sock.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/timer.h>
  104. #include <linux/string.h>
  105. #include <linux/sockios.h>
  106. #include <linux/net.h>
  107. #include <linux/mm.h>
  108. #include <linux/slab.h>
  109. #include <linux/interrupt.h>
  110. #include <linux/poll.h>
  111. #include <linux/tcp.h>
  112. #include <linux/init.h>
  113. #include <linux/highmem.h>
  114. #include <linux/user_namespace.h>
  115. #include <linux/static_key.h>
  116. #include <linux/memcontrol.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/uaccess.h>
  119. #include <linux/netdevice.h>
  120. #include <net/protocol.h>
  121. #include <linux/skbuff.h>
  122. #include <net/net_namespace.h>
  123. #include <net/request_sock.h>
  124. #include <net/sock.h>
  125. #include <linux/net_tstamp.h>
  126. #include <net/xfrm.h>
  127. #include <linux/ipsec.h>
  128. #include <net/cls_cgroup.h>
  129. #include <net/netprio_cgroup.h>
  130. #include <linux/filter.h>
  131. #include <trace/events/sock.h>
  132. #ifdef CONFIG_INET
  133. #include <net/tcp.h>
  134. #endif
  135. #include <net/busy_poll.h>
  136. static DEFINE_MUTEX(proto_list_mutex);
  137. static LIST_HEAD(proto_list);
  138. /**
  139. * sk_ns_capable - General socket capability test
  140. * @sk: Socket to use a capability on or through
  141. * @user_ns: The user namespace of the capability to use
  142. * @cap: The capability to use
  143. *
  144. * Test to see if the opener of the socket had when the socket was
  145. * created and the current process has the capability @cap in the user
  146. * namespace @user_ns.
  147. */
  148. bool sk_ns_capable(const struct sock *sk,
  149. struct user_namespace *user_ns, int cap)
  150. {
  151. return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
  152. ns_capable(user_ns, cap);
  153. }
  154. EXPORT_SYMBOL(sk_ns_capable);
  155. /**
  156. * sk_capable - Socket global capability test
  157. * @sk: Socket to use a capability on or through
  158. * @cap: The global capability to use
  159. *
  160. * Test to see if the opener of the socket had when the socket was
  161. * created and the current process has the capability @cap in all user
  162. * namespaces.
  163. */
  164. bool sk_capable(const struct sock *sk, int cap)
  165. {
  166. return sk_ns_capable(sk, &init_user_ns, cap);
  167. }
  168. EXPORT_SYMBOL(sk_capable);
  169. /**
  170. * sk_net_capable - Network namespace socket capability test
  171. * @sk: Socket to use a capability on or through
  172. * @cap: The capability to use
  173. *
  174. * Test to see if the opener of the socket had when the socket was created
  175. * and the current process has the capability @cap over the network namespace
  176. * the socket is a member of.
  177. */
  178. bool sk_net_capable(const struct sock *sk, int cap)
  179. {
  180. return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
  181. }
  182. EXPORT_SYMBOL(sk_net_capable);
  183. #ifdef CONFIG_MEMCG_KMEM
  184. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  185. {
  186. struct proto *proto;
  187. int ret = 0;
  188. mutex_lock(&proto_list_mutex);
  189. list_for_each_entry(proto, &proto_list, node) {
  190. if (proto->init_cgroup) {
  191. ret = proto->init_cgroup(memcg, ss);
  192. if (ret)
  193. goto out;
  194. }
  195. }
  196. mutex_unlock(&proto_list_mutex);
  197. return ret;
  198. out:
  199. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  200. if (proto->destroy_cgroup)
  201. proto->destroy_cgroup(memcg);
  202. mutex_unlock(&proto_list_mutex);
  203. return ret;
  204. }
  205. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  206. {
  207. struct proto *proto;
  208. mutex_lock(&proto_list_mutex);
  209. list_for_each_entry_reverse(proto, &proto_list, node)
  210. if (proto->destroy_cgroup)
  211. proto->destroy_cgroup(memcg);
  212. mutex_unlock(&proto_list_mutex);
  213. }
  214. #endif
  215. /*
  216. * Each address family might have different locking rules, so we have
  217. * one slock key per address family:
  218. */
  219. static struct lock_class_key af_family_keys[AF_MAX];
  220. static struct lock_class_key af_family_slock_keys[AF_MAX];
  221. #if defined(CONFIG_MEMCG_KMEM)
  222. struct static_key memcg_socket_limit_enabled;
  223. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  224. #endif
  225. /*
  226. * Make lock validator output more readable. (we pre-construct these
  227. * strings build-time, so that runtime initialization of socket
  228. * locks is fast):
  229. */
  230. static const char *const af_family_key_strings[AF_MAX+1] = {
  231. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  232. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  233. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  234. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  235. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  236. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  237. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  238. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  239. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  240. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  241. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  242. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  243. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  244. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
  245. };
  246. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  247. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  248. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  249. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  250. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  251. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  252. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  253. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  254. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  255. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  256. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  257. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  258. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  259. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  260. "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
  261. };
  262. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  263. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  264. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  265. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  266. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  267. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  268. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  269. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  270. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  271. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  272. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  273. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  274. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  275. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  276. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
  277. };
  278. /*
  279. * sk_callback_lock locking rules are per-address-family,
  280. * so split the lock classes by using a per-AF key:
  281. */
  282. static struct lock_class_key af_callback_keys[AF_MAX];
  283. /* Take into consideration the size of the struct sk_buff overhead in the
  284. * determination of these values, since that is non-constant across
  285. * platforms. This makes socket queueing behavior and performance
  286. * not depend upon such differences.
