mutex.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977
  1. /*
  2. * kernel/locking/mutex.c
  3. *
  4. * Mutexes: blocking mutual exclusion locks
  5. *
  6. * Started by Ingo Molnar:
  7. *
  8. * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9. *
  10. * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11. * David Howells for suggestions and improvements.
  12. *
  13. * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14. * from the -rt tree, where it was originally implemented for rtmutexes
  15. * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16. * and Sven Dietrich.
  17. *
  18. * Also see Documentation/locking/mutex-design.txt.
  19. */
  20. #include <linux/mutex.h>
  21. #include <linux/ww_mutex.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/rt.h>
  24. #include <linux/export.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/debug_locks.h>
  28. #include "mcs_spinlock.h"
  29. /*
  30. * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  31. * which forces all calls into the slowpath:
  32. */
  33. #ifdef CONFIG_DEBUG_MUTEXES
  34. # include "mutex-debug.h"
  35. # include <asm-generic/mutex-null.h>
  36. /*
  37. * Must be 0 for the debug case so we do not do the unlock outside of the
  38. * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
  39. * case.
  40. */
  41. # undef __mutex_slowpath_needs_to_unlock
  42. # define __mutex_slowpath_needs_to_unlock() 0
  43. #else
  44. # include "mutex.h"
  45. # include <asm/mutex.h>
  46. #endif
  47. void
  48. __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  49. {
  50. atomic_set(&lock->count, 1);
  51. spin_lock_init(&lock->wait_lock);
  52. INIT_LIST_HEAD(&lock->wait_list);
  53. mutex_clear_owner(lock);
  54. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  55. osq_lock_init(&lock->osq);
  56. #endif
  57. debug_mutex_init(lock, name, key);
  58. }
  59. EXPORT_SYMBOL(__mutex_init);
  60. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  61. /*
  62. * We split the mutex lock/unlock logic into separate fastpath and
  63. * slowpath functions, to reduce the register pressure on the fastpath.
  64. * We also put the fastpath first in the kernel image, to make sure the
  65. * branch is predicted by the CPU as default-untaken.
  66. */
  67. __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
  68. /**
  69. * mutex_lock - acquire the mutex
  70. * @lock: the mutex to be acquired
  71. *
  72. * Lock the mutex exclusively for this task. If the mutex is not
  73. * available right now, it will sleep until it can get it.
  74. *
  75. * The mutex must later on be released by the same task that
  76. * acquired it. Recursive locking is not allowed. The task
  77. * may not exit without first unlocking the mutex. Also, kernel
  78. * memory where the mutex resides mutex must not be freed with
  79. * the mutex still locked. The mutex must first be initialized
  80. * (or statically defined) before it can be locked. memset()-ing
  81. * the mutex to 0 is not allowed.
  82. *
  83. * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  84. * checks that will enforce the restrictions and will also do
  85. * deadlock debugging. )
  86. *
  87. * This function is similar to (but not equivalent to) down().
  88. */
  89. void __sched mutex_lock(struct mutex *lock)
  90. {
  91. might_sleep();
  92. /*
  93. * The locking fastpath is the 1->0 transition from
  94. * 'unlocked' into 'locked' state.
  95. */
  96. __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  97. mutex_set_owner(lock);
  98. }
  99. EXPORT_SYMBOL(mutex_lock);
  100. #endif
  101. static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
  102. struct ww_acquire_ctx *ww_ctx)
  103. {
  104. #ifdef CONFIG_DEBUG_MUTEXES
  105. /*
  106. * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
  107. * but released with a normal mutex_unlock in this call.
  108. *
  109. * This should never happen, always use ww_mutex_unlock.
  110. */
  111. DEBUG_LOCKS_WARN_ON(ww->ctx);
  112. /*
  113. * Not quite done after calling ww_acquire_done() ?
  114. */
  115. DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
  116. if (ww_ctx->contending_lock) {
  117. /*
  118. * After -EDEADLK you tried to
  119. * acquire a different ww_mutex? Bad!
  120. */
  121. DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
  122. /*
  123. * You called ww_mutex_lock after receiving -EDEADLK,
  124. * but 'forgot' to unlock everything else first?
