Kconfig 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783
  1. # SPDX-License-Identifier: GPL-2.0
  2. #
  3. # Generic algorithms support
  4. #
  5. config XOR_BLOCKS
  6. tristate
  7. #
  8. # async_tx api: hardware offloaded memory transfer/transform support
  9. #
  10. source "crypto/async_tx/Kconfig"
  11. #
  12. # Cryptographic API Configuration
  13. #
  14. menuconfig CRYPTO
  15. tristate "Cryptographic API"
  16. help
  17. This option provides the core Cryptographic API.
  18. if CRYPTO
  19. comment "Crypto core or helper"
  20. config CRYPTO_FIPS
  21. bool "FIPS 200 compliance"
  22. depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  23. depends on (MODULE_SIG || !MODULES)
  24. help
  25. This options enables the fips boot option which is
  26. required if you want to system to operate in a FIPS 200
  27. certification. You should say no unless you know what
  28. this is.
  29. config CRYPTO_ALGAPI
  30. tristate
  31. select CRYPTO_ALGAPI2
  32. help
  33. This option provides the API for cryptographic algorithms.
  34. config CRYPTO_ALGAPI2
  35. tristate
  36. config CRYPTO_AEAD
  37. tristate
  38. select CRYPTO_AEAD2
  39. select CRYPTO_ALGAPI
  40. config CRYPTO_AEAD2
  41. tristate
  42. select CRYPTO_ALGAPI2
  43. select CRYPTO_NULL2
  44. select CRYPTO_RNG2
  45. config CRYPTO_BLKCIPHER
  46. tristate
  47. select CRYPTO_BLKCIPHER2
  48. select CRYPTO_ALGAPI
  49. config CRYPTO_BLKCIPHER2
  50. tristate
  51. select CRYPTO_ALGAPI2
  52. select CRYPTO_RNG2
  53. select CRYPTO_WORKQUEUE
  54. config CRYPTO_HASH
  55. tristate
  56. select CRYPTO_HASH2
  57. select CRYPTO_ALGAPI
  58. config CRYPTO_HASH2
  59. tristate
  60. select CRYPTO_ALGAPI2
  61. config CRYPTO_RNG
  62. tristate
  63. select CRYPTO_RNG2
  64. select CRYPTO_ALGAPI
  65. config CRYPTO_RNG2
  66. tristate
  67. select CRYPTO_ALGAPI2
  68. config CRYPTO_RNG_DEFAULT
  69. tristate
  70. select CRYPTO_DRBG_MENU
  71. config CRYPTO_AKCIPHER2
  72. tristate
  73. select CRYPTO_ALGAPI2
  74. config CRYPTO_AKCIPHER
  75. tristate
  76. select CRYPTO_AKCIPHER2
  77. select CRYPTO_ALGAPI
  78. config CRYPTO_KPP2
  79. tristate
  80. select CRYPTO_ALGAPI2
  81. config CRYPTO_KPP
  82. tristate
  83. select CRYPTO_ALGAPI
  84. select CRYPTO_KPP2
  85. config CRYPTO_ACOMP2
  86. tristate
  87. select CRYPTO_ALGAPI2
  88. select SGL_ALLOC
  89. config CRYPTO_ACOMP
  90. tristate
  91. select CRYPTO_ALGAPI
  92. select CRYPTO_ACOMP2
  93. config CRYPTO_RSA
  94. tristate "RSA algorithm"
  95. select CRYPTO_AKCIPHER
  96. select CRYPTO_MANAGER
  97. select MPILIB
  98. select ASN1
  99. help
  100. Generic implementation of the RSA public key algorithm.
  101. config CRYPTO_DH
  102. tristate "Diffie-Hellman algorithm"
  103. select CRYPTO_KPP
  104. select MPILIB
  105. help
  106. Generic implementation of the Diffie-Hellman algorithm.
  107. config CRYPTO_ECDH
  108. tristate "ECDH algorithm"
  109. select CRYTPO_KPP
  110. select CRYPTO_RNG_DEFAULT
  111. help
  112. Generic implementation of the ECDH algorithm
  113. config CRYPTO_MANAGER
  114. tristate "Cryptographic algorithm manager"
  115. select CRYPTO_MANAGER2
  116. help
  117. Create default cryptographic template instantiations such as
  118. cbc(aes).
  119. config CRYPTO_MANAGER2
  120. def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  121. select CRYPTO_AEAD2
  122. select CRYPTO_HASH2
  123. select CRYPTO_BLKCIPHER2
  124. select CRYPTO_AKCIPHER2
  125. select CRYPTO_KPP2
  126. select CRYPTO_ACOMP2
  127. config CRYPTO_USER
  128. tristate "Userspace cryptographic algorithm configuration"
  129. depends on NET
  130. select CRYPTO_MANAGER
  131. help
  132. Userspace configuration for cryptographic instantiations such as
  133. cbc(aes).
  134. config CRYPTO_MANAGER_DISABLE_TESTS
  135. bool "Disable run-time self tests"
  136. default y
  137. depends on CRYPTO_MANAGER2
  138. help
  139. Disable run-time self tests that normally take place at
  140. algorithm registration.
  141. config CRYPTO_GF128MUL
  142. tristate "GF(2^128) multiplication functions"
  143. help
  144. Efficient table driven implementation of multiplications in the
  145. field GF(2^128). This is needed by some cypher modes. This
  146. option will be selected automatically if you select such a
  147. cipher mode. Only select this option by hand if you expect to load
  148. an external module that requires these functions.
  149. config CRYPTO_NULL
  150. tristate "Null algorithms"
  151. select CRYPTO_NULL2
  152. help
  153. These are 'Null' algorithms, used by IPsec, which do nothing.
  154. config CRYPTO_NULL2
  155. tristate
  156. select CRYPTO_ALGAPI2
  157. select CRYPTO_BLKCIPHER2
  158. select CRYPTO_HASH2
  159. config CRYPTO_PCRYPT
  160. tristate "Parallel crypto engine"
  161. depends on SMP
  162. select PADATA
  163. select CRYPTO_MANAGER
  164. select CRYPTO_AEAD
  165. help
  166. This converts an arbitrary crypto algorithm into a parallel
  167. algorithm that executes in kernel threads.
  168. config CRYPTO_WORKQUEUE
  169. tristate
  170. config CRYPTO_CRYPTD
  171. tristate "Software async crypto daemon"
  172. select CRYPTO_BLKCIPHER
  173. select CRYPTO_HASH
  174. select CRYPTO_MANAGER
  175. select CRYPTO_WORKQUEUE
  176. help
  177. This is a generic software asynchronous crypto daemon that
  178. converts an arbitrary synchronous software crypto algorithm
  179. into an asynchronous algorithm that executes in a kernel thread.
  180. config CRYPTO_MCRYPTD
  181. tristate "Software async multi-buffer crypto daemon"
  182. select CRYPTO_BLKCIPHER
  183. select CRYPTO_HASH
  184. select CRYPTO_MANAGER
  185. select CRYPTO_WORKQUEUE
  186. help
  187. This is a generic software asynchronous crypto daemon that
  188. provides the kernel thread to assist multi-buffer crypto
  189. algorithms for submitting jobs and flushing jobs in multi-buffer
  190. crypto algorithms. Multi-buffer crypto algorithms are executed
  191. in the context of this kernel thread and drivers can post
  192. their crypto request asynchronously to be processed by this daemon.