  287. */
  288. #define _SK_MEM_PACKETS 256
  289. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  290. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  291. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  292. /* Run time adjustable parameters. */
  293. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  294. EXPORT_SYMBOL(sysctl_wmem_max);
  295. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  296. EXPORT_SYMBOL(sysctl_rmem_max);
  297. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  298. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  299. /* Maximal space eaten by iovec or ancillary data plus some space */
  300. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  301. EXPORT_SYMBOL(sysctl_optmem_max);
  302. int sysctl_tstamp_allow_data __read_mostly = 1;
  303. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  304. EXPORT_SYMBOL_GPL(memalloc_socks);
  305. /**
  306. * sk_set_memalloc - sets %SOCK_MEMALLOC
  307. * @sk: socket to set it on
  308. *
  309. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  310. * It's the responsibility of the admin to adjust min_free_kbytes
  311. * to meet the requirements
  312. */
  313. void sk_set_memalloc(struct sock *sk)
  314. {
  315. sock_set_flag(sk, SOCK_MEMALLOC);
  316. sk->sk_allocation |= __GFP_MEMALLOC;
  317. static_key_slow_inc(&memalloc_socks);
  318. }
  319. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  320. void sk_clear_memalloc(struct sock *sk)
  321. {
  322. sock_reset_flag(sk, SOCK_MEMALLOC);
  323. sk->sk_allocation &= ~__GFP_MEMALLOC;
  324. static_key_slow_dec(&memalloc_socks);
  325. /*
  326. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  327. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  328. * it has rmem allocations there is a risk that the user of the
  329. * socket cannot make forward progress due to exceeding the rmem
  330. * limits. By rights, sk_clear_memalloc() should only be called
  331. * on sockets being torn down but warn and reset the accounting if
  332. * that assumption breaks.
  333. */
  334. if (WARN_ON(sk->sk_forward_alloc))
  335. sk_mem_reclaim(sk);
  336. }
  337. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  338. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  339. {
  340. int ret;
  341. unsigned long pflags = current->flags;
  342. /* these should have been dropped before queueing */
  343. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  344. current->flags |= PF_MEMALLOC;
  345. ret = sk->sk_backlog_rcv(sk, skb);
  346. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  347. return ret;
  348. }
  349. EXPORT_SYMBOL(__sk_backlog_rcv);
  350. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  351. {
  352. struct timeval tv;
  353. if (optlen < sizeof(tv))
  354. return -EINVAL;
  355. if (copy_from_user(&tv, optval, sizeof(tv)))
  356. return -EFAULT;
  357. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  358. return -EDOM;
  359. if (tv.tv_sec < 0) {
  360. static int warned __read_mostly;
  361. *timeo_p = 0;
  362. if (warned < 10 && net_ratelimit()) {
  363. warned++;
  364. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  365. __func__, current->comm, task_pid_nr(current));
  366. }
  367. return 0;
  368. }
  369. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  370. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  371. return 0;
  372. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  373. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  374. return 0;
  375. }
  376. static void sock_warn_obsolete_bsdism(const char *name)
  377. {
  378. static int warned;
  379. static char warncomm[TASK_COMM_LEN];
  380. if (strcmp(warncomm, current->comm) && warned < 5) {
  381. strcpy(warncomm, current->comm);
  382. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  383. warncomm, name);
  384. warned++;
  385. }
  386. }
  387. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  388. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  389. {
  390. if (sk->sk_flags & flags) {
  391. sk->sk_flags &= ~flags;
  392. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  393. net_disable_timestamp();
  394. }
  395. }
  396. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  397. {
  398. int err;
  399. unsigned long flags;
  400. struct sk_buff_head *list = &sk->sk_receive_queue;
  401. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  402. atomic_inc(&sk->sk_drops);
  403. trace_sock_rcvqueue_full(sk, skb);
  404. return -ENOMEM;
  405. }
  406. err = sk_filter(sk, skb);
  407. if (err)
  408. return err;
  409. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  410. atomic_inc(&sk->sk_drops);
  411. return -ENOBUFS;
  412. }
  413. skb->dev = NULL;
  414. skb_set_owner_r(skb, sk);
  415. /* we escape from rcu protected region, make sure we dont leak