  125. */
  126. DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
  127. ww_ctx->contending_lock = NULL;
  128. }
  129. /*
  130. * Naughty, using a different class will lead to undefined behavior!
  131. */
  132. DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
  133. #endif
  134. ww_ctx->acquired++;
  135. }
  136. /*
  137. * after acquiring lock with fastpath or when we lost out in contested
  138. * slowpath, set ctx and wake up any waiters so they can recheck.
  139. *
  140. * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
  141. * as the fastpath and opportunistic spinning are disabled in that case.
  142. */
  143. static __always_inline void
  144. ww_mutex_set_context_fastpath(struct ww_mutex *lock,
  145. struct ww_acquire_ctx *ctx)
  146. {
  147. unsigned long flags;
  148. struct mutex_waiter *cur;
  149. ww_mutex_lock_acquired(lock, ctx);
  150. lock->ctx = ctx;
  151. /*
  152. * The lock->ctx update should be visible on all cores before
  153. * the atomic read is done, otherwise contended waiters might be
  154. * missed. The contended waiters will either see ww_ctx == NULL
  155. * and keep spinning, or it will acquire wait_lock, add itself
  156. * to waiter list and sleep.
  157. */
  158. smp_mb(); /* ^^^ */
  159. /*
  160. * Check if lock is contended, if not there is nobody to wake up
  161. */
  162. if (likely(atomic_read(&lock->base.count) == 0))
  163. return;
  164. /*
  165. * Uh oh, we raced in fastpath, wake up everyone in this case,
  166. * so they can see the new lock->ctx.
  167. */
  168. spin_lock_mutex(&lock->base.wait_lock, flags);
  169. list_for_each_entry(cur, &lock->base.wait_list, list) {
  170. debug_mutex_wake_waiter(&lock->base, cur);
  171. wake_up_process(cur->task);
  172. }
  173. spin_unlock_mutex(&lock->base.wait_lock, flags);
  174. }
  175. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  176. /*
  177. * In order to avoid a stampede of mutex spinners from acquiring the mutex
  178. * more or less simultaneously, the spinners need to acquire a MCS lock
  179. * first before spinning on the owner field.
  180. *
  181. */
  182. /*
  183. * Mutex spinning code migrated from kernel/sched/core.c
  184. */
  185. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  186. {
  187. if (lock->owner != owner)
  188. return false;
  189. /*
  190. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  191. * lock->owner still matches owner, if that fails, owner might
  192. * point to free()d memory, if it still matches, the rcu_read_lock()
  193. * ensures the memory stays valid.
  194. */
  195. barrier();
  196. return owner->on_cpu;
  197. }
  198. /*
  199. * Look out! "owner" is an entirely speculative pointer
  200. * access and not reliable.
  201. */
  202. static noinline
  203. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  204. {
  205. rcu_read_lock();
  206. while (owner_running(lock, owner)) {
  207. if (need_resched())
  208. break;
  209. cpu_relax_lowlatency();
  210. }
  211. rcu_read_unlock();
  212. /*
  213. * We break out the loop above on need_resched() and when the
  214. * owner changed, which is a sign for heavy contention. Return
  215. * success only when lock->owner is NULL.
  216. */
  217. return lock->owner == NULL;
  218. }
  219. /*
  220. * Initial check for entering the mutex spinning loop
  221. */
  222. static inline int mutex_can_spin_on_owner(struct mutex *lock)
  223. {
  224. struct task_struct *owner;
  225. int retval = 1;
  226. if (need_resched())
  227. return 0;
  228. rcu_read_lock();
  229. owner = ACCESS_ONCE(lock->owner);
  230. if (owner)
  231. retval = owner->on_cpu;
  232. rcu_read_unlock();
  233. /*
  234. * if lock->owner is not set, the mutex owner may have just acquired
  235. * it and not set the owner yet or the mutex has been released.
  236. */
  237. return retval;
  238. }
  239. /*
  240. * Atomically try to take the lock when it is available
  241. */
  242. static inline bool mutex_try_to_acquire(struct mutex *lock)
  243. {
  244. return !mutex_is_locked(lock) &&
  245. (atomic_cmpxchg(&lock->count, 1, 0) == 1);
  246. }
  247. /*
  248. * Optimistic spinning.