  193. config CRYPTO_AUTHENC
  194. tristate "Authenc support"
  195. select CRYPTO_AEAD
  196. select CRYPTO_BLKCIPHER
  197. select CRYPTO_MANAGER
  198. select CRYPTO_HASH
  199. select CRYPTO_NULL
  200. help
  201. Authenc: Combined mode wrapper for IPsec.
  202. This is required for IPSec.
  203. config CRYPTO_TEST
  204. tristate "Testing module"
  205. depends on m
  206. select CRYPTO_MANAGER
  207. help
  208. Quick & dirty crypto test module.
  209. config CRYPTO_ABLK_HELPER
  210. tristate
  211. select CRYPTO_CRYPTD
  212. config CRYPTO_SIMD
  213. tristate
  214. select CRYPTO_CRYPTD
  215. config CRYPTO_GLUE_HELPER_X86
  216. tristate
  217. depends on X86
  218. select CRYPTO_BLKCIPHER
  219. config CRYPTO_ENGINE
  220. tristate
  221. comment "Authenticated Encryption with Associated Data"
  222. config CRYPTO_CCM
  223. tristate "CCM support"
  224. select CRYPTO_CTR
  225. select CRYPTO_HASH
  226. select CRYPTO_AEAD
  227. help
  228. Support for Counter with CBC MAC. Required for IPsec.
  229. config CRYPTO_GCM
  230. tristate "GCM/GMAC support"
  231. select CRYPTO_CTR
  232. select CRYPTO_AEAD
  233. select CRYPTO_GHASH
  234. select CRYPTO_NULL
  235. help
  236. Support for Galois/Counter Mode (GCM) and Galois Message
  237. Authentication Code (GMAC). Required for IPSec.
  238. config CRYPTO_CHACHA20POLY1305
  239. tristate "ChaCha20-Poly1305 AEAD support"
  240. select CRYPTO_CHACHA20
  241. select CRYPTO_POLY1305
  242. select CRYPTO_AEAD
  243. help
  244. ChaCha20-Poly1305 AEAD support, RFC7539.
  245. Support for the AEAD wrapper using the ChaCha20 stream cipher combined
  246. with the Poly1305 authenticator. It is defined in RFC7539 for use in
  247. IETF protocols.
  248. config CRYPTO_SEQIV
  249. tristate "Sequence Number IV Generator"
  250. select CRYPTO_AEAD
  251. select CRYPTO_BLKCIPHER
  252. select CRYPTO_NULL
  253. select CRYPTO_RNG_DEFAULT
  254. help
  255. This IV generator generates an IV based on a sequence number by
  256. xoring it with a salt. This algorithm is mainly useful for CTR
  257. config CRYPTO_ECHAINIV
  258. tristate "Encrypted Chain IV Generator"
  259. select CRYPTO_AEAD
  260. select CRYPTO_NULL
  261. select CRYPTO_RNG_DEFAULT
  262. default m
  263. help
  264. This IV generator generates an IV based on the encryption of
  265. a sequence number xored with a salt. This is the default
  266. algorithm for CBC.
  267. comment "Block modes"
  268. config CRYPTO_CBC
  269. tristate "CBC support"
  270. select CRYPTO_BLKCIPHER
  271. select CRYPTO_MANAGER
  272. help
  273. CBC: Cipher Block Chaining mode
  274. This block cipher algorithm is required for IPSec.
  275. config CRYPTO_CTR
  276. tristate "CTR support"
  277. select CRYPTO_BLKCIPHER
  278. select CRYPTO_SEQIV
  279. select CRYPTO_MANAGER
  280. help
  281. CTR: Counter mode
  282. This block cipher algorithm is required for IPSec.
  283. config CRYPTO_CTS
  284. tristate "CTS support"
  285. select CRYPTO_BLKCIPHER
  286. help
  287. CTS: Cipher Text Stealing
  288. This is the Cipher Text Stealing mode as described by
  289. Section 8 of rfc2040 and referenced by rfc3962.
  290. (rfc3962 includes errata information in its Appendix A)
  291. This mode is required for Kerberos gss mechanism support
  292. for AES encryption.
  293. config CRYPTO_ECB
  294. tristate "ECB support"
  295. select CRYPTO_BLKCIPHER
  296. select CRYPTO_MANAGER
  297. help
  298. ECB: Electronic CodeBook mode
  299. This is the simplest block cipher algorithm. It simply encrypts
  300. the input block by block.
  301. config CRYPTO_LRW
  302. tristate "LRW support"
  303. select CRYPTO_BLKCIPHER
  304. select CRYPTO_MANAGER
  305. select CRYPTO_GF128MUL
  306. help
  307. LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
  308. narrow block cipher mode for dm-crypt. Use it with cipher
  309. specification string aes-lrw-benbi, the key must be 256, 320 or 384.
  310. The first 128, 192 or 256 bits in the key are used for AES and the
  311. rest is used to tie each cipher block to its logical position.
  312. config CRYPTO_PCBC
  313. tristate "PCBC support"
  314. select CRYPTO_BLKCIPHER
  315. select CRYPTO_MANAGER
  316. help
  317. PCBC: Propagating Cipher Block Chaining mode
  318. This block cipher algorithm is required for RxRPC.
  319. config CRYPTO_XTS
  320. tristate "XTS support"
  321. select CRYPTO_BLKCIPHER
  322. select CRYPTO_MANAGER
  323. select CRYPTO_ECB
  324. help
  325. XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
  326. key size 256, 384 or 512 bits. This implementation currently
  327. can't handle a sectorsize which is not a multiple of 16 bytes.
  328. config CRYPTO_KEYWRAP
  329. tristate "Key wrapping support"
  330. select CRYPTO_BLKCIPHER
  331. help
  332. Support for key wrapping (NIST SP800-38F / RFC3394) without
  333. padding.
  334. comment "Hash modes"
  335. config CRYPTO_CMAC
  336. tristate "CMAC support"
  337. select CRYPTO_HASH
  338. select CRYPTO_MANAGER
  339. help
  340. Cipher-based Message Authentication Code (CMAC) specified by
  341. The National Institute of Standards and Technology (NIST).
  342. https://tools.ietf.org/html/rfc4493
  343. http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
  344. config CRYPTO_HMAC
  345. tristate "HMAC support"
  346. select CRYPTO_HASH
  347. select CRYPTO_MANAGER
  348. help
  349. HMAC: Keyed-Hashing for Message Authentication (RFC2104).
  350. This is required for IPSec.
  351. config CRYPTO_XCBC
  352. tristate "XCBC support"
  353. select CRYPTO_HASH
  354. select CRYPTO_MANAGER
  355. help
  356. XCBC: Keyed-Hashing with encryption algorithm
  357. http://www.ietf.org/rfc/rfc3566.txt
  358. http://csrc.nist.gov/encryption/modes/proposedmodes/
  359. xcbc-mac/xcbc-mac-spec.pdf
  360. config CRYPTO_VMAC
  361. tristate "VMAC support"
  362. select CRYPTO_HASH
  363. select CRYPTO_MANAGER
  364. help
  365. VMAC is a message authentication algorithm designed for
  366. very high speed on 64-bit architectures.
  367. See also:
  368. <http://fastcrypto.org/vmac>
  369. comment "Digest"
  370. config CRYPTO_CRC32C
  371. tristate "CRC32c CRC algorithm"
  372. select CRYPTO_HASH
  373. select CRC32
  374. help
  375. Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
  376. by iSCSI for header and data digests and by others.
  377. See Castagnoli93. Module will be crc32c.
  378. config CRYPTO_CRC32C_INTEL
  379. tristate "CRC32c INTEL hardware acceleration"
  380. depends on X86
  381. select CRYPTO_HASH
  382. help
  383. In Intel processor with SSE4.2 supported, the processor will
  384. support CRC32C implementation using hardware accelerated CRC32
  385. instruction. This option will create 'crc32c-intel' module,
  386. which will enable any routine to use the CRC32 instruction to
  387. gain performance compared with software implementation.
  388. Module will be crc32c-intel.
  389. config CRYPTO_CRC32C_VPMSUM
  390. tristate "CRC32c CRC algorithm (powerpc64)"
  391. depends on PPC64 && ALTIVEC
  392. select CRYPTO_HASH
  393. select CRC32
  394. help
  395. CRC32c algorithm implemented using vector polynomial multiply-sum
  396. (vpmsum) instructions, introduced in POWER8. Enable on POWER8
  397. and newer processors for improved performance.