  416. * a norefcounted dst
  417. */
  418. skb_dst_force(skb);
  419. spin_lock_irqsave(&list->lock, flags);
  420. sock_skb_set_dropcount(sk, skb);
  421. __skb_queue_tail(list, skb);
  422. spin_unlock_irqrestore(&list->lock, flags);
  423. if (!sock_flag(sk, SOCK_DEAD))
  424. sk->sk_data_ready(sk);
  425. return 0;
  426. }
  427. EXPORT_SYMBOL(sock_queue_rcv_skb);
  428. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  429. {
  430. int rc = NET_RX_SUCCESS;
  431. if (sk_filter(sk, skb))
  432. goto discard_and_relse;
  433. skb->dev = NULL;
  434. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  435. atomic_inc(&sk->sk_drops);
  436. goto discard_and_relse;
  437. }
  438. if (nested)
  439. bh_lock_sock_nested(sk);
  440. else
  441. bh_lock_sock(sk);
  442. if (!sock_owned_by_user(sk)) {
  443. /*
  444. * trylock + unlock semantics:
  445. */
  446. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  447. rc = sk_backlog_rcv(sk, skb);
  448. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  449. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  450. bh_unlock_sock(sk);
  451. atomic_inc(&sk->sk_drops);
  452. goto discard_and_relse;
  453. }
  454. bh_unlock_sock(sk);
  455. out:
  456. sock_put(sk);
  457. return rc;
  458. discard_and_relse:
  459. kfree_skb(skb);
  460. goto out;
  461. }
  462. EXPORT_SYMBOL(sk_receive_skb);
  463. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  464. {
  465. struct dst_entry *dst = __sk_dst_get(sk);
  466. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  467. sk_tx_queue_clear(sk);
  468. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  469. dst_release(dst);
  470. return NULL;
  471. }
  472. return dst;
  473. }
  474. EXPORT_SYMBOL(__sk_dst_check);
  475. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  476. {
  477. struct dst_entry *dst = sk_dst_get(sk);
  478. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  479. sk_dst_reset(sk);
  480. dst_release(dst);
  481. return NULL;
  482. }
  483. return dst;
  484. }
  485. EXPORT_SYMBOL(sk_dst_check);
  486. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  487. int optlen)
  488. {
  489. int ret = -ENOPROTOOPT;
  490. #ifdef CONFIG_NETDEVICES
  491. struct net *net = sock_net(sk);
  492. char devname[IFNAMSIZ];
  493. int index;
  494. /* Sorry... */
  495. ret = -EPERM;
  496. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  497. goto out;
  498. ret = -EINVAL;
  499. if (optlen < 0)
  500. goto out;
  501. /* Bind this socket to a particular device like "eth0",
  502. * as specified in the passed interface name. If the
  503. * name is "" or the option length is zero the socket
  504. * is not bound.
  505. */
  506. if (optlen > IFNAMSIZ - 1)
  507. optlen = IFNAMSIZ - 1;
  508. memset(devname, 0, sizeof(devname));
  509. ret = -EFAULT;
  510. if (copy_from_user(devname, optval, optlen))
  511. goto out;
  512. index = 0;
  513. if (devname[0] != '\0') {
  514. struct net_device *dev;
  515. rcu_read_lock();
  516. dev = dev_get_by_name_rcu(net, devname);
  517. if (dev)
  518. index = dev->ifindex;
  519. rcu_read_unlock();
  520. ret = -ENODEV;
  521. if (!dev)
  522. goto out;
  523. }
  524. lock_sock(sk);
  525. sk->sk_bound_dev_if = index;
  526. sk_dst_reset(sk);
  527. release_sock(sk);
  528. ret = 0;
  529. out:
  530. #endif
  531. return ret;
  532. }
  533. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  534. int __user *optlen, int len)
  535. {
  536. int ret = -ENOPROTOOPT;
  537. #ifdef CONFIG_NETDEVICES
  538. struct net *net = sock_net(sk);
  539. char devname[IFNAMSIZ];
  540. if (sk->sk_bound_dev_if == 0) {
  541. len = 0;
  542. goto zero;
  543. }
  544. ret = -EINVAL;
  545. if (len < IFNAMSIZ)
  546. goto out;
  547. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  548. if (ret)
  549. goto out;
  550. len = strlen(devname) + 1;
  551. ret = -EFAULT;
  552. if (copy_to_user(optval, devname, len))
  553. goto out;
  554. zero:
  555. ret = -EFAULT;
  556. if (put_user(len, optlen))
  557. goto out;
  558. ret = 0;
  559. out:
  560. #endif
  561. return ret;
  562. }
  563. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  564. {
  565. if (valbool)
  566. sock_set_flag(sk, bit);
  567. else
  568. sock_reset_flag(sk, bit);
  569. }
  570. bool sk_mc_loop(struct sock *sk)
  571. {
  572. if (dev_recursion_level())
  573. return false;
  574. if (!sk)
  575. return true;
  576. switch (sk->sk_family) {
  577. case AF_INET:
  578. return inet_sk(sk)->mc_loop;
  579. #if IS_ENABLED(CONFIG_IPV6)
  580. case AF_INET6:
  581. return inet6_sk(sk)->mc_loop;
  582. #endif
  583. }
  584. WARN_ON(1);
  585. return true;
  586. }
  587. EXPORT_SYMBOL(sk_mc_loop);
  588. /*
  589. * This is meant for all protocols to use and covers goings on
  590. * at the socket level. Everything here is generic.