  249. *
  250. * We try to spin for acquisition when we find that the lock owner
  251. * is currently running on a (different) CPU and while we don't
  252. * need to reschedule. The rationale is that if the lock owner is
  253. * running, it is likely to release the lock soon.
  254. *
  255. * Since this needs the lock owner, and this mutex implementation
  256. * doesn't track the owner atomically in the lock field, we need to
  257. * track it non-atomically.
  258. *
  259. * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
  260. * to serialize everything.
  261. *
  262. * The mutex spinners are queued up using MCS lock so that only one
  263. * spinner can compete for the mutex. However, if mutex spinning isn't
  264. * going to happen, there is no point in going through the lock/unlock
  265. * overhead.
  266. *
  267. * Returns true when the lock was taken, otherwise false, indicating
  268. * that we need to jump to the slowpath and sleep.
  269. */
  270. static bool mutex_optimistic_spin(struct mutex *lock,
  271. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  272. {
  273. struct task_struct *task = current;
  274. if (!mutex_can_spin_on_owner(lock))
  275. goto done;
  276. if (!osq_lock(&lock->osq))
  277. goto done;
  278. while (true) {
  279. struct task_struct *owner;
  280. if (use_ww_ctx && ww_ctx->acquired > 0) {
  281. struct ww_mutex *ww;
  282. ww = container_of(lock, struct ww_mutex, base);
  283. /*
  284. * If ww->ctx is set the contents are undefined, only
  285. * by acquiring wait_lock there is a guarantee that
  286. * they are not invalid when reading.
  287. *
  288. * As such, when deadlock detection needs to be
  289. * performed the optimistic spinning cannot be done.
  290. */
  291. if (ACCESS_ONCE(ww->ctx))
  292. break;
  293. }
  294. /*
  295. * If there's an owner, wait for it to either
  296. * release the lock or go to sleep.
  297. */
  298. owner = ACCESS_ONCE(lock->owner);
  299. if (owner && !mutex_spin_on_owner(lock, owner))
  300. break;
  301. /* Try to acquire the mutex if it is unlocked. */
  302. if (mutex_try_to_acquire(lock)) {
  303. lock_acquired(&lock->dep_map, ip);
  304. if (use_ww_ctx) {
  305. struct ww_mutex *ww;
  306. ww = container_of(lock, struct ww_mutex, base);
  307. ww_mutex_set_context_fastpath(ww, ww_ctx);
  308. }
  309. mutex_set_owner(lock);
  310. osq_unlock(&lock->osq);
  311. return true;
  312. }
  313. /*
  314. * When there's no owner, we might have preempted between the
  315. * owner acquiring the lock and setting the owner field. If
  316. * we're an RT task that will live-lock because we won't let
  317. * the owner complete.
  318. */
  319. if (!owner && (need_resched() || rt_task(task)))
  320. break;
  321. /*
  322. * The cpu_relax() call is a compiler barrier which forces
  323. * everything in this loop to be re-loaded. We don't need
  324. * memory barriers as we'll eventually observe the right
  325. * values at the cost of a few extra spins.
  326. */
  327. cpu_relax_lowlatency();
  328. }
  329. osq_unlock(&lock->osq);
  330. done:
  331. /*
  332. * If we fell out of the spin path because of need_resched(),
  333. * reschedule now, before we try-lock the mutex. This avoids getting
  334. * scheduled out right after we obtained the mutex.
  335. */
  336. if (need_resched()) {
  337. /*
  338. * We _should_ have TASK_RUNNING here, but just in case
  339. * we do not, make it so, otherwise we might get stuck.
  340. */
  341. __set_current_state(TASK_RUNNING);
  342. schedule_preempt_disabled();
  343. }
  344. return false;
  345. }
  346. #else
  347. static bool mutex_optimistic_spin(struct mutex *lock,
  348. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  349. {
  350. return false;
  351. }
  352. #endif
  353. __visible __used noinline
  354. void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  355. /**
  356. * mutex_unlock - release the mutex
  357. * @lock: the mutex to be released
  358. *
  359. * Unlock a mutex that has been locked by this task previously.
  360. *
  361. * This function must not be used in interrupt context. Unlocking
  362. * of a not locked mutex is not allowed.
  363. *
  364. * This function is similar to (but not equivalent to) up().