  398. config CRYPTO_CRC32C_SPARC64
  399. tristate "CRC32c CRC algorithm (SPARC64)"
  400. depends on SPARC64
  401. select CRYPTO_HASH
  402. select CRC32
  403. help
  404. CRC32c CRC algorithm implemented using sparc64 crypto instructions,
  405. when available.
  406. config CRYPTO_CRC32
  407. tristate "CRC32 CRC algorithm"
  408. select CRYPTO_HASH
  409. select CRC32
  410. help
  411. CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
  412. Shash crypto api wrappers to crc32_le function.
  413. config CRYPTO_CRC32_PCLMUL
  414. tristate "CRC32 PCLMULQDQ hardware acceleration"
  415. depends on X86
  416. select CRYPTO_HASH
  417. select CRC32
  418. help
  419. From Intel Westmere and AMD Bulldozer processor with SSE4.2
  420. and PCLMULQDQ supported, the processor will support
  421. CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
  422. instruction. This option will create 'crc32-plcmul' module,
  423. which will enable any routine to use the CRC-32-IEEE 802.3 checksum
  424. and gain better performance as compared with the table implementation.
  425. config CRYPTO_CRCT10DIF
  426. tristate "CRCT10DIF algorithm"
  427. select CRYPTO_HASH
  428. help
  429. CRC T10 Data Integrity Field computation is being cast as
  430. a crypto transform. This allows for faster crc t10 diff
  431. transforms to be used if they are available.
  432. config CRYPTO_CRCT10DIF_PCLMUL
  433. tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
  434. depends on X86 && 64BIT && CRC_T10DIF
  435. select CRYPTO_HASH
  436. help
  437. For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
  438. CRC T10 DIF PCLMULQDQ computation can be hardware
  439. accelerated PCLMULQDQ instruction. This option will create
  440. 'crct10dif-plcmul' module, which is faster when computing the
  441. crct10dif checksum as compared with the generic table implementation.
  442. config CRYPTO_CRCT10DIF_VPMSUM
  443. tristate "CRC32T10DIF powerpc64 hardware acceleration"
  444. depends on PPC64 && ALTIVEC && CRC_T10DIF
  445. select CRYPTO_HASH
  446. help
  447. CRC10T10DIF algorithm implemented using vector polynomial
  448. multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
  449. POWER8 and newer processors for improved performance.
  450. config CRYPTO_VPMSUM_TESTER
  451. tristate "Powerpc64 vpmsum hardware acceleration tester"
  452. depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
  453. help
  454. Stress test for CRC32c and CRC-T10DIF algorithms implemented with
  455. POWER8 vpmsum instructions.
  456. Unless you are testing these algorithms, you don't need this.
  457. config CRYPTO_GHASH
  458. tristate "GHASH digest algorithm"
  459. select CRYPTO_GF128MUL
  460. select CRYPTO_HASH
  461. help
  462. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  463. config CRYPTO_POLY1305
  464. tristate "Poly1305 authenticator algorithm"
  465. select CRYPTO_HASH
  466. help
  467. Poly1305 authenticator algorithm, RFC7539.
  468. Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
  469. It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
  470. in IETF protocols. This is the portable C implementation of Poly1305.
  471. config CRYPTO_POLY1305_X86_64
  472. tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
  473. depends on X86 && 64BIT
  474. select CRYPTO_POLY1305
  475. help
  476. Poly1305 authenticator algorithm, RFC7539.
  477. Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
  478. It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
  479. in IETF protocols. This is the x86_64 assembler implementation using SIMD
  480. instructions.
  481. config CRYPTO_MD4
  482. tristate "MD4 digest algorithm"
  483. select CRYPTO_HASH
  484. help
  485. MD4 message digest algorithm (RFC1320).
  486. config CRYPTO_MD5
  487. tristate "MD5 digest algorithm"
  488. select CRYPTO_HASH
  489. help
  490. MD5 message digest algorithm (RFC1321).
  491. config CRYPTO_MD5_OCTEON
  492. tristate "MD5 digest algorithm (OCTEON)"
  493. depends on CPU_CAVIUM_OCTEON
  494. select CRYPTO_MD5
  495. select CRYPTO_HASH
  496. help
  497. MD5 message digest algorithm (RFC1321) implemented
  498. using OCTEON crypto instructions, when available.
  499. config CRYPTO_MD5_PPC
  500. tristate "MD5 digest algorithm (PPC)"
  501. depends on PPC
  502. select CRYPTO_HASH
  503. help
  504. MD5 message digest algorithm (RFC1321) implemented
  505. in PPC assembler.
  506. config CRYPTO_MD5_SPARC64
  507. tristate "MD5 digest algorithm (SPARC64)"
  508. depends on SPARC64
  509. select CRYPTO_MD5
  510. select CRYPTO_HASH
  511. help
  512. MD5 message digest algorithm (RFC1321) implemented
  513. using sparc64 crypto instructions, when available.
  514. config CRYPTO_MICHAEL_MIC
  515. tristate "Michael MIC keyed digest algorithm"
  516. select CRYPTO_HASH
  517. help
  518. Michael MIC is used for message integrity protection in TKIP
  519. (IEEE 802.11i). This algorithm is required for TKIP, but it
  520. should not be used for other purposes because of the weakness
  521. of the algorithm.
  522. config CRYPTO_RMD128
  523. tristate "RIPEMD-128 digest algorithm"
  524. select CRYPTO_HASH
  525. help
  526. RIPEMD-128 (ISO/IEC 10118-3:2004).
  527. RIPEMD-128 is a 128-bit cryptographic hash function. It should only
  528. be used as a secure replacement for RIPEMD. For other use cases,
  529. RIPEMD-160 should be used.
  530. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  531. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  532. config CRYPTO_RMD160
  533. tristate "RIPEMD-160 digest algorithm"
  534. select CRYPTO_HASH
  535. help
  536. RIPEMD-160 (ISO/IEC 10118-3:2004).
  537. RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
  538. to be used as a secure replacement for the 128-bit hash functions
  539. MD4, MD5 and it's predecessor RIPEMD
  540. (not to be confused with RIPEMD-128).
  541. It's speed is comparable to SHA1 and there are no known attacks
  542. against RIPEMD-160.
  543. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  544. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  545. config CRYPTO_RMD256
  546. tristate "RIPEMD-256 digest algorithm"
  547. select CRYPTO_HASH
  548. help
  549. RIPEMD-256 is an optional extension of RIPEMD-128 with a
  550. 256 bit hash. It is intended for applications that require
  551. longer hash-results, without needing a larger security level
  552. (than RIPEMD-128).
  553. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  554. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  555. config CRYPTO_RMD320
  556. tristate "RIPEMD-320 digest algorithm"
  557. select CRYPTO_HASH
  558. help
  559. RIPEMD-320 is an optional extension of RIPEMD-160 with a
  560. 320 bit hash. It is intended for applications that require
  561. longer hash-results, without needing a larger security level
  562. (than RIPEMD-160).
  563. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  564. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  565. config CRYPTO_SHA1
  566. tristate "SHA1 digest algorithm"
  567. select CRYPTO_HASH
  568. help
  569. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  570. config CRYPTO_SHA1_SSSE3
  571. tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
  572. depends on X86 && 64BIT
  573. select CRYPTO_SHA1
  574. select CRYPTO_HASH
  575. help
  576. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  577. using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
  578. Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
  579. when available.
  580. config CRYPTO_SHA256_SSSE3
  581. tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
  582. depends on X86 && 64BIT
  583. select CRYPTO_SHA256
  584. select CRYPTO_HASH
  585. help
  586. SHA-256 secure hash standard (DFIPS 180-2) implemented
  587. using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
  588. Extensions version 1 (AVX1), or Advanced Vector Extensions
  589. version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
  590. Instructions) when available.
  591. config CRYPTO_SHA512_SSSE3
  592. tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
  593. depends on X86 && 64BIT
  594. select CRYPTO_SHA512
  595. select CRYPTO_HASH
  596. help
  597. SHA-512 secure hash standard (DFIPS 180-2) implemented
  598. using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
  599. Extensions version 1 (AVX1), or Advanced Vector Extensions
  600. version 2 (AVX2) instructions, when available.
