fib_trie.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <net/net_namespace.h>
  74. #include <net/ip.h>
  75. #include <net/protocol.h>
  76. #include <net/route.h>
  77. #include <net/tcp.h>
  78. #include <net/sock.h>
  79. #include <net/ip_fib.h>
  80. #include <net/switchdev.h>
  81. #include "fib_lookup.h"
  82. #define MAX_STAT_DEPTH 32
  83. #define KEYLENGTH (8*sizeof(t_key))
  84. #define KEY_MAX ((t_key)~0)
  85. typedef unsigned int t_key;
  86. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  87. #define IS_TNODE(n) ((n)->bits)
  88. #define IS_LEAF(n) (!(n)->bits)
  89. struct key_vector {
  90. t_key key;
  91. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  92. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  93. unsigned char slen;
  94. union {
  95. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  96. struct hlist_head leaf;
  97. /* This array is valid if (pos | bits) > 0 (TNODE) */
  98. struct key_vector __rcu *tnode[0];
  99. };
  100. };
  101. struct tnode {
  102. struct rcu_head rcu;
  103. t_key empty_children; /* KEYLENGTH bits needed */
  104. t_key full_children; /* KEYLENGTH bits needed */
  105. struct key_vector __rcu *parent;
  106. struct key_vector kv[1];
  107. #define tn_bits kv[0].bits
  108. };
  109. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  110. #define LEAF_SIZE TNODE_SIZE(1)
  111. #ifdef CONFIG_IP_FIB_TRIE_STATS
  112. struct trie_use_stats {
  113. unsigned int gets;
  114. unsigned int backtrack;
  115. unsigned int semantic_match_passed;
  116. unsigned int semantic_match_miss;
  117. unsigned int null_node_hit;
  118. unsigned int resize_node_skipped;
  119. };
  120. #endif
  121. struct trie_stat {
  122. unsigned int totdepth;
  123. unsigned int maxdepth;
  124. unsigned int tnodes;
  125. unsigned int leaves;
  126. unsigned int nullpointers;
  127. unsigned int prefixes;
  128. unsigned int nodesizes[MAX_STAT_DEPTH];
  129. };
  130. struct trie {
  131. struct key_vector kv[1];
  132. #ifdef CONFIG_IP_FIB_TRIE_STATS
  133. struct trie_use_stats __percpu *stats;
  134. #endif
  135. };
  136. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  137. static size_t tnode_free_size;
  138. /*
  139. * synchronize_rcu after call_rcu for that many pages; it should be especially
  140. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  141. * obtained experimentally, aiming to avoid visible slowdown.
  142. */
  143. static const int sync_pages = 128;
  144. static struct kmem_cache *fn_alias_kmem __read_mostly;
  145. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  146. static inline struct tnode *tn_info(struct key_vector *kv)
  147. {
  148. return container_of(kv, struct tnode, kv[0]);
  149. }
  150. /* caller must hold RTNL */
  151. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  152. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  153. /* caller must hold RCU read lock or RTNL */
  154. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  155. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  156. /* wrapper for rcu_assign_pointer */
  157. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  158. {
  159. if (n)
  160. rcu_assign_pointer(tn_info(n)->parent, tp);
  161. }
  162. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  163. /* This provides us with the number of children in this node, in the case of a
  164. * leaf this will return 0 meaning none of the children are accessible.
  165. */
  166. static inline unsigned long child_length(const struct key_vector *tn)
  167. {
  168. return (1ul << tn->bits) & ~(1ul);
  169. }
  170. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  171. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  172. {
  173. unsigned long index = key ^ kv->key;
  174. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  175. return 0;
  176. return index >> kv->pos;
  177. }
  178. /* To understand this stuff, an understanding of keys and all their bits is
  179. * necessary. Every node in the trie has a key associated with it, but not
  180. * all of the bits in that key are significant.
  181. *
  182. * Consider a node 'n' and its parent 'tp'.
  183. *
  184. * If n is a leaf, every bit in its key is significant. Its presence is
  185. * necessitated by path compression, since during a tree traversal (when
  186. * searching for a leaf - unless we are doing an insertion) we will completely
  187. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  188. * a potentially successful search, that we have indeed been walking the
  189. * correct key path.
  190. *
  191. * Note that we can never "miss" the correct key in the tree if present by
  192. * following the wrong path. Path compression ensures that segments of the key
  193. * that are the same for all keys with a given prefix are skipped, but the
  194. * skipped part *is* identical for each node in the subtrie below the skipped
  195. * bit! trie_insert() in this implementation takes care of that.
  196. *
  197. * if n is an internal node - a 'tnode' here, the various parts of its key
  198. * have many different meanings.
  199. *
  200. * Example:
  201. * _________________________________________________________________
  202. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  203. * -----------------------------------------------------------------
  204. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  205. *
  206. * _________________________________________________________________
  207. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  208. * -----------------------------------------------------------------
  209. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  210. *
  211. * tp->pos = 22
  212. * tp->bits = 3
  213. * n->pos = 13
  214. * n->bits = 4
  215. *
  216. * First, let's just ignore the bits that come before the parent tp, that is
  217. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  218. * point we do not use them for anything.
  219. *
  220. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  221. * index into the parent's child array. That is, they will be used to find
  222. * 'n' among tp's children.
  223. *
  224. * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
  225. * for the node n.
  226. *
  227. * All the bits we have seen so far are significant to the node n. The rest
  228. * of the bits are really not needed or indeed known in n->key.
  229. *
  230. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  231. * n's child array, and will of course be different for each child.
  232. *
  233. * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
  234. * at this point.
  235. */
  236. static const int halve_threshold = 25;
  237. static const int inflate_threshold = 50;
  238. static const int halve_threshold_root = 15;
  239. static const int inflate_threshold_root = 30;
  240. static void __alias_free_mem(struct rcu_head *head)
  241. {
  242. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  243. kmem_cache_free(fn_alias_kmem, fa);
  244. }
  245. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  246. {
  247. call_rcu(&fa->rcu, __alias_free_mem);
  248. }
  249. #define TNODE_KMALLOC_MAX \
  250. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  251. #define TNODE_VMALLOC_MAX \
  252. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  253. static void __node_free_rcu(struct rcu_head *head)
  254. {
  255. struct tnode *n = container_of(head, struct tnode, rcu);
  256. if (!n->tn_bits)
  257. kmem_cache_free(trie_leaf_kmem, n);
  258. else if (n->tn_bits <= TNODE_KMALLOC_MAX)
  259. kfree(n);
  260. else
  261. vfree(n);
  262. }
  263. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  264. static struct tnode *tnode_alloc(int bits)
  265. {
  266. size_t size;
  267. /* verify bits is within bounds */
  268. if (bits > TNODE_VMALLOC_MAX)
  269. return NULL;
  270. /* determine size and verify it is non-zero and didn't overflow */
  271. size = TNODE_SIZE(1ul << bits);
  272. if (size <= PAGE_SIZE)
  273. return kzalloc(size, GFP_KERNEL);
  274. else
  275. return vzalloc(size);
  276. }
  277. static inline void empty_child_inc(struct key_vector *n)
  278. {
  279. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  280. }
  281. static inline void empty_child_dec(struct key_vector *n)
  282. {
  283. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  284. }
  285. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  286. {
  287. struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  288. struct key_vector *l = kv->kv;
  289. if (!kv)
  290. return NULL;
  291. /* initialize key vector */
  292. l->key = key;
  293. l->pos = 0;
  294. l->bits = 0;
  295. l->slen = fa->fa_slen;
  296. /* link leaf to fib alias */
  297. INIT_HLIST_HEAD(&l->leaf);
  298. hlist_add_head(&fa->fa_list, &l->leaf);
  299. return l;
  300. }
  301. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  302. {
  303. struct tnode *tnode = tnode_alloc(bits);
  304. unsigned int shift = pos + bits;
  305. struct key_vector *tn = tnode->kv;
  306. /* verify bits and pos their msb bits clear and values are valid */
  307. BUG_ON(!bits || (shift > KEYLENGTH));
  308. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  309. sizeof(struct key_vector *) << bits);
  310. if (!tnode)
  311. return NULL;
  312. if (bits == KEYLENGTH)
  313. tnode->full_children = 1;
  314. else
  315. tnode->empty_children = 1ul << bits;
  316. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  317. tn->pos = pos;
  318. tn->bits = bits;
  319. tn->slen = pos;
  320. return tn;
  321. }
  322. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  323. * and no bits are skipped. See discussion in dyntree paper p. 6
  324. */
  325. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  326. {
  327. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  328. }
  329. /* Add a child at position i overwriting the old value.
  330. * Update the value of full_children and empty_children.