  365. */
  366. void __sched mutex_unlock(struct mutex *lock)
  367. {
  368. /*
  369. * The unlocking fastpath is the 0->1 transition from 'locked'
  370. * into 'unlocked' state:
  371. */
  372. #ifndef CONFIG_DEBUG_MUTEXES
  373. /*
  374. * When debugging is enabled we must not clear the owner before time,
  375. * the slow path will always be taken, and that clears the owner field
  376. * after verifying that it was indeed current.
  377. */
  378. mutex_clear_owner(lock);
  379. #endif
  380. __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
  381. }
  382. EXPORT_SYMBOL(mutex_unlock);
  383. /**
  384. * ww_mutex_unlock - release the w/w mutex
  385. * @lock: the mutex to be released
  386. *
  387. * Unlock a mutex that has been locked by this task previously with any of the
  388. * ww_mutex_lock* functions (with or without an acquire context). It is
  389. * forbidden to release the locks after releasing the acquire context.
  390. *
  391. * This function must not be used in interrupt context. Unlocking
  392. * of a unlocked mutex is not allowed.
  393. */
  394. void __sched ww_mutex_unlock(struct ww_mutex *lock)
  395. {
  396. /*
  397. * The unlocking fastpath is the 0->1 transition from 'locked'
  398. * into 'unlocked' state:
  399. */
  400. if (lock->ctx) {
  401. #ifdef CONFIG_DEBUG_MUTEXES
  402. DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
  403. #endif
  404. if (lock->ctx->acquired > 0)
  405. lock->ctx->acquired--;
  406. lock->ctx = NULL;
  407. }
  408. #ifndef CONFIG_DEBUG_MUTEXES
  409. /*
  410. * When debugging is enabled we must not clear the owner before time,
  411. * the slow path will always be taken, and that clears the owner field
  412. * after verifying that it was indeed current.
  413. */
  414. mutex_clear_owner(&lock->base);
  415. #endif
  416. __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
  417. }
  418. EXPORT_SYMBOL(ww_mutex_unlock);
  419. static inline int __sched
  420. __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
  421. {
  422. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  423. struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
  424. if (!hold_ctx)
  425. return 0;
  426. if (unlikely(ctx == hold_ctx))
  427. return -EALREADY;
  428. if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
  429. (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
  430. #ifdef CONFIG_DEBUG_MUTEXES
  431. DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
  432. ctx->contending_lock = ww;
  433. #endif
  434. return -EDEADLK;
  435. }
  436. return 0;
  437. }
  438. /*
  439. * Lock a mutex (possibly interruptible), slowpath:
  440. */
  441. static __always_inline int __sched
  442. __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
  443. struct lockdep_map *nest_lock, unsigned long ip,
  444. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  445. {
  446. struct task_struct *task = current;
  447. struct mutex_waiter waiter;
  448. unsigned long flags;
  449. int ret;
  450. preempt_disable();
  451. mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
  452. if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
  453. /* got the lock, yay! */
  454. preempt_enable();
  455. return 0;
  456. }
  457. spin_lock_mutex(&lock->wait_lock, flags);
  458. /*
  459. * Once more, try to acquire the lock. Only try-lock the mutex if
  460. * it is unlocked to reduce unnecessary xchg() operations.
  461. */
  462. if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
  463. goto skip_wait;
  464. debug_mutex_lock_common(lock, &waiter);
  465. debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
  466. /* add waiting tasks to the end of the waitqueue (FIFO): */
  467. list_add_tail(&waiter.list, &lock->wait_list);
  468. waiter.task = task;
  469. lock_contended(&lock->dep_map, ip);
  470. for (;;) {
  471. /*
  472. * Lets try to take the lock again - this is needed even if
  473. * we get here for the first time (shortly after failing to
  474. * acquire the lock), to make sure that we get a wakeup once
  475. * it's unlocked. Later on, if we sleep, this is the
  476. * operation that gives us the lock. We xchg it to -1, so
  477. * that when we release the lock, we properly wake up the
  478. * other waiters. We only attempt the xchg if the count is
  479. * non-negative in order to avoid unnecessary xchg operations:
  480. */
  481. if (atomic_read(&lock->count) >= 0 &&
  482. (atomic_xchg(&lock->count, -1) == 1))
  483. break;
  484. /*
  485. * got a signal? (This code gets eliminated in the
  486. * TASK_UNINTERRUPTIBLE case.)