  591. */
  592. int sock_setsockopt(struct socket *sock, int level, int optname,
  593. char __user *optval, unsigned int optlen)
  594. {
  595. struct sock *sk = sock->sk;
  596. int val;
  597. int valbool;
  598. struct linger ling;
  599. int ret = 0;
  600. /*
  601. * Options without arguments
  602. */
  603. if (optname == SO_BINDTODEVICE)
  604. return sock_setbindtodevice(sk, optval, optlen);
  605. if (optlen < sizeof(int))
  606. return -EINVAL;
  607. if (get_user(val, (int __user *)optval))
  608. return -EFAULT;
  609. valbool = val ? 1 : 0;
  610. lock_sock(sk);
  611. switch (optname) {
  612. case SO_DEBUG:
  613. if (val && !capable(CAP_NET_ADMIN))
  614. ret = -EACCES;
  615. else
  616. sock_valbool_flag(sk, SOCK_DBG, valbool);
  617. break;
  618. case SO_REUSEADDR:
  619. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  620. break;
  621. case SO_REUSEPORT:
  622. sk->sk_reuseport = valbool;
  623. break;
  624. case SO_TYPE:
  625. case SO_PROTOCOL:
  626. case SO_DOMAIN:
  627. case SO_ERROR:
  628. ret = -ENOPROTOOPT;
  629. break;
  630. case SO_DONTROUTE:
  631. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  632. break;
  633. case SO_BROADCAST:
  634. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  635. break;
  636. case SO_SNDBUF:
  637. /* Don't error on this BSD doesn't and if you think
  638. * about it this is right. Otherwise apps have to
  639. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  640. * are treated in BSD as hints
  641. */
  642. val = min_t(u32, val, sysctl_wmem_max);
  643. set_sndbuf:
  644. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  645. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  646. /* Wake up sending tasks if we upped the value. */
  647. sk->sk_write_space(sk);
  648. break;
  649. case SO_SNDBUFFORCE:
  650. if (!capable(CAP_NET_ADMIN)) {
  651. ret = -EPERM;
  652. break;
  653. }
  654. goto set_sndbuf;
  655. case SO_RCVBUF:
  656. /* Don't error on this BSD doesn't and if you think
  657. * about it this is right. Otherwise apps have to
  658. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  659. * are treated in BSD as hints
  660. */
  661. val = min_t(u32, val, sysctl_rmem_max);
  662. set_rcvbuf:
  663. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  664. /*
  665. * We double it on the way in to account for
  666. * "struct sk_buff" etc. overhead. Applications
  667. * assume that the SO_RCVBUF setting they make will
  668. * allow that much actual data to be received on that
  669. * socket.
  670. *
  671. * Applications are unaware that "struct sk_buff" and
  672. * other overheads allocate from the receive buffer
  673. * during socket buffer allocation.
  674. *
  675. * And after considering the possible alternatives,
  676. * returning the value we actually used in getsockopt
  677. * is the most desirable behavior.
  678. */
  679. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  680. break;
  681. case SO_RCVBUFFORCE:
  682. if (!capable(CAP_NET_ADMIN)) {
  683. ret = -EPERM;
  684. break;
  685. }
  686. goto set_rcvbuf;
  687. case SO_KEEPALIVE:
  688. #ifdef CONFIG_INET
  689. if (sk->sk_protocol == IPPROTO_TCP &&
  690. sk->sk_type == SOCK_STREAM)
  691. tcp_set_keepalive(sk, valbool);
  692. #endif
  693. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  694. break;
  695. case SO_OOBINLINE:
  696. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  697. break;
  698. case SO_NO_CHECK:
  699. sk->sk_no_check_tx = valbool;
  700. break;
  701. case SO_PRIORITY:
  702. if ((val >= 0 && val <= 6) ||
  703. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  704. sk->sk_priority = val;
  705. else
  706. ret = -EPERM;
  707. break;
  708. case SO_LINGER:
  709. if (optlen < sizeof(ling)) {
  710. ret = -EINVAL; /* 1003.1g */
  711. break;
  712. }
  713. if (copy_from_user(&ling, optval, sizeof(ling))) {
  714. ret = -EFAULT;
  715. break;
  716. }
  717. if (!ling.l_onoff)
  718. sock_reset_flag(sk, SOCK_LINGER);
  719. else {
  720. #if (BITS_PER_LONG == 32)
  721. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  722. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  723. else
  724. #endif
  725. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  726. sock_set_flag(sk, SOCK_LINGER);
  727. }
  728. break;
  729. case SO_BSDCOMPAT:
  730. sock_warn_obsolete_bsdism("setsockopt");
  731. break;
  732. case SO_PASSCRED:
  733. if (valbool)
  734. set_bit(SOCK_PASSCRED, &sock->flags);
  735. else
  736. clear_bit(SOCK_PASSCRED, &sock->flags);
  737. break;
  738. case SO_TIMESTAMP:
  739. case SO_TIMESTAMPNS:
  740. if (valbool) {
  741. if (optname == SO_TIMESTAMP)
  742. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  743. else
  744. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  745. sock_set_flag(sk, SOCK_RCVTSTAMP);
  746. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  747. } else {
