i40e_txrx.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984
  1. /*******************************************************************************
  2. *
  3. * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
  4. * Copyright(c) 2013 - 2014 Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * The full GNU General Public License is included in this distribution in
  19. * the file called "COPYING".
  20. *
  21. * Contact Information:
  22. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24. *
  25. ******************************************************************************/
  26. #include <linux/prefetch.h>
  27. #include <net/busy_poll.h>
  28. #include "i40evf.h"
  29. #include "i40e_prototype.h"
  30. static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31. u32 td_tag)
  32. {
  33. return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34. ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
  35. ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36. ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37. ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
  38. }
  39. #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  40. /**
  41. * i40e_unmap_and_free_tx_resource - Release a Tx buffer
  42. * @ring: the ring that owns the buffer
  43. * @tx_buffer: the buffer to free
  44. **/
  45. static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
  46. struct i40e_tx_buffer *tx_buffer)
  47. {
  48. if (tx_buffer->skb) {
  49. if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
  50. kfree(tx_buffer->raw_buf);
  51. else
  52. dev_kfree_skb_any(tx_buffer->skb);
  53. if (dma_unmap_len(tx_buffer, len))
  54. dma_unmap_single(ring->dev,
  55. dma_unmap_addr(tx_buffer, dma),
  56. dma_unmap_len(tx_buffer, len),
  57. DMA_TO_DEVICE);
  58. } else if (dma_unmap_len(tx_buffer, len)) {
  59. dma_unmap_page(ring->dev,
  60. dma_unmap_addr(tx_buffer, dma),
  61. dma_unmap_len(tx_buffer, len),
  62. DMA_TO_DEVICE);
  63. }
  64. tx_buffer->next_to_watch = NULL;
  65. tx_buffer->skb = NULL;
  66. dma_unmap_len_set(tx_buffer, len, 0);
  67. /* tx_buffer must be completely set up in the transmit path */
  68. }
  69. /**
  70. * i40evf_clean_tx_ring - Free any empty Tx buffers
  71. * @tx_ring: ring to be cleaned
  72. **/
  73. void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
  74. {
  75. unsigned long bi_size;
  76. u16 i;
  77. /* ring already cleared, nothing to do */
  78. if (!tx_ring->tx_bi)
  79. return;
  80. /* Free all the Tx ring sk_buffs */
  81. for (i = 0; i < tx_ring->count; i++)
  82. i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  83. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  84. memset(tx_ring->tx_bi, 0, bi_size);
  85. /* Zero out the descriptor ring */
  86. memset(tx_ring->desc, 0, tx_ring->size);
  87. tx_ring->next_to_use = 0;
  88. tx_ring->next_to_clean = 0;
  89. if (!tx_ring->netdev)
  90. return;
  91. /* cleanup Tx queue statistics */
  92. netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
  93. tx_ring->queue_index));
  94. }
  95. /**
  96. * i40evf_free_tx_resources - Free Tx resources per queue
  97. * @tx_ring: Tx descriptor ring for a specific queue
  98. *
  99. * Free all transmit software resources
  100. **/
  101. void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
  102. {
  103. i40evf_clean_tx_ring(tx_ring);
  104. kfree(tx_ring->tx_bi);
  105. tx_ring->tx_bi = NULL;
  106. if (tx_ring->desc) {
  107. dma_free_coherent(tx_ring->dev, tx_ring->size,
  108. tx_ring->desc, tx_ring->dma);
  109. tx_ring->desc = NULL;
  110. }
  111. }
  112. /**
  113. * i40e_get_head - Retrieve head from head writeback
  114. * @tx_ring: tx ring to fetch head of
  115. *
  116. * Returns value of Tx ring head based on value stored
  117. * in head write-back location
  118. **/
  119. static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
  120. {
  121. void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
  122. return le32_to_cpu(*(volatile __le32 *)head);
  123. }
  124. #define WB_STRIDE 0x3
  125. /**
  126. * i40e_clean_tx_irq - Reclaim resources after transmit completes
  127. * @tx_ring: tx ring to clean
  128. * @budget: how many cleans we're allowed
  129. *
  130. * Returns true if there's any budget left (e.g. the clean is finished)
  131. **/
  132. static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
  133. {
  134. u16 i = tx_ring->next_to_clean;
  135. struct i40e_tx_buffer *tx_buf;
  136. struct i40e_tx_desc *tx_head;
  137. struct i40e_tx_desc *tx_desc;
  138. unsigned int total_packets = 0;
  139. unsigned int total_bytes = 0;
  140. tx_buf = &tx_ring->tx_bi[i];
  141. tx_desc = I40E_TX_DESC(tx_ring, i);
  142. i -= tx_ring->count;
  143. tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
  144. do {
  145. struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
  146. /* if next_to_watch is not set then there is no work pending */
  147. if (!eop_desc)
  148. break;
  149. /* prevent any other reads prior to eop_desc */
  150. read_barrier_depends();
  151. /* we have caught up to head, no work left to do */
  152. if (tx_head == tx_desc)
  153. break;
  154. /* clear next_to_watch to prevent false hangs */
  155. tx_buf->next_to_watch = NULL;
  156. /* update the statistics for this packet */
  157. total_bytes += tx_buf->bytecount;
  158. total_packets += tx_buf->gso_segs;
  159. /* free the skb */
  160. dev_kfree_skb_any(tx_buf->skb);
  161. /* unmap skb header data */
  162. dma_unmap_single(tx_ring->dev,
  163. dma_unmap_addr(tx_buf, dma),
  164. dma_unmap_len(tx_buf, len),
  165. DMA_TO_DEVICE);
  166. /* clear tx_buffer data */
  167. tx_buf->skb = NULL;
  168. dma_unmap_len_set(tx_buf, len, 0);
  169. /* unmap remaining buffers */
  170. while (tx_desc != eop_desc) {
  171. tx_buf++;
  172. tx_desc++;
  173. i++;
  174. if (unlikely(!i)) {
  175. i -= tx_ring->count;
  176. tx_buf = tx_ring->tx_bi;
  177. tx_desc = I40E_TX_DESC(tx_ring, 0);
  178. }
  179. /* unmap any remaining paged data */
  180. if (dma_unmap_len(tx_buf, len)) {
  181. dma_unmap_page(tx_ring->dev,
  182. dma_unmap_addr(tx_buf, dma),
  183. dma_unmap_len(tx_buf, len),
  184. DMA_TO_DEVICE);
  185. dma_unmap_len_set(tx_buf, len, 0);
  186. }
  187. }
  188. /* move us one more past the eop_desc for start of next pkt */
  189. tx_buf++;
  190. tx_desc++;
  191. i++;
  192. if (unlikely(!i)) {
  193. i -= tx_ring->count;
  194. tx_buf = tx_ring->tx_bi;
  195. tx_desc = I40E_TX_DESC(tx_ring, 0);
  196. }
  197. prefetch(tx_desc);
  198. /* update budget accounting */
  199. budget--;
  200. } while (likely(budget));
  201. i += tx_ring->count;
  202. tx_ring->next_to_clean = i;
  203. u64_stats_update_begin(&tx_ring->syncp);
  204. tx_ring->stats.bytes += total_bytes;
  205. tx_ring->stats.packets += total_packets;
  206. u64_stats_update_end(&tx_ring->syncp);
  207. tx_ring->q_vector->tx.total_bytes += total_bytes;
  208. tx_ring->q_vector->tx.total_packets += total_packets;
  209. /* check to see if there are any non-cache aligned descriptors
  210. * waiting to be written back, and kick the hardware to force
  211. * them to be written back in case of napi polling
  212. */
  213. if (budget &&
  214. !((i & WB_STRIDE) == WB_STRIDE) &&
  215. !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
  216. (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
  217. tx_ring->arm_wb = true;
  218. netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
  219. tx_ring->queue_index),
  220. total_packets, total_bytes);
  221. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  222. if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
  223. (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
  224. /* Make sure that anybody stopping the queue after this
  225. * sees the new next_to_clean.