  331. */
  332. static void put_child(struct key_vector *tn, unsigned long i,
  333. struct key_vector *n)
  334. {
  335. struct key_vector *chi = get_child(tn, i);
  336. int isfull, wasfull;
  337. BUG_ON(i >= child_length(tn));
  338. /* update emptyChildren, overflow into fullChildren */
  339. if (!n && chi)
  340. empty_child_inc(tn);
  341. if (n && !chi)
  342. empty_child_dec(tn);
  343. /* update fullChildren */
  344. wasfull = tnode_full(tn, chi);
  345. isfull = tnode_full(tn, n);
  346. if (wasfull && !isfull)
  347. tn_info(tn)->full_children--;
  348. else if (!wasfull && isfull)
  349. tn_info(tn)->full_children++;
  350. if (n && (tn->slen < n->slen))
  351. tn->slen = n->slen;
  352. rcu_assign_pointer(tn->tnode[i], n);
  353. }
  354. static void update_children(struct key_vector *tn)
  355. {
  356. unsigned long i;
  357. /* update all of the child parent pointers */
  358. for (i = child_length(tn); i;) {
  359. struct key_vector *inode = get_child(tn, --i);
  360. if (!inode)
  361. continue;
  362. /* Either update the children of a tnode that
  363. * already belongs to us or update the child
  364. * to point to ourselves.
  365. */
  366. if (node_parent(inode) == tn)
  367. update_children(inode);
  368. else
  369. node_set_parent(inode, tn);
  370. }
  371. }
  372. static inline void put_child_root(struct key_vector *tp, t_key key,
  373. struct key_vector *n)
  374. {
  375. if (IS_TRIE(tp))
  376. rcu_assign_pointer(tp->tnode[0], n);
  377. else
  378. put_child(tp, get_index(key, tp), n);
  379. }
  380. static inline void tnode_free_init(struct key_vector *tn)
  381. {
  382. tn_info(tn)->rcu.next = NULL;
  383. }
  384. static inline void tnode_free_append(struct key_vector *tn,
  385. struct key_vector *n)
  386. {
  387. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  388. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  389. }
  390. static void tnode_free(struct key_vector *tn)
  391. {
  392. struct callback_head *head = &tn_info(tn)->rcu;
  393. while (head) {
  394. head = head->next;
  395. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  396. node_free(tn);
  397. tn = container_of(head, struct tnode, rcu)->kv;
  398. }
  399. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  400. tnode_free_size = 0;
  401. synchronize_rcu();
  402. }
  403. }
  404. static struct key_vector *replace(struct trie *t,
  405. struct key_vector *oldtnode,
  406. struct key_vector *tn)
  407. {
  408. struct key_vector *tp = node_parent(oldtnode);
  409. unsigned long i;
  410. /* setup the parent pointer out of and back into this node */
  411. NODE_INIT_PARENT(tn, tp);
  412. put_child_root(tp, tn->key, tn);
  413. /* update all of the child parent pointers */
  414. update_children(tn);
  415. /* all pointers should be clean so we are done */
  416. tnode_free(oldtnode);
  417. /* resize children now that oldtnode is freed */
  418. for (i = child_length(tn); i;) {
  419. struct key_vector *inode = get_child(tn, --i);
  420. /* resize child node */
  421. if (tnode_full(tn, inode))
  422. tn = resize(t, inode);
  423. }
  424. return tp;
  425. }
  426. static struct key_vector *inflate(struct trie *t,
  427. struct key_vector *oldtnode)
  428. {
  429. struct key_vector *tn;
  430. unsigned long i;
  431. t_key m;
  432. pr_debug("In inflate\n");
  433. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  434. if (!tn)
  435. goto notnode;
  436. /* prepare oldtnode to be freed */
  437. tnode_free_init(oldtnode);
  438. /* Assemble all of the pointers in our cluster, in this case that
  439. * represents all of the pointers out of our allocated nodes that
  440. * point to existing tnodes and the links between our allocated
  441. * nodes.
  442. */
  443. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  444. struct key_vector *inode = get_child(oldtnode, --i);
  445. struct key_vector *node0, *node1;
  446. unsigned long j, k;
  447. /* An empty child */
  448. if (!inode)
  449. continue;
  450. /* A leaf or an internal node with skipped bits */
  451. if (!tnode_full(oldtnode, inode)) {
  452. put_child(tn, get_index(inode->key, tn), inode);
  453. continue;
  454. }
  455. /* drop the node in the old tnode free list */
  456. tnode_free_append(oldtnode, inode);
  457. /* An internal node with two children */
  458. if (inode->bits == 1) {
  459. put_child(tn, 2 * i + 1, get_child(inode, 1));
  460. put_child(tn, 2 * i, get_child(inode, 0));
  461. continue;
  462. }
  463. /* We will replace this node 'inode' with two new
  464. * ones, 'node0' and 'node1', each with half of the
  465. * original children. The two new nodes will have
  466. * a position one bit further down the key and this
  467. * means that the "significant" part of their keys
  468. * (see the discussion near the top of this file)
  469. * will differ by one bit, which will be "0" in
  470. * node0's key and "1" in node1's key. Since we are
  471. * moving the key position by one step, the bit that
  472. * we are moving away from - the bit at position
  473. * (tn->pos) - is the one that will differ between
  474. * node0 and node1. So... we synthesize that bit in the
  475. * two new keys.
  476. */
  477. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  478. if (!node1)
  479. goto nomem;
  480. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  481. tnode_free_append(tn, node1);
  482. if (!node0)
  483. goto nomem;
  484. tnode_free_append(tn, node0);
  485. /* populate child pointers in new nodes */
  486. for (k = child_length(inode), j = k / 2; j;) {
  487. put_child(node1, --j, get_child(inode, --k));
  488. put_child(node0, j, get_child(inode, j));
  489. put_child(node1, --j, get_child(inode, --k));
  490. put_child(node0, j, get_child(inode, j));
  491. }
  492. /* link new nodes to parent */
  493. NODE_INIT_PARENT(node1, tn);
  494. NODE_INIT_PARENT(node0, tn);
  495. /* link parent to nodes */
  496. put_child(tn, 2 * i + 1, node1);
  497. put_child(tn, 2 * i, node0);
  498. }
  499. /* setup the parent pointers into and out of this node */
  500. return replace(t, oldtnode, tn);
  501. nomem:
  502. /* all pointers should be clean so we are done */
  503. tnode_free(tn);
  504. notnode:
  505. return NULL;
  506. }
  507. static struct key_vector *halve(struct trie *t,
  508. struct key_vector *oldtnode)
  509. {
  510. struct key_vector *tn;
  511. unsigned long i;
  512. pr_debug("In halve\n");
  513. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  514. if (!tn)
  515. goto notnode;
  516. /* prepare oldtnode to be freed */
  517. tnode_free_init(oldtnode);
  518. /* Assemble all of the pointers in our cluster, in this case that
  519. * represents all of the pointers out of our allocated nodes that
  520. * point to existing tnodes and the links between our allocated
  521. * nodes.
  522. */
  523. for (i = child_length(oldtnode); i;) {
  524. struct key_vector *node1 = get_child(oldtnode, --i);
  525. struct key_vector *node0 = get_child(oldtnode, --i);
  526. struct key_vector *inode;
  527. /* At least one of the children is empty */
  528. if (!node1 || !node0) {
  529. put_child(tn, i / 2, node1 ? : node0);
  530. continue;
  531. }
  532. /* Two nonempty children */
  533. inode = tnode_new(node0->key, oldtnode->pos, 1);
  534. if (!inode)
  535. goto nomem;
  536. tnode_free_append(tn, inode);
  537. /* initialize pointers out of node */
  538. put_child(inode, 1, node1);
  539. put_child(inode, 0, node0);
  540. NODE_INIT_PARENT(inode, tn);
  541. /* link parent to node */
  542. put_child(tn, i / 2, inode);
  543. }
  544. /* setup the parent pointers into and out of this node */
  545. return replace(t, oldtnode, tn);
  546. nomem:
  547. /* all pointers should be clean so we are done */
  548. tnode_free(tn);
  549. notnode:
  550. return NULL;
  551. }
  552. static struct key_vector *collapse(struct trie *t,
  553. struct key_vector *oldtnode)
  554. {
  555. struct key_vector *n, *tp;
  556. unsigned long i;
  557. /* scan the tnode looking for that one child that might still exist */
  558. for (n = NULL, i = child_length(oldtnode); !n && i;)
  559. n = get_child(oldtnode, --i);
  560. /* compress one level */
  561. tp = node_parent(oldtnode);
  562. put_child_root(tp, oldtnode->key, n);
  563. node_set_parent(n, tp);
  564. /* drop dead node */
  565. node_free(oldtnode);
  566. return tp;
  567. }
  568. static unsigned char update_suffix(struct key_vector *tn)
  569. {
  570. unsigned char slen = tn->pos;
  571. unsigned long stride, i;
  572. /* search though the list of children looking for nodes that might
  573. * have a suffix greater than the one we currently have. This is
  574. * why we start with a stride of 2 since a stride of 1 would
  575. * represent the nodes with suffix length equal to tn->pos
  576. */
  577. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  578. struct key_vector *n = get_child(tn, i);
  579. if (!n || (n->slen <= slen))
  580. continue;
  581. /* update stride and slen based on new value */
  582. stride <<= (n->slen - slen);
  583. slen = n->slen;
  584. i &= ~(stride - 1);
  585. /* if slen covers all but the last bit we can stop here
  586. * there will be nothing longer than that since only node
  587. * 0 and 1 << (bits - 1) could have that as their suffix
  588. * length.
  589. */
  590. if ((slen + 1) >= (tn->pos + tn->bits))
  591. break;
  592. }
  593. tn->slen = slen;
  594. return slen;
  595. }
  596. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  597. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  598. * Telecommunications, page 6:
  599. * "A node is doubled if the ratio of non-empty children to all
  600. * children in the *doubled* node is at least 'high'."
