
  1734. /*
  1735. * Offload callback processing from the boot-time-specified set of CPUs
  1736. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1737. * kthread created that pulls the callbacks from the corresponding CPU,
  1738. * waits for a grace period to elapse, and invokes the callbacks.
  1739. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1740. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1741. * has been specified, in which case each kthread actively polls its
  1742. * CPU. (Which isn't so great for energy efficiency, but which does
  1743. * reduce RCU's overhead on that CPU.)
  1744. *
  1745. * This is intended to be used in conjunction with Frederic Weisbecker's
  1746. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1747. * running CPU-bound user-mode computations.
  1748. *
  1749. * Offloading of callback processing could also in theory be used as
  1750. * an energy-efficiency measure because CPUs with no RCU callbacks
  1751. * queued are more aggressive about entering dyntick-idle mode.
  1752. */
  1753. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1754. static int __init rcu_nocb_setup(char *str)
  1755. {
  1756. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1757. have_rcu_nocb_mask = true;
  1758. cpulist_parse(str, rcu_nocb_mask);
  1759. return 1;
  1760. }
  1761. __setup("rcu_nocbs=", rcu_nocb_setup);
  1762. static int __init parse_rcu_nocb_poll(char *arg)
  1763. {
  1764. rcu_nocb_poll = 1;
  1765. return 0;
  1766. }
  1767. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1768. /*
  1769. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1770. * grace period.
  1771. */
  1772. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1773. {
  1774. wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
  1775. }
  1776. /*
  1777. * Set the root rcu_node structure's ->need_future_gp field
  1778. * based on the sum of those of all rcu_node structures. This does
  1779. * double-count the root rcu_node structure's requests, but this
  1780. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1781. * having awakened during the time that the rcu_node structures
  1782. * were being updated for the end of the previous grace period.
  1783. */
  1784. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1785. {
  1786. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1787. }
  1788. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1789. {
  1790. init_waitqueue_head(&rnp->nocb_gp_wq[0]);
  1791. init_waitqueue_head(&rnp->nocb_gp_wq[1]);
  1792. }
  1793. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1794. /* Is the specified CPU a no-CBs CPU? */
  1795. bool rcu_is_nocb_cpu(int cpu)
  1796. {
  1797. if (have_rcu_nocb_mask)
  1798. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1799. return false;
  1800. }
  1801. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1802. /*
  1803. * Kick the leader kthread for this NOCB group.
  1804. */
  1805. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1806. {
  1807. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1808. if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
  1809. return;
  1810. if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1811. /* Prior smp_mb__after_atomic() orders against prior enqueue. */
  1812. ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
  1813. wake_up(&rdp_leader->nocb_wq);
  1814. }
  1815. }
  1816. /*
  1817. * Does the specified CPU need an RCU callback for the specified flavor
  1818. * of rcu_barrier()?
  1819. */
  1820. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  1821. {
  1822. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1823. struct rcu_head *rhp;
  1824. /* No-CBs CPUs might have callbacks on any of three lists. */
  1825. rhp = ACCESS_ONCE(rdp->nocb_head);
  1826. if (!rhp)
  1827. rhp = ACCESS_ONCE(rdp->nocb_gp_head);
  1828. if (!rhp)
  1829. rhp = ACCESS_ONCE(rdp->nocb_follower_head);
  1830. /* Having no rcuo kthread but CBs after scheduler starts is bad! */
  1831. if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
  1832. /* RCU callback enqueued before CPU first came online??? */
  1833. pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
  1834. cpu, rhp->func);
  1835. WARN_ON_ONCE(1);
  1836. }
  1837. return !!rhp;
  1838. }
  1839. /*
  1840. * Enqueue the specified string of rcu_head structures onto the specified
  1841. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1842. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1843. * counts are supplied by rhcount and rhcount_lazy.
  1844. *
  1845. * If warranted, also wake up the kthread servicing this CPUs queues.