  226. */
  227. smp_mb();
  228. if (__netif_subqueue_stopped(tx_ring->netdev,
  229. tx_ring->queue_index) &&
  230. !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
  231. netif_wake_subqueue(tx_ring->netdev,
  232. tx_ring->queue_index);
  233. ++tx_ring->tx_stats.restart_queue;
  234. }
  235. }
  236. return !!budget;
  237. }
  238. /**
  239. * i40evf_force_wb -Arm hardware to do a wb on noncache aligned descriptors
  240. * @vsi: the VSI we care about
  241. * @q_vector: the vector on which to force writeback
  242. *
  243. **/
  244. static void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
  245. {
  246. u16 flags = q_vector->tx.ring[0].flags;
  247. if (flags & I40E_TXR_FLAGS_WB_ON_ITR) {
  248. u32 val;
  249. if (q_vector->arm_wb_state)
  250. return;
  251. val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK;
  252. wr32(&vsi->back->hw,
  253. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  254. vsi->base_vector - 1),
  255. val);
  256. q_vector->arm_wb_state = true;
  257. } else {
  258. u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  259. I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
  260. I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
  261. I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK;
  262. /* allow 00 to be written to the index */
  263. wr32(&vsi->back->hw,
  264. I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
  265. vsi->base_vector - 1), val);
  266. }
  267. }
  268. /**
  269. * i40e_set_new_dynamic_itr - Find new ITR level
  270. * @rc: structure containing ring performance data
  271. *
  272. * Stores a new ITR value based on packets and byte counts during
  273. * the last interrupt. The advantage of per interrupt computation
  274. * is faster updates and more accurate ITR for the current traffic
  275. * pattern. Constants in this function were computed based on
  276. * theoretical maximum wire speed and thresholds were set based on
  277. * testing data as well as attempting to minimize response time
  278. * while increasing bulk throughput.
  279. **/
  280. static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
  281. {
  282. enum i40e_latency_range new_latency_range = rc->latency_range;
  283. u32 new_itr = rc->itr;
  284. int bytes_per_int;
  285. if (rc->total_packets == 0 || !rc->itr)
  286. return;
  287. /* simple throttlerate management
  288. * 0-10MB/s lowest (100000 ints/s)
  289. * 10-20MB/s low (20000 ints/s)
  290. * 20-1249MB/s bulk (8000 ints/s)
  291. */
  292. bytes_per_int = rc->total_bytes / rc->itr;
  293. switch (new_latency_range) {
  294. case I40E_LOWEST_LATENCY:
  295. if (bytes_per_int > 10)
  296. new_latency_range = I40E_LOW_LATENCY;
  297. break;
  298. case I40E_LOW_LATENCY:
  299. if (bytes_per_int > 20)
  300. new_latency_range = I40E_BULK_LATENCY;
  301. else if (bytes_per_int <= 10)
  302. new_latency_range = I40E_LOWEST_LATENCY;
  303. break;
  304. case I40E_BULK_LATENCY:
  305. if (bytes_per_int <= 20)
  306. new_latency_range = I40E_LOW_LATENCY;
  307. break;
  308. default:
  309. if (bytes_per_int <= 20)
  310. new_latency_range = I40E_LOW_LATENCY;
  311. break;
  312. }
  313. rc->latency_range = new_latency_range;
  314. switch (new_latency_range) {
  315. case I40E_LOWEST_LATENCY:
  316. new_itr = I40E_ITR_100K;
  317. break;
  318. case I40E_LOW_LATENCY:
  319. new_itr = I40E_ITR_20K;
  320. break;
  321. case I40E_BULK_LATENCY:
  322. new_itr = I40E_ITR_8K;
  323. break;
  324. default:
  325. break;
  326. }
  327. if (new_itr != rc->itr)
  328. rc->itr = new_itr;
  329. rc->total_bytes = 0;
  330. rc->total_packets = 0;
  331. }
  332. /*
  333. * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
  334. * @tx_ring: the tx ring to set up
  335. *
  336. * Return 0 on success, negative on error
  337. **/
  338. int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
  339. {
  340. struct device *dev = tx_ring->dev;
  341. int bi_size;
  342. if (!dev)
  343. return -ENOMEM;
  344. /* warn if we are about to overwrite the pointer */
  345. WARN_ON(tx_ring->tx_bi);
  346. bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
  347. tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
  348. if (!tx_ring->tx_bi)
  349. goto err;
  350. /* round up to nearest 4K */
  351. tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
  352. /* add u32 for head writeback, align after this takes care of
  353. * guaranteeing this is at least one cache line in size
  354. */
  355. tx_ring->size += sizeof(u32);
  356. tx_ring->size = ALIGN(tx_ring->size, 4096);
  357. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  358. &tx_ring->dma, GFP_KERNEL);
  359. if (!tx_ring->desc) {
  360. dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
  361. tx_ring->size);
  362. goto err;
  363. }
  364. tx_ring->next_to_use = 0;
  365. tx_ring->next_to_clean = 0;
  366. return 0;
  367. err:
  368. kfree(tx_ring->tx_bi);
  369. tx_ring->tx_bi = NULL;
  370. return -ENOMEM;
  371. }
  372. /**
  373. * i40evf_clean_rx_ring - Free Rx buffers
  374. * @rx_ring: ring to be cleaned
  375. **/
  376. void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
  377. {
  378. struct device *dev = rx_ring->dev;
  379. struct i40e_rx_buffer *rx_bi;
  380. unsigned long bi_size;
  381. u16 i;
  382. /* ring already cleared, nothing to do */
  383. if (!rx_ring->rx_bi)
  384. return;
  385. if (ring_is_ps_enabled(rx_ring)) {
  386. int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
  387. rx_bi = &rx_ring->rx_bi[0];
  388. if (rx_bi->hdr_buf) {
  389. dma_free_coherent(dev,
  390. bufsz,
  391. rx_bi->hdr_buf,
  392. rx_bi->dma);
  393. for (i = 0; i < rx_ring->count; i++) {
  394. rx_bi = &rx_ring->rx_bi[i];
  395. rx_bi->dma = 0;
  396. rx_bi->hdr_buf = NULL;
  397. }
  398. }
  399. }
  400. /* Free all the Rx ring sk_buffs */
  401. for (i = 0; i < rx_ring->count; i++) {
  402. rx_bi = &rx_ring->rx_bi[i];
  403. if (rx_bi->dma) {
  404. dma_unmap_single(dev,
  405. rx_bi->dma,
  406. rx_ring->rx_buf_len,
  407. DMA_FROM_DEVICE);
  408. rx_bi->dma = 0;
  409. }
  410. if (rx_bi->skb) {
  411. dev_kfree_skb(rx_bi->skb);
  412. rx_bi->skb = NULL;
  413. }
  414. if (rx_bi->page) {
  415. if (rx_bi->page_dma) {
  416. dma_unmap_page(dev,
  417. rx_bi->page_dma,
  418. PAGE_SIZE / 2,
  419. DMA_FROM_DEVICE);
  420. rx_bi->page_dma = 0;
  421. }
  422. __free_page(rx_bi->page);
  423. rx_bi->page = NULL;
  424. rx_bi->page_offset = 0;
  425. }
  426. }
  427. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  428. memset(rx_ring->rx_bi, 0, bi_size);
  429. /* Zero out the descriptor ring */
  430. memset(rx_ring->desc, 0, rx_ring->size);
  431. rx_ring->next_to_clean = 0;
  432. rx_ring->next_to_use = 0;
  433. }
  434. /**
  435. * i40evf_free_rx_resources - Free Rx resources
  436. * @rx_ring: ring to clean the resources from
  437. *
  438. * Free all receive software resources
  439. **/
  440. void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
  441. {
  442. i40evf_clean_rx_ring(rx_ring);
  443. kfree(rx_ring->rx_bi);
  444. rx_ring->rx_bi = NULL;
  445. if (rx_ring->desc) {
  446. dma_free_coherent(rx_ring->dev, rx_ring->size,
  447. rx_ring->desc, rx_ring->dma);
  448. rx_ring->desc = NULL;
  449. }
  450. }
  451. /**
  452. * i40evf_alloc_rx_headers - allocate rx header buffers
  453. * @rx_ring: ring to alloc buffers
  454. *
  455. * Allocate rx header buffers for the entire ring. As these are static,
  456. * this is only called when setting up a new ring.
