multiorder.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. /*
  2. * multiorder.c: Multi-order radix tree entry testing
  3. * Copyright (c) 2016 Intel Corporation
  4. * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  5. * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. */
  16. #include <linux/radix-tree.h>
  17. #include <linux/slab.h>
  18. #include <linux/errno.h>
  19. #include "test.h"
  20. #define for_each_index(i, base, order) \
  21. for (i = base; i < base + (1 << order); i++)
  22. static void __multiorder_tag_test(int index, int order)
  23. {
  24. RADIX_TREE(tree, GFP_KERNEL);
  25. int base, err, i;
  26. unsigned long first = 0;
  27. /* our canonical entry */
  28. base = index & ~((1 << order) - 1);
  29. printf("Multiorder tag test with index %d, canonical entry %d\n",
  30. index, base);
  31. err = item_insert_order(&tree, index, order);
  32. assert(!err);
  33. /*
  34. * Verify we get collisions for covered indices. We try and fail to
  35. * insert an exceptional entry so we don't leak memory via
  36. * item_insert_order().
  37. */
  38. for_each_index(i, base, order) {
  39. err = __radix_tree_insert(&tree, i, order,
  40. (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
  41. assert(err == -EEXIST);
  42. }
  43. for_each_index(i, base, order) {
  44. assert(!radix_tree_tag_get(&tree, i, 0));
  45. assert(!radix_tree_tag_get(&tree, i, 1));
  46. }
  47. assert(radix_tree_tag_set(&tree, index, 0));
  48. for_each_index(i, base, order) {
  49. assert(radix_tree_tag_get(&tree, i, 0));
  50. assert(!radix_tree_tag_get(&tree, i, 1));
  51. }
  52. assert(radix_tree_range_tag_if_tagged(&tree, &first, ~0UL, 10, 0, 1) == 1);
  53. assert(radix_tree_tag_clear(&tree, index, 0));
  54. for_each_index(i, base, order) {
  55. assert(!radix_tree_tag_get(&tree, i, 0));
  56. assert(radix_tree_tag_get(&tree, i, 1));
  57. }
  58. assert(radix_tree_tag_clear(&tree, index, 1));
  59. assert(!radix_tree_tagged(&tree, 0));
  60. assert(!radix_tree_tagged(&tree, 1));
  61. item_kill_tree(&tree);
  62. }
  63. static void multiorder_tag_tests(void)
  64. {
  65. /* test multi-order entry for indices 0-7 with no sibling pointers */
  66. __multiorder_tag_test(0, 3);
  67. __multiorder_tag_test(5, 3);
  68. /* test multi-order entry for indices 8-15 with no sibling pointers */
  69. __multiorder_tag_test(8, 3);
  70. __multiorder_tag_test(15, 3);
  71. /*
  72. * Our order 5 entry covers indices 0-31 in a tree with height=2.
  73. * This is broken up as follows:
  74. * 0-7: canonical entry
  75. * 8-15: sibling 1
  76. * 16-23: sibling 2
  77. * 24-31: sibling 3
  78. */
  79. __multiorder_tag_test(0, 5);
  80. __multiorder_tag_test(29, 5);
  81. /* same test, but with indices 32-63 */
  82. __multiorder_tag_test(32, 5);
  83. __multiorder_tag_test(44, 5);
  84. /*
  85. * Our order 8 entry covers indices 0-255 in a tree with height=3.
  86. * This is broken up as follows:
  87. * 0-63: canonical entry
  88. * 64-127: sibling 1
  89. * 128-191: sibling 2
  90. * 192-255: sibling 3
  91. */
  92. __multiorder_tag_test(0, 8);
  93. __multiorder_tag_test(190, 8);
  94. /* same test, but with indices 256-511 */
  95. __multiorder_tag_test(256, 8);
  96. __multiorder_tag_test(300, 8);
  97. __multiorder_tag_test(0x12345678UL, 8);
  98. }
  99. static void multiorder_check(unsigned long index, int order)
  100. {
  101. unsigned long i;
  102. unsigned long min = index & ~((1UL << order) - 1);
  103. unsigned long max = min + (1UL << order);
  104. RADIX_TREE(tree, GFP_KERNEL);
  105. printf("Multiorder index %ld, order %d\n", index, order);
  106. assert(item_insert_order(&tree, index, order) == 0);
  107. for (i = min; i < max; i++) {
  108. struct item *item = item_lookup(&tree, i);
  109. assert(item != 0);
  110. assert(item->index == index);
  111. }
  112. for (i = 0; i < min; i++)
  113. item_check_absent(&tree, i);
  114. for (i = max; i < 2*max; i++)
  115. item_check_absent(&tree, i);
  116. for (i = min; i < max; i++) {
  117. static void *entry = (void *)
  118. (0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY);
  119. assert(radix_tree_insert(&tree, i, entry) == -EEXIST);
  120. }
  121. assert(item_delete(&tree, index) != 0);
  122. for (i = 0; i < 2*max; i++)
  123. item_check_absent(&tree, i);
  124. }
  125. static void multiorder_shrink(unsigned long index, int order)
  126. {
  127. unsigned long i;
  128. unsigned long max = 1 << order;
  129. RADIX_TREE(tree, GFP_KERNEL);
  130. struct radix_tree_node *node;
  131. printf("Multiorder shrink index %ld, order %d\n", index, order);