  1846. */
  1847. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1848. struct rcu_head *rhp,
  1849. struct rcu_head **rhtp,
  1850. int rhcount, int rhcount_lazy,
  1851. unsigned long flags)
  1852. {
  1853. int len;
  1854. struct rcu_head **old_rhpp;
  1855. struct task_struct *t;
  1856. /* Enqueue the callback on the nocb list and update counts. */
  1857. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1858. ACCESS_ONCE(*old_rhpp) = rhp;
  1859. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1860. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1861. smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
  1862. /* If we are not being polled and there is a kthread, awaken it ... */
  1863. t = ACCESS_ONCE(rdp->nocb_kthread);
  1864. if (rcu_nocb_poll || !t) {
  1865. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1866. TPS("WakeNotPoll"));
  1867. return;
  1868. }
  1869. len = atomic_long_read(&rdp->nocb_q_count);
  1870. if (old_rhpp == &rdp->nocb_head) {
  1871. if (!irqs_disabled_flags(flags)) {
  1872. /* ... if queue was empty ... */
  1873. wake_nocb_leader(rdp, false);
  1874. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1875. TPS("WakeEmpty"));
  1876. } else {
  1877. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
  1878. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1879. TPS("WakeEmptyIsDeferred"));
  1880. }
  1881. rdp->qlen_last_fqs_check = 0;
  1882. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1883. /* ... or if many callbacks queued. */
  1884. if (!irqs_disabled_flags(flags)) {
  1885. wake_nocb_leader(rdp, true);
  1886. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1887. TPS("WakeOvf"));
  1888. } else {
  1889. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
  1890. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1891. TPS("WakeOvfIsDeferred"));
  1892. }
  1893. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1894. } else {
  1895. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1896. }
  1897. return;
  1898. }
  1899. /*
  1900. * This is a helper for __call_rcu(), which invokes this when the normal
  1901. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1902. * function returns failure back to __call_rcu(), which can complain
  1903. * appropriately.
  1904. *
  1905. * Otherwise, this function queues the callback where the corresponding
  1906. * "rcuo" kthread can find it.
  1907. */
  1908. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1909. bool lazy, unsigned long flags)
  1910. {
  1911. if (!rcu_is_nocb_cpu(rdp->cpu))
  1912. return false;
  1913. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1914. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1915. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1916. (unsigned long)rhp->func,
  1917. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1918. -atomic_long_read(&rdp->nocb_q_count));
  1919. else
  1920. trace_rcu_callback(rdp->rsp->name, rhp,
  1921. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1922. -atomic_long_read(&rdp->nocb_q_count));
  1923. /*
  1924. * If called from an extended quiescent state with interrupts
  1925. * disabled, invoke the RCU core in order to allow the idle-entry
  1926. * deferred-wakeup check to function.
  1927. */
  1928. if (irqs_disabled_flags(flags) &&
  1929. !rcu_is_watching() &&
  1930. cpu_online(smp_processor_id()))
  1931. invoke_rcu_core();
  1932. return true;
  1933. }
  1934. /*
  1935. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1936. * not a no-CBs CPU.
  1937. */
  1938. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1939. struct rcu_data *rdp,
  1940. unsigned long flags)
  1941. {
  1942. long ql = rsp->qlen;
  1943. long qll = rsp->qlen_lazy;
  1944. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1945. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1946. return false;
  1947. rsp->qlen = 0;
  1948. rsp->qlen_lazy = 0;
  1949. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1950. if (rsp->orphan_donelist != NULL) {
  1951. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1952. rsp->orphan_donetail, ql, qll, flags);
  1953. ql = qll = 0;
  1954. rsp->orphan_donelist = NULL;
  1955. rsp->orphan_donetail = &rsp->orphan_donelist;
  1956. }
  1957. if (rsp->orphan_nxtlist != NULL) {
  1958. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1959. rsp->orphan_nxttail, ql, qll, flags);
  1960. ql = qll = 0;
  1961. rsp->orphan_nxtlist = NULL;
  1962. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1963. }
  1964. return true;
  1965. }
  1966. /*
  1967. * If necessary, kick off a new grace period, and either way wait
  1968. * for a subsequent grace period to complete.
  1969. */
  1970. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1971. {
  1972. unsigned long c;
  1973. bool d;
  1974. unsigned long flags;
  1975. bool needwake;
  1976. struct rcu_node *rnp = rdp->mynode;
  1977. raw_spin_lock_irqsave(&rnp->lock, flags);
  1978. smp_mb__after_unlock_lock();
  1979. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1980. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1981. if (needwake)
  1982. rcu_gp_kthread_wake(rdp->rsp);
  1983. /*
  1984. * Wait for the grace period. Do so interruptibly to avoid messing
  1985. * up the load average.
  1986. */
  1987. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1988. for (;;) {
  1989. wait_event_interruptible(
  1990. rnp->nocb_gp_wq[c & 0x1],
  1991. (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
  1992. if (likely(d))
  1993. break;
  1994. WARN_ON(signal_pending(current));
  1995. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1996. }
  1997. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1998. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1999. }
  2000. /*
  2001. * Leaders come here to wait for additional callbacks to show up.
  2002. * This function does not return until callbacks appear.
  2003. */
  2004. static void nocb_leader_wait(struct rcu_data *my_rdp)
  2005. {
  2006. bool firsttime = true;
  2007. bool gotcbs;
  2008. struct rcu_data *rdp;
  2009. struct rcu_head **tail;
  2010. wait_again:
  2011. /* Wait for callbacks to appear. */
  2012. if (!rcu_nocb_poll) {
  2013. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  2014. wait_event_interruptible(my_rdp->nocb_wq,
  2015. !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
  2016. /* Memory barrier handled by smp_mb() calls below and repoll. */
  2017. } else if (firsttime) {
  2018. firsttime = false; /* Don't drown trace log with "Poll"! */
  2019. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  2020. }
  2021. /*
  2022. * Each pass through the following loop checks a follower for CBs.