  457. **/
  458. void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
  459. {
  460. struct device *dev = rx_ring->dev;
  461. struct i40e_rx_buffer *rx_bi;
  462. dma_addr_t dma;
  463. void *buffer;
  464. int buf_size;
  465. int i;
  466. if (rx_ring->rx_bi[0].hdr_buf)
  467. return;
  468. /* Make sure the buffers don't cross cache line boundaries. */
  469. buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
  470. buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
  471. &dma, GFP_KERNEL);
  472. if (!buffer)
  473. return;
  474. for (i = 0; i < rx_ring->count; i++) {
  475. rx_bi = &rx_ring->rx_bi[i];
  476. rx_bi->dma = dma + (i * buf_size);
  477. rx_bi->hdr_buf = buffer + (i * buf_size);
  478. }
  479. }
  480. /**
  481. * i40evf_setup_rx_descriptors - Allocate Rx descriptors
  482. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  483. *
  484. * Returns 0 on success, negative on failure
  485. **/
  486. int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
  487. {
  488. struct device *dev = rx_ring->dev;
  489. int bi_size;
  490. /* warn if we are about to overwrite the pointer */
  491. WARN_ON(rx_ring->rx_bi);
  492. bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
  493. rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
  494. if (!rx_ring->rx_bi)
  495. goto err;
  496. u64_stats_init(&rx_ring->syncp);
  497. /* Round up to nearest 4K */
  498. rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
  499. ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
  500. : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
  501. rx_ring->size = ALIGN(rx_ring->size, 4096);
  502. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  503. &rx_ring->dma, GFP_KERNEL);
  504. if (!rx_ring->desc) {
  505. dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
  506. rx_ring->size);
  507. goto err;
  508. }
  509. rx_ring->next_to_clean = 0;
  510. rx_ring->next_to_use = 0;
  511. return 0;
  512. err:
  513. kfree(rx_ring->rx_bi);
  514. rx_ring->rx_bi = NULL;
  515. return -ENOMEM;
  516. }
  517. /**
  518. * i40e_release_rx_desc - Store the new tail and head values
  519. * @rx_ring: ring to bump
  520. * @val: new head index
  521. **/
  522. static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
  523. {
  524. rx_ring->next_to_use = val;
  525. /* Force memory writes to complete before letting h/w
  526. * know there are new descriptors to fetch. (Only
  527. * applicable for weak-ordered memory model archs,
  528. * such as IA-64).
  529. */
  530. wmb();
  531. writel(val, rx_ring->tail);
  532. }
  533. /**
  534. * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  535. * @rx_ring: ring to place buffers on
  536. * @cleaned_count: number of buffers to replace
  537. **/
  538. void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
  539. {
  540. u16 i = rx_ring->next_to_use;
  541. union i40e_rx_desc *rx_desc;
  542. struct i40e_rx_buffer *bi;
  543. /* do nothing if no valid netdev defined */
  544. if (!rx_ring->netdev || !cleaned_count)
  545. return;
  546. while (cleaned_count--) {
  547. rx_desc = I40E_RX_DESC(rx_ring, i);
  548. bi = &rx_ring->rx_bi[i];
  549. if (bi->skb) /* desc is in use */
  550. goto no_buffers;
  551. if (!bi->page) {
  552. bi->page = alloc_page(GFP_ATOMIC);
  553. if (!bi->page) {
  554. rx_ring->rx_stats.alloc_page_failed++;
  555. goto no_buffers;
  556. }
  557. }
  558. if (!bi->page_dma) {
  559. /* use a half page if we're re-using */
  560. bi->page_offset ^= PAGE_SIZE / 2;
  561. bi->page_dma = dma_map_page(rx_ring->dev,
  562. bi->page,
  563. bi->page_offset,
  564. PAGE_SIZE / 2,
  565. DMA_FROM_DEVICE);
  566. if (dma_mapping_error(rx_ring->dev,
  567. bi->page_dma)) {
  568. rx_ring->rx_stats.alloc_page_failed++;
  569. bi->page_dma = 0;
  570. goto no_buffers;
  571. }
  572. }
  573. dma_sync_single_range_for_device(rx_ring->dev,
  574. bi->dma,
  575. 0,
  576. rx_ring->rx_hdr_len,
  577. DMA_FROM_DEVICE);
  578. /* Refresh the desc even if buffer_addrs didn't change
  579. * because each write-back erases this info.
  580. */
  581. rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
  582. rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
  583. i++;
  584. if (i == rx_ring->count)
  585. i = 0;
  586. }
  587. no_buffers:
  588. if (rx_ring->next_to_use != i)
  589. i40e_release_rx_desc(rx_ring, i);
  590. }
  591. /**
  592. * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
  593. * @rx_ring: ring to place buffers on
  594. * @cleaned_count: number of buffers to replace
  595. **/
  596. void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
  597. {
  598. u16 i = rx_ring->next_to_use;
  599. union i40e_rx_desc *rx_desc;
  600. struct i40e_rx_buffer *bi;
  601. struct sk_buff *skb;
  602. /* do nothing if no valid netdev defined */
  603. if (!rx_ring->netdev || !cleaned_count)
  604. return;
  605. while (cleaned_count--) {
  606. rx_desc = I40E_RX_DESC(rx_ring, i);
  607. bi = &rx_ring->rx_bi[i];
  608. skb = bi->skb;
  609. if (!skb) {
  610. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  611. rx_ring->rx_buf_len);
  612. if (!skb) {
  613. rx_ring->rx_stats.alloc_buff_failed++;
  614. goto no_buffers;
  615. }
  616. /* initialize queue mapping */
  617. skb_record_rx_queue(skb, rx_ring->queue_index);
  618. bi->skb = skb;
  619. }
  620. if (!bi->dma) {
  621. bi->dma = dma_map_single(rx_ring->dev,
  622. skb->data,
  623. rx_ring->rx_buf_len,
  624. DMA_FROM_DEVICE);
  625. if (dma_mapping_error(rx_ring->dev, bi->dma)) {
  626. rx_ring->rx_stats.alloc_buff_failed++;
  627. bi->dma = 0;
  628. goto no_buffers;
  629. }
  630. }
  631. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
  632. rx_desc->read.hdr_addr = 0;
  633. i++;
  634. if (i == rx_ring->count)
  635. i = 0;
  636. }
  637. no_buffers:
  638. if (rx_ring->next_to_use != i)
  639. i40e_release_rx_desc(rx_ring, i);
  640. }
  641. /**
  642. * i40e_receive_skb - Send a completed packet up the stack
  643. * @rx_ring: rx ring in play
  644. * @skb: packet to send up
  645. * @vlan_tag: vlan tag for packet
  646. **/
  647. static void i40e_receive_skb(struct i40e_ring *rx_ring,
  648. struct sk_buff *skb, u16 vlan_tag)
  649. {
  650. struct i40e_q_vector *q_vector = rx_ring->q_vector;
  651. struct i40e_vsi *vsi = rx_ring->vsi;
  652. u64 flags = vsi->back->flags;
  653. if (vlan_tag & VLAN_VID_MASK)
  654. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
  655. if (flags & I40E_FLAG_IN_NETPOLL)
  656. netif_rx(skb);
  657. else
  658. napi_gro_receive(&q_vector->napi, skb);
  659. }
  660. /**
  661. * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
  662. * @vsi: the VSI we care about
  663. * @skb: skb currently being received and modified
  664. * @rx_status: status value of last descriptor in packet
  665. * @rx_error: error value of last descriptor in packet
  666. * @rx_ptype: ptype value of last descriptor in packet
  667. **/
  668. static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
  669. struct sk_buff *skb,
  670. u32 rx_status,
  671. u32 rx_error,
  672. u16 rx_ptype)
  673. {
  674. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
  675. bool ipv4 = false, ipv6 = false;
  676. bool ipv4_tunnel, ipv6_tunnel;
  677. __wsum rx_udp_csum;
  678. struct iphdr *iph;
  679. __sum16 csum;
  680. ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
  681. (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
  682. ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
  683. (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
  684. skb->ip_summed = CHECKSUM_NONE;
  685. /* Rx csum enabled and ip headers found? */
  686. if (!(vsi->netdev->features & NETIF_F_RXCSUM))
  687. return;
  688. /* did the hardware decode the packet and checksum? */
  689. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
  690. return;
  691. /* both known and outer_ip must be set for the below code to work */
  692. if (!(decoded.known && decoded.outer_ip))
  693. return;
  694. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  695. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
  696. ipv4 = true;
  697. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  698. decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
  699. ipv6 = true;
  700. if (ipv4 &&
  701. (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
  702. BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
  703. goto checksum_fail;
  704. /* likely incorrect csum if alternate IP extension headers found */
  705. if (ipv6 &&
  706. rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
  707. /* don't increment checksum err here, non-fatal err */
  708. return;
  709. /* there was some L4 error, count error and punt packet to the stack */
  710. if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
  711. goto checksum_fail;
  712. /* handle packets that were not able to be checksummed due
  713. * to arrival speed, in this case the stack can compute
  714. * the csum.