  132. assert(item_insert_order(&tree, 0, order) == 0);
  133. node = tree.rnode;
  134. assert(item_insert(&tree, index) == 0);
  135. assert(node != tree.rnode);
  136. assert(item_delete(&tree, index) != 0);
  137. assert(node == tree.rnode);
  138. for (i = 0; i < max; i++) {
  139. struct item *item = item_lookup(&tree, i);
  140. assert(item != 0);
  141. assert(item->index == 0);
  142. }
  143. for (i = max; i < 2*max; i++)
  144. item_check_absent(&tree, i);
  145. if (!item_delete(&tree, 0)) {
  146. printf("failed to delete index %ld (order %d)\n", index, order); abort();
  147. }
  148. for (i = 0; i < 2*max; i++)
  149. item_check_absent(&tree, i);
  150. }
  151. static void multiorder_insert_bug(void)
  152. {
  153. RADIX_TREE(tree, GFP_KERNEL);
  154. item_insert(&tree, 0);
  155. radix_tree_tag_set(&tree, 0, 0);
  156. item_insert_order(&tree, 3 << 6, 6);
  157. item_kill_tree(&tree);
  158. }
  159. void multiorder_iteration(void)
  160. {
  161. RADIX_TREE(tree, GFP_KERNEL);
  162. struct radix_tree_iter iter;
  163. void **slot;
  164. int i, j, err;
  165. printf("Multiorder iteration test\n");
  166. #define NUM_ENTRIES 11
  167. int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
  168. int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
  169. for (i = 0; i < NUM_ENTRIES; i++) {
  170. err = item_insert_order(&tree, index[i], order[i]);
  171. assert(!err);
  172. }
  173. for (j = 0; j < 256; j++) {
  174. for (i = 0; i < NUM_ENTRIES; i++)
  175. if (j <= (index[i] | ((1 << order[i]) - 1)))
  176. break;
  177. radix_tree_for_each_slot(slot, &tree, &iter, j) {
  178. int height = order[i] / RADIX_TREE_MAP_SHIFT;
  179. int shift = height * RADIX_TREE_MAP_SHIFT;
  180. int mask = (1 << order[i]) - 1;
  181. assert(iter.index >= (index[i] &~ mask));
  182. assert(iter.index <= (index[i] | mask));
  183. assert(iter.shift == shift);
  184. i++;
  185. }
  186. }
  187. item_kill_tree(&tree);
  188. }
  189. void multiorder_tagged_iteration(void)
  190. {
  191. RADIX_TREE(tree, GFP_KERNEL);
  192. struct radix_tree_iter iter;
  193. void **slot;
  194. unsigned long first = 0;
  195. int i, j;
  196. printf("Multiorder tagged iteration test\n");
  197. #define MT_NUM_ENTRIES 9
  198. int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
  199. int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
  200. #define TAG_ENTRIES 7
  201. int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
  202. for (i = 0; i < MT_NUM_ENTRIES; i++)
  203. assert(!item_insert_order(&tree, index[i], order[i]));
  204. assert(!radix_tree_tagged(&tree, 1));
  205. for (i = 0; i < TAG_ENTRIES; i++)
  206. assert(radix_tree_tag_set(&tree, tag_index[i], 1));
  207. for (j = 0; j < 256; j++) {
  208. int mask, k;
  209. for (i = 0; i < TAG_ENTRIES; i++) {
  210. for (k = i; index[k] < tag_index[i]; k++)
  211. ;
  212. if (j <= (index[k] | ((1 << order[k]) - 1)))
  213. break;
  214. }
  215. radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
  216. for (k = i; index[k] < tag_index[i]; k++)
  217. ;
  218. mask = (1 << order[k]) - 1;
  219. assert(iter.index >= (tag_index[i] &~ mask));
  220. assert(iter.index <= (tag_index[i] | mask));
  221. i++;
  222. }
  223. }
  224. radix_tree_range_tag_if_tagged(&tree, &first, ~0UL,
  225. MT_NUM_ENTRIES, 1, 2);
  226. for (j = 0; j < 256; j++) {
  227. int mask, k;
  228. for (i = 0; i < TAG_ENTRIES; i++) {
  229. for (k = i; index[k] < tag_index[i]; k++)
  230. ;
  231. if (j <= (index[k] | ((1 << order[k]) - 1)))
  232. break;
  233. }
  234. radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
  235. for (k = i; index[k] < tag_index[i]; k++)
  236. ;
  237. mask = (1 << order[k]) - 1;
  238. assert(iter.index >= (tag_index[i] &~ mask));
  239. assert(iter.index <= (tag_index[i] | mask));
  240. i++;
  241. }
  242. }
  243. first = 1;
  244. radix_tree_range_tag_if_tagged(&tree, &first, ~0UL,
  245. MT_NUM_ENTRIES, 1, 0);
  246. i = 0;
  247. radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
  248. assert(iter.index == tag_index[i]);
  249. i++;
  250. }
  251. item_kill_tree(&tree);
  252. }
  253. void multiorder_checks(void)
  254. {
  255. int i;
  256. for (i = 0; i < 20; i++) {
  257. multiorder_check(200, i);
  258. multiorder_check(0, i);
  259. multiorder_check((1UL << i) + 1, i);
  260. }
  261. for (i = 0; i < 15; i++)
  262. multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
  263. multiorder_insert_bug();
  264. multiorder_tag_tests();
  265. multiorder_iteration();
  266. multiorder_tagged_iteration();
  267. }