safexcel_cipher.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. /*
  2. * Copyright (C) 2017 Marvell
  3. *
  4. * Antoine Tenart <antoine.tenart@free-electrons.com>
  5. *
  6. * This file is licensed under the terms of the GNU General Public
  7. * License version 2. This program is licensed "as is" without any
  8. * warranty of any kind, whether express or implied.
  9. */
  10. #include <linux/device.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmapool.h>
  13. #include <crypto/aes.h>
  14. #include <crypto/skcipher.h>
  15. #include <crypto/internal/skcipher.h>
  16. #include "safexcel.h"
  17. enum safexcel_cipher_direction {
  18. SAFEXCEL_ENCRYPT,
  19. SAFEXCEL_DECRYPT,
  20. };
  21. struct safexcel_cipher_ctx {
  22. struct safexcel_context base;
  23. struct safexcel_crypto_priv *priv;
  24. u32 mode;
  25. __le32 key[8];
  26. unsigned int key_len;
  27. };
  28. struct safexcel_cipher_req {
  29. enum safexcel_cipher_direction direction;
  30. bool needs_inv;
  31. };
  32. static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  33. struct safexcel_command_desc *cdesc,
  34. u32 length)
  35. {
  36. struct safexcel_token *token;
  37. unsigned offset = 0;
  38. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  39. offset = AES_BLOCK_SIZE / sizeof(u32);
  40. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  41. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  42. }
  43. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  44. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  45. token[0].packet_length = length;
  46. token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
  47. EIP197_TOKEN_STAT_LAST_HASH;
  48. token[0].instructions = EIP197_TOKEN_INS_LAST |
  49. EIP197_TOKEN_INS_TYPE_CRYTO |
  50. EIP197_TOKEN_INS_TYPE_OUTPUT;
  51. }
  52. static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
  53. const u8 *key, unsigned int len)
  54. {
  55. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  56. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  57. struct safexcel_crypto_priv *priv = ctx->priv;
  58. struct crypto_aes_ctx aes;
  59. int ret, i;
  60. ret = crypto_aes_expand_key(&aes, key, len);
  61. if (ret) {
  62. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  63. return ret;
  64. }
  65. if (priv->version == EIP197 && ctx->base.ctxr_dma) {
  66. for (i = 0; i < len / sizeof(u32); i++) {
  67. if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
  68. ctx->base.needs_inv = true;
  69. break;
  70. }
  71. }
  72. }
  73. for (i = 0; i < len / sizeof(u32); i++)
  74. ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
  75. ctx->key_len = len;
  76. memzero_explicit(&aes, sizeof(aes));
  77. return 0;
  78. }
  79. static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
  80. struct crypto_async_request *async,
  81. struct safexcel_cipher_req *sreq,
  82. struct safexcel_command_desc *cdesc)
  83. {
  84. struct safexcel_crypto_priv *priv = ctx->priv;
  85. int ctrl_size;
  86. if (sreq->direction == SAFEXCEL_ENCRYPT)
  87. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
  88. else
  89. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_IN;
  90. cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
  91. cdesc->control_data.control1 |= ctx->mode;
  92. switch (ctx->key_len) {
  93. case AES_KEYSIZE_128:
  94. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
  95. ctrl_size = 4;
  96. break;
  97. case AES_KEYSIZE_192:
  98. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
  99. ctrl_size = 6;
  100. break;
  101. case AES_KEYSIZE_256:
  102. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
  103. ctrl_size = 8;
  104. break;
  105. default:
  106. dev_err(priv->dev, "aes keysize not supported: %u\n",
  107. ctx->key_len);
  108. return -EINVAL;
  109. }
  110. cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
  111. return 0;
  112. }
  113. static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
  114. struct crypto_async_request *async,
  115. struct scatterlist *src,
  116. struct scatterlist *dst,
  117. unsigned int cryptlen,
  118. struct safexcel_cipher_req *sreq,
  119. bool *should_complete, int *ret)
  120. {
  121. struct safexcel_result_desc *rdesc;
  122. int ndesc = 0;
  123. *ret = 0;
  124. spin_lock_bh(&priv->ring[ring].egress_lock);
  125. do {
  126. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  127. if (IS_ERR(rdesc)) {
  128. dev_err(priv->dev,
  129. "cipher: result: could not retrieve the result descriptor\n");
  130. *ret = PTR_ERR(rdesc);
  131. break;
  132. }
  133. if (rdesc->result_data.error_code) {
  134. dev_err(priv->dev,
  135. "cipher: result: result descriptor error (%d)\n",