  601. *
  602. * 'high' in this instance is the variable 'inflate_threshold'. It
  603. * is expressed as a percentage, so we multiply it with
  604. * child_length() and instead of multiplying by 2 (since the
  605. * child array will be doubled by inflate()) and multiplying
  606. * the left-hand side by 100 (to handle the percentage thing) we
  607. * multiply the left-hand side by 50.
  608. *
  609. * The left-hand side may look a bit weird: child_length(tn)
  610. * - tn->empty_children is of course the number of non-null children
  611. * in the current node. tn->full_children is the number of "full"
  612. * children, that is non-null tnodes with a skip value of 0.
  613. * All of those will be doubled in the resulting inflated tnode, so
  614. * we just count them one extra time here.
  615. *
  616. * A clearer way to write this would be:
  617. *
  618. * to_be_doubled = tn->full_children;
  619. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  620. * tn->full_children;
  621. *
  622. * new_child_length = child_length(tn) * 2;
  623. *
  624. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  625. * new_child_length;
  626. * if (new_fill_factor >= inflate_threshold)
  627. *
  628. * ...and so on, tho it would mess up the while () loop.
  629. *
  630. * anyway,
  631. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  632. * inflate_threshold
  633. *
  634. * avoid a division:
  635. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  636. * inflate_threshold * new_child_length
  637. *
  638. * expand not_to_be_doubled and to_be_doubled, and shorten:
  639. * 100 * (child_length(tn) - tn->empty_children +
  640. * tn->full_children) >= inflate_threshold * new_child_length
  641. *
  642. * expand new_child_length:
  643. * 100 * (child_length(tn) - tn->empty_children +
  644. * tn->full_children) >=
  645. * inflate_threshold * child_length(tn) * 2
  646. *
  647. * shorten again:
  648. * 50 * (tn->full_children + child_length(tn) -
  649. * tn->empty_children) >= inflate_threshold *
  650. * child_length(tn)
  651. *
  652. */
  653. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  654. {
  655. unsigned long used = child_length(tn);
  656. unsigned long threshold = used;
  657. /* Keep root node larger */
  658. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  659. used -= tn_info(tn)->empty_children;
  660. used += tn_info(tn)->full_children;
  661. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  662. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  663. }
  664. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  665. {
  666. unsigned long used = child_length(tn);
  667. unsigned long threshold = used;
  668. /* Keep root node larger */
  669. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  670. used -= tn_info(tn)->empty_children;
  671. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  672. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  673. }
  674. static inline bool should_collapse(struct key_vector *tn)
  675. {
  676. unsigned long used = child_length(tn);
  677. used -= tn_info(tn)->empty_children;
  678. /* account for bits == KEYLENGTH case */
  679. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  680. used -= KEY_MAX;
  681. /* One child or none, time to drop us from the trie */
  682. return used < 2;
  683. }
  684. #define MAX_WORK 10
  685. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  686. {
  687. #ifdef CONFIG_IP_FIB_TRIE_STATS
  688. struct trie_use_stats __percpu *stats = t->stats;
  689. #endif
  690. struct key_vector *tp = node_parent(tn);
  691. unsigned long cindex = get_index(tn->key, tp);
  692. int max_work = MAX_WORK;
  693. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  694. tn, inflate_threshold, halve_threshold);
  695. /* track the tnode via the pointer from the parent instead of
  696. * doing it ourselves. This way we can let RCU fully do its
  697. * thing without us interfering
  698. */
  699. BUG_ON(tn != get_child(tp, cindex));
  700. /* Double as long as the resulting node has a number of
  701. * nonempty nodes that are above the threshold.
  702. */
  703. while (should_inflate(tp, tn) && max_work) {
  704. tp = inflate(t, tn);
  705. if (!tp) {
  706. #ifdef CONFIG_IP_FIB_TRIE_STATS
  707. this_cpu_inc(stats->resize_node_skipped);
  708. #endif
  709. break;
  710. }
  711. max_work--;
  712. tn = get_child(tp, cindex);
  713. }
  714. /* update parent in case inflate failed */
  715. tp = node_parent(tn);
  716. /* Return if at least one inflate is run */
  717. if (max_work != MAX_WORK)
  718. return tp;
  719. /* Halve as long as the number of empty children in this
  720. * node is above threshold.
  721. */
  722. while (should_halve(tp, tn) && max_work) {
  723. tp = halve(t, tn);
  724. if (!tp) {
  725. #ifdef CONFIG_IP_FIB_TRIE_STATS
  726. this_cpu_inc(stats->resize_node_skipped);
  727. #endif
  728. break;
  729. }
  730. max_work--;
  731. tn = get_child(tp, cindex);
  732. }
  733. /* Only one child remains */
  734. if (should_collapse(tn))
  735. return collapse(t, tn);
  736. /* update parent in case halve failed */
  737. tp = node_parent(tn);
  738. /* Return if at least one deflate was run */
  739. if (max_work != MAX_WORK)
  740. return tp;
  741. /* push the suffix length to the parent node */
  742. if (tn->slen > tn->pos) {
  743. unsigned char slen = update_suffix(tn);
  744. if (slen > tp->slen)
  745. tp->slen = slen;
  746. }
  747. return tp;
  748. }
  749. static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
  750. {
  751. while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
  752. if (update_suffix(tp) > l->slen)
  753. break;
  754. tp = node_parent(tp);
  755. }
  756. }
  757. static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
  758. {
  759. /* if this is a new leaf then tn will be NULL and we can sort
  760. * out parent suffix lengths as a part of trie_rebalance
  761. */
  762. while (tn->slen < l->slen) {
  763. tn->slen = l->slen;
  764. tn = node_parent(tn);
  765. }
  766. }
  767. /* rcu_read_lock needs to be hold by caller from readside */
  768. static struct key_vector *fib_find_node(struct trie *t,
  769. struct key_vector **tp, u32 key)
  770. {
  771. struct key_vector *pn, *n = t->kv;
  772. unsigned long index = 0;
  773. do {
  774. pn = n;
  775. n = get_child_rcu(n, index);
  776. if (!n)
  777. break;
  778. index = get_cindex(key, n);
  779. /* This bit of code is a bit tricky but it combines multiple
  780. * checks into a single check. The prefix consists of the
  781. * prefix plus zeros for the bits in the cindex. The index
  782. * is the difference between the key and this value. From
  783. * this we can actually derive several pieces of data.
  784. * if (index >= (1ul << bits))
  785. * we have a mismatch in skip bits and failed
  786. * else
  787. * we know the value is cindex
  788. *
  789. * This check is safe even if bits == KEYLENGTH due to the
  790. * fact that we can only allocate a node with 32 bits if a
  791. * long is greater than 32 bits.
  792. */
  793. if (index >= (1ul << n->bits)) {
  794. n = NULL;
  795. break;
  796. }
  797. /* keep searching until we find a perfect match leaf or NULL */
  798. } while (IS_TNODE(n));
  799. *tp = pn;
  800. return n;
  801. }
  802. /* Return the first fib alias matching TOS with
  803. * priority less than or equal to PRIO.
  804. */
  805. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  806. u8 tos, u32 prio, u32 tb_id)
  807. {
  808. struct fib_alias *fa;
  809. if (!fah)
  810. return NULL;
  811. hlist_for_each_entry(fa, fah, fa_list) {
  812. if (fa->fa_slen < slen)
  813. continue;
  814. if (fa->fa_slen != slen)
  815. break;
  816. if (fa->tb_id > tb_id)
  817. continue;
  818. if (fa->tb_id != tb_id)
  819. break;
  820. if (fa->fa_tos > tos)
  821. continue;
  822. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  823. return fa;
  824. }
  825. return NULL;
  826. }
  827. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  828. {
  829. while (!IS_TRIE(tn))
  830. tn = resize(t, tn);
  831. }
  832. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  833. struct fib_alias *new, t_key key)
  834. {
  835. struct key_vector *n, *l;
  836. l = leaf_new(key, new);
  837. if (!l)
  838. goto noleaf;
  839. /* retrieve child from parent node */
  840. n = get_child(tp, get_index(key, tp));
  841. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  842. *
  843. * Add a new tnode here
  844. * first tnode need some special handling
  845. * leaves us in position for handling as case 3
  846. */
  847. if (n) {
  848. struct key_vector *tn;
  849. tn = tnode_new(key, __fls(key ^ n->key), 1);
  850. if (!tn)
  851. goto notnode;
  852. /* initialize routes out of node */
  853. NODE_INIT_PARENT(tn, tp);
  854. put_child(tn, get_index(key, tn) ^ 1, n);
  855. /* start adding routes into the node */
  856. put_child_root(tp, key, tn);
  857. node_set_parent(n, tn);
  858. /* parent now has a NULL spot where the leaf can go */
  859. tp = tn;
  860. }
  861. /* Case 3: n is NULL, and will just insert a new leaf */
  862. NODE_INIT_PARENT(l, tp);
  863. put_child_root(tp, key, l);
  864. trie_rebalance(t, tp);
  865. return 0;
  866. notnode:
  867. node_free(l);
  868. noleaf:
  869. return -ENOMEM;
  870. }
  871. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  872. struct key_vector *l, struct fib_alias *new,
  873. struct fib_alias *fa, t_key key)
  874. {
  875. if (!l)
  876. return fib_insert_node(t, tp, new, key);
  877. if (fa) {
  878. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  879. } else {
  880. struct fib_alias *last;
  881. hlist_for_each_entry(last, &l->leaf, fa_list) {
  882. if (new->fa_slen < last->fa_slen)
  883. break;
  884. if ((new->fa_slen == last->fa_slen) &&
  885. (new->tb_id > last->tb_id))
  886. break;
  887. fa = last;
  888. }
  889. if (fa)
  890. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  891. else
  892. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  893. }
  894. /* if we added to the tail node then we need to update slen */
  895. if (l->slen < new->fa_slen) {
  896. l->slen = new->fa_slen;
  897. leaf_push_suffix(tp, l);
  898. }
  899. return 0;
  900. }
  901. /* Caller must hold RTNL. */
  902. int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
  903. {
  904. struct trie *t = (struct trie *)tb->tb_data;
  905. struct fib_alias *fa, *new_fa;
  906. struct key_vector *l, *tp;
  907. struct fib_info *fi;
  908. u8 plen = cfg->fc_dst_len;
  909. u8 slen = KEYLENGTH - plen;
  910. u8 tos = cfg->fc_tos;
  911. u32 key;
  912. int err;
  913. if (plen > KEYLENGTH)
  914. return -EINVAL;
  915. key = ntohl(cfg->fc_dst);
  916. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  917. if ((plen < KEYLENGTH) && (key << plen))
  918. return -EINVAL;
  919. fi = fib_create_info(cfg);
  920. if (IS_ERR(fi)) {
  921. err = PTR_ERR(fi);
  922. goto err;
  923. }
  924. l = fib_find_node(t, &tp, key);
  925. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  926. tb->tb_id) : NULL;
  927. /* Now fa, if non-NULL, points to the first fib alias
  928. * with the same keys [prefix,tos,priority], if such key already
  929. * exists or to the node before which we will insert new one.