  748. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  749. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  750. }
  751. break;
  752. case SO_TIMESTAMPING:
  753. if (val & ~SOF_TIMESTAMPING_MASK) {
  754. ret = -EINVAL;
  755. break;
  756. }
  757. if (val & SOF_TIMESTAMPING_OPT_ID &&
  758. !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
  759. if (sk->sk_protocol == IPPROTO_TCP) {
  760. if (sk->sk_state != TCP_ESTABLISHED) {
  761. ret = -EINVAL;
  762. break;
  763. }
  764. sk->sk_tskey = tcp_sk(sk)->snd_una;
  765. } else {
  766. sk->sk_tskey = 0;
  767. }
  768. }
  769. sk->sk_tsflags = val;
  770. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  771. sock_enable_timestamp(sk,
  772. SOCK_TIMESTAMPING_RX_SOFTWARE);
  773. else
  774. sock_disable_timestamp(sk,
  775. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  776. break;
  777. case SO_RCVLOWAT:
  778. if (val < 0)
  779. val = INT_MAX;
  780. sk->sk_rcvlowat = val ? : 1;
  781. break;
  782. case SO_RCVTIMEO:
  783. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  784. break;
  785. case SO_SNDTIMEO:
  786. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  787. break;
  788. case SO_ATTACH_FILTER:
  789. ret = -EINVAL;
  790. if (optlen == sizeof(struct sock_fprog)) {
  791. struct sock_fprog fprog;
  792. ret = -EFAULT;
  793. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  794. break;
  795. ret = sk_attach_filter(&fprog, sk);
  796. }
  797. break;
  798. case SO_ATTACH_BPF:
  799. ret = -EINVAL;
  800. if (optlen == sizeof(u32)) {
  801. u32 ufd;
  802. ret = -EFAULT;
  803. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  804. break;
  805. ret = sk_attach_bpf(ufd, sk);
  806. }
  807. break;
  808. case SO_DETACH_FILTER:
  809. ret = sk_detach_filter(sk);
  810. break;
  811. case SO_LOCK_FILTER:
  812. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  813. ret = -EPERM;
  814. else
  815. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  816. break;
  817. case SO_PASSSEC:
  818. if (valbool)
  819. set_bit(SOCK_PASSSEC, &sock->flags);
  820. else
  821. clear_bit(SOCK_PASSSEC, &sock->flags);
  822. break;
  823. case SO_MARK:
  824. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  825. ret = -EPERM;
  826. else
  827. sk->sk_mark = val;
  828. break;
  829. case SO_RXQ_OVFL:
  830. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  831. break;
  832. case SO_WIFI_STATUS:
  833. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  834. break;
  835. case SO_PEEK_OFF:
  836. if (sock->ops->set_peek_off)
  837. ret = sock->ops->set_peek_off(sk, val);
  838. else
  839. ret = -EOPNOTSUPP;
  840. break;
  841. case SO_NOFCS:
  842. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  843. break;
  844. case SO_SELECT_ERR_QUEUE:
  845. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  846. break;
  847. #ifdef CONFIG_NET_RX_BUSY_POLL
  848. case SO_BUSY_POLL:
  849. /* allow unprivileged users to decrease the value */
  850. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  851. ret = -EPERM;
  852. else {
  853. if (val < 0)
  854. ret = -EINVAL;
  855. else
  856. sk->sk_ll_usec = val;
  857. }
  858. break;
  859. #endif
  860. case SO_MAX_PACING_RATE:
  861. sk->sk_max_pacing_rate = val;
  862. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  863. sk->sk_max_pacing_rate);
  864. break;
  865. default:
  866. ret = -ENOPROTOOPT;
  867. break;
  868. }
  869. release_sock(sk);
  870. return ret;
  871. }
  872. EXPORT_SYMBOL(sock_setsockopt);
  873. static void cred_to_ucred(struct pid *pid, const struct cred *cred,
  874. struct ucred *ucred)
  875. {
  876. ucred->pid = pid_vnr(pid);
  877. ucred->uid = ucred->gid = -1;
  878. if (cred) {
  879. struct user_namespace *current_ns = current_user_ns();
  880. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  881. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  882. }
  883. }
  884. int sock_getsockopt(struct socket *sock, int level, int optname,
  885. char __user *optval, int __user *optlen)
  886. {
  887. struct sock *sk = sock->sk;
  888. union {
  889. int val;
  890. struct linger ling;
  891. struct timeval tm;
  892. } v;
  893. int lv = sizeof(int);
  894. int len;
  895. if (get_user(len, optlen))
  896. return -EFAULT;
  897. if (len < 0)
  898. return -EINVAL;
  899. memset(&v, 0, sizeof(v));
  900. switch (optname) {
  901. case SO_DEBUG:
  902. v.val = sock_flag(sk, SOCK_DBG);
  903. break;
  904. case SO_DONTROUTE:
  905. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  906. break;
  907. case SO_BROADCAST:
  908. v.val = sock_flag(sk, SOCK_BROADCAST);
  909. break;
  910. case SO_SNDBUF:
  911. v.val = sk->sk_sndbuf;
  912. break;
  913. case SO_RCVBUF:
  914. v.val = sk->sk_rcvbuf;
  915. break;
  916. case SO_REUSEADDR:
  917. v.val = sk->sk_reuse;
  918. break;
  919. case SO_REUSEPORT:
  920. v.val = sk->sk_reuseport;
  921. break;