  601. config CRYPTO_SHA1_OCTEON
  602. tristate "SHA1 digest algorithm (OCTEON)"
  603. depends on CPU_CAVIUM_OCTEON
  604. select CRYPTO_SHA1
  605. select CRYPTO_HASH
  606. help
  607. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  608. using OCTEON crypto instructions, when available.
  609. config CRYPTO_SHA1_SPARC64
  610. tristate "SHA1 digest algorithm (SPARC64)"
  611. depends on SPARC64
  612. select CRYPTO_SHA1
  613. select CRYPTO_HASH
  614. help
  615. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  616. using sparc64 crypto instructions, when available.
  617. config CRYPTO_SHA1_PPC
  618. tristate "SHA1 digest algorithm (powerpc)"
  619. depends on PPC
  620. help
  621. This is the powerpc hardware accelerated implementation of the
  622. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  623. config CRYPTO_SHA1_PPC_SPE
  624. tristate "SHA1 digest algorithm (PPC SPE)"
  625. depends on PPC && SPE
  626. help
  627. SHA-1 secure hash standard (DFIPS 180-4) implemented
  628. using powerpc SPE SIMD instruction set.
  629. config CRYPTO_SHA1_MB
  630. tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
  631. depends on X86 && 64BIT
  632. select CRYPTO_SHA1
  633. select CRYPTO_HASH
  634. select CRYPTO_MCRYPTD
  635. help
  636. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  637. using multi-buffer technique. This algorithm computes on
  638. multiple data lanes concurrently with SIMD instructions for
  639. better throughput. It should not be enabled by default but
  640. used when there is significant amount of work to keep the keep
  641. the data lanes filled to get performance benefit. If the data
  642. lanes remain unfilled, a flush operation will be initiated to
  643. process the crypto jobs, adding a slight latency.
  644. config CRYPTO_SHA256_MB
  645. tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
  646. depends on X86 && 64BIT
  647. select CRYPTO_SHA256
  648. select CRYPTO_HASH
  649. select CRYPTO_MCRYPTD
  650. help
  651. SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  652. using multi-buffer technique. This algorithm computes on
  653. multiple data lanes concurrently with SIMD instructions for
  654. better throughput. It should not be enabled by default but
  655. used when there is significant amount of work to keep the keep
  656. the data lanes filled to get performance benefit. If the data
  657. lanes remain unfilled, a flush operation will be initiated to
  658. process the crypto jobs, adding a slight latency.
  659. config CRYPTO_SHA512_MB
  660. tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
  661. depends on X86 && 64BIT
  662. select CRYPTO_SHA512
  663. select CRYPTO_HASH
  664. select CRYPTO_MCRYPTD
  665. help
  666. SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  667. using multi-buffer technique. This algorithm computes on
  668. multiple data lanes concurrently with SIMD instructions for
  669. better throughput. It should not be enabled by default but
  670. used when there is significant amount of work to keep the keep
  671. the data lanes filled to get performance benefit. If the data
  672. lanes remain unfilled, a flush operation will be initiated to
  673. process the crypto jobs, adding a slight latency.
  674. config CRYPTO_SHA256
  675. tristate "SHA224 and SHA256 digest algorithm"
  676. select CRYPTO_HASH
  677. help
  678. SHA256 secure hash standard (DFIPS 180-2).
  679. This version of SHA implements a 256 bit hash with 128 bits of
  680. security against collision attacks.
  681. This code also includes SHA-224, a 224 bit hash with 112 bits
  682. of security against collision attacks.
  683. config CRYPTO_SHA256_PPC_SPE
  684. tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
  685. depends on PPC && SPE
  686. select CRYPTO_SHA256
  687. select CRYPTO_HASH
  688. help
  689. SHA224 and SHA256 secure hash standard (DFIPS 180-2)
  690. implemented using powerpc SPE SIMD instruction set.
  691. config CRYPTO_SHA256_OCTEON
  692. tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
  693. depends on CPU_CAVIUM_OCTEON
  694. select CRYPTO_SHA256
  695. select CRYPTO_HASH
  696. help
  697. SHA-256 secure hash standard (DFIPS 180-2) implemented
  698. using OCTEON crypto instructions, when available.
  699. config CRYPTO_SHA256_SPARC64
  700. tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
  701. depends on SPARC64
  702. select CRYPTO_SHA256
  703. select CRYPTO_HASH
  704. help
  705. SHA-256 secure hash standard (DFIPS 180-2) implemented
  706. using sparc64 crypto instructions, when available.
  707. config CRYPTO_SHA512
  708. tristate "SHA384 and SHA512 digest algorithms"
  709. select CRYPTO_HASH
  710. help
  711. SHA512 secure hash standard (DFIPS 180-2).
  712. This version of SHA implements a 512 bit hash with 256 bits of
  713. security against collision attacks.
  714. This code also includes SHA-384, a 384 bit hash with 192 bits
  715. of security against collision attacks.
  716. config CRYPTO_SHA512_OCTEON
  717. tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
  718. depends on CPU_CAVIUM_OCTEON
  719. select CRYPTO_SHA512
  720. select CRYPTO_HASH
  721. help
  722. SHA-512 secure hash standard (DFIPS 180-2) implemented
  723. using OCTEON crypto instructions, when available.
  724. config CRYPTO_SHA512_SPARC64
  725. tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
  726. depends on SPARC64
  727. select CRYPTO_SHA512
  728. select CRYPTO_HASH
  729. help
  730. SHA-512 secure hash standard (DFIPS 180-2) implemented
  731. using sparc64 crypto instructions, when available.
  732. config CRYPTO_SHA3
  733. tristate "SHA3 digest algorithm"
  734. select CRYPTO_HASH
  735. help
  736. SHA-3 secure hash standard (DFIPS 202). It's based on
  737. cryptographic sponge function family called Keccak.
  738. References:
  739. http://keccak.noekeon.org/
  740. config CRYPTO_SM3
  741. tristate "SM3 digest algorithm"
  742. select CRYPTO_HASH
  743. help
  744. SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
  745. It is part of the Chinese Commercial Cryptography suite.
  746. References:
  747. http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
  748. https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
  749. config CRYPTO_TGR192
  750. tristate "Tiger digest algorithms"
  751. select CRYPTO_HASH
  752. help
  753. Tiger hash algorithm 192, 160 and 128-bit hashes
  754. Tiger is a hash function optimized for 64-bit processors while
  755. still having decent performance on 32-bit processors.
  756. Tiger was developed by Ross Anderson and Eli Biham.
  757. See also:
  758. <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
  759. config CRYPTO_WP512
  760. tristate "Whirlpool digest algorithms"
  761. select CRYPTO_HASH
  762. help
  763. Whirlpool hash algorithm 512, 384 and 256-bit hashes
  764. Whirlpool-512 is part of the NESSIE cryptographic primitives.
  765. Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
  766. See also:
  767. <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
  768. config CRYPTO_GHASH_CLMUL_NI_INTEL
  769. tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
  770. depends on X86 && 64BIT
  771. select CRYPTO_CRYPTD
  772. help
  773. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  774. The implementation is accelerated by CLMUL-NI of Intel.
  775. comment "Ciphers"
  776. config CRYPTO_AES
  777. tristate "AES cipher algorithms"
  778. select CRYPTO_ALGAPI
  779. help
  780. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  781. algorithm.
  782. Rijndael appears to be consistently a very good performer in
  783. both hardware and software across a wide range of computing
  784. environments regardless of its use in feedback or non-feedback
  785. modes. Its key setup time is excellent, and its key agility is
  786. good. Rijndael's very low memory requirements make it very well
  787. suited for restricted-space environments, in which it also
  788. demonstrates excellent performance. Rijndael's operations are
  789. among the easiest to defend against power and timing attacks.