  2023. * We are our own first follower. Any CBs found are moved to
  2024. * nocb_gp_head, where they await a grace period.
  2025. */
  2026. gotcbs = false;
  2027. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2028. rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
  2029. if (!rdp->nocb_gp_head)
  2030. continue; /* No CBs here, try next follower. */
  2031. /* Move callbacks to wait-for-GP list, which is empty. */
  2032. ACCESS_ONCE(rdp->nocb_head) = NULL;
  2033. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  2034. rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
  2035. rdp->nocb_gp_count_lazy =
  2036. atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
  2037. gotcbs = true;
  2038. }
  2039. /*
  2040. * If there were no callbacks, sleep a bit, rescan after a
  2041. * memory barrier, and go retry.
  2042. */
  2043. if (unlikely(!gotcbs)) {
  2044. if (!rcu_nocb_poll)
  2045. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  2046. "WokeEmpty");
  2047. WARN_ON(signal_pending(current));
  2048. schedule_timeout_interruptible(1);
  2049. /* Rescan in case we were a victim of memory ordering. */
  2050. my_rdp->nocb_leader_sleep = true;
  2051. smp_mb(); /* Ensure _sleep true before scan. */
  2052. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  2053. if (ACCESS_ONCE(rdp->nocb_head)) {
  2054. /* Found CB, so short-circuit next wait. */
  2055. my_rdp->nocb_leader_sleep = false;
  2056. break;
  2057. }
  2058. goto wait_again;
  2059. }
  2060. /* Wait for one grace period. */
  2061. rcu_nocb_wait_gp(my_rdp);
  2062. /*
  2063. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  2064. * We set it now, but recheck for new callbacks while
  2065. * traversing our follower list.
  2066. */
  2067. my_rdp->nocb_leader_sleep = true;
  2068. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  2069. /* Each pass through the following loop wakes a follower, if needed. */
  2070. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2071. if (ACCESS_ONCE(rdp->nocb_head))
  2072. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  2073. if (!rdp->nocb_gp_head)
  2074. continue; /* No CBs, so no need to wake follower. */
  2075. /* Append callbacks to follower's "done" list. */
  2076. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  2077. *tail = rdp->nocb_gp_head;
  2078. atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
  2079. atomic_long_add(rdp->nocb_gp_count_lazy,
  2080. &rdp->nocb_follower_count_lazy);
  2081. smp_mb__after_atomic(); /* Store *tail before wakeup. */
  2082. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  2083. /*
  2084. * List was empty, wake up the follower.
  2085. * Memory barriers supplied by atomic_long_add().
  2086. */
  2087. wake_up(&rdp->nocb_wq);
  2088. }
  2089. }
  2090. /* If we (the leader) don't have CBs, go wait some more. */
  2091. if (!my_rdp->nocb_follower_head)
  2092. goto wait_again;
  2093. }
  2094. /*
  2095. * Followers come here to wait for additional callbacks to show up.
  2096. * This function does not return until callbacks appear.
  2097. */
  2098. static void nocb_follower_wait(struct rcu_data *rdp)
  2099. {
  2100. bool firsttime = true;
  2101. for (;;) {
  2102. if (!rcu_nocb_poll) {
  2103. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2104. "FollowerSleep");
  2105. wait_event_interruptible(rdp->nocb_wq,
  2106. ACCESS_ONCE(rdp->nocb_follower_head));
  2107. } else if (firsttime) {
  2108. /* Don't drown trace log with "Poll"! */
  2109. firsttime = false;
  2110. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  2111. }
  2112. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  2113. /* ^^^ Ensure CB invocation follows _head test. */
  2114. return;
  2115. }
  2116. if (!rcu_nocb_poll)
  2117. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2118. "WokeEmpty");
  2119. WARN_ON(signal_pending(current));
  2120. schedule_timeout_interruptible(1);
  2121. }
  2122. }
  2123. /*
  2124. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  2125. * callbacks queued by the corresponding no-CBs CPU, however, there is
  2126. * an optional leader-follower relationship so that the grace-period
  2127. * kthreads don't have to do quite so many wakeups.