  922. case SO_KEEPALIVE:
  923. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  924. break;
  925. case SO_TYPE:
  926. v.val = sk->sk_type;
  927. break;
  928. case SO_PROTOCOL:
  929. v.val = sk->sk_protocol;
  930. break;
  931. case SO_DOMAIN:
  932. v.val = sk->sk_family;
  933. break;
  934. case SO_ERROR:
  935. v.val = -sock_error(sk);
  936. if (v.val == 0)
  937. v.val = xchg(&sk->sk_err_soft, 0);
  938. break;
  939. case SO_OOBINLINE:
  940. v.val = sock_flag(sk, SOCK_URGINLINE);
  941. break;
  942. case SO_NO_CHECK:
  943. v.val = sk->sk_no_check_tx;
  944. break;
  945. case SO_PRIORITY:
  946. v.val = sk->sk_priority;
  947. break;
  948. case SO_LINGER:
  949. lv = sizeof(v.ling);
  950. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  951. v.ling.l_linger = sk->sk_lingertime / HZ;
  952. break;
  953. case SO_BSDCOMPAT:
  954. sock_warn_obsolete_bsdism("getsockopt");
  955. break;
  956. case SO_TIMESTAMP:
  957. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  958. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  959. break;
  960. case SO_TIMESTAMPNS:
  961. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  962. break;
  963. case SO_TIMESTAMPING:
  964. v.val = sk->sk_tsflags;
  965. break;
  966. case SO_RCVTIMEO:
  967. lv = sizeof(struct timeval);
  968. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  969. v.tm.tv_sec = 0;
  970. v.tm.tv_usec = 0;
  971. } else {
  972. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  973. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  974. }
  975. break;
  976. case SO_SNDTIMEO:
  977. lv = sizeof(struct timeval);
  978. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  979. v.tm.tv_sec = 0;
  980. v.tm.tv_usec = 0;
  981. } else {
  982. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  983. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  984. }
  985. break;
  986. case SO_RCVLOWAT:
  987. v.val = sk->sk_rcvlowat;
  988. break;
  989. case SO_SNDLOWAT:
  990. v.val = 1;
  991. break;
  992. case SO_PASSCRED:
  993. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  994. break;
  995. case SO_PEERCRED:
  996. {
  997. struct ucred peercred;
  998. if (len > sizeof(peercred))
  999. len = sizeof(peercred);
  1000. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  1001. if (copy_to_user(optval, &peercred, len))
  1002. return -EFAULT;
  1003. goto lenout;
  1004. }
  1005. case SO_PEERNAME:
  1006. {
  1007. char address[128];
  1008. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  1009. return -ENOTCONN;
  1010. if (lv < len)
  1011. return -EINVAL;
  1012. if (copy_to_user(optval, address, len))
  1013. return -EFAULT;
  1014. goto lenout;
  1015. }
  1016. /* Dubious BSD thing... Probably nobody even uses it, but
  1017. * the UNIX standard wants it for whatever reason... -DaveM
  1018. */
  1019. case SO_ACCEPTCONN:
  1020. v.val = sk->sk_state == TCP_LISTEN;
  1021. break;
  1022. case SO_PASSSEC:
  1023. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  1024. break;
  1025. case SO_PEERSEC:
  1026. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  1027. case SO_MARK:
  1028. v.val = sk->sk_mark;
  1029. break;
  1030. case SO_RXQ_OVFL:
  1031. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  1032. break;
  1033. case SO_WIFI_STATUS:
  1034. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  1035. break;
  1036. case SO_PEEK_OFF:
  1037. if (!sock->ops->set_peek_off)
  1038. return -EOPNOTSUPP;
  1039. v.val = sk->sk_peek_off;
  1040. break;
  1041. case SO_NOFCS:
  1042. v.val = sock_flag(sk, SOCK_NOFCS);
  1043. break;
  1044. case SO_BINDTODEVICE:
  1045. return sock_getbindtodevice(sk, optval, optlen, len);
  1046. case SO_GET_FILTER:
  1047. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1048. if (len < 0)
  1049. return len;
  1050. goto lenout;
  1051. case SO_LOCK_FILTER:
  1052. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1053. break;
  1054. case SO_BPF_EXTENSIONS:
  1055. v.val = bpf_tell_extensions();
  1056. break;
  1057. case SO_SELECT_ERR_QUEUE:
  1058. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1059. break;
  1060. #ifdef CONFIG_NET_RX_BUSY_POLL
  1061. case SO_BUSY_POLL:
  1062. v.val = sk->sk_ll_usec;
  1063. break;
  1064. #endif
  1065. case SO_MAX_PACING_RATE:
  1066. v.val = sk->sk_max_pacing_rate;
  1067. break;
  1068. case SO_INCOMING_CPU:
  1069. v.val = sk->sk_incoming_cpu;
  1070. break;
  1071. default:
  1072. /* We implement the SO_SNDLOWAT etc to not be settable
  1073. * (1003.1g 7).
  1074. */
  1075. return -ENOPROTOOPT;
  1076. }
  1077. if (len > lv)
  1078. len = lv;
  1079. if (copy_to_user(optval, &v, len))
  1080. return -EFAULT;
  1081. lenout:
  1082. if (put_user(len, optlen))
  1083. return -EFAULT;
  1084. return 0;
  1085. }
  1086. /*
  1087. * Initialize an sk_lock.
  1088. *
  1089. * (We also register the sk_lock with the lock validator.)