  790. The AES specifies three key sizes: 128, 192 and 256 bits
  791. See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
  792. config CRYPTO_AES_TI
  793. tristate "Fixed time AES cipher"
  794. select CRYPTO_ALGAPI
  795. help
  796. This is a generic implementation of AES that attempts to eliminate
  797. data dependent latencies as much as possible without affecting
  798. performance too much. It is intended for use by the generic CCM
  799. and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
  800. solely on encryption (although decryption is supported as well, but
  801. with a more dramatic performance hit)
  802. Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
  803. 8 for decryption), this implementation only uses just two S-boxes of
  804. 256 bytes each, and attempts to eliminate data dependent latencies by
  805. prefetching the entire table into the cache at the start of each
  806. block.
  807. config CRYPTO_AES_586
  808. tristate "AES cipher algorithms (i586)"
  809. depends on (X86 || UML_X86) && !64BIT
  810. select CRYPTO_ALGAPI
  811. select CRYPTO_AES
  812. help
  813. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  814. algorithm.
  815. Rijndael appears to be consistently a very good performer in
  816. both hardware and software across a wide range of computing
  817. environments regardless of its use in feedback or non-feedback
  818. modes. Its key setup time is excellent, and its key agility is
  819. good. Rijndael's very low memory requirements make it very well
  820. suited for restricted-space environments, in which it also
  821. demonstrates excellent performance. Rijndael's operations are
  822. among the easiest to defend against power and timing attacks.
  823. The AES specifies three key sizes: 128, 192 and 256 bits
  824. See <http://csrc.nist.gov/encryption/aes/> for more information.
  825. config CRYPTO_AES_X86_64
  826. tristate "AES cipher algorithms (x86_64)"
  827. depends on (X86 || UML_X86) && 64BIT
  828. select CRYPTO_ALGAPI
  829. select CRYPTO_AES
  830. help
  831. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  832. algorithm.
  833. Rijndael appears to be consistently a very good performer in
  834. both hardware and software across a wide range of computing
  835. environments regardless of its use in feedback or non-feedback
  836. modes. Its key setup time is excellent, and its key agility is
  837. good. Rijndael's very low memory requirements make it very well
  838. suited for restricted-space environments, in which it also
  839. demonstrates excellent performance. Rijndael's operations are
  840. among the easiest to defend against power and timing attacks.
  841. The AES specifies three key sizes: 128, 192 and 256 bits
  842. See <http://csrc.nist.gov/encryption/aes/> for more information.
  843. config CRYPTO_AES_NI_INTEL
  844. tristate "AES cipher algorithms (AES-NI)"
  845. depends on X86
  846. select CRYPTO_AEAD
  847. select CRYPTO_AES_X86_64 if 64BIT
  848. select CRYPTO_AES_586 if !64BIT
  849. select CRYPTO_ALGAPI
  850. select CRYPTO_BLKCIPHER
  851. select CRYPTO_GLUE_HELPER_X86 if 64BIT
  852. select CRYPTO_SIMD
  853. help
  854. Use Intel AES-NI instructions for AES algorithm.
  855. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  856. algorithm.
  857. Rijndael appears to be consistently a very good performer in
  858. both hardware and software across a wide range of computing
  859. environments regardless of its use in feedback or non-feedback
  860. modes. Its key setup time is excellent, and its key agility is
  861. good. Rijndael's very low memory requirements make it very well
  862. suited for restricted-space environments, in which it also
  863. demonstrates excellent performance. Rijndael's operations are
  864. among the easiest to defend against power and timing attacks.
  865. The AES specifies three key sizes: 128, 192 and 256 bits
  866. See <http://csrc.nist.gov/encryption/aes/> for more information.
  867. In addition to AES cipher algorithm support, the acceleration
  868. for some popular block cipher mode is supported too, including
  869. ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
  870. acceleration for CTR.
  871. config CRYPTO_AES_SPARC64
  872. tristate "AES cipher algorithms (SPARC64)"
  873. depends on SPARC64
  874. select CRYPTO_CRYPTD
  875. select CRYPTO_ALGAPI
  876. help
  877. Use SPARC64 crypto opcodes for AES algorithm.
  878. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  879. algorithm.
  880. Rijndael appears to be consistently a very good performer in
  881. both hardware and software across a wide range of computing
  882. environments regardless of its use in feedback or non-feedback
  883. modes. Its key setup time is excellent, and its key agility is
  884. good. Rijndael's very low memory requirements make it very well
  885. suited for restricted-space environments, in which it also
  886. demonstrates excellent performance. Rijndael's operations are
  887. among the easiest to defend against power and timing attacks.
  888. The AES specifies three key sizes: 128, 192 and 256 bits
  889. See <http://csrc.nist.gov/encryption/aes/> for more information.
  890. In addition to AES cipher algorithm support, the acceleration
  891. for some popular block cipher mode is supported too, including
  892. ECB and CBC.
  893. config CRYPTO_AES_PPC_SPE
  894. tristate "AES cipher algorithms (PPC SPE)"
  895. depends on PPC && SPE
  896. help
  897. AES cipher algorithms (FIPS-197). Additionally the acceleration
  898. for popular block cipher modes ECB, CBC, CTR and XTS is supported.
  899. This module should only be used for low power (router) devices
  900. without hardware AES acceleration (e.g. caam crypto). It reduces the
  901. size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
  902. timining attacks. Nevertheless it might be not as secure as other
  903. architecture specific assembler implementations that work on 1KB
  904. tables or 256 bytes S-boxes.
  905. config CRYPTO_ANUBIS
  906. tristate "Anubis cipher algorithm"
  907. select CRYPTO_ALGAPI
  908. help
  909. Anubis cipher algorithm.
  910. Anubis is a variable key length cipher which can use keys from
  911. 128 bits to 320 bits in length. It was evaluated as a entrant
  912. in the NESSIE competition.
  913. See also:
  914. <https://www.cosic.esat.kuleuven.be/nessie/reports/>
  915. <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
  916. config CRYPTO_ARC4
  917. tristate "ARC4 cipher algorithm"
  918. select CRYPTO_BLKCIPHER
  919. help
  920. ARC4 cipher algorithm.
  921. ARC4 is a stream cipher using keys ranging from 8 bits to 2048
  922. bits in length. This algorithm is required for driver-based
  923. WEP, but it should not be for other purposes because of the
  924. weakness of the algorithm.
  925. config CRYPTO_BLOWFISH
  926. tristate "Blowfish cipher algorithm"
  927. select CRYPTO_ALGAPI
  928. select CRYPTO_BLOWFISH_COMMON
  929. help
  930. Blowfish cipher algorithm, by Bruce Schneier.
  931. This is a variable key length cipher which can use keys from 32
  932. bits to 448 bits in length. It's fast, simple and specifically
  933. designed for use on "large microprocessors".
  934. See also:
  935. <http://www.schneier.com/blowfish.html>
  936. config CRYPTO_BLOWFISH_COMMON
  937. tristate
  938. help
  939. Common parts of the Blowfish cipher algorithm shared by the
  940. generic c and the assembler implementations.
  941. See also:
  942. <http://www.schneier.com/blowfish.html>
  943. config CRYPTO_BLOWFISH_X86_64
  944. tristate "Blowfish cipher algorithm (x86_64)"
  945. depends on X86 && 64BIT
  946. select CRYPTO_ALGAPI
  947. select CRYPTO_BLOWFISH_COMMON
  948. help
  949. Blowfish cipher algorithm (x86_64), by Bruce Schneier.
  950. This is a variable key length cipher which can use keys from 32
  951. bits to 448 bits in length. It's fast, simple and specifically
  952. designed for use on "large microprocessors".