  930. *
  931. * If fa is NULL, we will need to allocate a new one and
  932. * insert to the tail of the section matching the suffix length
  933. * of the new alias.
  934. */
  935. if (fa && fa->fa_tos == tos &&
  936. fa->fa_info->fib_priority == fi->fib_priority) {
  937. struct fib_alias *fa_first, *fa_match;
  938. err = -EEXIST;
  939. if (cfg->fc_nlflags & NLM_F_EXCL)
  940. goto out;
  941. /* We have 2 goals:
  942. * 1. Find exact match for type, scope, fib_info to avoid
  943. * duplicate routes
  944. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  945. */
  946. fa_match = NULL;
  947. fa_first = fa;
  948. hlist_for_each_entry_from(fa, fa_list) {
  949. if ((fa->fa_slen != slen) ||
  950. (fa->tb_id != tb->tb_id) ||
  951. (fa->fa_tos != tos))
  952. break;
  953. if (fa->fa_info->fib_priority != fi->fib_priority)
  954. break;
  955. if (fa->fa_type == cfg->fc_type &&
  956. fa->fa_info == fi) {
  957. fa_match = fa;
  958. break;
  959. }
  960. }
  961. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  962. struct fib_info *fi_drop;
  963. u8 state;
  964. fa = fa_first;
  965. if (fa_match) {
  966. if (fa == fa_match)
  967. err = 0;
  968. goto out;
  969. }
  970. err = -ENOBUFS;
  971. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  972. if (!new_fa)
  973. goto out;
  974. fi_drop = fa->fa_info;
  975. new_fa->fa_tos = fa->fa_tos;
  976. new_fa->fa_info = fi;
  977. new_fa->fa_type = cfg->fc_type;
  978. state = fa->fa_state;
  979. new_fa->fa_state = state & ~FA_S_ACCESSED;
  980. new_fa->fa_slen = fa->fa_slen;
  981. err = netdev_switch_fib_ipv4_add(key, plen, fi,
  982. new_fa->fa_tos,
  983. cfg->fc_type,
  984. cfg->fc_nlflags,
  985. tb->tb_id);
  986. if (err) {
  987. netdev_switch_fib_ipv4_abort(fi);
  988. kmem_cache_free(fn_alias_kmem, new_fa);
  989. goto out;
  990. }
  991. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  992. alias_free_mem_rcu(fa);
  993. fib_release_info(fi_drop);
  994. if (state & FA_S_ACCESSED)
  995. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  996. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  997. tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
  998. goto succeeded;
  999. }
  1000. /* Error if we find a perfect match which
  1001. * uses the same scope, type, and nexthop
  1002. * information.
  1003. */
  1004. if (fa_match)
  1005. goto out;
  1006. if (!(cfg->fc_nlflags & NLM_F_APPEND))
  1007. fa = fa_first;
  1008. }
  1009. err = -ENOENT;
  1010. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1011. goto out;
  1012. err = -ENOBUFS;
  1013. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1014. if (!new_fa)
  1015. goto out;
  1016. new_fa->fa_info = fi;
  1017. new_fa->fa_tos = tos;
  1018. new_fa->fa_type = cfg->fc_type;
  1019. new_fa->fa_state = 0;
  1020. new_fa->fa_slen = slen;
  1021. new_fa->tb_id = tb->tb_id;
  1022. /* (Optionally) offload fib entry to switch hardware. */
  1023. err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
  1024. cfg->fc_type,
  1025. cfg->fc_nlflags,
  1026. tb->tb_id);
  1027. if (err) {
  1028. netdev_switch_fib_ipv4_abort(fi);
  1029. goto out_free_new_fa;
  1030. }
  1031. /* Insert new entry to the list. */
  1032. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1033. if (err)
  1034. goto out_sw_fib_del;
  1035. if (!plen)
  1036. tb->tb_num_default++;
  1037. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1038. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1039. &cfg->fc_nlinfo, 0);
  1040. succeeded:
  1041. return 0;
  1042. out_sw_fib_del:
  1043. netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
  1044. out_free_new_fa:
  1045. kmem_cache_free(fn_alias_kmem, new_fa);
  1046. out:
  1047. fib_release_info(fi);
  1048. err:
  1049. return err;
  1050. }
  1051. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1052. {
  1053. t_key prefix = n->key;
  1054. return (key ^ prefix) & (prefix | -prefix);
  1055. }
  1056. /* should be called with rcu_read_lock */
  1057. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1058. struct fib_result *res, int fib_flags)
  1059. {
  1060. struct trie *t = (struct trie *) tb->tb_data;
  1061. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1062. struct trie_use_stats __percpu *stats = t->stats;
  1063. #endif
  1064. const t_key key = ntohl(flp->daddr);
  1065. struct key_vector *n, *pn;
  1066. struct fib_alias *fa;
  1067. unsigned long index;
  1068. t_key cindex;
  1069. pn = t->kv;
  1070. cindex = 0;
  1071. n = get_child_rcu(pn, cindex);
  1072. if (!n)
  1073. return -EAGAIN;
  1074. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1075. this_cpu_inc(stats->gets);
  1076. #endif
  1077. /* Step 1: Travel to the longest prefix match in the trie */
  1078. for (;;) {
  1079. index = get_cindex(key, n);
  1080. /* This bit of code is a bit tricky but it combines multiple
  1081. * checks into a single check. The prefix consists of the
  1082. * prefix plus zeros for the "bits" in the prefix. The index
  1083. * is the difference between the key and this value. From
  1084. * this we can actually derive several pieces of data.
  1085. * if (index >= (1ul << bits))
  1086. * we have a mismatch in skip bits and failed
  1087. * else
  1088. * we know the value is cindex
  1089. *
  1090. * This check is safe even if bits == KEYLENGTH due to the
  1091. * fact that we can only allocate a node with 32 bits if a
  1092. * long is greater than 32 bits.
  1093. */
  1094. if (index >= (1ul << n->bits))
  1095. break;
  1096. /* we have found a leaf. Prefixes have already been compared */
  1097. if (IS_LEAF(n))
  1098. goto found;
  1099. /* only record pn and cindex if we are going to be chopping
  1100. * bits later. Otherwise we are just wasting cycles.
  1101. */
  1102. if (n->slen > n->pos) {
  1103. pn = n;
  1104. cindex = index;
  1105. }
  1106. n = get_child_rcu(n, index);
  1107. if (unlikely(!n))
  1108. goto backtrace;
  1109. }
  1110. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1111. for (;;) {
  1112. /* record the pointer where our next node pointer is stored */
  1113. struct key_vector __rcu **cptr = n->tnode;
  1114. /* This test verifies that none of the bits that differ
  1115. * between the key and the prefix exist in the region of
  1116. * the lsb and higher in the prefix.
  1117. */
  1118. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1119. goto backtrace;
  1120. /* exit out and process leaf */
  1121. if (unlikely(IS_LEAF(n)))
  1122. break;
  1123. /* Don't bother recording parent info. Since we are in
  1124. * prefix match mode we will have to come back to wherever
  1125. * we started this traversal anyway
  1126. */
  1127. while ((n = rcu_dereference(*cptr)) == NULL) {
  1128. backtrace:
  1129. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1130. if (!n)
  1131. this_cpu_inc(stats->null_node_hit);
  1132. #endif
  1133. /* If we are at cindex 0 there are no more bits for
  1134. * us to strip at this level so we must ascend back
  1135. * up one level to see if there are any more bits to
  1136. * be stripped there.