  715. */
  716. if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
  717. return;
  718. /* If VXLAN traffic has an outer UDPv4 checksum we need to check
  719. * it in the driver, hardware does not do it for us.
  720. * Since L3L4P bit was set we assume a valid IHL value (>=5)
  721. * so the total length of IPv4 header is IHL*4 bytes
  722. * The UDP_0 bit *may* bet set if the *inner* header is UDP
  723. */
  724. if (ipv4_tunnel) {
  725. skb->transport_header = skb->mac_header +
  726. sizeof(struct ethhdr) +
  727. (ip_hdr(skb)->ihl * 4);
  728. /* Add 4 bytes for VLAN tagged packets */
  729. skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
  730. skb->protocol == htons(ETH_P_8021AD))
  731. ? VLAN_HLEN : 0;
  732. if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
  733. (udp_hdr(skb)->check != 0)) {
  734. rx_udp_csum = udp_csum(skb);
  735. iph = ip_hdr(skb);
  736. csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
  737. (skb->len -
  738. skb_transport_offset(skb)),
  739. IPPROTO_UDP, rx_udp_csum);
  740. if (udp_hdr(skb)->check != csum)
  741. goto checksum_fail;
  742. } /* else its GRE and so no outer UDP header */
  743. }
  744. skb->ip_summed = CHECKSUM_UNNECESSARY;
  745. skb->csum_level = ipv4_tunnel || ipv6_tunnel;
  746. return;
  747. checksum_fail:
  748. vsi->back->hw_csum_rx_error++;
  749. }
  750. /**
  751. * i40e_rx_hash - returns the hash value from the Rx descriptor
  752. * @ring: descriptor ring
  753. * @rx_desc: specific descriptor
  754. **/
  755. static inline u32 i40e_rx_hash(struct i40e_ring *ring,
  756. union i40e_rx_desc *rx_desc)
  757. {
  758. const __le64 rss_mask =
  759. cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
  760. I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
  761. if ((ring->netdev->features & NETIF_F_RXHASH) &&
  762. (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
  763. return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
  764. else
  765. return 0;
  766. }
  767. /**
  768. * i40e_ptype_to_hash - get a hash type
  769. * @ptype: the ptype value from the descriptor
  770. *
  771. * Returns a hash type to be used by skb_set_hash
  772. **/
  773. static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
  774. {
  775. struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
  776. if (!decoded.known)
  777. return PKT_HASH_TYPE_NONE;
  778. if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  779. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
  780. return PKT_HASH_TYPE_L4;
  781. else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
  782. decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
  783. return PKT_HASH_TYPE_L3;
  784. else
  785. return PKT_HASH_TYPE_L2;
  786. }
  787. /**
  788. * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
  789. * @rx_ring: rx ring to clean
  790. * @budget: how many cleans we're allowed
  791. *
  792. * Returns true if there's any budget left (e.g. the clean is finished)
  793. **/
  794. static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
  795. {
  796. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  797. u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
  798. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  799. const int current_node = numa_mem_id();
  800. struct i40e_vsi *vsi = rx_ring->vsi;
  801. u16 i = rx_ring->next_to_clean;
  802. union i40e_rx_desc *rx_desc;
  803. u32 rx_error, rx_status;
  804. u8 rx_ptype;
  805. u64 qword;
  806. do {
  807. struct i40e_rx_buffer *rx_bi;
  808. struct sk_buff *skb;
  809. u16 vlan_tag;
  810. /* return some buffers to hardware, one at a time is too slow */
  811. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  812. i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
  813. cleaned_count = 0;
  814. }
  815. i = rx_ring->next_to_clean;
  816. rx_desc = I40E_RX_DESC(rx_ring, i);
  817. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  818. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  819. I40E_RXD_QW1_STATUS_SHIFT;
  820. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  821. break;
  822. /* This memory barrier is needed to keep us from reading
  823. * any other fields out of the rx_desc until we know the
  824. * DD bit is set.
  825. */
  826. dma_rmb();
  827. rx_bi = &rx_ring->rx_bi[i];
  828. skb = rx_bi->skb;
  829. if (likely(!skb)) {
  830. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  831. rx_ring->rx_hdr_len);
  832. if (!skb) {
  833. rx_ring->rx_stats.alloc_buff_failed++;
  834. break;
  835. }
  836. /* initialize queue mapping */
  837. skb_record_rx_queue(skb, rx_ring->queue_index);
  838. /* we are reusing so sync this buffer for CPU use */
  839. dma_sync_single_range_for_cpu(rx_ring->dev,
  840. rx_bi->dma,
  841. 0,
  842. rx_ring->rx_hdr_len,
  843. DMA_FROM_DEVICE);
  844. }
  845. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  846. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  847. rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
  848. I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
  849. rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
  850. I40E_RXD_QW1_LENGTH_SPH_SHIFT;
  851. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  852. I40E_RXD_QW1_ERROR_SHIFT;
  853. rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  854. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  855. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  856. I40E_RXD_QW1_PTYPE_SHIFT;
  857. prefetch(rx_bi->page);
  858. rx_bi->skb = NULL;
  859. cleaned_count++;
  860. if (rx_hbo || rx_sph) {
  861. int len;
  862. if (rx_hbo)
  863. len = I40E_RX_HDR_SIZE;
  864. else
  865. len = rx_header_len;
  866. memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
  867. } else if (skb->len == 0) {
  868. int len;
  869. len = (rx_packet_len > skb_headlen(skb) ?