  953. See also:
  954. <http://www.schneier.com/blowfish.html>
  955. config CRYPTO_CAMELLIA
  956. tristate "Camellia cipher algorithms"
  957. depends on CRYPTO
  958. select CRYPTO_ALGAPI
  959. help
  960. Camellia cipher algorithms module.
  961. Camellia is a symmetric key block cipher developed jointly
  962. at NTT and Mitsubishi Electric Corporation.
  963. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  964. See also:
  965. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  966. config CRYPTO_CAMELLIA_X86_64
  967. tristate "Camellia cipher algorithm (x86_64)"
  968. depends on X86 && 64BIT
  969. depends on CRYPTO
  970. select CRYPTO_ALGAPI
  971. select CRYPTO_GLUE_HELPER_X86
  972. select CRYPTO_LRW
  973. select CRYPTO_XTS
  974. help
  975. Camellia cipher algorithm module (x86_64).
  976. Camellia is a symmetric key block cipher developed jointly
  977. at NTT and Mitsubishi Electric Corporation.
  978. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  979. See also:
  980. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  981. config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
  982. tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
  983. depends on X86 && 64BIT
  984. depends on CRYPTO
  985. select CRYPTO_ALGAPI
  986. select CRYPTO_CRYPTD
  987. select CRYPTO_ABLK_HELPER
  988. select CRYPTO_GLUE_HELPER_X86
  989. select CRYPTO_CAMELLIA_X86_64
  990. select CRYPTO_LRW
  991. select CRYPTO_XTS
  992. help
  993. Camellia cipher algorithm module (x86_64/AES-NI/AVX).
  994. Camellia is a symmetric key block cipher developed jointly
  995. at NTT and Mitsubishi Electric Corporation.
  996. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  997. See also:
  998. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  999. config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
  1000. tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
  1001. depends on X86 && 64BIT
  1002. depends on CRYPTO
  1003. select CRYPTO_ALGAPI
  1004. select CRYPTO_CRYPTD
  1005. select CRYPTO_ABLK_HELPER
  1006. select CRYPTO_GLUE_HELPER_X86
  1007. select CRYPTO_CAMELLIA_X86_64
  1008. select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
  1009. select CRYPTO_LRW
  1010. select CRYPTO_XTS
  1011. help
  1012. Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
  1013. Camellia is a symmetric key block cipher developed jointly
  1014. at NTT and Mitsubishi Electric Corporation.
  1015. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  1016. See also:
  1017. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  1018. config CRYPTO_CAMELLIA_SPARC64
  1019. tristate "Camellia cipher algorithm (SPARC64)"
  1020. depends on SPARC64
  1021. depends on CRYPTO
  1022. select CRYPTO_ALGAPI
  1023. help
  1024. Camellia cipher algorithm module (SPARC64).
  1025. Camellia is a symmetric key block cipher developed jointly
  1026. at NTT and Mitsubishi Electric Corporation.
  1027. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  1028. See also:
  1029. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  1030. config CRYPTO_CAST_COMMON
  1031. tristate
  1032. help
  1033. Common parts of the CAST cipher algorithms shared by the
  1034. generic c and the assembler implementations.
  1035. config CRYPTO_CAST5
  1036. tristate "CAST5 (CAST-128) cipher algorithm"
  1037. select CRYPTO_ALGAPI
  1038. select CRYPTO_CAST_COMMON
  1039. help
  1040. The CAST5 encryption algorithm (synonymous with CAST-128) is
  1041. described in RFC2144.
  1042. config CRYPTO_CAST5_AVX_X86_64
  1043. tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
  1044. depends on X86 && 64BIT
  1045. select CRYPTO_ALGAPI
  1046. select CRYPTO_CRYPTD
  1047. select CRYPTO_ABLK_HELPER
  1048. select CRYPTO_CAST_COMMON
  1049. select CRYPTO_CAST5
  1050. help
  1051. The CAST5 encryption algorithm (synonymous with CAST-128) is
  1052. described in RFC2144.
  1053. This module provides the Cast5 cipher algorithm that processes
  1054. sixteen blocks parallel using the AVX instruction set.
  1055. config CRYPTO_CAST6
  1056. tristate "CAST6 (CAST-256) cipher algorithm"
  1057. select CRYPTO_ALGAPI
  1058. select CRYPTO_CAST_COMMON
  1059. help
  1060. The CAST6 encryption algorithm (synonymous with CAST-256) is
  1061. described in RFC2612.
  1062. config CRYPTO_CAST6_AVX_X86_64
  1063. tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
  1064. depends on X86 && 64BIT
  1065. select CRYPTO_ALGAPI
  1066. select CRYPTO_CRYPTD
  1067. select CRYPTO_ABLK_HELPER
  1068. select CRYPTO_GLUE_HELPER_X86
  1069. select CRYPTO_CAST_COMMON
  1070. select CRYPTO_CAST6
  1071. select CRYPTO_LRW
  1072. select CRYPTO_XTS
  1073. help
  1074. The CAST6 encryption algorithm (synonymous with CAST-256) is
  1075. described in RFC2612.
  1076. This module provides the Cast6 cipher algorithm that processes
  1077. eight blocks parallel using the AVX instruction set.
  1078. config CRYPTO_DES
  1079. tristate "DES and Triple DES EDE cipher algorithms"
  1080. select CRYPTO_ALGAPI
  1081. help
  1082. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
  1083. config CRYPTO_DES_SPARC64
  1084. tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
  1085. depends on SPARC64
  1086. select CRYPTO_ALGAPI
  1087. select CRYPTO_DES
  1088. help
  1089. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
  1090. optimized using SPARC64 crypto opcodes.
  1091. config CRYPTO_DES3_EDE_X86_64
  1092. tristate "Triple DES EDE cipher algorithm (x86-64)"
  1093. depends on X86 && 64BIT
  1094. select CRYPTO_ALGAPI
  1095. select CRYPTO_DES
  1096. help
  1097. Triple DES EDE (FIPS 46-3) algorithm.
  1098. This module provides implementation of the Triple DES EDE cipher
  1099. algorithm that is optimized for x86-64 processors. Two versions of
  1100. algorithm are provided; regular processing one input block and
  1101. one that processes three blocks parallel.
  1102. config CRYPTO_FCRYPT
  1103. tristate "FCrypt cipher algorithm"
  1104. select CRYPTO_ALGAPI
  1105. select CRYPTO_BLKCIPHER
  1106. help
  1107. FCrypt algorithm used by RxRPC.
  1108. config CRYPTO_KHAZAD
  1109. tristate "Khazad cipher algorithm"
  1110. select CRYPTO_ALGAPI
  1111. help
  1112. Khazad cipher algorithm.
  1113. Khazad was a finalist in the initial NESSIE competition. It is
  1114. an algorithm optimized for 64-bit processors with good performance
  1115. on 32-bit processors. Khazad uses an 128 bit key size.
  1116. See also:
  1117. <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
  1118. config CRYPTO_SALSA20
  1119. tristate "Salsa20 stream cipher algorithm"
  1120. select CRYPTO_BLKCIPHER
  1121. help
  1122. Salsa20 stream cipher algorithm.
  1123. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  1124. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  1125. The Salsa20 stream cipher algorithm is designed by Daniel J.
  1126. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  1127. config CRYPTO_SALSA20_586
  1128. tristate "Salsa20 stream cipher algorithm (i586)"
  1129. depends on (X86 || UML_X86) && !64BIT
  1130. select CRYPTO_BLKCIPHER
  1131. help
  1132. Salsa20 stream cipher algorithm.
  1133. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  1134. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  1135. The Salsa20 stream cipher algorithm is designed by Daniel J.
  1136. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  1137. config CRYPTO_SALSA20_X86_64
  1138. tristate "Salsa20 stream cipher algorithm (x86_64)"
  1139. depends on (X86 || UML_X86) && 64BIT
  1140. select CRYPTO_BLKCIPHER
  1141. help
  1142. Salsa20 stream cipher algorithm.
  1143. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  1144. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  1145. The Salsa20 stream cipher algorithm is designed by Daniel J.