  1137. */
  1138. while (!cindex) {
  1139. t_key pkey = pn->key;
  1140. /* If we don't have a parent then there is
  1141. * nothing for us to do as we do not have any
  1142. * further nodes to parse.
  1143. */
  1144. if (IS_TRIE(pn))
  1145. return -EAGAIN;
  1146. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1147. this_cpu_inc(stats->backtrack);
  1148. #endif
  1149. /* Get Child's index */
  1150. pn = node_parent_rcu(pn);
  1151. cindex = get_index(pkey, pn);
  1152. }
  1153. /* strip the least significant bit from the cindex */
  1154. cindex &= cindex - 1;
  1155. /* grab pointer for next child node */
  1156. cptr = &pn->tnode[cindex];
  1157. }
  1158. }
  1159. found:
  1160. /* this line carries forward the xor from earlier in the function */
  1161. index = key ^ n->key;
  1162. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1163. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1164. struct fib_info *fi = fa->fa_info;
  1165. int nhsel, err;
  1166. if ((index >= (1ul << fa->fa_slen)) &&
  1167. ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
  1168. continue;
  1169. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1170. continue;
  1171. if (fi->fib_dead)
  1172. continue;
  1173. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1174. continue;
  1175. fib_alias_accessed(fa);
  1176. err = fib_props[fa->fa_type].error;
  1177. if (unlikely(err < 0)) {
  1178. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1179. this_cpu_inc(stats->semantic_match_passed);
  1180. #endif
  1181. return err;
  1182. }
  1183. if (fi->fib_flags & RTNH_F_DEAD)
  1184. continue;
  1185. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1186. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1187. if (nh->nh_flags & RTNH_F_DEAD)
  1188. continue;
  1189. if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
  1190. continue;
  1191. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1192. atomic_inc(&fi->fib_clntref);
  1193. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1194. res->nh_sel = nhsel;
  1195. res->type = fa->fa_type;
  1196. res->scope = fi->fib_scope;
  1197. res->fi = fi;
  1198. res->table = tb;
  1199. res->fa_head = &n->leaf;
  1200. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1201. this_cpu_inc(stats->semantic_match_passed);
  1202. #endif
  1203. return err;
  1204. }
  1205. }
  1206. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1207. this_cpu_inc(stats->semantic_match_miss);
  1208. #endif
  1209. goto backtrace;
  1210. }
  1211. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1212. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1213. struct key_vector *l, struct fib_alias *old)
  1214. {
  1215. /* record the location of the previous list_info entry */
  1216. struct hlist_node **pprev = old->fa_list.pprev;
  1217. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1218. /* remove the fib_alias from the list */
  1219. hlist_del_rcu(&old->fa_list);
  1220. /* if we emptied the list this leaf will be freed and we can sort
  1221. * out parent suffix lengths as a part of trie_rebalance
  1222. */
  1223. if (hlist_empty(&l->leaf)) {
  1224. put_child_root(tp, l->key, NULL);
  1225. node_free(l);
  1226. trie_rebalance(t, tp);
  1227. return;
  1228. }
  1229. /* only access fa if it is pointing at the last valid hlist_node */
  1230. if (*pprev)
  1231. return;
  1232. /* update the trie with the latest suffix length */
  1233. l->slen = fa->fa_slen;
  1234. leaf_pull_suffix(tp, l);
  1235. }
  1236. /* Caller must hold RTNL. */
  1237. int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
  1238. {
  1239. struct trie *t = (struct trie *) tb->tb_data;
  1240. struct fib_alias *fa, *fa_to_delete;
  1241. struct key_vector *l, *tp;
  1242. u8 plen = cfg->fc_dst_len;
  1243. u8 slen = KEYLENGTH - plen;
  1244. u8 tos = cfg->fc_tos;
  1245. u32 key;
  1246. if (plen > KEYLENGTH)
  1247. return -EINVAL;
  1248. key = ntohl(cfg->fc_dst);
  1249. if ((plen < KEYLENGTH) && (key << plen))
  1250. return -EINVAL;
  1251. l = fib_find_node(t, &tp, key);
  1252. if (!l)
  1253. return -ESRCH;
  1254. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1255. if (!fa)
  1256. return -ESRCH;
  1257. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1258. fa_to_delete = NULL;
  1259. hlist_for_each_entry_from(fa, fa_list) {
  1260. struct fib_info *fi = fa->fa_info;
  1261. if ((fa->fa_slen != slen) ||
  1262. (fa->tb_id != tb->tb_id) ||
  1263. (fa->fa_tos != tos))
  1264. break;
  1265. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1266. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1267. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1268. (!cfg->fc_prefsrc ||
  1269. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1270. (!cfg->fc_protocol ||
  1271. fi->fib_protocol == cfg->fc_protocol) &&
  1272. fib_nh_match(cfg, fi) == 0) {
  1273. fa_to_delete = fa;
  1274. break;
  1275. }
  1276. }
  1277. if (!fa_to_delete)
  1278. return -ESRCH;
  1279. netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
  1280. cfg->fc_type, tb->tb_id);
  1281. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1282. &cfg->fc_nlinfo, 0);
  1283. if (!plen)
  1284. tb->tb_num_default--;
  1285. fib_remove_alias(t, tp, l, fa_to_delete);
  1286. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1287. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1288. fib_release_info(fa_to_delete->fa_info);
  1289. alias_free_mem_rcu(fa_to_delete);
  1290. return 0;
  1291. }
  1292. /* Scan for the next leaf starting at the provided key value */
  1293. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1294. {
  1295. struct key_vector *pn, *n = *tn;
  1296. unsigned long cindex;
  1297. /* this loop is meant to try and find the key in the trie */
  1298. do {
  1299. /* record parent and next child index */
  1300. pn = n;
  1301. cindex = key ? get_index(key, pn) : 0;
  1302. if (cindex >> pn->bits)
  1303. break;
  1304. /* descend into the next child */
  1305. n = get_child_rcu(pn, cindex++);
  1306. if (!n)
  1307. break;
  1308. /* guarantee forward progress on the keys */
  1309. if (IS_LEAF(n) && (n->key >= key))
  1310. goto found;
  1311. } while (IS_TNODE(n));
  1312. /* this loop will search for the next leaf with a greater key */
  1313. while (!IS_TRIE(pn)) {
  1314. /* if we exhausted the parent node we will need to climb */
  1315. if (cindex >= (1ul << pn->bits)) {
  1316. t_key pkey = pn->key;
  1317. pn = node_parent_rcu(pn);
  1318. cindex = get_index(pkey, pn) + 1;
  1319. continue;
  1320. }
  1321. /* grab the next available node */
  1322. n = get_child_rcu(pn, cindex++);
  1323. if (!n)
  1324. continue;
  1325. /* no need to compare keys since we bumped the index */
  1326. if (IS_LEAF(n))
  1327. goto found;
  1328. /* Rescan start scanning in new node */
  1329. pn = n;
  1330. cindex = 0;
  1331. }
  1332. *tn = pn;
  1333. return NULL; /* Root of trie */
  1334. found:
  1335. /* if we are at the limit for keys just return NULL for the tnode */
  1336. *tn = pn;
  1337. return n;
  1338. }
  1339. static void fib_trie_free(struct fib_table *tb)
  1340. {
  1341. struct trie *t = (struct trie *)tb->tb_data;
  1342. struct key_vector *pn = t->kv;
  1343. unsigned long cindex = 1;
  1344. struct hlist_node *tmp;
  1345. struct fib_alias *fa;
  1346. /* walk trie in reverse order and free everything */
  1347. for (;;) {
  1348. struct key_vector *n;
  1349. if (!(cindex--)) {
  1350. t_key pkey = pn->key;
  1351. if (IS_TRIE(pn))