  870. skb_headlen(skb) : rx_packet_len);
  871. memcpy(__skb_put(skb, len),
  872. rx_bi->page + rx_bi->page_offset,
  873. len);
  874. rx_bi->page_offset += len;
  875. rx_packet_len -= len;
  876. }
  877. /* Get the rest of the data if this was a header split */
  878. if (rx_packet_len) {
  879. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
  880. rx_bi->page,
  881. rx_bi->page_offset,
  882. rx_packet_len);
  883. skb->len += rx_packet_len;
  884. skb->data_len += rx_packet_len;
  885. skb->truesize += rx_packet_len;
  886. if ((page_count(rx_bi->page) == 1) &&
  887. (page_to_nid(rx_bi->page) == current_node))
  888. get_page(rx_bi->page);
  889. else
  890. rx_bi->page = NULL;
  891. dma_unmap_page(rx_ring->dev,
  892. rx_bi->page_dma,
  893. PAGE_SIZE / 2,
  894. DMA_FROM_DEVICE);
  895. rx_bi->page_dma = 0;
  896. }
  897. I40E_RX_INCREMENT(rx_ring, i);
  898. if (unlikely(
  899. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  900. struct i40e_rx_buffer *next_buffer;
  901. next_buffer = &rx_ring->rx_bi[i];
  902. next_buffer->skb = skb;
  903. rx_ring->rx_stats.non_eop_descs++;
  904. continue;
  905. }
  906. /* ERR_MASK will only have valid bits if EOP set */
  907. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  908. dev_kfree_skb_any(skb);
  909. continue;
  910. }
  911. skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
  912. i40e_ptype_to_hash(rx_ptype));
  913. /* probably a little skewed due to removing CRC */
  914. total_rx_bytes += skb->len;
  915. total_rx_packets++;
  916. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  917. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  918. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  919. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  920. : 0;
  921. #ifdef I40E_FCOE
  922. if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
  923. dev_kfree_skb_any(skb);
  924. continue;
  925. }
  926. #endif
  927. skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
  928. i40e_receive_skb(rx_ring, skb, vlan_tag);
  929. rx_desc->wb.qword1.status_error_len = 0;
  930. } while (likely(total_rx_packets < budget));
  931. u64_stats_update_begin(&rx_ring->syncp);
  932. rx_ring->stats.packets += total_rx_packets;
  933. rx_ring->stats.bytes += total_rx_bytes;
  934. u64_stats_update_end(&rx_ring->syncp);
  935. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  936. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  937. return total_rx_packets;
  938. }
  939. /**
  940. * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
  941. * @rx_ring: rx ring to clean
  942. * @budget: how many cleans we're allowed
  943. *
  944. * Returns number of packets cleaned
  945. **/
  946. static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
  947. {
  948. unsigned int total_rx_bytes = 0, total_rx_packets = 0;
  949. u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
  950. struct i40e_vsi *vsi = rx_ring->vsi;
  951. union i40e_rx_desc *rx_desc;
  952. u32 rx_error, rx_status;
  953. u16 rx_packet_len;
  954. u8 rx_ptype;
  955. u64 qword;
  956. u16 i;
  957. do {
  958. struct i40e_rx_buffer *rx_bi;
  959. struct sk_buff *skb;
  960. u16 vlan_tag;
  961. /* return some buffers to hardware, one at a time is too slow */
  962. if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
  963. i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
  964. cleaned_count = 0;
  965. }
  966. i = rx_ring->next_to_clean;
  967. rx_desc = I40E_RX_DESC(rx_ring, i);
  968. qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
  969. rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
  970. I40E_RXD_QW1_STATUS_SHIFT;
  971. if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
  972. break;
  973. /* This memory barrier is needed to keep us from reading
  974. * any other fields out of the rx_desc until we know the
  975. * DD bit is set.
  976. */
  977. dma_rmb();
  978. rx_bi = &rx_ring->rx_bi[i];
  979. skb = rx_bi->skb;
  980. prefetch(skb->data);
  981. rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
  982. I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
  983. rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
  984. I40E_RXD_QW1_ERROR_SHIFT;
  985. rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
  986. rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
  987. I40E_RXD_QW1_PTYPE_SHIFT;
  988. rx_bi->skb = NULL;
  989. cleaned_count++;
  990. /* Get the header and possibly the whole packet
  991. * If this is an skb from previous receive dma will be 0
  992. */
  993. skb_put(skb, rx_packet_len);
  994. dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
  995. DMA_FROM_DEVICE);
  996. rx_bi->dma = 0;
  997. I40E_RX_INCREMENT(rx_ring, i);
  998. if (unlikely(
  999. !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
  1000. rx_ring->rx_stats.non_eop_descs++;
  1001. continue;
  1002. }
  1003. /* ERR_MASK will only have valid bits if EOP set */
  1004. if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
  1005. dev_kfree_skb_any(skb);
  1006. continue;
  1007. }
  1008. skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
  1009. i40e_ptype_to_hash(rx_ptype));
  1010. /* probably a little skewed due to removing CRC */
  1011. total_rx_bytes += skb->len;
  1012. total_rx_packets++;
  1013. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  1014. i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
  1015. vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
  1016. ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
  1017. : 0;
  1018. i40e_receive_skb(rx_ring, skb, vlan_tag);
  1019. rx_desc->wb.qword1.status_error_len = 0;
  1020. } while (likely(total_rx_packets < budget));
  1021. u64_stats_update_begin(&rx_ring->syncp);
  1022. rx_ring->stats.packets += total_rx_packets;
  1023. rx_ring->stats.bytes += total_rx_bytes;
  1024. u64_stats_update_end(&rx_ring->syncp);
  1025. rx_ring->q_vector->rx.total_packets += total_rx_packets;
  1026. rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
  1027. return total_rx_packets;
  1028. }
  1029. /**
  1030. * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
  1031. * @vsi: the VSI we care about
  1032. * @q_vector: q_vector for which itr is being updated and interrupt enabled
  1033. *
  1034. **/
  1035. static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
  1036. struct i40e_q_vector *q_vector)
  1037. {
  1038. struct i40e_hw *hw = &vsi->back->hw;
  1039. u16 old_itr;
  1040. int vector;
  1041. u32 val;
  1042. vector = (q_vector->v_idx + vsi->base_vector);
  1043. if (ITR_IS_DYNAMIC(vsi->rx_itr_setting)) {
  1044. old_itr = q_vector->rx.itr;
  1045. i40e_set_new_dynamic_itr(&q_vector->rx);
  1046. if (old_itr != q_vector->rx.itr) {
  1047. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1048. I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
  1049. (I40E_RX_ITR <<
  1050. I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
  1051. (q_vector->rx.itr <<
  1052. I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
  1053. } else {
  1054. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1055. I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
  1056. (I40E_ITR_NONE <<
  1057. I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT);
  1058. }
  1059. if (!test_bit(__I40E_DOWN, &vsi->state))
  1060. wr32(hw, I40E_VFINT_DYN_CTLN1(vector - 1), val);
  1061. } else {
  1062. i40evf_irq_enable_queues(vsi->back, 1
  1063. << q_vector->v_idx);
  1064. }
  1065. if (ITR_IS_DYNAMIC(vsi->tx_itr_setting)) {
  1066. old_itr = q_vector->tx.itr;
  1067. i40e_set_new_dynamic_itr(&q_vector->tx);
  1068. if (old_itr != q_vector->tx.itr) {
  1069. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1070. I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
  1071. (I40E_TX_ITR <<
  1072. I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
  1073. (q_vector->tx.itr <<
  1074. I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
  1075. } else {
  1076. val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
  1077. I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
  1078. (I40E_ITR_NONE <<
  1079. I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT);
  1080. }
  1081. if (!test_bit(__I40E_DOWN, &vsi->state))
  1082. wr32(hw, I40E_VFINT_DYN_CTLN1(vector - 1), val);
  1083. } else {
  1084. i40evf_irq_enable_queues(vsi->back, BIT(q_vector->v_idx));
  1085. }
  1086. }
  1087. /**
  1088. * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
  1089. * @napi: napi struct with our devices info in it
  1090. * @budget: amount of work driver is allowed to do this pass, in packets
  1091. *
  1092. * This function will clean all queues associated with a q_vector.
  1093. *
  1094. * Returns the amount of work done
  1095. **/
  1096. int i40evf_napi_poll(struct napi_struct *napi, int budget)
  1097. {
  1098. struct i40e_q_vector *q_vector =
  1099. container_of(napi, struct i40e_q_vector, napi);
  1100. struct i40e_vsi *vsi = q_vector->vsi;
  1101. struct i40e_ring *ring;
  1102. bool clean_complete = true;
  1103. bool arm_wb = false;
  1104. int budget_per_ring;
  1105. int cleaned;
  1106. if (test_bit(__I40E_DOWN, &vsi->state)) {
  1107. napi_complete(napi);
  1108. return 0;
  1109. }
  1110. /* Since the actual Tx work is minimal, we can give the Tx a larger
  1111. * budget and be more aggressive about cleaning up the Tx descriptors.