  1146. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  1147. config CRYPTO_CHACHA20
  1148. tristate "ChaCha20 cipher algorithm"
  1149. select CRYPTO_BLKCIPHER
  1150. help
  1151. ChaCha20 cipher algorithm, RFC7539.
  1152. ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
  1153. Bernstein and further specified in RFC7539 for use in IETF protocols.
  1154. This is the portable C implementation of ChaCha20.
  1155. See also:
  1156. <http://cr.yp.to/chacha/chacha-20080128.pdf>
  1157. config CRYPTO_CHACHA20_X86_64
  1158. tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
  1159. depends on X86 && 64BIT
  1160. select CRYPTO_BLKCIPHER
  1161. select CRYPTO_CHACHA20
  1162. help
  1163. ChaCha20 cipher algorithm, RFC7539.
  1164. ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
  1165. Bernstein and further specified in RFC7539 for use in IETF protocols.
  1166. This is the x86_64 assembler implementation using SIMD instructions.
  1167. See also:
  1168. <http://cr.yp.to/chacha/chacha-20080128.pdf>
  1169. config CRYPTO_SEED
  1170. tristate "SEED cipher algorithm"
  1171. select CRYPTO_ALGAPI
  1172. help
  1173. SEED cipher algorithm (RFC4269).
  1174. SEED is a 128-bit symmetric key block cipher that has been
  1175. developed by KISA (Korea Information Security Agency) as a
  1176. national standard encryption algorithm of the Republic of Korea.
  1177. It is a 16 round block cipher with the key size of 128 bit.
  1178. See also:
  1179. <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
  1180. config CRYPTO_SERPENT
  1181. tristate "Serpent cipher algorithm"
  1182. select CRYPTO_ALGAPI
  1183. help
  1184. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  1185. Keys are allowed to be from 0 to 256 bits in length, in steps
  1186. of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
  1187. variant of Serpent for compatibility with old kerneli.org code.
  1188. See also:
  1189. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  1190. config CRYPTO_SERPENT_SSE2_X86_64
  1191. tristate "Serpent cipher algorithm (x86_64/SSE2)"
  1192. depends on X86 && 64BIT
  1193. select CRYPTO_ALGAPI
  1194. select CRYPTO_CRYPTD
  1195. select CRYPTO_ABLK_HELPER
  1196. select CRYPTO_GLUE_HELPER_X86
  1197. select CRYPTO_SERPENT
  1198. select CRYPTO_LRW
  1199. select CRYPTO_XTS
  1200. help
  1201. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  1202. Keys are allowed to be from 0 to 256 bits in length, in steps
  1203. of 8 bits.
  1204. This module provides Serpent cipher algorithm that processes eight
  1205. blocks parallel using SSE2 instruction set.
  1206. See also:
  1207. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  1208. config CRYPTO_SERPENT_SSE2_586
  1209. tristate "Serpent cipher algorithm (i586/SSE2)"
  1210. depends on X86 && !64BIT
  1211. select CRYPTO_ALGAPI
  1212. select CRYPTO_CRYPTD
  1213. select CRYPTO_ABLK_HELPER
  1214. select CRYPTO_GLUE_HELPER_X86
  1215. select CRYPTO_SERPENT
  1216. select CRYPTO_LRW
  1217. select CRYPTO_XTS
  1218. help
  1219. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  1220. Keys are allowed to be from 0 to 256 bits in length, in steps
  1221. of 8 bits.
  1222. This module provides Serpent cipher algorithm that processes four
  1223. blocks parallel using SSE2 instruction set.
  1224. See also:
  1225. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  1226. config CRYPTO_SERPENT_AVX_X86_64
  1227. tristate "Serpent cipher algorithm (x86_64/AVX)"
  1228. depends on X86 && 64BIT
  1229. select CRYPTO_ALGAPI
  1230. select CRYPTO_CRYPTD
  1231. select CRYPTO_ABLK_HELPER
  1232. select CRYPTO_GLUE_HELPER_X86
  1233. select CRYPTO_SERPENT
  1234. select CRYPTO_LRW
  1235. select CRYPTO_XTS
  1236. help
  1237. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  1238. Keys are allowed to be from 0 to 256 bits in length, in steps
  1239. of 8 bits.
  1240. This module provides the Serpent cipher algorithm that processes
  1241. eight blocks parallel using the AVX instruction set.
  1242. See also:
  1243. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  1244. config CRYPTO_SERPENT_AVX2_X86_64
  1245. tristate "Serpent cipher algorithm (x86_64/AVX2)"
  1246. depends on X86 && 64BIT
  1247. select CRYPTO_ALGAPI
  1248. select CRYPTO_CRYPTD
  1249. select CRYPTO_ABLK_HELPER
  1250. select CRYPTO_GLUE_HELPER_X86
  1251. select CRYPTO_SERPENT
  1252. select CRYPTO_SERPENT_AVX_X86_64
  1253. select CRYPTO_LRW
  1254. select CRYPTO_XTS
  1255. help
  1256. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  1257. Keys are allowed to be from 0 to 256 bits in length, in steps
  1258. of 8 bits.
  1259. This module provides Serpent cipher algorithm that processes 16
  1260. blocks parallel using AVX2 instruction set.
  1261. See also:
  1262. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  1263. config CRYPTO_TEA
  1264. tristate "TEA, XTEA and XETA cipher algorithms"
  1265. select CRYPTO_ALGAPI
  1266. help
  1267. TEA cipher algorithm.
  1268. Tiny Encryption Algorithm is a simple cipher that uses
  1269. many rounds for security. It is very fast and uses
  1270. little memory.
  1271. Xtendend Tiny Encryption Algorithm is a modification to
  1272. the TEA algorithm to address a potential key weakness
  1273. in the TEA algorithm.
  1274. Xtendend Encryption Tiny Algorithm is a mis-implementation
  1275. of the XTEA algorithm for compatibility purposes.
  1276. config CRYPTO_TWOFISH
  1277. tristate "Twofish cipher algorithm"
  1278. select CRYPTO_ALGAPI
  1279. select CRYPTO_TWOFISH_COMMON
  1280. help
  1281. Twofish cipher algorithm.
  1282. Twofish was submitted as an AES (Advanced Encryption Standard)
  1283. candidate cipher by researchers at CounterPane Systems. It is a
  1284. 16 round block cipher supporting key sizes of 128, 192, and 256
  1285. bits.
  1286. See also:
  1287. <http://www.schneier.com/twofish.html>
  1288. config CRYPTO_TWOFISH_COMMON
  1289. tristate
  1290. help
  1291. Common parts of the Twofish cipher algorithm shared by the
  1292. generic c and the assembler implementations.
  1293. config CRYPTO_TWOFISH_586
  1294. tristate "Twofish cipher algorithms (i586)"
  1295. depends on (X86 || UML_X86) && !64BIT
  1296. select CRYPTO_ALGAPI
  1297. select CRYPTO_TWOFISH_COMMON
  1298. help
  1299. Twofish cipher algorithm.
  1300. Twofish was submitted as an AES (Advanced Encryption Standard)
  1301. candidate cipher by researchers at CounterPane Systems. It is a
  1302. 16 round block cipher supporting key sizes of 128, 192, and 256
  1303. bits.
  1304. See also:
  1305. <http://www.schneier.com/twofish.html>
  1306. config CRYPTO_TWOFISH_X86_64
  1307. tristate "Twofish cipher algorithm (x86_64)"
  1308. depends on (X86 || UML_X86) && 64BIT
  1309. select CRYPTO_ALGAPI
  1310. select CRYPTO_TWOFISH_COMMON
  1311. help
  1312. Twofish cipher algorithm (x86_64).
  1313. Twofish was submitted as an AES (Advanced Encryption Standard)
  1314. candidate cipher by researchers at CounterPane Systems. It is a
  1315. 16 round block cipher supporting key sizes of 128, 192, and 256
  1316. bits.