  487. */
  488. if (unlikely(signal_pending_state(state, task))) {
  489. ret = -EINTR;
  490. goto err;
  491. }
  492. if (use_ww_ctx && ww_ctx->acquired > 0) {
  493. ret = __mutex_lock_check_stamp(lock, ww_ctx);
  494. if (ret)
  495. goto err;
  496. }
  497. __set_task_state(task, state);
  498. /* didn't get the lock, go to sleep: */
  499. spin_unlock_mutex(&lock->wait_lock, flags);
  500. schedule_preempt_disabled();
  501. spin_lock_mutex(&lock->wait_lock, flags);
  502. }
  503. mutex_remove_waiter(lock, &waiter, current_thread_info());
  504. /* set it to 0 if there are no waiters left: */
  505. if (likely(list_empty(&lock->wait_list)))
  506. atomic_set(&lock->count, 0);
  507. debug_mutex_free_waiter(&waiter);
  508. skip_wait:
  509. /* got the lock - cleanup and rejoice! */
  510. lock_acquired(&lock->dep_map, ip);
  511. mutex_set_owner(lock);
  512. if (use_ww_ctx) {
  513. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  514. struct mutex_waiter *cur;
  515. /*
  516. * This branch gets optimized out for the common case,
  517. * and is only important for ww_mutex_lock.
  518. */
  519. ww_mutex_lock_acquired(ww, ww_ctx);
  520. ww->ctx = ww_ctx;
  521. /*
  522. * Give any possible sleeping processes the chance to wake up,
  523. * so they can recheck if they have to back off.
  524. */
  525. list_for_each_entry(cur, &lock->wait_list, list) {
  526. debug_mutex_wake_waiter(lock, cur);
  527. wake_up_process(cur->task);
  528. }
  529. }
  530. spin_unlock_mutex(&lock->wait_lock, flags);
  531. preempt_enable();
  532. return 0;
  533. err:
  534. mutex_remove_waiter(lock, &waiter, task_thread_info(task));
  535. spin_unlock_mutex(&lock->wait_lock, flags);
  536. debug_mutex_free_waiter(&waiter);
  537. mutex_release(&lock->dep_map, 1, ip);
  538. preempt_enable();
  539. return ret;
  540. }
  541. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  542. void __sched
  543. mutex_lock_nested(struct mutex *lock, unsigned int subclass)
  544. {
  545. might_sleep();
  546. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  547. subclass, NULL, _RET_IP_, NULL, 0);
  548. }
  549. EXPORT_SYMBOL_GPL(mutex_lock_nested);
  550. void __sched
  551. _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
  552. {
  553. might_sleep();
  554. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  555. 0, nest, _RET_IP_, NULL, 0);
  556. }
  557. EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
  558. int __sched
  559. mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
  560. {
  561. might_sleep();
  562. return __mutex_lock_common(lock, TASK_KILLABLE,
  563. subclass, NULL, _RET_IP_, NULL, 0);
  564. }
  565. EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
  566. int __sched
  567. mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
  568. {
  569. might_sleep();
  570. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
  571. subclass, NULL, _RET_IP_, NULL, 0);
  572. }
  573. EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
  574. static inline int
  575. ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  576. {
  577. #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
  578. unsigned tmp;
  579. if (ctx->deadlock_inject_countdown-- == 0) {
  580. tmp = ctx->deadlock_inject_interval;
  581. if (tmp > UINT_MAX/4)
  582. tmp = UINT_MAX;
  583. else
  584. tmp = tmp*2 + tmp + tmp/2;
  585. ctx->deadlock_inject_interval = tmp;
  586. ctx->deadlock_inject_countdown = tmp;
  587. ctx->contending_lock = lock;
  588. ww_mutex_unlock(lock);
  589. return -EDEADLK;
  590. }
  591. #endif
  592. return 0;
  593. }
  594. int __sched
  595. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  596. {
  597. int ret;
  598. might_sleep();
  599. ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
  600. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  601. if (!ret && ctx->acquired > 1)
  602. return ww_mutex_deadlock_injection(lock, ctx);
  603. return ret;
  604. }
  605. EXPORT_SYMBOL_GPL(__ww_mutex_lock);
  606. int __sched
  607. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  608. {
  609. int ret;
  610. might_sleep();
  611. ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
  612. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  613. if (!ret && ctx->acquired > 1)
  614. return ww_mutex_deadlock_injection(lock, ctx);
  615. return ret;
  616. }
  617. EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
  618. #endif
  619. /*
  620. * Release the lock, slowpath:
  621. */
  622. static inline void
  623. __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
  624. {
  625. unsigned long flags;
  626. /*
  627. * As a performance measurement, release the lock before doing other
  628. * wakeup related duties to follow. This allows other tasks to acquire
  629. * the lock sooner, while still handling cleanups in past unlock calls.