  1112. */
  1113. i40e_for_each_ring(ring, q_vector->tx) {
  1114. clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
  1115. arm_wb |= ring->arm_wb;
  1116. ring->arm_wb = false;
  1117. }
  1118. /* We attempt to distribute budget to each Rx queue fairly, but don't
  1119. * allow the budget to go below 1 because that would exit polling early.
  1120. */
  1121. budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
  1122. i40e_for_each_ring(ring, q_vector->rx) {
  1123. if (ring_is_ps_enabled(ring))
  1124. cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
  1125. else
  1126. cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
  1127. /* if we didn't clean as many as budgeted, we must be done */
  1128. clean_complete &= (budget_per_ring != cleaned);
  1129. }
  1130. /* If work not completed, return budget and polling will return */
  1131. if (!clean_complete) {
  1132. if (arm_wb)
  1133. i40evf_force_wb(vsi, q_vector);
  1134. return budget;
  1135. }
  1136. if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
  1137. q_vector->arm_wb_state = false;
  1138. /* Work is done so exit the polling mode and re-enable the interrupt */
  1139. napi_complete(napi);
  1140. i40e_update_enable_itr(vsi, q_vector);
  1141. return 0;
  1142. }
  1143. /**
  1144. * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
  1145. * @skb: send buffer
  1146. * @tx_ring: ring to send buffer on
  1147. * @flags: the tx flags to be set
  1148. *
  1149. * Checks the skb and set up correspondingly several generic transmit flags
  1150. * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
  1151. *
  1152. * Returns error code indicate the frame should be dropped upon error and the
  1153. * otherwise returns 0 to indicate the flags has been set properly.
  1154. **/
  1155. static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
  1156. struct i40e_ring *tx_ring,
  1157. u32 *flags)
  1158. {
  1159. __be16 protocol = skb->protocol;
  1160. u32 tx_flags = 0;
  1161. if (protocol == htons(ETH_P_8021Q) &&
  1162. !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
  1163. /* When HW VLAN acceleration is turned off by the user the
  1164. * stack sets the protocol to 8021q so that the driver
  1165. * can take any steps required to support the SW only
  1166. * VLAN handling. In our case the driver doesn't need
  1167. * to take any further steps so just set the protocol
  1168. * to the encapsulated ethertype.
  1169. */
  1170. skb->protocol = vlan_get_protocol(skb);
  1171. goto out;
  1172. }
  1173. /* if we have a HW VLAN tag being added, default to the HW one */
  1174. if (skb_vlan_tag_present(skb)) {
  1175. tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
  1176. tx_flags |= I40E_TX_FLAGS_HW_VLAN;
  1177. /* else if it is a SW VLAN, check the next protocol and store the tag */
  1178. } else if (protocol == htons(ETH_P_8021Q)) {
  1179. struct vlan_hdr *vhdr, _vhdr;
  1180. vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
  1181. if (!vhdr)
  1182. return -EINVAL;
  1183. protocol = vhdr->h_vlan_encapsulated_proto;
  1184. tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
  1185. tx_flags |= I40E_TX_FLAGS_SW_VLAN;
  1186. }
  1187. out:
  1188. *flags = tx_flags;
  1189. return 0;
  1190. }
  1191. /**
  1192. * i40e_tso - set up the tso context descriptor
  1193. * @tx_ring: ptr to the ring to send
  1194. * @skb: ptr to the skb we're sending
  1195. * @hdr_len: ptr to the size of the packet header
  1196. * @cd_tunneling: ptr to context descriptor bits
  1197. *
  1198. * Returns 0 if no TSO can happen, 1 if tso is going, or error
  1199. **/
  1200. static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1201. u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
  1202. u32 *cd_tunneling)
  1203. {
  1204. u32 cd_cmd, cd_tso_len, cd_mss;
  1205. struct ipv6hdr *ipv6h;
  1206. struct tcphdr *tcph;
  1207. struct iphdr *iph;
  1208. u32 l4len;
  1209. int err;
  1210. if (!skb_is_gso(skb))
  1211. return 0;
  1212. err = skb_cow_head(skb, 0);
  1213. if (err < 0)
  1214. return err;
  1215. iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
  1216. ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
  1217. if (iph->version == 4) {
  1218. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1219. iph->tot_len = 0;
  1220. iph->check = 0;
  1221. tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
  1222. 0, IPPROTO_TCP, 0);
  1223. } else if (ipv6h->version == 6) {
  1224. tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
  1225. ipv6h->payload_len = 0;
  1226. tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
  1227. 0, IPPROTO_TCP, 0);
  1228. }
  1229. l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
  1230. *hdr_len = (skb->encapsulation
  1231. ? (skb_inner_transport_header(skb) - skb->data)
  1232. : skb_transport_offset(skb)) + l4len;
  1233. /* find the field values */
  1234. cd_cmd = I40E_TX_CTX_DESC_TSO;
  1235. cd_tso_len = skb->len - *hdr_len;
  1236. cd_mss = skb_shinfo(skb)->gso_size;
  1237. *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
  1238. ((u64)cd_tso_len <<
  1239. I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
  1240. ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
  1241. return 1;
  1242. }
  1243. /**
  1244. * i40e_tx_enable_csum - Enable Tx checksum offloads
  1245. * @skb: send buffer
  1246. * @tx_flags: pointer to Tx flags currently set
  1247. * @td_cmd: Tx descriptor command bits to set
  1248. * @td_offset: Tx descriptor header offsets to set
  1249. * @cd_tunneling: ptr to context desc bits
  1250. **/
  1251. static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
  1252. u32 *td_cmd, u32 *td_offset,
  1253. struct i40e_ring *tx_ring,
  1254. u32 *cd_tunneling)
  1255. {
  1256. struct ipv6hdr *this_ipv6_hdr;
  1257. unsigned int this_tcp_hdrlen;
  1258. struct iphdr *this_ip_hdr;
  1259. u32 network_hdr_len;
  1260. u8 l4_hdr = 0;
  1261. struct udphdr *oudph;
  1262. struct iphdr *oiph;
  1263. u32 l4_tunnel = 0;
  1264. if (skb->encapsulation) {
  1265. switch (ip_hdr(skb)->protocol) {
  1266. case IPPROTO_UDP:
  1267. oudph = udp_hdr(skb);
  1268. oiph = ip_hdr(skb);
  1269. l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
  1270. *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
  1271. break;
  1272. default:
  1273. return;
  1274. }
  1275. network_hdr_len = skb_inner_network_header_len(skb);
  1276. this_ip_hdr = inner_ip_hdr(skb);
  1277. this_ipv6_hdr = inner_ipv6_hdr(skb);
  1278. this_tcp_hdrlen = inner_tcp_hdrlen(skb);
  1279. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1280. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  1281. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
  1282. ip_hdr(skb)->check = 0;
  1283. } else {
  1284. *cd_tunneling |=
  1285. I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
  1286. }
  1287. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1288. *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
  1289. if (*tx_flags & I40E_TX_FLAGS_TSO)
  1290. ip_hdr(skb)->check = 0;
  1291. }
  1292. /* Now set the ctx descriptor fields */
  1293. *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
  1294. I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
  1295. l4_tunnel |
  1296. ((skb_inner_network_offset(skb) -
  1297. skb_transport_offset(skb)) >> 1) <<
  1298. I40E_TXD_CTX_QW0_NATLEN_SHIFT;
  1299. if (this_ip_hdr->version == 6) {
  1300. *tx_flags &= ~I40E_TX_FLAGS_IPV4;
  1301. *tx_flags |= I40E_TX_FLAGS_IPV6;
  1302. }
  1303. if ((tx_ring->flags & I40E_TXR_FLAGS_OUTER_UDP_CSUM) &&
  1304. (l4_tunnel == I40E_TXD_CTX_UDP_TUNNELING) &&
  1305. (*cd_tunneling & I40E_TXD_CTX_QW0_EXT_IP_MASK)) {
  1306. oudph->check = ~csum_tcpudp_magic(oiph->saddr,
  1307. oiph->daddr,
  1308. (skb->len - skb_transport_offset(skb)),
  1309. IPPROTO_UDP, 0);
  1310. *cd_tunneling |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
  1311. }
  1312. } else {
  1313. network_hdr_len = skb_network_header_len(skb);
  1314. this_ip_hdr = ip_hdr(skb);
  1315. this_ipv6_hdr = ipv6_hdr(skb);
  1316. this_tcp_hdrlen = tcp_hdrlen(skb);
  1317. }
  1318. /* Enable IP checksum offloads */
  1319. if (*tx_flags & I40E_TX_FLAGS_IPV4) {
  1320. l4_hdr = this_ip_hdr->protocol;
  1321. /* the stack computes the IP header already, the only time we
  1322. * need the hardware to recompute it is in the case of TSO.