  1090. */
  1091. static inline void sock_lock_init(struct sock *sk)
  1092. {
  1093. sock_lock_init_class_and_name(sk,
  1094. af_family_slock_key_strings[sk->sk_family],
  1095. af_family_slock_keys + sk->sk_family,
  1096. af_family_key_strings[sk->sk_family],
  1097. af_family_keys + sk->sk_family);
  1098. }
  1099. /*
  1100. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1101. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1102. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1103. */
  1104. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1105. {
  1106. #ifdef CONFIG_SECURITY_NETWORK
  1107. void *sptr = nsk->sk_security;
  1108. #endif
  1109. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1110. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1111. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1112. #ifdef CONFIG_SECURITY_NETWORK
  1113. nsk->sk_security = sptr;
  1114. security_sk_clone(osk, nsk);
  1115. #endif
  1116. }
  1117. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1118. {
  1119. unsigned long nulls1, nulls2;
  1120. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1121. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1122. if (nulls1 > nulls2)
  1123. swap(nulls1, nulls2);
  1124. if (nulls1 != 0)
  1125. memset((char *)sk, 0, nulls1);
  1126. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1127. nulls2 - nulls1 - sizeof(void *));
  1128. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1129. size - nulls2 - sizeof(void *));
  1130. }
  1131. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1132. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1133. int family)
  1134. {
  1135. struct sock *sk;
  1136. struct kmem_cache *slab;
  1137. slab = prot->slab;
  1138. if (slab != NULL) {
  1139. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1140. if (!sk)
  1141. return sk;
  1142. if (priority & __GFP_ZERO) {
  1143. if (prot->clear_sk)
  1144. prot->clear_sk(sk, prot->obj_size);
  1145. else
  1146. sk_prot_clear_nulls(sk, prot->obj_size);
  1147. }
  1148. } else
  1149. sk = kmalloc(prot->obj_size, priority);
  1150. if (sk != NULL) {
  1151. kmemcheck_annotate_bitfield(sk, flags);
  1152. if (security_sk_alloc(sk, family, priority))
  1153. goto out_free;
  1154. if (!try_module_get(prot->owner))
  1155. goto out_free_sec;
  1156. sk_tx_queue_clear(sk);
  1157. }
  1158. return sk;
  1159. out_free_sec:
  1160. security_sk_free(sk);
  1161. out_free:
  1162. if (slab != NULL)
  1163. kmem_cache_free(slab, sk);
  1164. else
  1165. kfree(sk);
  1166. return NULL;
  1167. }
  1168. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1169. {
  1170. struct kmem_cache *slab;
  1171. struct module *owner;
  1172. owner = prot->owner;
  1173. slab = prot->slab;
  1174. security_sk_free(sk);
  1175. if (slab != NULL)
  1176. kmem_cache_free(slab, sk);
  1177. else
  1178. kfree(sk);
  1179. module_put(owner);
  1180. }
  1181. #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
  1182. void sock_update_netprioidx(struct sock *sk)
  1183. {
  1184. if (in_interrupt())
  1185. return;
  1186. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1187. }
  1188. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1189. #endif
  1190. /**
  1191. * sk_alloc - All socket objects are allocated here
  1192. * @net: the applicable net namespace
  1193. * @family: protocol family
  1194. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1195. * @prot: struct proto associated with this new sock instance
  1196. */
  1197. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1198. struct proto *prot)
  1199. {
  1200. struct sock *sk;
  1201. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1202. if (sk) {
  1203. sk->sk_family = family;
  1204. /*
  1205. * See comment in struct sock definition to understand
  1206. * why we need sk_prot_creator -acme
  1207. */
  1208. sk->sk_prot = sk->sk_prot_creator = prot;
  1209. sock_lock_init(sk);
  1210. sock_net_set(sk, get_net(net));
  1211. atomic_set(&sk->sk_wmem_alloc, 1);
  1212. sock_update_classid(sk);
  1213. sock_update_netprioidx(sk);
  1214. }
  1215. return sk;
  1216. }
  1217. EXPORT_SYMBOL(sk_alloc);
  1218. static void __sk_free(struct sock *sk)
  1219. {
  1220. struct sk_filter *filter;
  1221. if (sk->sk_destruct)
  1222. sk->sk_destruct(sk);
  1223. filter = rcu_dereference_check(sk->sk_filter,
  1224. atomic_read(&sk->sk_wmem_alloc) == 0);
  1225. if (filter) {
  1226. sk_filter_uncharge(sk, filter);
  1227. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1228. }
  1229. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1230. if (atomic_read(&sk->sk_omem_alloc))
  1231. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1232. __func__, atomic_read(&sk->sk_omem_alloc));
  1233. if (sk->sk_peer_cred)
  1234. put_cred(sk->sk_peer_cred);
  1235. put_pid(sk->sk_peer_pid);
  1236. put_net(sock_net(sk));
  1237. sk_prot_free(sk->sk_prot_creator, sk);
  1238. }
  1239. void sk_free(struct sock *sk)
  1240. {
  1241. /*
  1242. * We subtract one from sk_wmem_alloc and can know if
  1243. * some packets are still in some tx queue.
  1244. * If not null, sock_wfree() will call __sk_free(sk) later
  1245. */
  1246. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1247. __sk_free(sk);
  1248. }
  1249. EXPORT_SYMBOL(sk_free);
  1250. /*
  1251. * Last sock_put should drop reference to sk->sk_net. It has already
  1252. * been dropped in sk_change_net. Taking reference to stopping namespace
  1253. * is not an option.
  1254. * Take reference to a socket to remove it from hash _alive_ and after that
  1255. * destroy it in the context of init_net.