  2128. */
  2129. static int rcu_nocb_kthread(void *arg)
  2130. {
  2131. int c, cl;
  2132. struct rcu_head *list;
  2133. struct rcu_head *next;
  2134. struct rcu_head **tail;
  2135. struct rcu_data *rdp = arg;
  2136. /* Each pass through this loop invokes one batch of callbacks */
  2137. for (;;) {
  2138. /* Wait for callbacks. */
  2139. if (rdp->nocb_leader == rdp)
  2140. nocb_leader_wait(rdp);
  2141. else
  2142. nocb_follower_wait(rdp);
  2143. /* Pull the ready-to-invoke callbacks onto local list. */
  2144. list = ACCESS_ONCE(rdp->nocb_follower_head);
  2145. BUG_ON(!list);
  2146. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  2147. ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
  2148. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  2149. c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
  2150. cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
  2151. rdp->nocb_p_count += c;
  2152. rdp->nocb_p_count_lazy += cl;
  2153. /* Each pass through the following loop invokes a callback. */
  2154. trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
  2155. c = cl = 0;
  2156. while (list) {
  2157. next = list->next;
  2158. /* Wait for enqueuing to complete, if needed. */
  2159. while (next == NULL && &list->next != tail) {
  2160. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2161. TPS("WaitQueue"));
  2162. schedule_timeout_interruptible(1);
  2163. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2164. TPS("WokeQueue"));
  2165. next = list->next;
  2166. }
  2167. debug_rcu_head_unqueue(list);
  2168. local_bh_disable();
  2169. if (__rcu_reclaim(rdp->rsp->name, list))
  2170. cl++;
  2171. c++;
  2172. local_bh_enable();
  2173. list = next;
  2174. }
  2175. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  2176. ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
  2177. ACCESS_ONCE(rdp->nocb_p_count_lazy) =
  2178. rdp->nocb_p_count_lazy - cl;
  2179. rdp->n_nocbs_invoked += c;
  2180. }
  2181. return 0;
  2182. }
  2183. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  2184. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2185. {
  2186. return ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2187. }
  2188. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  2189. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2190. {
  2191. int ndw;
  2192. if (!rcu_nocb_need_deferred_wakeup(rdp))
  2193. return;
  2194. ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2195. ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
  2196. wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
  2197. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
  2198. }
  2199. void __init rcu_init_nohz(void)
  2200. {
  2201. int cpu;
  2202. bool need_rcu_nocb_mask = true;
  2203. struct rcu_state *rsp;
  2204. #ifdef CONFIG_RCU_NOCB_CPU_NONE
  2205. need_rcu_nocb_mask = false;
  2206. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  2207. #if defined(CONFIG_NO_HZ_FULL)
  2208. if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
  2209. need_rcu_nocb_mask = true;
  2210. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2211. if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
  2212. if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
  2213. pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
  2214. return;
  2215. }
  2216. have_rcu_nocb_mask = true;
  2217. }
  2218. if (!have_rcu_nocb_mask)
  2219. return;
  2220. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  2221. pr_info("\tOffload RCU callbacks from CPU 0\n");
  2222. cpumask_set_cpu(0, rcu_nocb_mask);
  2223. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  2224. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  2225. pr_info("\tOffload RCU callbacks from all CPUs\n");
  2226. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  2227. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  2228. #if defined(CONFIG_NO_HZ_FULL)
  2229. if (tick_nohz_full_running)
  2230. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2231. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2232. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  2233. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  2234. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  2235. rcu_nocb_mask);
  2236. }
  2237. cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
  2238. pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
  2239. if (rcu_nocb_poll)
  2240. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  2241. for_each_rcu_flavor(rsp) {
  2242. for_each_cpu(cpu, rcu_nocb_mask) {
  2243. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2244. /*
  2245. * If there are early callbacks, they will need
  2246. * to be moved to the nocb lists.
  2247. */
  2248. WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
  2249. &rdp->nxtlist &&
  2250. rdp->nxttail[RCU_NEXT_TAIL] != NULL);
  2251. init_nocb_callback_list(rdp);
  2252. }
  2253. rcu_organize_nocb_kthreads(rsp);
  2254. }
  2255. }
  2256. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2257. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2258. {
  2259. rdp->nocb_tail = &rdp->nocb_head;
  2260. init_waitqueue_head(&rdp->nocb_wq);
  2261. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2262. }
  2263. /*
  2264. * If the specified CPU is a no-CBs CPU that does not already have its
  2265. * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
  2266. * brought online out of order, this can require re-organizing the
  2267. * leader-follower relationships.
  2268. */
  2269. static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
  2270. {
  2271. struct rcu_data *rdp;
  2272. struct rcu_data *rdp_last;
  2273. struct rcu_data *rdp_old_leader;
  2274. struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
  2275. struct task_struct *t;
  2276. /*
  2277. * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
  2278. * then nothing to do.