  1317. See also:
  1318. <http://www.schneier.com/twofish.html>
  1319. config CRYPTO_TWOFISH_X86_64_3WAY
  1320. tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
  1321. depends on X86 && 64BIT
  1322. select CRYPTO_ALGAPI
  1323. select CRYPTO_TWOFISH_COMMON
  1324. select CRYPTO_TWOFISH_X86_64
  1325. select CRYPTO_GLUE_HELPER_X86
  1326. select CRYPTO_LRW
  1327. select CRYPTO_XTS
  1328. help
  1329. Twofish cipher algorithm (x86_64, 3-way parallel).
  1330. Twofish was submitted as an AES (Advanced Encryption Standard)
  1331. candidate cipher by researchers at CounterPane Systems. It is a
  1332. 16 round block cipher supporting key sizes of 128, 192, and 256
  1333. bits.
  1334. This module provides Twofish cipher algorithm that processes three
  1335. blocks parallel, utilizing resources of out-of-order CPUs better.
  1336. See also:
  1337. <http://www.schneier.com/twofish.html>
  1338. config CRYPTO_TWOFISH_AVX_X86_64
  1339. tristate "Twofish cipher algorithm (x86_64/AVX)"
  1340. depends on X86 && 64BIT
  1341. select CRYPTO_ALGAPI
  1342. select CRYPTO_CRYPTD
  1343. select CRYPTO_ABLK_HELPER
  1344. select CRYPTO_GLUE_HELPER_X86
  1345. select CRYPTO_TWOFISH_COMMON
  1346. select CRYPTO_TWOFISH_X86_64
  1347. select CRYPTO_TWOFISH_X86_64_3WAY
  1348. select CRYPTO_LRW
  1349. select CRYPTO_XTS
  1350. help
  1351. Twofish cipher algorithm (x86_64/AVX).
  1352. Twofish was submitted as an AES (Advanced Encryption Standard)
  1353. candidate cipher by researchers at CounterPane Systems. It is a
  1354. 16 round block cipher supporting key sizes of 128, 192, and 256
  1355. bits.
  1356. This module provides the Twofish cipher algorithm that processes
  1357. eight blocks parallel using the AVX Instruction Set.
  1358. See also:
  1359. <http://www.schneier.com/twofish.html>
  1360. comment "Compression"
  1361. config CRYPTO_DEFLATE
  1362. tristate "Deflate compression algorithm"
  1363. select CRYPTO_ALGAPI
  1364. select CRYPTO_ACOMP2
  1365. select ZLIB_INFLATE
  1366. select ZLIB_DEFLATE
  1367. help
  1368. This is the Deflate algorithm (RFC1951), specified for use in
  1369. IPSec with the IPCOMP protocol (RFC3173, RFC2394).
  1370. You will most probably want this if using IPSec.
  1371. config CRYPTO_LZO
  1372. tristate "LZO compression algorithm"
  1373. select CRYPTO_ALGAPI
  1374. select CRYPTO_ACOMP2
  1375. select LZO_COMPRESS
  1376. select LZO_DECOMPRESS
  1377. help
  1378. This is the LZO algorithm.
  1379. config CRYPTO_842
  1380. tristate "842 compression algorithm"
  1381. select CRYPTO_ALGAPI
  1382. select CRYPTO_ACOMP2
  1383. select 842_COMPRESS
  1384. select 842_DECOMPRESS
  1385. help
  1386. This is the 842 algorithm.
  1387. config CRYPTO_LZ4
  1388. tristate "LZ4 compression algorithm"
  1389. select CRYPTO_ALGAPI
  1390. select CRYPTO_ACOMP2
  1391. select LZ4_COMPRESS
  1392. select LZ4_DECOMPRESS
  1393. help
  1394. This is the LZ4 algorithm.
  1395. config CRYPTO_LZ4HC
  1396. tristate "LZ4HC compression algorithm"
  1397. select CRYPTO_ALGAPI
  1398. select CRYPTO_ACOMP2
  1399. select LZ4HC_COMPRESS
  1400. select LZ4_DECOMPRESS
  1401. help
  1402. This is the LZ4 high compression mode algorithm.
  1403. comment "Random Number Generation"
  1404. config CRYPTO_ANSI_CPRNG
  1405. tristate "Pseudo Random Number Generation for Cryptographic modules"
  1406. select CRYPTO_AES
  1407. select CRYPTO_RNG
  1408. help
  1409. This option enables the generic pseudo random number generator
  1410. for cryptographic modules. Uses the Algorithm specified in
  1411. ANSI X9.31 A.2.4. Note that this option must be enabled if
  1412. CRYPTO_FIPS is selected
  1413. menuconfig CRYPTO_DRBG_MENU
  1414. tristate "NIST SP800-90A DRBG"
  1415. help
  1416. NIST SP800-90A compliant DRBG. In the following submenu, one or
  1417. more of the DRBG types must be selected.
  1418. if CRYPTO_DRBG_MENU
  1419. config CRYPTO_DRBG_HMAC
  1420. bool
  1421. default y
  1422. select CRYPTO_HMAC
  1423. select CRYPTO_SHA256
  1424. config CRYPTO_DRBG_HASH
  1425. bool "Enable Hash DRBG"
  1426. select CRYPTO_SHA256
  1427. help
  1428. Enable the Hash DRBG variant as defined in NIST SP800-90A.
  1429. config CRYPTO_DRBG_CTR
  1430. bool "Enable CTR DRBG"
  1431. select CRYPTO_AES
  1432. depends on CRYPTO_CTR
  1433. help
  1434. Enable the CTR DRBG variant as defined in NIST SP800-90A.
  1435. config CRYPTO_DRBG
  1436. tristate
  1437. default CRYPTO_DRBG_MENU
  1438. select CRYPTO_RNG
  1439. select CRYPTO_JITTERENTROPY
  1440. endif # if CRYPTO_DRBG_MENU
  1441. config CRYPTO_JITTERENTROPY
  1442. tristate "Jitterentropy Non-Deterministic Random Number Generator"
  1443. select CRYPTO_RNG
  1444. help
  1445. The Jitterentropy RNG is a noise that is intended
  1446. to provide seed to another RNG. The RNG does not
  1447. perform any cryptographic whitening of the generated
  1448. random numbers. This Jitterentropy RNG registers with
  1449. the kernel crypto API and can be used by any caller.
  1450. config CRYPTO_USER_API
  1451. tristate
  1452. config CRYPTO_USER_API_HASH
  1453. tristate "User-space interface for hash algorithms"
  1454. depends on NET
  1455. select CRYPTO_HASH
  1456. select CRYPTO_USER_API
  1457. help
  1458. This option enables the user-spaces interface for hash
  1459. algorithms.
  1460. config CRYPTO_USER_API_SKCIPHER
  1461. tristate "User-space interface for symmetric key cipher algorithms"
  1462. depends on NET
  1463. select CRYPTO_BLKCIPHER
  1464. select CRYPTO_USER_API
  1465. help
  1466. This option enables the user-spaces interface for symmetric
  1467. key cipher algorithms.
  1468. config CRYPTO_USER_API_RNG
  1469. tristate "User-space interface for random number generator algorithms"
  1470. depends on NET
  1471. select CRYPTO_RNG
  1472. select CRYPTO_USER_API
  1473. help
  1474. This option enables the user-spaces interface for random
  1475. number generator algorithms.
  1476. config CRYPTO_USER_API_AEAD
  1477. tristate "User-space interface for AEAD cipher algorithms"
  1478. depends on NET
  1479. select CRYPTO_AEAD
  1480. select CRYPTO_BLKCIPHER
  1481. select CRYPTO_NULL
  1482. select CRYPTO_USER_API
  1483. help
  1484. This option enables the user-spaces interface for AEAD
  1485. cipher algorithms.
  1486. config CRYPTO_HASH_INFO
  1487. bool
  1488. source "drivers/crypto/Kconfig"
  1489. source crypto/asymmetric_keys/Kconfig
  1490. source certs/Kconfig
  1491. endif # if CRYPTO