  1352. break;
  1353. n = pn;
  1354. pn = node_parent(pn);
  1355. /* drop emptied tnode */
  1356. put_child_root(pn, n->key, NULL);
  1357. node_free(n);
  1358. cindex = get_index(pkey, pn);
  1359. continue;
  1360. }
  1361. /* grab the next available node */
  1362. n = get_child(pn, cindex);
  1363. if (!n)
  1364. continue;
  1365. if (IS_TNODE(n)) {
  1366. /* record pn and cindex for leaf walking */
  1367. pn = n;
  1368. cindex = 1ul << n->bits;
  1369. continue;
  1370. }
  1371. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1372. hlist_del_rcu(&fa->fa_list);
  1373. alias_free_mem_rcu(fa);
  1374. }
  1375. put_child_root(pn, n->key, NULL);
  1376. node_free(n);
  1377. }
  1378. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1379. free_percpu(t->stats);
  1380. #endif
  1381. kfree(tb);
  1382. }
  1383. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1384. {
  1385. struct trie *ot = (struct trie *)oldtb->tb_data;
  1386. struct key_vector *l, *tp = ot->kv;
  1387. struct fib_table *local_tb;
  1388. struct fib_alias *fa;
  1389. struct trie *lt;
  1390. t_key key = 0;
  1391. if (oldtb->tb_data == oldtb->__data)
  1392. return oldtb;
  1393. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1394. if (!local_tb)
  1395. return NULL;
  1396. lt = (struct trie *)local_tb->tb_data;
  1397. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1398. struct key_vector *local_l = NULL, *local_tp;
  1399. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1400. struct fib_alias *new_fa;
  1401. if (local_tb->tb_id != fa->tb_id)
  1402. continue;
  1403. /* clone fa for new local table */
  1404. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1405. if (!new_fa)
  1406. goto out;
  1407. memcpy(new_fa, fa, sizeof(*fa));
  1408. /* insert clone into table */
  1409. if (!local_l)
  1410. local_l = fib_find_node(lt, &local_tp, l->key);
  1411. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1412. NULL, l->key))
  1413. goto out;
  1414. }
  1415. /* stop loop if key wrapped back to 0 */
  1416. key = l->key + 1;
  1417. if (key < l->key)
  1418. break;
  1419. }
  1420. return local_tb;
  1421. out:
  1422. fib_trie_free(local_tb);
  1423. return NULL;
  1424. }
  1425. /* Caller must hold RTNL */
  1426. void fib_table_flush_external(struct fib_table *tb)
  1427. {
  1428. struct trie *t = (struct trie *)tb->tb_data;
  1429. struct key_vector *pn = t->kv;
  1430. unsigned long cindex = 1;
  1431. struct hlist_node *tmp;
  1432. struct fib_alias *fa;
  1433. /* walk trie in reverse order */
  1434. for (;;) {
  1435. unsigned char slen = 0;
  1436. struct key_vector *n;
  1437. if (!(cindex--)) {
  1438. t_key pkey = pn->key;
  1439. /* cannot resize the trie vector */
  1440. if (IS_TRIE(pn))
  1441. break;
  1442. /* resize completed node */
  1443. pn = resize(t, pn);
  1444. cindex = get_index(pkey, pn);
  1445. continue;
  1446. }
  1447. /* grab the next available node */
  1448. n = get_child(pn, cindex);
  1449. if (!n)
  1450. continue;
  1451. if (IS_TNODE(n)) {
  1452. /* record pn and cindex for leaf walking */
  1453. pn = n;
  1454. cindex = 1ul << n->bits;
  1455. continue;
  1456. }
  1457. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1458. struct fib_info *fi = fa->fa_info;
  1459. /* if alias was cloned to local then we just
  1460. * need to remove the local copy from main
  1461. */
  1462. if (tb->tb_id != fa->tb_id) {
  1463. hlist_del_rcu(&fa->fa_list);
  1464. alias_free_mem_rcu(fa);
  1465. continue;
  1466. }
  1467. /* record local slen */
  1468. slen = fa->fa_slen;
  1469. if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
  1470. continue;
  1471. netdev_switch_fib_ipv4_del(n->key,
  1472. KEYLENGTH - fa->fa_slen,
  1473. fi, fa->fa_tos,
  1474. fa->fa_type, tb->tb_id);
  1475. }
  1476. /* update leaf slen */
  1477. n->slen = slen;
  1478. if (hlist_empty(&n->leaf)) {
  1479. put_child_root(pn, n->key, NULL);
  1480. node_free(n);
  1481. } else {
  1482. leaf_pull_suffix(pn, n);
  1483. }
  1484. }
  1485. }
  1486. /* Caller must hold RTNL. */
  1487. int fib_table_flush(struct fib_table *tb)
  1488. {
  1489. struct trie *t = (struct trie *)tb->tb_data;
  1490. struct key_vector *pn = t->kv;
  1491. unsigned long cindex = 1;
  1492. struct hlist_node *tmp;
  1493. struct fib_alias *fa;
  1494. int found = 0;
  1495. /* walk trie in reverse order */
  1496. for (;;) {
  1497. unsigned char slen = 0;
  1498. struct key_vector *n;
  1499. if (!(cindex--)) {
  1500. t_key pkey = pn->key;
  1501. /* cannot resize the trie vector */
  1502. if (IS_TRIE(pn))
  1503. break;
  1504. /* resize completed node */
  1505. pn = resize(t, pn);
  1506. cindex = get_index(pkey, pn);
  1507. continue;
  1508. }
  1509. /* grab the next available node */
  1510. n = get_child(pn, cindex);
  1511. if (!n)
  1512. continue;
  1513. if (IS_TNODE(n)) {
  1514. /* record pn and cindex for leaf walking */
  1515. pn = n;
  1516. cindex = 1ul << n->bits;
  1517. continue;
  1518. }
  1519. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1520. struct fib_info *fi = fa->fa_info;
  1521. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1522. slen = fa->fa_slen;
  1523. continue;
  1524. }
  1525. netdev_switch_fib_ipv4_del(n->key,
  1526. KEYLENGTH - fa->fa_slen,
  1527. fi, fa->fa_tos,
  1528. fa->fa_type, tb->tb_id);
  1529. hlist_del_rcu(&fa->fa_list);
  1530. fib_release_info(fa->fa_info);
  1531. alias_free_mem_rcu(fa);
  1532. found++;
  1533. }
  1534. /* update leaf slen */
  1535. n->slen = slen;
  1536. if (hlist_empty(&n->leaf)) {
  1537. put_child_root(pn, n->key, NULL);
  1538. node_free(n);
  1539. } else {
  1540. leaf_pull_suffix(pn, n);
  1541. }
  1542. }
  1543. pr_debug("trie_flush found=%d\n", found);
  1544. return found;
  1545. }
  1546. static void __trie_free_rcu(struct rcu_head *head)
  1547. {
  1548. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1549. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1550. struct trie *t = (struct trie *)tb->tb_data;
  1551. if (tb->tb_data == tb->__data)
  1552. free_percpu(t->stats);
  1553. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1554. kfree(tb);
  1555. }
  1556. void fib_free_table(struct fib_table *tb)
  1557. {
  1558. call_rcu(&tb->rcu, __trie_free_rcu);
  1559. }
  1560. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1561. struct sk_buff *skb, struct netlink_callback *cb)
  1562. {
  1563. __be32 xkey = htonl(l->key);
  1564. struct fib_alias *fa;
  1565. int i, s_i;
  1566. s_i = cb->args[4];
  1567. i = 0;
  1568. /* rcu_read_lock is hold by caller */
  1569. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1570. if (i < s_i) {
  1571. i++;
  1572. continue;
  1573. }
  1574. if (tb->tb_id != fa->tb_id) {
  1575. i++;
  1576. continue;
  1577. }
  1578. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1579. cb->nlh->nlmsg_seq,
  1580. RTM_NEWROUTE,
  1581. tb->tb_id,
  1582. fa->fa_type,
  1583. xkey,
  1584. KEYLENGTH - fa->fa_slen,
  1585. fa->fa_tos,
  1586. fa->fa_info, NLM_F_MULTI) < 0) {
  1587. cb->args[4] = i;
  1588. return -1;
  1589. }
  1590. i++;
  1591. }
  1592. cb->args[4] = i;
  1593. return skb->len;
  1594. }
  1595. /* rcu_read_lock needs to be hold by caller from readside */
  1596. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1597. struct netlink_callback *cb)
  1598. {
  1599. struct trie *t = (struct trie *)tb->tb_data;
  1600. struct key_vector *l, *tp = t->kv;
  1601. /* Dump starting at last key.
  1602. * Note: 0.0.0.0/0 (ie default) is first key.