  2279. */
  2280. if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
  2281. return;
  2282. /* If we didn't spawn the leader first, reorganize! */
  2283. rdp_old_leader = rdp_spawn->nocb_leader;
  2284. if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
  2285. rdp_last = NULL;
  2286. rdp = rdp_old_leader;
  2287. do {
  2288. rdp->nocb_leader = rdp_spawn;
  2289. if (rdp_last && rdp != rdp_spawn)
  2290. rdp_last->nocb_next_follower = rdp;
  2291. if (rdp == rdp_spawn) {
  2292. rdp = rdp->nocb_next_follower;
  2293. } else {
  2294. rdp_last = rdp;
  2295. rdp = rdp->nocb_next_follower;
  2296. rdp_last->nocb_next_follower = NULL;
  2297. }
  2298. } while (rdp);
  2299. rdp_spawn->nocb_next_follower = rdp_old_leader;
  2300. }
  2301. /* Spawn the kthread for this CPU and RCU flavor. */
  2302. t = kthread_run(rcu_nocb_kthread, rdp_spawn,
  2303. "rcuo%c/%d", rsp->abbr, cpu);
  2304. BUG_ON(IS_ERR(t));
  2305. ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
  2306. }
  2307. /*
  2308. * If the specified CPU is a no-CBs CPU that does not already have its
  2309. * rcuo kthreads, spawn them.
  2310. */
  2311. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2312. {
  2313. struct rcu_state *rsp;
  2314. if (rcu_scheduler_fully_active)
  2315. for_each_rcu_flavor(rsp)
  2316. rcu_spawn_one_nocb_kthread(rsp, cpu);
  2317. }
  2318. /*
  2319. * Once the scheduler is running, spawn rcuo kthreads for all online
  2320. * no-CBs CPUs. This assumes that the early_initcall()s happen before
  2321. * non-boot CPUs come online -- if this changes, we will need to add
  2322. * some mutual exclusion.
  2323. */
  2324. static void __init rcu_spawn_nocb_kthreads(void)
  2325. {
  2326. int cpu;
  2327. for_each_online_cpu(cpu)
  2328. rcu_spawn_all_nocb_kthreads(cpu);
  2329. }
  2330. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2331. static int rcu_nocb_leader_stride = -1;
  2332. module_param(rcu_nocb_leader_stride, int, 0444);
  2333. /*
  2334. * Initialize leader-follower relationships for all no-CBs CPU.
  2335. */
  2336. static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
  2337. {
  2338. int cpu;
  2339. int ls = rcu_nocb_leader_stride;
  2340. int nl = 0; /* Next leader. */
  2341. struct rcu_data *rdp;
  2342. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2343. struct rcu_data *rdp_prev = NULL;
  2344. if (!have_rcu_nocb_mask)
  2345. return;
  2346. if (ls == -1) {
  2347. ls = int_sqrt(nr_cpu_ids);
  2348. rcu_nocb_leader_stride = ls;
  2349. }
  2350. /*
  2351. * Each pass through this loop sets up one rcu_data structure and
  2352. * spawns one rcu_nocb_kthread().
  2353. */
  2354. for_each_cpu(cpu, rcu_nocb_mask) {
  2355. rdp = per_cpu_ptr(rsp->rda, cpu);
  2356. if (rdp->cpu >= nl) {
  2357. /* New leader, set up for followers & next leader. */
  2358. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2359. rdp->nocb_leader = rdp;
  2360. rdp_leader = rdp;
  2361. } else {
  2362. /* Another follower, link to previous leader. */
  2363. rdp->nocb_leader = rdp_leader;
  2364. rdp_prev->nocb_next_follower = rdp;
  2365. }
  2366. rdp_prev = rdp;
  2367. }
  2368. }
  2369. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2370. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2371. {
  2372. if (!rcu_is_nocb_cpu(rdp->cpu))
  2373. return false;
  2374. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2375. return true;
  2376. }
  2377. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2378. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  2379. {
  2380. WARN_ON_ONCE(1); /* Should be dead code. */
  2381. return false;
  2382. }
  2383. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  2384. {
  2385. }
  2386. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2387. {
  2388. }
  2389. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2390. {
  2391. }
  2392. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2393. bool lazy, unsigned long flags)
  2394. {
  2395. return false;
  2396. }
  2397. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2398. struct rcu_data *rdp,
  2399. unsigned long flags)
  2400. {
  2401. return false;
  2402. }
  2403. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2404. {
  2405. }
  2406. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2407. {
  2408. return false;
  2409. }
  2410. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2411. {
  2412. }
  2413. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2414. {
  2415. }
  2416. static void __init rcu_spawn_nocb_kthreads(void)
  2417. {
  2418. }
  2419. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2420. {
  2421. return false;
  2422. }
  2423. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2424. /*
  2425. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2426. * arbitrarily long period of time with the scheduling-clock tick turned
  2427. * off. RCU will be paying attention to this CPU because it is in the
  2428. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2429. * machine because the scheduling-clock tick has been disabled. Therefore,
  2430. * if an adaptive-ticks CPU is failing to respond to the current grace
  2431. * period and has not be idle from an RCU perspective, kick it.