  136. rdesc->result_data.error_code);
  137. *ret = -EIO;
  138. }
  139. ndesc++;
  140. } while (!rdesc->last_seg);
  141. safexcel_complete(priv, ring);
  142. spin_unlock_bh(&priv->ring[ring].egress_lock);
  143. if (src == dst) {
  144. dma_unmap_sg(priv->dev, src,
  145. sg_nents_for_len(src, cryptlen),
  146. DMA_BIDIRECTIONAL);
  147. } else {
  148. dma_unmap_sg(priv->dev, src,
  149. sg_nents_for_len(src, cryptlen),
  150. DMA_TO_DEVICE);
  151. dma_unmap_sg(priv->dev, dst,
  152. sg_nents_for_len(dst, cryptlen),
  153. DMA_FROM_DEVICE);
  154. }
  155. *should_complete = true;
  156. return ndesc;
  157. }
  158. static int safexcel_aes_send(struct crypto_async_request *base, int ring,
  159. struct safexcel_request *request,
  160. struct safexcel_cipher_req *sreq,
  161. struct scatterlist *src, struct scatterlist *dst,
  162. unsigned int cryptlen, u8 *iv, int *commands,
  163. int *results)
  164. {
  165. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  166. struct safexcel_crypto_priv *priv = ctx->priv;
  167. struct safexcel_command_desc *cdesc;
  168. struct safexcel_result_desc *rdesc;
  169. struct scatterlist *sg;
  170. int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = cryptlen;
  171. int i, ret = 0;
  172. if (src == dst) {
  173. nr_src = dma_map_sg(priv->dev, src,
  174. sg_nents_for_len(src, cryptlen),
  175. DMA_BIDIRECTIONAL);
  176. nr_dst = nr_src;
  177. if (!nr_src)
  178. return -EINVAL;
  179. } else {
  180. nr_src = dma_map_sg(priv->dev, src,
  181. sg_nents_for_len(src, cryptlen),
  182. DMA_TO_DEVICE);
  183. if (!nr_src)
  184. return -EINVAL;
  185. nr_dst = dma_map_sg(priv->dev, dst,
  186. sg_nents_for_len(dst, cryptlen),
  187. DMA_FROM_DEVICE);
  188. if (!nr_dst) {
  189. dma_unmap_sg(priv->dev, src,
  190. sg_nents_for_len(src, cryptlen),
  191. DMA_TO_DEVICE);
  192. return -EINVAL;
  193. }
  194. }
  195. memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
  196. spin_lock_bh(&priv->ring[ring].egress_lock);
  197. /* command descriptors */
  198. for_each_sg(src, sg, nr_src, i) {
  199. int len = sg_dma_len(sg);
  200. /* Do not overflow the request */
  201. if (queued - len < 0)
  202. len = queued;
  203. cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
  204. sg_dma_address(sg), len, cryptlen,
  205. ctx->base.ctxr_dma);
  206. if (IS_ERR(cdesc)) {
  207. /* No space left in the command descriptor ring */
  208. ret = PTR_ERR(cdesc);
  209. goto cdesc_rollback;
  210. }
  211. n_cdesc++;
  212. if (n_cdesc == 1) {
  213. safexcel_context_control(ctx, base, sreq, cdesc);
  214. safexcel_skcipher_token(ctx, iv, cdesc, cryptlen);
  215. }
  216. queued -= len;
  217. if (!queued)
  218. break;
  219. }
  220. /* result descriptors */
  221. for_each_sg(dst, sg, nr_dst, i) {
  222. bool first = !i, last = (i == nr_dst - 1);
  223. u32 len = sg_dma_len(sg);
  224. rdesc = safexcel_add_rdesc(priv, ring, first, last,
  225. sg_dma_address(sg), len);
  226. if (IS_ERR(rdesc)) {
  227. /* No space left in the result descriptor ring */
  228. ret = PTR_ERR(rdesc);
  229. goto rdesc_rollback;
  230. }
  231. n_rdesc++;
  232. }
  233. spin_unlock_bh(&priv->ring[ring].egress_lock);
  234. request->req = base;
  235. *commands = n_cdesc;
  236. *results = n_rdesc;
  237. return 0;
  238. rdesc_rollback:
  239. for (i = 0; i < n_rdesc; i++)
  240. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
  241. cdesc_rollback:
  242. for (i = 0; i < n_cdesc; i++)
  243. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
  244. spin_unlock_bh(&priv->ring[ring].egress_lock);
  245. if (src == dst) {
  246. dma_unmap_sg(priv->dev, src,
  247. sg_nents_for_len(src, cryptlen),
  248. DMA_BIDIRECTIONAL);
  249. } else {
  250. dma_unmap_sg(priv->dev, src,
  251. sg_nents_for_len(src, cryptlen),
  252. DMA_TO_DEVICE);
  253. dma_unmap_sg(priv->dev, dst,
  254. sg_nents_for_len(dst, cryptlen),
  255. DMA_FROM_DEVICE);
  256. }
  257. return ret;
  258. }
  259. static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
  260. int ring,
  261. struct crypto_async_request *base,
  262. bool *should_complete, int *ret)
  263. {
  264. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  265. struct safexcel_result_desc *rdesc;
  266. int ndesc = 0, enq_ret;
  267. *ret = 0;
  268. spin_lock_bh(&priv->ring[ring].egress_lock);
  269. do {
  270. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  271. if (IS_ERR(rdesc)) {
  272. dev_err(priv->dev,
  273. "cipher: invalidate: could not retrieve the result descriptor\n");
  274. *ret = PTR_ERR(rdesc);
  275. break;
  276. }
  277. if (rdesc->result_data.error_code) {
  278. dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n",