  630. * This can be done as we do not enforce strict equivalence between the
  631. * mutex counter and wait_list.
  632. *
  633. *
  634. * Some architectures leave the lock unlocked in the fastpath failure
  635. * case, others need to leave it locked. In the later case we have to
  636. * unlock it here - as the lock counter is currently 0 or negative.
  637. */
  638. if (__mutex_slowpath_needs_to_unlock())
  639. atomic_set(&lock->count, 1);
  640. spin_lock_mutex(&lock->wait_lock, flags);
  641. mutex_release(&lock->dep_map, nested, _RET_IP_);
  642. debug_mutex_unlock(lock);
  643. if (!list_empty(&lock->wait_list)) {
  644. /* get the first entry from the wait-list: */
  645. struct mutex_waiter *waiter =
  646. list_entry(lock->wait_list.next,
  647. struct mutex_waiter, list);
  648. debug_mutex_wake_waiter(lock, waiter);
  649. wake_up_process(waiter->task);
  650. }
  651. spin_unlock_mutex(&lock->wait_lock, flags);
  652. }
  653. /*
  654. * Release the lock, slowpath:
  655. */
  656. __visible void
  657. __mutex_unlock_slowpath(atomic_t *lock_count)
  658. {
  659. struct mutex *lock = container_of(lock_count, struct mutex, count);
  660. __mutex_unlock_common_slowpath(lock, 1);
  661. }
  662. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  663. /*
  664. * Here come the less common (and hence less performance-critical) APIs:
  665. * mutex_lock_interruptible() and mutex_trylock().
  666. */
  667. static noinline int __sched
  668. __mutex_lock_killable_slowpath(struct mutex *lock);
  669. static noinline int __sched
  670. __mutex_lock_interruptible_slowpath(struct mutex *lock);
  671. /**
  672. * mutex_lock_interruptible - acquire the mutex, interruptible
  673. * @lock: the mutex to be acquired
  674. *
  675. * Lock the mutex like mutex_lock(), and return 0 if the mutex has
  676. * been acquired or sleep until the mutex becomes available. If a
  677. * signal arrives while waiting for the lock then this function
  678. * returns -EINTR.
  679. *
  680. * This function is similar to (but not equivalent to) down_interruptible().