  2432. */
  2433. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2434. {
  2435. #ifdef CONFIG_NO_HZ_FULL
  2436. if (tick_nohz_full_cpu(cpu))
  2437. smp_send_reschedule(cpu);
  2438. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2439. }
  2440. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2441. static int full_sysidle_state; /* Current system-idle state. */
  2442. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2443. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2444. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2445. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2446. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2447. /*
  2448. * Invoked to note exit from irq or task transition to idle. Note that
  2449. * usermode execution does -not- count as idle here! After all, we want
  2450. * to detect full-system idle states, not RCU quiescent states and grace
  2451. * periods. The caller must have disabled interrupts.
  2452. */
  2453. static void rcu_sysidle_enter(int irq)
  2454. {
  2455. unsigned long j;
  2456. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2457. /* If there are no nohz_full= CPUs, no need to track this. */
  2458. if (!tick_nohz_full_enabled())
  2459. return;
  2460. /* Adjust nesting, check for fully idle. */
  2461. if (irq) {
  2462. rdtp->dynticks_idle_nesting--;
  2463. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2464. if (rdtp->dynticks_idle_nesting != 0)
  2465. return; /* Still not fully idle. */
  2466. } else {
  2467. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2468. DYNTICK_TASK_NEST_VALUE) {
  2469. rdtp->dynticks_idle_nesting = 0;
  2470. } else {
  2471. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2472. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2473. return; /* Still not fully idle. */
  2474. }
  2475. }
  2476. /* Record start of fully idle period. */
  2477. j = jiffies;
  2478. ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
  2479. smp_mb__before_atomic();
  2480. atomic_inc(&rdtp->dynticks_idle);
  2481. smp_mb__after_atomic();
  2482. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2483. }
  2484. /*
  2485. * Unconditionally force exit from full system-idle state. This is
  2486. * invoked when a normal CPU exits idle, but must be called separately
  2487. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2488. * is that the timekeeping CPU is permitted to take scheduling-clock
  2489. * interrupts while the system is in system-idle state, and of course
  2490. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2491. * interrupt from any other type of interrupt.
  2492. */
  2493. void rcu_sysidle_force_exit(void)
  2494. {
  2495. int oldstate = ACCESS_ONCE(full_sysidle_state);
  2496. int newoldstate;
  2497. /*
  2498. * Each pass through the following loop attempts to exit full
  2499. * system-idle state. If contention proves to be a problem,
  2500. * a trylock-based contention tree could be used here.
  2501. */
  2502. while (oldstate > RCU_SYSIDLE_SHORT) {
  2503. newoldstate = cmpxchg(&full_sysidle_state,
  2504. oldstate, RCU_SYSIDLE_NOT);
  2505. if (oldstate == newoldstate &&
  2506. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2507. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2508. return; /* We cleared it, done! */
  2509. }
  2510. oldstate = newoldstate;
  2511. }
  2512. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2513. }
  2514. /*
  2515. * Invoked to note entry to irq or task transition from idle. Note that
  2516. * usermode execution does -not- count as idle here! The caller must
  2517. * have disabled interrupts.
  2518. */
  2519. static void rcu_sysidle_exit(int irq)
  2520. {
  2521. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2522. /* If there are no nohz_full= CPUs, no need to track this. */
  2523. if (!tick_nohz_full_enabled())
  2524. return;
  2525. /* Adjust nesting, check for already non-idle. */
  2526. if (irq) {
  2527. rdtp->dynticks_idle_nesting++;
  2528. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2529. if (rdtp->dynticks_idle_nesting != 1)
  2530. return; /* Already non-idle. */
  2531. } else {
  2532. /*
  2533. * Allow for irq misnesting. Yes, it really is possible
  2534. * to enter an irq handler then never leave it, and maybe
  2535. * also vice versa. Handle both possibilities.
  2536. */
  2537. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2538. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2539. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2540. return; /* Already non-idle. */
  2541. } else {
  2542. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2543. }
  2544. }
  2545. /* Record end of idle period. */
  2546. smp_mb__before_atomic();
  2547. atomic_inc(&rdtp->dynticks_idle);
  2548. smp_mb__after_atomic();
  2549. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2550. /*
  2551. * If we are the timekeeping CPU, we are permitted to be non-idle
  2552. * during a system-idle state. This must be the case, because
  2553. * the timekeeping CPU has to take scheduling-clock interrupts
  2554. * during the time that the system is transitioning to full
  2555. * system-idle state. This means that the timekeeping CPU must
  2556. * invoke rcu_sysidle_force_exit() directly if it does anything
  2557. * more than take a scheduling-clock interrupt.