  279. rdesc->result_data.error_code);
  280. *ret = -EIO;
  281. }
  282. ndesc++;
  283. } while (!rdesc->last_seg);
  284. safexcel_complete(priv, ring);
  285. spin_unlock_bh(&priv->ring[ring].egress_lock);
  286. if (ctx->base.exit_inv) {
  287. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  288. ctx->base.ctxr_dma);
  289. *should_complete = true;
  290. return ndesc;
  291. }
  292. ring = safexcel_select_ring(priv);
  293. ctx->base.ring = ring;
  294. spin_lock_bh(&priv->ring[ring].queue_lock);
  295. enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  296. spin_unlock_bh(&priv->ring[ring].queue_lock);
  297. if (enq_ret != -EINPROGRESS)
  298. *ret = enq_ret;
  299. queue_work(priv->ring[ring].workqueue,
  300. &priv->ring[ring].work_data.work);
  301. *should_complete = false;
  302. return ndesc;
  303. }
  304. static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
  305. int ring,
  306. struct crypto_async_request *async,
  307. bool *should_complete, int *ret)
  308. {
  309. struct skcipher_request *req = skcipher_request_cast(async);
  310. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  311. int err;
  312. if (sreq->needs_inv) {
  313. sreq->needs_inv = false;
  314. err = safexcel_handle_inv_result(priv, ring, async,
  315. should_complete, ret);
  316. } else {
  317. err = safexcel_handle_req_result(priv, ring, async, req->src,
  318. req->dst, req->cryptlen, sreq,
  319. should_complete, ret);
  320. }
  321. return err;
  322. }
  323. static int safexcel_cipher_send_inv(struct crypto_async_request *base,
  324. int ring, struct safexcel_request *request,
  325. int *commands, int *results)
  326. {
  327. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  328. struct safexcel_crypto_priv *priv = ctx->priv;
  329. int ret;
  330. ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring,
  331. request);
  332. if (unlikely(ret))
  333. return ret;
  334. *commands = 1;
  335. *results = 1;
  336. return 0;
  337. }
  338. static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
  339. struct safexcel_request *request,
  340. int *commands, int *results)
  341. {
  342. struct skcipher_request *req = skcipher_request_cast(async);
  343. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  344. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  345. struct safexcel_crypto_priv *priv = ctx->priv;
  346. int ret;
  347. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  348. if (sreq->needs_inv)
  349. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  350. results);
  351. else
  352. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  353. req->dst, req->cryptlen, req->iv,
  354. commands, results);
  355. return ret;
  356. }
  357. static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
  358. struct crypto_async_request *base,
  359. struct safexcel_cipher_req *sreq,
  360. struct safexcel_inv_result *result)
  361. {
  362. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  363. struct safexcel_crypto_priv *priv = ctx->priv;
  364. int ring = ctx->base.ring;
  365. init_completion(&result->completion);
  366. ctx = crypto_tfm_ctx(base->tfm);
  367. ctx->base.exit_inv = true;
  368. sreq->needs_inv = true;
  369. spin_lock_bh(&priv->ring[ring].queue_lock);
  370. crypto_enqueue_request(&priv->ring[ring].queue, base);
  371. spin_unlock_bh(&priv->ring[ring].queue_lock);
  372. queue_work(priv->ring[ring].workqueue,
  373. &priv->ring[ring].work_data.work);
  374. wait_for_completion(&result->completion);
  375. if (result->error) {
  376. dev_warn(priv->dev,
  377. "cipher: sync: invalidate: completion error %d\n",
  378. result->error);
  379. return result->error;
  380. }
  381. return 0;
  382. }
  383. static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
  384. {
  385. EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
  386. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  387. struct safexcel_inv_result result = {};
  388. memset(req, 0, sizeof(struct skcipher_request));
  389. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  390. safexcel_inv_complete, &result);
  391. skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
  392. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  393. }
  394. static int safexcel_aes(struct crypto_async_request *base,
  395. struct safexcel_cipher_req *sreq,
  396. enum safexcel_cipher_direction dir, u32 mode)
  397. {
  398. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  399. struct safexcel_crypto_priv *priv = ctx->priv;
  400. int ret, ring;
  401. sreq->needs_inv = false;
  402. sreq->direction = dir;
  403. ctx->mode = mode;
  404. if (ctx->base.ctxr) {