  681. */
  682. int __sched mutex_lock_interruptible(struct mutex *lock)
  683. {
  684. int ret;
  685. might_sleep();
  686. ret = __mutex_fastpath_lock_retval(&lock->count);
  687. if (likely(!ret)) {
  688. mutex_set_owner(lock);
  689. return 0;
  690. } else
  691. return __mutex_lock_interruptible_slowpath(lock);
  692. }
  693. EXPORT_SYMBOL(mutex_lock_interruptible);
  694. int __sched mutex_lock_killable(struct mutex *lock)
  695. {
  696. int ret;
  697. might_sleep();
  698. ret = __mutex_fastpath_lock_retval(&lock->count);
  699. if (likely(!ret)) {
  700. mutex_set_owner(lock);
  701. return 0;
  702. } else
  703. return __mutex_lock_killable_slowpath(lock);
  704. }
  705. EXPORT_SYMBOL(mutex_lock_killable);
  706. __visible void __sched
  707. __mutex_lock_slowpath(atomic_t *lock_count)
  708. {
  709. struct mutex *lock = container_of(lock_count, struct mutex, count);
  710. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
  711. NULL, _RET_IP_, NULL, 0);
  712. }
  713. static noinline int __sched
  714. __mutex_lock_killable_slowpath(struct mutex *lock)
  715. {
  716. return __mutex_lock_common(lock, TASK_KILLABLE, 0,
  717. NULL, _RET_IP_, NULL, 0);
  718. }
  719. static noinline int __sched
  720. __mutex_lock_interruptible_slowpath(struct mutex *lock)
  721. {
  722. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
  723. NULL, _RET_IP_, NULL, 0);
  724. }
  725. static noinline int __sched
  726. __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  727. {
  728. return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
  729. NULL, _RET_IP_, ctx, 1);
  730. }
  731. static noinline int __sched
  732. __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
  733. struct ww_acquire_ctx *ctx)
  734. {
  735. return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
  736. NULL, _RET_IP_, ctx, 1);
  737. }
  738. #endif
  739. /*
  740. * Spinlock based trylock, we take the spinlock and check whether we
  741. * can get the lock:
  742. */
  743. static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
  744. {
  745. struct mutex *lock = container_of(lock_count, struct mutex, count);
  746. unsigned long flags;
  747. int prev;
  748. /* No need to trylock if the mutex is locked. */
  749. if (mutex_is_locked(lock))
  750. return 0;
  751. spin_lock_mutex(&lock->wait_lock, flags);
  752. prev = atomic_xchg(&lock->count, -1);
  753. if (likely(prev == 1)) {
  754. mutex_set_owner(lock);
  755. mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
  756. }
  757. /* Set it back to 0 if there are no waiters: */
  758. if (likely(list_empty(&lock->wait_list)))
  759. atomic_set(&lock->count, 0);
  760. spin_unlock_mutex(&lock->wait_lock, flags);
  761. return prev == 1;
  762. }
  763. /**
  764. * mutex_trylock - try to acquire the mutex, without waiting
  765. * @lock: the mutex to be acquired
  766. *
  767. * Try to acquire the mutex atomically. Returns 1 if the mutex
  768. * has been acquired successfully, and 0 on contention.
  769. *
  770. * NOTE: this function follows the spin_trylock() convention, so
  771. * it is negated from the down_trylock() return values! Be careful
  772. * about this when converting semaphore users to mutexes.
  773. *
  774. * This function must not be used in interrupt context. The
  775. * mutex must be released by the same task that acquired it.
  776. */
  777. int __sched mutex_trylock(struct mutex *lock)
  778. {
  779. int ret;
  780. ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
  781. if (ret)
  782. mutex_set_owner(lock);
  783. return ret;
  784. }
  785. EXPORT_SYMBOL(mutex_trylock);
  786. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  787. int __sched
  788. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  789. {
  790. int ret;
  791. might_sleep();
  792. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  793. if (likely(!ret)) {
  794. ww_mutex_set_context_fastpath(lock, ctx);
  795. mutex_set_owner(&lock->base);
  796. } else
  797. ret = __ww_mutex_lock_slowpath(lock, ctx);
  798. return ret;
  799. }
  800. EXPORT_SYMBOL(__ww_mutex_lock);
  801. int __sched
  802. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  803. {
  804. int ret;
  805. might_sleep();
  806. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  807. if (likely(!ret)) {
  808. ww_mutex_set_context_fastpath(lock, ctx);
  809. mutex_set_owner(&lock->base);
  810. } else
  811. ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
  812. return ret;
  813. }
  814. EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
  815. #endif
  816. /**
  817. * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
  818. * @cnt: the atomic which we are to dec
  819. * @lock: the mutex to return holding if we dec to 0
  820. *
  821. * return true and hold lock if we dec to 0, return false otherwise
  822. */
  823. int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
  824. {
  825. /* dec if we can't possibly hit 0 */
  826. if (atomic_add_unless(cnt, -1, 1))
  827. return 0;
  828. /* we might hit 0, so take the lock */
  829. mutex_lock(lock);
  830. if (!atomic_dec_and_test(cnt)) {
  831. /* when we actually did the dec, we didn't hit 0 */
  832. mutex_unlock(lock);
  833. return 0;
  834. }
  835. /* we hit 0, and we hold the lock */
  836. return 1;
  837. }
  838. EXPORT_SYMBOL(atomic_dec_and_mutex_lock);