  2558. */
  2559. if (smp_processor_id() == tick_do_timer_cpu)
  2560. return;
  2561. /* Update system-idle state: We are clearly no longer fully idle! */
  2562. rcu_sysidle_force_exit();
  2563. }
  2564. /*
  2565. * Check to see if the current CPU is idle. Note that usermode execution
  2566. * does not count as idle. The caller must have disabled interrupts.
  2567. */
  2568. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2569. unsigned long *maxj)
  2570. {
  2571. int cur;
  2572. unsigned long j;
  2573. struct rcu_dynticks *rdtp = rdp->dynticks;
  2574. /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
  2575. if (!tick_nohz_full_enabled())
  2576. return;
  2577. /*
  2578. * If some other CPU has already reported non-idle, if this is
  2579. * not the flavor of RCU that tracks sysidle state, or if this
  2580. * is an offline or the timekeeping CPU, nothing to do.
  2581. */
  2582. if (!*isidle || rdp->rsp != rcu_state_p ||
  2583. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2584. return;
  2585. if (rcu_gp_in_progress(rdp->rsp))
  2586. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2587. /* Pick up current idle and NMI-nesting counter and check. */
  2588. cur = atomic_read(&rdtp->dynticks_idle);
  2589. if (cur & 0x1) {
  2590. *isidle = false; /* We are not idle! */
  2591. return;
  2592. }
  2593. smp_mb(); /* Read counters before timestamps. */
  2594. /* Pick up timestamps. */
  2595. j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
  2596. /* If this CPU entered idle more recently, update maxj timestamp. */
  2597. if (ULONG_CMP_LT(*maxj, j))
  2598. *maxj = j;
  2599. }
  2600. /*
  2601. * Is this the flavor of RCU that is handling full-system idle?
  2602. */
  2603. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2604. {
  2605. return rsp == rcu_state_p;
  2606. }
  2607. /*
  2608. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2609. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2610. * systems more time to transition to full-idle state in order to
  2611. * avoid the cache thrashing that otherwise occur on the state variable.
  2612. * Really small systems (less than a couple of tens of CPUs) should
  2613. * instead use a single global atomically incremented counter, and later
  2614. * versions of this will automatically reconfigure themselves accordingly.
  2615. */
  2616. static unsigned long rcu_sysidle_delay(void)
  2617. {
  2618. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2619. return 0;
  2620. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2621. }
  2622. /*
  2623. * Advance the full-system-idle state. This is invoked when all of
  2624. * the non-timekeeping CPUs are idle.
  2625. */
  2626. static void rcu_sysidle(unsigned long j)
  2627. {
  2628. /* Check the current state. */
  2629. switch (ACCESS_ONCE(full_sysidle_state)) {
  2630. case RCU_SYSIDLE_NOT:
  2631. /* First time all are idle, so note a short idle period. */
  2632. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
  2633. break;
  2634. case RCU_SYSIDLE_SHORT:
  2635. /*
  2636. * Idle for a bit, time to advance to next state?
  2637. * cmpxchg failure means race with non-idle, let them win.
  2638. */
  2639. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2640. (void)cmpxchg(&full_sysidle_state,
  2641. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2642. break;
  2643. case RCU_SYSIDLE_LONG:
  2644. /*
  2645. * Do an additional check pass before advancing to full.
  2646. * cmpxchg failure means race with non-idle, let them win.
  2647. */
  2648. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2649. (void)cmpxchg(&full_sysidle_state,
  2650. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2651. break;
  2652. default:
  2653. break;
  2654. }
  2655. }
  2656. /*
  2657. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2658. * back to the beginning.
  2659. */
  2660. static void rcu_sysidle_cancel(void)
  2661. {
  2662. smp_mb();
  2663. if (full_sysidle_state > RCU_SYSIDLE_SHORT)
  2664. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
  2665. }
  2666. /*
  2667. * Update the sysidle state based on the results of a force-quiescent-state
  2668. * scan of the CPUs' dyntick-idle state.
  2669. */
  2670. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2671. unsigned long maxj, bool gpkt)
  2672. {
  2673. if (rsp != rcu_state_p)
  2674. return; /* Wrong flavor, ignore. */
  2675. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2676. return; /* Running state machine from timekeeping CPU. */
  2677. if (isidle)
  2678. rcu_sysidle(maxj); /* More idle! */
  2679. else
  2680. rcu_sysidle_cancel(); /* Idle is over. */
  2681. }
  2682. /*
  2683. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2684. * kthread's context.