  1323. */
  1324. if (*tx_flags & I40E_TX_FLAGS_TSO) {
  1325. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
  1326. this_ip_hdr->check = 0;
  1327. } else {
  1328. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
  1329. }
  1330. /* Now set the td_offset for IP header length */
  1331. *td_offset = (network_hdr_len >> 2) <<
  1332. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1333. } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
  1334. l4_hdr = this_ipv6_hdr->nexthdr;
  1335. *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
  1336. /* Now set the td_offset for IP header length */
  1337. *td_offset = (network_hdr_len >> 2) <<
  1338. I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
  1339. }
  1340. /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
  1341. *td_offset |= (skb_network_offset(skb) >> 1) <<
  1342. I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
  1343. /* Enable L4 checksum offloads */
  1344. switch (l4_hdr) {
  1345. case IPPROTO_TCP:
  1346. /* enable checksum offloads */
  1347. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
  1348. *td_offset |= (this_tcp_hdrlen >> 2) <<
  1349. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1350. break;
  1351. case IPPROTO_SCTP:
  1352. /* enable SCTP checksum offload */
  1353. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
  1354. *td_offset |= (sizeof(struct sctphdr) >> 2) <<
  1355. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1356. break;
  1357. case IPPROTO_UDP:
  1358. /* enable UDP checksum offload */
  1359. *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
  1360. *td_offset |= (sizeof(struct udphdr) >> 2) <<
  1361. I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
  1362. break;
  1363. default:
  1364. break;
  1365. }
  1366. }
  1367. /**
  1368. * i40e_create_tx_ctx Build the Tx context descriptor
  1369. * @tx_ring: ring to create the descriptor on
  1370. * @cd_type_cmd_tso_mss: Quad Word 1
  1371. * @cd_tunneling: Quad Word 0 - bits 0-31
  1372. * @cd_l2tag2: Quad Word 0 - bits 32-63
  1373. **/
  1374. static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
  1375. const u64 cd_type_cmd_tso_mss,
  1376. const u32 cd_tunneling, const u32 cd_l2tag2)
  1377. {
  1378. struct i40e_tx_context_desc *context_desc;
  1379. int i = tx_ring->next_to_use;
  1380. if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
  1381. !cd_tunneling && !cd_l2tag2)
  1382. return;
  1383. /* grab the next descriptor */
  1384. context_desc = I40E_TX_CTXTDESC(tx_ring, i);
  1385. i++;
  1386. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  1387. /* cpu_to_le32 and assign to struct fields */
  1388. context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
  1389. context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
  1390. context_desc->rsvd = cpu_to_le16(0);
  1391. context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
  1392. }
  1393. /**
  1394. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  1395. * @skb: send buffer
  1396. * @tx_flags: collected send information
  1397. *
  1398. * Note: Our HW can't scatter-gather more than 8 fragments to build
  1399. * a packet on the wire and so we need to figure out the cases where we
  1400. * need to linearize the skb.
  1401. **/
  1402. static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
  1403. {
  1404. struct skb_frag_struct *frag;
  1405. bool linearize = false;
  1406. unsigned int size = 0;
  1407. u16 num_frags;
  1408. u16 gso_segs;
  1409. num_frags = skb_shinfo(skb)->nr_frags;
  1410. gso_segs = skb_shinfo(skb)->gso_segs;
  1411. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
  1412. u16 j = 0;
  1413. if (num_frags < (I40E_MAX_BUFFER_TXD))
  1414. goto linearize_chk_done;
  1415. /* try the simple math, if we have too many frags per segment */
  1416. if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
  1417. I40E_MAX_BUFFER_TXD) {
  1418. linearize = true;
  1419. goto linearize_chk_done;
  1420. }
  1421. frag = &skb_shinfo(skb)->frags[0];
  1422. /* we might still have more fragments per segment */
  1423. do {
  1424. size += skb_frag_size(frag);
  1425. frag++; j++;
  1426. if ((size >= skb_shinfo(skb)->gso_size) &&
  1427. (j < I40E_MAX_BUFFER_TXD)) {
  1428. size = (size % skb_shinfo(skb)->gso_size);
  1429. j = (size) ? 1 : 0;
  1430. }
  1431. if (j == I40E_MAX_BUFFER_TXD) {
  1432. linearize = true;
  1433. break;
  1434. }
  1435. num_frags--;
  1436. } while (num_frags);
  1437. } else {
  1438. if (num_frags >= I40E_MAX_BUFFER_TXD)
  1439. linearize = true;
  1440. }
  1441. linearize_chk_done:
  1442. return linearize;
  1443. }
  1444. /**
  1445. * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
  1446. * @tx_ring: the ring to be checked
  1447. * @size: the size buffer we want to assure is available
  1448. *
  1449. * Returns -EBUSY if a stop is needed, else 0
  1450. **/
  1451. static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1452. {
  1453. netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1454. /* Memory barrier before checking head and tail */
  1455. smp_mb();
  1456. /* Check again in a case another CPU has just made room available. */
  1457. if (likely(I40E_DESC_UNUSED(tx_ring) < size))
  1458. return -EBUSY;
  1459. /* A reprieve! - use start_queue because it doesn't call schedule */
  1460. netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
  1461. ++tx_ring->tx_stats.restart_queue;
  1462. return 0;
  1463. }
  1464. /**
  1465. * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
  1466. * @tx_ring: the ring to be checked
  1467. * @size: the size buffer we want to assure is available
  1468. *
  1469. * Returns 0 if stop is not needed
  1470. **/
  1471. static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  1472. {
  1473. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  1474. return 0;
  1475. return __i40evf_maybe_stop_tx(tx_ring, size);
  1476. }
  1477. /**
  1478. * i40evf_tx_map - Build the Tx descriptor
  1479. * @tx_ring: ring to send buffer on
  1480. * @skb: send buffer
  1481. * @first: first buffer info buffer to use
  1482. * @tx_flags: collected send information
  1483. * @hdr_len: size of the packet header
  1484. * @td_cmd: the command field in the descriptor
  1485. * @td_offset: offset for checksum or crc
  1486. **/
  1487. static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
  1488. struct i40e_tx_buffer *first, u32 tx_flags,
  1489. const u8 hdr_len, u32 td_cmd, u32 td_offset)
  1490. {
  1491. unsigned int data_len = skb->data_len;
  1492. unsigned int size = skb_headlen(skb);
  1493. struct skb_frag_struct *frag;
  1494. struct i40e_tx_buffer *tx_bi;
  1495. struct i40e_tx_desc *tx_desc;
  1496. u16 i = tx_ring->next_to_use;
  1497. u32 td_tag = 0;
  1498. dma_addr_t dma;
  1499. u16 gso_segs;
  1500. if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
  1501. td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
  1502. td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
  1503. I40E_TX_FLAGS_VLAN_SHIFT;
  1504. }
  1505. if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
  1506. gso_segs = skb_shinfo(skb)->gso_segs;
  1507. else
  1508. gso_segs = 1;
  1509. /* multiply data chunks by size of headers */
  1510. first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
  1511. first->gso_segs = gso_segs;
  1512. first->skb = skb;
  1513. first->tx_flags = tx_flags;
  1514. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  1515. tx_desc = I40E_TX_DESC(tx_ring, i);