  405. if (priv->version == EIP197 && ctx->base.needs_inv) {
  406. sreq->needs_inv = true;
  407. ctx->base.needs_inv = false;
  408. }
  409. } else {
  410. ctx->base.ring = safexcel_select_ring(priv);
  411. ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
  412. EIP197_GFP_FLAGS(*base),
  413. &ctx->base.ctxr_dma);
  414. if (!ctx->base.ctxr)
  415. return -ENOMEM;
  416. }
  417. ring = ctx->base.ring;
  418. spin_lock_bh(&priv->ring[ring].queue_lock);
  419. ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  420. spin_unlock_bh(&priv->ring[ring].queue_lock);
  421. queue_work(priv->ring[ring].workqueue,
  422. &priv->ring[ring].work_data.work);
  423. return ret;
  424. }
  425. static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
  426. {
  427. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  428. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  429. }
  430. static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
  431. {
  432. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  433. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  434. }
  435. static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
  436. {
  437. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  438. struct safexcel_alg_template *tmpl =
  439. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  440. alg.skcipher.base);
  441. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  442. sizeof(struct safexcel_cipher_req));
  443. ctx->priv = tmpl->priv;
  444. ctx->base.send = safexcel_skcipher_send;
  445. ctx->base.handle_result = safexcel_skcipher_handle_result;
  446. return 0;
  447. }
  448. static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
  449. {
  450. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  451. memzero_explicit(ctx->key, 8 * sizeof(u32));
  452. /* context not allocated, skip invalidation */
  453. if (!ctx->base.ctxr)
  454. return -ENOMEM;
  455. memzero_explicit(ctx->base.ctxr->data, 8 * sizeof(u32));
  456. return 0;
  457. }
  458. static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
  459. {
  460. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  461. struct safexcel_crypto_priv *priv = ctx->priv;
  462. int ret;
  463. if (safexcel_cipher_cra_exit(tfm))
  464. return;
  465. if (priv->version == EIP197) {
  466. ret = safexcel_skcipher_exit_inv(tfm);
  467. if (ret)
  468. dev_warn(priv->dev, "skcipher: invalidation error %d\n",
  469. ret);
  470. } else {
  471. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  472. ctx->base.ctxr_dma);
  473. }
  474. }
  475. struct safexcel_alg_template safexcel_alg_ecb_aes = {
  476. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  477. .alg.skcipher = {
  478. .setkey = safexcel_skcipher_aes_setkey,
  479. .encrypt = safexcel_ecb_aes_encrypt,
  480. .decrypt = safexcel_ecb_aes_decrypt,
  481. .min_keysize = AES_MIN_KEY_SIZE,
  482. .max_keysize = AES_MAX_KEY_SIZE,
  483. .base = {
  484. .cra_name = "ecb(aes)",
  485. .cra_driver_name = "safexcel-ecb-aes",
  486. .cra_priority = 300,
  487. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  488. CRYPTO_ALG_KERN_DRIVER_ONLY,
  489. .cra_blocksize = AES_BLOCK_SIZE,
  490. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  491. .cra_alignmask = 0,
  492. .cra_init = safexcel_skcipher_cra_init,
  493. .cra_exit = safexcel_skcipher_cra_exit,
  494. .cra_module = THIS_MODULE,
  495. },
  496. },
  497. };
  498. static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
  499. {
  500. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  501. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  502. }
  503. static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
  504. {
  505. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  506. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  507. }
  508. struct safexcel_alg_template safexcel_alg_cbc_aes = {
  509. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  510. .alg.skcipher = {
  511. .setkey = safexcel_skcipher_aes_setkey,
  512. .encrypt = safexcel_cbc_aes_encrypt,
  513. .decrypt = safexcel_cbc_aes_decrypt,
  514. .min_keysize = AES_MIN_KEY_SIZE,
  515. .max_keysize = AES_MAX_KEY_SIZE,
  516. .ivsize = AES_BLOCK_SIZE,
  517. .base = {
  518. .cra_name = "cbc(aes)",
  519. .cra_driver_name = "safexcel-cbc-aes",
  520. .cra_priority = 300,
  521. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  522. CRYPTO_ALG_KERN_DRIVER_ONLY,
  523. .cra_blocksize = AES_BLOCK_SIZE,
  524. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  525. .cra_alignmask = 0,
  526. .cra_init = safexcel_skcipher_cra_init,
  527. .cra_exit = safexcel_skcipher_cra_exit,
  528. .cra_module = THIS_MODULE,
  529. },
  530. },
  531. };