  1603. */
  1604. int count = cb->args[2];
  1605. t_key key = cb->args[3];
  1606. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1607. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1608. cb->args[3] = key;
  1609. cb->args[2] = count;
  1610. return -1;
  1611. }
  1612. ++count;
  1613. key = l->key + 1;
  1614. memset(&cb->args[4], 0,
  1615. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1616. /* stop loop if key wrapped back to 0 */
  1617. if (key < l->key)
  1618. break;
  1619. }
  1620. cb->args[3] = key;
  1621. cb->args[2] = count;
  1622. return skb->len;
  1623. }
  1624. void __init fib_trie_init(void)
  1625. {
  1626. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1627. sizeof(struct fib_alias),
  1628. 0, SLAB_PANIC, NULL);
  1629. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1630. LEAF_SIZE,
  1631. 0, SLAB_PANIC, NULL);
  1632. }
  1633. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1634. {
  1635. struct fib_table *tb;
  1636. struct trie *t;
  1637. size_t sz = sizeof(*tb);
  1638. if (!alias)
  1639. sz += sizeof(struct trie);
  1640. tb = kzalloc(sz, GFP_KERNEL);
  1641. if (!tb)
  1642. return NULL;
  1643. tb->tb_id = id;
  1644. tb->tb_default = -1;
  1645. tb->tb_num_default = 0;
  1646. tb->tb_data = (alias ? alias->__data : tb->__data);
  1647. if (alias)
  1648. return tb;
  1649. t = (struct trie *) tb->tb_data;
  1650. t->kv[0].pos = KEYLENGTH;
  1651. t->kv[0].slen = KEYLENGTH;
  1652. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1653. t->stats = alloc_percpu(struct trie_use_stats);
  1654. if (!t->stats) {
  1655. kfree(tb);
  1656. tb = NULL;
  1657. }
  1658. #endif
  1659. return tb;
  1660. }
  1661. #ifdef CONFIG_PROC_FS
  1662. /* Depth first Trie walk iterator */
  1663. struct fib_trie_iter {
  1664. struct seq_net_private p;
  1665. struct fib_table *tb;
  1666. struct key_vector *tnode;
  1667. unsigned int index;
  1668. unsigned int depth;
  1669. };
  1670. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1671. {
  1672. unsigned long cindex = iter->index;
  1673. struct key_vector *pn = iter->tnode;
  1674. t_key pkey;
  1675. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1676. iter->tnode, iter->index, iter->depth);
  1677. while (!IS_TRIE(pn)) {
  1678. while (cindex < child_length(pn)) {
  1679. struct key_vector *n = get_child_rcu(pn, cindex++);
  1680. if (!n)
  1681. continue;
  1682. if (IS_LEAF(n)) {
  1683. iter->tnode = pn;
  1684. iter->index = cindex;
  1685. } else {
  1686. /* push down one level */
  1687. iter->tnode = n;
  1688. iter->index = 0;
  1689. ++iter->depth;
  1690. }
  1691. return n;
  1692. }
  1693. /* Current node exhausted, pop back up */
  1694. pkey = pn->key;
  1695. pn = node_parent_rcu(pn);
  1696. cindex = get_index(pkey, pn) + 1;
  1697. --iter->depth;
  1698. }
  1699. /* record root node so further searches know we are done */
  1700. iter->tnode = pn;
  1701. iter->index = 0;
  1702. return NULL;
  1703. }
  1704. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1705. struct trie *t)
  1706. {
  1707. struct key_vector *n, *pn = t->kv;
  1708. if (!t)
  1709. return NULL;
  1710. n = rcu_dereference(pn->tnode[0]);
  1711. if (!n)
  1712. return NULL;
  1713. if (IS_TNODE(n)) {
  1714. iter->tnode = n;
  1715. iter->index = 0;
  1716. iter->depth = 1;
  1717. } else {
  1718. iter->tnode = pn;
  1719. iter->index = 0;
  1720. iter->depth = 0;
  1721. }
  1722. return n;
  1723. }
  1724. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1725. {
  1726. struct key_vector *n;
  1727. struct fib_trie_iter iter;
  1728. memset(s, 0, sizeof(*s));
  1729. rcu_read_lock();
  1730. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1731. if (IS_LEAF(n)) {
  1732. struct fib_alias *fa;
  1733. s->leaves++;
  1734. s->totdepth += iter.depth;
  1735. if (iter.depth > s->maxdepth)
  1736. s->maxdepth = iter.depth;
  1737. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1738. ++s->prefixes;
  1739. } else {
  1740. s->tnodes++;
  1741. if (n->bits < MAX_STAT_DEPTH)
  1742. s->nodesizes[n->bits]++;
  1743. s->nullpointers += tn_info(n)->empty_children;
  1744. }
  1745. }
  1746. rcu_read_unlock();
  1747. }
  1748. /*
  1749. * This outputs /proc/net/fib_triestats
  1750. */
  1751. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1752. {
  1753. unsigned int i, max, pointers, bytes, avdepth;
  1754. if (stat->leaves)
  1755. avdepth = stat->totdepth*100 / stat->leaves;
  1756. else
  1757. avdepth = 0;
  1758. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1759. avdepth / 100, avdepth % 100);
  1760. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1761. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1762. bytes = LEAF_SIZE * stat->leaves;
  1763. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1764. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1765. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1766. bytes += TNODE_SIZE(0) * stat->tnodes;
  1767. max = MAX_STAT_DEPTH;
  1768. while (max > 0 && stat->nodesizes[max-1] == 0)
  1769. max--;
  1770. pointers = 0;
  1771. for (i = 1; i < max; i++)
  1772. if (stat->nodesizes[i] != 0) {
  1773. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1774. pointers += (1<<i) * stat->nodesizes[i];
  1775. }
  1776. seq_putc(seq, '\n');
  1777. seq_printf(seq, "\tPointers: %u\n", pointers);
  1778. bytes += sizeof(struct key_vector *) * pointers;
  1779. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1780. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1781. }
  1782. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1783. static void trie_show_usage(struct seq_file *seq,
  1784. const struct trie_use_stats __percpu *stats)
  1785. {
  1786. struct trie_use_stats s = { 0 };
  1787. int cpu;
  1788. /* loop through all of the CPUs and gather up the stats */
  1789. for_each_possible_cpu(cpu) {
  1790. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1791. s.gets += pcpu->gets;
  1792. s.backtrack += pcpu->backtrack;
  1793. s.semantic_match_passed += pcpu->semantic_match_passed;
  1794. s.semantic_match_miss += pcpu->semantic_match_miss;
  1795. s.null_node_hit += pcpu->null_node_hit;
  1796. s.resize_node_skipped += pcpu->resize_node_skipped;
  1797. }
  1798. seq_printf(seq, "\nCounters:\n---------\n");
  1799. seq_printf(seq, "gets = %u\n", s.gets);
  1800. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1801. seq_printf(seq, "semantic match passed = %u\n",
  1802. s.semantic_match_passed);
  1803. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1804. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1805. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1806. }
  1807. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1808. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1809. {
  1810. if (tb->tb_id == RT_TABLE_LOCAL)
  1811. seq_puts(seq, "Local:\n");
  1812. else if (tb->tb_id == RT_TABLE_MAIN)
  1813. seq_puts(seq, "Main:\n");
  1814. else
  1815. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1816. }
  1817. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1818. {
  1819. struct net *net = (struct net *)seq->private;
  1820. unsigned int h;
  1821. seq_printf(seq,
  1822. "Basic info: size of leaf:"
  1823. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1824. LEAF_SIZE, TNODE_SIZE(0));
  1825. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1826. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1827. struct fib_table *tb;
  1828. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1829. struct trie *t = (struct trie *) tb->tb_data;
  1830. struct trie_stat stat;
  1831. if (!t)
  1832. continue;
  1833. fib_table_print(seq, tb);
  1834. trie_collect_stats(t, &stat);
  1835. trie_show_stats(seq, &stat);
  1836. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1837. trie_show_usage(seq, t->stats);
  1838. #endif
  1839. }
  1840. }
  1841. return 0;
  1842. }
  1843. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1844. {
  1845. return single_open_net(inode, file, fib_triestat_seq_show);
  1846. }
  1847. static const struct file_operations fib_triestat_fops = {
  1848. .owner = THIS_MODULE,
  1849. .open = fib_triestat_seq_open,
  1850. .read = seq_read,
  1851. .llseek = seq_lseek,
  1852. .release = single_release_net,
  1853. };
  1854. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1855. {
  1856. struct fib_trie_iter *iter = seq->private;
  1857. struct net *net = seq_file_net(seq);
  1858. loff_t idx = 0;
  1859. unsigned int h;
  1860. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1861. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1862. struct fib_table *tb;
  1863. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1864. struct key_vector *n;
  1865. for (n = fib_trie_get_first(iter,
  1866. (struct trie *) tb->tb_data);
  1867. n; n = fib_trie_get_next(iter))
  1868. if (pos == idx++) {
  1869. iter->tb = tb;
  1870. return n;
  1871. }
  1872. }
  1873. }
  1874. return NULL;
  1875. }
  1876. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1877. __acquires(RCU)
  1878. {
  1879. rcu_read_lock();
  1880. return fib_trie_get_idx(seq, *pos);
  1881. }
  1882. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1883. {
  1884. struct fib_trie_iter *iter = seq->private;
  1885. struct net *net = seq_file_net(seq);
  1886. struct fib_table *tb = iter->tb;
  1887. struct hlist_node *tb_node;
  1888. unsigned int h;
  1889. struct key_vector *n;
  1890. ++*pos;
  1891. /* next node in same table */
  1892. n = fib_trie_get_next(iter);
  1893. if (n)
  1894. return n;
  1895. /* walk rest of this hash chain */