  1516. tx_bi = first;
  1517. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  1518. if (dma_mapping_error(tx_ring->dev, dma))
  1519. goto dma_error;
  1520. /* record length, and DMA address */
  1521. dma_unmap_len_set(tx_bi, len, size);
  1522. dma_unmap_addr_set(tx_bi, dma, dma);
  1523. tx_desc->buffer_addr = cpu_to_le64(dma);
  1524. while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
  1525. tx_desc->cmd_type_offset_bsz =
  1526. build_ctob(td_cmd, td_offset,
  1527. I40E_MAX_DATA_PER_TXD, td_tag);
  1528. tx_desc++;
  1529. i++;
  1530. if (i == tx_ring->count) {
  1531. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1532. i = 0;
  1533. }
  1534. dma += I40E_MAX_DATA_PER_TXD;
  1535. size -= I40E_MAX_DATA_PER_TXD;
  1536. tx_desc->buffer_addr = cpu_to_le64(dma);
  1537. }
  1538. if (likely(!data_len))
  1539. break;
  1540. tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
  1541. size, td_tag);
  1542. tx_desc++;
  1543. i++;
  1544. if (i == tx_ring->count) {
  1545. tx_desc = I40E_TX_DESC(tx_ring, 0);
  1546. i = 0;
  1547. }
  1548. size = skb_frag_size(frag);
  1549. data_len -= size;
  1550. dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
  1551. DMA_TO_DEVICE);
  1552. tx_bi = &tx_ring->tx_bi[i];
  1553. }
  1554. /* Place RS bit on last descriptor of any packet that spans across the
  1555. * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
  1556. */
  1557. #define WB_STRIDE 0x3
  1558. if (((i & WB_STRIDE) != WB_STRIDE) &&
  1559. (first <= &tx_ring->tx_bi[i]) &&
  1560. (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
  1561. tx_desc->cmd_type_offset_bsz =
  1562. build_ctob(td_cmd, td_offset, size, td_tag) |
  1563. cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
  1564. I40E_TXD_QW1_CMD_SHIFT);
  1565. } else {
  1566. tx_desc->cmd_type_offset_bsz =
  1567. build_ctob(td_cmd, td_offset, size, td_tag) |
  1568. cpu_to_le64((u64)I40E_TXD_CMD <<
  1569. I40E_TXD_QW1_CMD_SHIFT);
  1570. }
  1571. netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
  1572. tx_ring->queue_index),
  1573. first->bytecount);
  1574. /* Force memory writes to complete before letting h/w
  1575. * know there are new descriptors to fetch. (Only
  1576. * applicable for weak-ordered memory model archs,
  1577. * such as IA-64).
  1578. */
  1579. wmb();
  1580. /* set next_to_watch value indicating a packet is present */
  1581. first->next_to_watch = tx_desc;
  1582. i++;
  1583. if (i == tx_ring->count)
  1584. i = 0;
  1585. tx_ring->next_to_use = i;
  1586. i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
  1587. /* notify HW of packet */
  1588. if (!skb->xmit_more ||
  1589. netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
  1590. tx_ring->queue_index)))
  1591. writel(i, tx_ring->tail);
  1592. else
  1593. prefetchw(tx_desc + 1);
  1594. return;
  1595. dma_error:
  1596. dev_info(tx_ring->dev, "TX DMA map failed\n");
  1597. /* clear dma mappings for failed tx_bi map */
  1598. for (;;) {
  1599. tx_bi = &tx_ring->tx_bi[i];
  1600. i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
  1601. if (tx_bi == first)
  1602. break;
  1603. if (i == 0)
  1604. i = tx_ring->count;
  1605. i--;
  1606. }
  1607. tx_ring->next_to_use = i;
  1608. }
  1609. /**
  1610. * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
  1611. * @skb: send buffer
  1612. * @tx_ring: ring to send buffer on
  1613. *
  1614. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  1615. * there is not enough descriptors available in this ring since we need at least
  1616. * one descriptor.
  1617. **/
  1618. static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
  1619. struct i40e_ring *tx_ring)
  1620. {
  1621. unsigned int f;
  1622. int count = 0;
  1623. /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
  1624. * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
  1625. * + 4 desc gap to avoid the cache line where head is,
  1626. * + 1 desc for context descriptor,
  1627. * otherwise try next time
  1628. */
  1629. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  1630. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  1631. count += TXD_USE_COUNT(skb_headlen(skb));
  1632. if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
  1633. tx_ring->tx_stats.tx_busy++;
  1634. return 0;
  1635. }
  1636. return count;
  1637. }
  1638. /**
  1639. * i40e_xmit_frame_ring - Sends buffer on Tx ring
  1640. * @skb: send buffer
  1641. * @tx_ring: ring to send buffer on
  1642. *
  1643. * Returns NETDEV_TX_OK if sent, else an error code
  1644. **/
  1645. static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
  1646. struct i40e_ring *tx_ring)
  1647. {
  1648. u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
  1649. u32 cd_tunneling = 0, cd_l2tag2 = 0;
  1650. struct i40e_tx_buffer *first;
  1651. u32 td_offset = 0;
  1652. u32 tx_flags = 0;
  1653. __be16 protocol;
  1654. u32 td_cmd = 0;
  1655. u8 hdr_len = 0;
  1656. int tso;
  1657. if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
  1658. return NETDEV_TX_BUSY;
  1659. /* prepare the xmit flags */
  1660. if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
  1661. goto out_drop;
  1662. /* obtain protocol of skb */
  1663. protocol = vlan_get_protocol(skb);
  1664. /* record the location of the first descriptor for this packet */
  1665. first = &tx_ring->tx_bi[tx_ring->next_to_use];
  1666. /* setup IPv4/IPv6 offloads */
  1667. if (protocol == htons(ETH_P_IP))
  1668. tx_flags |= I40E_TX_FLAGS_IPV4;
  1669. else if (protocol == htons(ETH_P_IPV6))
  1670. tx_flags |= I40E_TX_FLAGS_IPV6;
  1671. tso = i40e_tso(tx_ring, skb, &hdr_len,
  1672. &cd_type_cmd_tso_mss, &cd_tunneling);
  1673. if (tso < 0)
  1674. goto out_drop;
  1675. else if (tso)
  1676. tx_flags |= I40E_TX_FLAGS_TSO;
  1677. if (i40e_chk_linearize(skb, tx_flags)) {
  1678. if (skb_linearize(skb))
  1679. goto out_drop;
  1680. tx_ring->tx_stats.tx_linearize++;
  1681. }
  1682. skb_tx_timestamp(skb);
  1683. /* always enable CRC insertion offload */
  1684. td_cmd |= I40E_TX_DESC_CMD_ICRC;
  1685. /* Always offload the checksum, since it's in the data descriptor */
  1686. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1687. tx_flags |= I40E_TX_FLAGS_CSUM;
  1688. i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
  1689. tx_ring, &cd_tunneling);
  1690. }
  1691. i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
  1692. cd_tunneling, cd_l2tag2);
  1693. i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
  1694. td_cmd, td_offset);
  1695. return NETDEV_TX_OK;
  1696. out_drop:
  1697. dev_kfree_skb_any(skb);
  1698. return NETDEV_TX_OK;
  1699. }
  1700. /**
  1701. * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
  1702. * @skb: send buffer
  1703. * @netdev: network interface device structure
  1704. *
  1705. * Returns NETDEV_TX_OK if sent, else an error code
  1706. **/
  1707. netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1708. {
  1709. struct i40evf_adapter *adapter = netdev_priv(netdev);
  1710. struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
  1711. /* hardware can't handle really short frames, hardware padding works
  1712. * beyond this point
  1713. */
  1714. if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
  1715. if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
  1716. return NETDEV_TX_OK;
  1717. skb->len = I40E_MIN_TX_LEN;
  1718. skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
  1719. }
  1720. return i40e_xmit_frame_ring(skb, tx_ring);
  1721. }