  2685. */
  2686. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2687. unsigned long maxj)
  2688. {
  2689. /* If there are no nohz_full= CPUs, no need to track this. */
  2690. if (!tick_nohz_full_enabled())
  2691. return;
  2692. rcu_sysidle_report(rsp, isidle, maxj, true);
  2693. }
  2694. /* Callback and function for forcing an RCU grace period. */
  2695. struct rcu_sysidle_head {
  2696. struct rcu_head rh;
  2697. int inuse;
  2698. };
  2699. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2700. {
  2701. struct rcu_sysidle_head *rshp;
  2702. /*
  2703. * The following memory barrier is needed to replace the
  2704. * memory barriers that would normally be in the memory
  2705. * allocator.
  2706. */
  2707. smp_mb(); /* grace period precedes setting inuse. */
  2708. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2709. ACCESS_ONCE(rshp->inuse) = 0;
  2710. }
  2711. /*
  2712. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2713. * The caller must have disabled interrupts. This is not intended to be
  2714. * called unless tick_nohz_full_enabled().
  2715. */
  2716. bool rcu_sys_is_idle(void)
  2717. {
  2718. static struct rcu_sysidle_head rsh;
  2719. int rss = ACCESS_ONCE(full_sysidle_state);
  2720. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2721. return false;
  2722. /* Handle small-system case by doing a full scan of CPUs. */
  2723. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2724. int oldrss = rss - 1;
  2725. /*
  2726. * One pass to advance to each state up to _FULL.
  2727. * Give up if any pass fails to advance the state.
  2728. */
  2729. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2730. int cpu;
  2731. bool isidle = true;
  2732. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2733. struct rcu_data *rdp;
  2734. /* Scan all the CPUs looking for nonidle CPUs. */
  2735. for_each_possible_cpu(cpu) {
  2736. rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  2737. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2738. if (!isidle)
  2739. break;
  2740. }
  2741. rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
  2742. oldrss = rss;
  2743. rss = ACCESS_ONCE(full_sysidle_state);
  2744. }
  2745. }
  2746. /* If this is the first observation of an idle period, record it. */
  2747. if (rss == RCU_SYSIDLE_FULL) {
  2748. rss = cmpxchg(&full_sysidle_state,
  2749. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2750. return rss == RCU_SYSIDLE_FULL;
  2751. }
  2752. smp_mb(); /* ensure rss load happens before later caller actions. */
  2753. /* If already fully idle, tell the caller (in case of races). */
  2754. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2755. return true;
  2756. /*
  2757. * If we aren't there yet, and a grace period is not in flight,
  2758. * initiate a grace period. Either way, tell the caller that
  2759. * we are not there yet. We use an xchg() rather than an assignment
  2760. * to make up for the memory barriers that would otherwise be
  2761. * provided by the memory allocator.
  2762. */
  2763. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2764. !rcu_gp_in_progress(rcu_state_p) &&
  2765. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2766. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2767. return false;
  2768. }
  2769. /*
  2770. * Initialize dynticks sysidle state for CPUs coming online.
  2771. */
  2772. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2773. {
  2774. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2775. }
  2776. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2777. static void rcu_sysidle_enter(int irq)
  2778. {
  2779. }
  2780. static void rcu_sysidle_exit(int irq)
  2781. {
  2782. }
  2783. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2784. unsigned long *maxj)
  2785. {
  2786. }
  2787. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2788. {
  2789. return false;
  2790. }
  2791. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2792. unsigned long maxj)
  2793. {
  2794. }
  2795. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2796. {
  2797. }
  2798. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2799. /*
  2800. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2801. * grace-period kthread will do force_quiescent_state() processing?
  2802. * The idea is to avoid waking up RCU core processing on such a
  2803. * CPU unless the grace period has extended for too long.
  2804. *
  2805. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2806. * CONFIG_RCU_NOCB_CPU CPUs.
  2807. */
  2808. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2809. {
  2810. #ifdef CONFIG_NO_HZ_FULL
  2811. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2812. (!rcu_gp_in_progress(rsp) ||
  2813. ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
  2814. return 1;
  2815. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2816. return 0;
  2817. }
  2818. /*
  2819. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2820. * timekeeping CPU.
  2821. */
  2822. static void rcu_bind_gp_kthread(void)
  2823. {
  2824. int __maybe_unused cpu;
  2825. if (!tick_nohz_full_enabled())
  2826. return;
  2827. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2828. cpu = tick_do_timer_cpu;
  2829. if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
  2830. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2831. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2832. if (!is_housekeeping_cpu(raw_smp_processor_id()))
  2833. housekeeping_affine(current);
  2834. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2835. }
  2836. /* Record the current task on dyntick-idle entry. */
  2837. static void rcu_dynticks_task_enter(void)
  2838. {
  2839. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2840. ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
  2841. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2842. }
  2843. /* Record no current task on dyntick-idle exit. */
  2844. static void rcu_dynticks_task_exit(void)
  2845. {
  2846. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2847. ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
  2848. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2849. }