  1896. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1897. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1898. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1899. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1900. if (n)
  1901. goto found;
  1902. }
  1903. /* new hash chain */
  1904. while (++h < FIB_TABLE_HASHSZ) {
  1905. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1906. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1907. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1908. if (n)
  1909. goto found;
  1910. }
  1911. }
  1912. return NULL;
  1913. found:
  1914. iter->tb = tb;
  1915. return n;
  1916. }
  1917. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1918. __releases(RCU)
  1919. {
  1920. rcu_read_unlock();
  1921. }
  1922. static void seq_indent(struct seq_file *seq, int n)
  1923. {
  1924. while (n-- > 0)
  1925. seq_puts(seq, " ");
  1926. }
  1927. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1928. {
  1929. switch (s) {
  1930. case RT_SCOPE_UNIVERSE: return "universe";
  1931. case RT_SCOPE_SITE: return "site";
  1932. case RT_SCOPE_LINK: return "link";
  1933. case RT_SCOPE_HOST: return "host";
  1934. case RT_SCOPE_NOWHERE: return "nowhere";
  1935. default:
  1936. snprintf(buf, len, "scope=%d", s);
  1937. return buf;
  1938. }
  1939. }
  1940. static const char *const rtn_type_names[__RTN_MAX] = {
  1941. [RTN_UNSPEC] = "UNSPEC",
  1942. [RTN_UNICAST] = "UNICAST",
  1943. [RTN_LOCAL] = "LOCAL",
  1944. [RTN_BROADCAST] = "BROADCAST",
  1945. [RTN_ANYCAST] = "ANYCAST",
  1946. [RTN_MULTICAST] = "MULTICAST",
  1947. [RTN_BLACKHOLE] = "BLACKHOLE",
  1948. [RTN_UNREACHABLE] = "UNREACHABLE",
  1949. [RTN_PROHIBIT] = "PROHIBIT",
  1950. [RTN_THROW] = "THROW",
  1951. [RTN_NAT] = "NAT",
  1952. [RTN_XRESOLVE] = "XRESOLVE",
  1953. };
  1954. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1955. {
  1956. if (t < __RTN_MAX && rtn_type_names[t])
  1957. return rtn_type_names[t];
  1958. snprintf(buf, len, "type %u", t);
  1959. return buf;
  1960. }
  1961. /* Pretty print the trie */
  1962. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  1963. {
  1964. const struct fib_trie_iter *iter = seq->private;
  1965. struct key_vector *n = v;
  1966. if (IS_TRIE(node_parent_rcu(n)))
  1967. fib_table_print(seq, iter->tb);
  1968. if (IS_TNODE(n)) {
  1969. __be32 prf = htonl(n->key);
  1970. seq_indent(seq, iter->depth-1);
  1971. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  1972. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  1973. tn_info(n)->full_children,
  1974. tn_info(n)->empty_children);
  1975. } else {
  1976. __be32 val = htonl(n->key);
  1977. struct fib_alias *fa;
  1978. seq_indent(seq, iter->depth);
  1979. seq_printf(seq, " |-- %pI4\n", &val);
  1980. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1981. char buf1[32], buf2[32];
  1982. seq_indent(seq, iter->depth + 1);
  1983. seq_printf(seq, " /%zu %s %s",
  1984. KEYLENGTH - fa->fa_slen,
  1985. rtn_scope(buf1, sizeof(buf1),
  1986. fa->fa_info->fib_scope),
  1987. rtn_type(buf2, sizeof(buf2),
  1988. fa->fa_type));
  1989. if (fa->fa_tos)
  1990. seq_printf(seq, " tos=%d", fa->fa_tos);
  1991. seq_putc(seq, '\n');
  1992. }
  1993. }
  1994. return 0;
  1995. }
  1996. static const struct seq_operations fib_trie_seq_ops = {
  1997. .start = fib_trie_seq_start,
  1998. .next = fib_trie_seq_next,
  1999. .stop = fib_trie_seq_stop,
  2000. .show = fib_trie_seq_show,
  2001. };
  2002. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2003. {
  2004. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2005. sizeof(struct fib_trie_iter));
  2006. }
  2007. static const struct file_operations fib_trie_fops = {
  2008. .owner = THIS_MODULE,
  2009. .open = fib_trie_seq_open,
  2010. .read = seq_read,
  2011. .llseek = seq_lseek,
  2012. .release = seq_release_net,
  2013. };
  2014. struct fib_route_iter {
  2015. struct seq_net_private p;
  2016. struct fib_table *main_tb;
  2017. struct key_vector *tnode;
  2018. loff_t pos;
  2019. t_key key;
  2020. };
  2021. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2022. loff_t pos)
  2023. {
  2024. struct fib_table *tb = iter->main_tb;
  2025. struct key_vector *l, **tp = &iter->tnode;
  2026. struct trie *t;
  2027. t_key key;
  2028. /* use cache location of next-to-find key */
  2029. if (iter->pos > 0 && pos >= iter->pos) {
  2030. pos -= iter->pos;
  2031. key = iter->key;
  2032. } else {
  2033. t = (struct trie *)tb->tb_data;
  2034. iter->tnode = t->kv;
  2035. iter->pos = 0;
  2036. key = 0;
  2037. }
  2038. while ((l = leaf_walk_rcu(tp, key)) != NULL) {
  2039. key = l->key + 1;
  2040. iter->pos++;
  2041. if (pos-- <= 0)
  2042. break;
  2043. l = NULL;
  2044. /* handle unlikely case of a key wrap */
  2045. if (!key)
  2046. break;
  2047. }
  2048. if (l)
  2049. iter->key = key; /* remember it */
  2050. else
  2051. iter->pos = 0; /* forget it */
  2052. return l;
  2053. }
  2054. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2055. __acquires(RCU)
  2056. {
  2057. struct fib_route_iter *iter = seq->private;
  2058. struct fib_table *tb;
  2059. struct trie *t;
  2060. rcu_read_lock();
  2061. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2062. if (!tb)
  2063. return NULL;
  2064. iter->main_tb = tb;
  2065. if (*pos != 0)
  2066. return fib_route_get_idx(iter, *pos);
  2067. t = (struct trie *)tb->tb_data;
  2068. iter->tnode = t->kv;
  2069. iter->pos = 0;
  2070. iter->key = 0;
  2071. return SEQ_START_TOKEN;
  2072. }
  2073. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2074. {
  2075. struct fib_route_iter *iter = seq->private;
  2076. struct key_vector *l = NULL;
  2077. t_key key = iter->key;
  2078. ++*pos;
  2079. /* only allow key of 0 for start of sequence */
  2080. if ((v == SEQ_START_TOKEN) || key)
  2081. l = leaf_walk_rcu(&iter->tnode, key);
  2082. if (l) {
  2083. iter->key = l->key + 1;
  2084. iter->pos++;
  2085. } else {
  2086. iter->pos = 0;
  2087. }
  2088. return l;
  2089. }
  2090. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2091. __releases(RCU)
  2092. {
  2093. rcu_read_unlock();
  2094. }
  2095. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2096. {
  2097. unsigned int flags = 0;
  2098. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2099. flags = RTF_REJECT;
  2100. if (fi && fi->fib_nh->nh_gw)
  2101. flags |= RTF_GATEWAY;
  2102. if (mask == htonl(0xFFFFFFFF))
  2103. flags |= RTF_HOST;
  2104. flags |= RTF_UP;
  2105. return flags;
  2106. }
  2107. /*
  2108. * This outputs /proc/net/route.
  2109. * The format of the file is not supposed to be changed
  2110. * and needs to be same as fib_hash output to avoid breaking
  2111. * legacy utilities
  2112. */
  2113. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2114. {
  2115. struct fib_route_iter *iter = seq->private;
  2116. struct fib_table *tb = iter->main_tb;
  2117. struct fib_alias *fa;
  2118. struct key_vector *l = v;
  2119. __be32 prefix;
  2120. if (v == SEQ_START_TOKEN) {
  2121. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2122. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2123. "\tWindow\tIRTT");
  2124. return 0;
  2125. }
  2126. prefix = htonl(l->key);
  2127. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2128. const struct fib_info *fi = fa->fa_info;
  2129. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2130. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2131. if ((fa->fa_type == RTN_BROADCAST) ||
  2132. (fa->fa_type == RTN_MULTICAST))
  2133. continue;
  2134. if (fa->tb_id != tb->tb_id)
  2135. continue;
  2136. seq_setwidth(seq, 127);
  2137. if (fi)
  2138. seq_printf(seq,
  2139. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2140. "%d\t%08X\t%d\t%u\t%u",
  2141. fi->fib_dev ? fi->fib_dev->name : "*",
  2142. prefix,
  2143. fi->fib_nh->nh_gw, flags, 0, 0,
  2144. fi->fib_priority,
  2145. mask,
  2146. (fi->fib_advmss ?
  2147. fi->fib_advmss + 40 : 0),
  2148. fi->fib_window,
  2149. fi->fib_rtt >> 3);
  2150. else
  2151. seq_printf(seq,
  2152. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2153. "%d\t%08X\t%d\t%u\t%u",
  2154. prefix, 0, flags, 0, 0, 0,
  2155. mask, 0, 0, 0);
  2156. seq_pad(seq, '\n');
  2157. }
  2158. return 0;
  2159. }
  2160. static const struct seq_operations fib_route_seq_ops = {
  2161. .start = fib_route_seq_start,
  2162. .next = fib_route_seq_next,
  2163. .stop = fib_route_seq_stop,
  2164. .show = fib_route_seq_show,
  2165. };
  2166. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2167. {
  2168. return seq_open_net(inode, file, &fib_route_seq_ops,
  2169. sizeof(struct fib_route_iter));
  2170. }
  2171. static const struct file_operations fib_route_fops = {
  2172. .owner = THIS_MODULE,
  2173. .open = fib_route_seq_open,
  2174. .read = seq_read,
  2175. .llseek = seq_lseek,
  2176. .release = seq_release_net,
  2177. };
  2178. int __net_init fib_proc_init(struct net *net)
  2179. {
  2180. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2181. goto out1;
  2182. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2183. &fib_triestat_fops))
  2184. goto out2;
  2185. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2186. goto out3;
  2187. return 0;
  2188. out3:
  2189. remove_proc_entry("fib_triestat", net->proc_net);
  2190. out2:
  2191. remove_proc_entry("fib_trie", net->proc_net);
  2192. out1:
  2193. return -ENOMEM;
  2194. }
  2195. void __net_exit fib_proc_exit(struct net *net)
  2196. {
  2197. remove_proc_entry("fib_trie", net->proc_net);
  2198. remove_proc_entry("fib_triestat", net->proc_net);
  2199. remove_proc_entry("route", net->proc_net);
  2200. }
  2201. #endif /* CONFIG_PROC_FS */