  1256. */
  1257. void sk_release_kernel(struct sock *sk)
  1258. {
  1259. if (sk == NULL || sk->sk_socket == NULL)
  1260. return;
  1261. sock_hold(sk);
  1262. sock_net_set(sk, get_net(&init_net));
  1263. sock_release(sk->sk_socket);
  1264. sock_put(sk);
  1265. }
  1266. EXPORT_SYMBOL(sk_release_kernel);
  1267. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1268. {
  1269. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1270. sock_update_memcg(newsk);
  1271. }
  1272. /**
  1273. * sk_clone_lock - clone a socket, and lock its clone
  1274. * @sk: the socket to clone
  1275. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1276. *
  1277. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1278. */
  1279. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1280. {
  1281. struct sock *newsk;
  1282. bool is_charged = true;
  1283. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1284. if (newsk != NULL) {
  1285. struct sk_filter *filter;
  1286. sock_copy(newsk, sk);
  1287. /* SANITY */
  1288. get_net(sock_net(newsk));
  1289. sk_node_init(&newsk->sk_node);
  1290. sock_lock_init(newsk);
  1291. bh_lock_sock(newsk);
  1292. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1293. newsk->sk_backlog.len = 0;
  1294. atomic_set(&newsk->sk_rmem_alloc, 0);
  1295. /*
  1296. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1297. */
  1298. atomic_set(&newsk->sk_wmem_alloc, 1);
  1299. atomic_set(&newsk->sk_omem_alloc, 0);
  1300. skb_queue_head_init(&newsk->sk_receive_queue);
  1301. skb_queue_head_init(&newsk->sk_write_queue);
  1302. spin_lock_init(&newsk->sk_dst_lock);
  1303. rwlock_init(&newsk->sk_callback_lock);
  1304. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1305. af_callback_keys + newsk->sk_family,
  1306. af_family_clock_key_strings[newsk->sk_family]);
  1307. newsk->sk_dst_cache = NULL;
  1308. newsk->sk_wmem_queued = 0;
  1309. newsk->sk_forward_alloc = 0;
  1310. newsk->sk_send_head = NULL;
  1311. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1312. sock_reset_flag(newsk, SOCK_DONE);
  1313. skb_queue_head_init(&newsk->sk_error_queue);
  1314. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1315. if (filter != NULL)
  1316. /* though it's an empty new sock, the charging may fail
  1317. * if sysctl_optmem_max was changed between creation of
  1318. * original socket and cloning
  1319. */
  1320. is_charged = sk_filter_charge(newsk, filter);
  1321. if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
  1322. /* It is still raw copy of parent, so invalidate
  1323. * destructor and make plain sk_free() */
  1324. newsk->sk_destruct = NULL;
  1325. bh_unlock_sock(newsk);
  1326. sk_free(newsk);
  1327. newsk = NULL;
  1328. goto out;
  1329. }
  1330. newsk->sk_err = 0;
  1331. newsk->sk_priority = 0;
  1332. newsk->sk_incoming_cpu = raw_smp_processor_id();
  1333. atomic64_set(&newsk->sk_cookie, 0);
  1334. /*
  1335. * Before updating sk_refcnt, we must commit prior changes to memory
  1336. * (Documentation/RCU/rculist_nulls.txt for details)
  1337. */
  1338. smp_wmb();
  1339. atomic_set(&newsk->sk_refcnt, 2);
  1340. /*
  1341. * Increment the counter in the same struct proto as the master
  1342. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1343. * is the same as sk->sk_prot->socks, as this field was copied
  1344. * with memcpy).
  1345. *
  1346. * This _changes_ the previous behaviour, where
  1347. * tcp_create_openreq_child always was incrementing the
  1348. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1349. * to be taken into account in all callers. -acme
  1350. */
  1351. sk_refcnt_debug_inc(newsk);
  1352. sk_set_socket(newsk, NULL);
  1353. newsk->sk_wq = NULL;
  1354. sk_update_clone(sk, newsk);
  1355. if (newsk->sk_prot->sockets_allocated)
  1356. sk_sockets_allocated_inc(newsk);
  1357. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1358. net_enable_timestamp();
  1359. }
  1360. out:
  1361. return newsk;
  1362. }
  1363. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1364. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1365. {
  1366. __sk_dst_set(sk, dst);
  1367. sk->sk_route_caps = dst->dev->features;
  1368. if (sk->sk_route_caps & NETIF_F_GSO)
  1369. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1370. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1371. if (sk_can_gso(sk)) {
  1372. if (dst->header_len) {
  1373. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1374. } else {
  1375. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1376. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1377. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1378. }
  1379. }
  1380. }
  1381. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1382. /*
  1383. * Simple resource managers for sockets.
  1384. */
  1385. /*
  1386. * Write buffer destructor automatically called from kfree_skb.
  1387. */
  1388. void sock_wfree(struct sk_buff *skb)
  1389. {
  1390. struct sock *sk = skb->sk;
  1391. unsigned int len = skb->truesize;
  1392. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1393. /*
  1394. * Keep a reference on sk_wmem_alloc, this will be released
  1395. * after sk_write_space() call
  1396. */
  1397. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1398. sk->sk_write_space(sk);
  1399. len = 1;
  1400. }
  1401. /*
  1402. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1403. * could not do because of in-flight packets
  1404. */
  1405. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1406. __sk_free(sk);
  1407. }
  1408. EXPORT_SYMBOL(sock_wfree);
  1409. void skb_orphan_partial(struct sk_buff *skb)
  1410. {
  1411. /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
  1412. * so we do not completely orphan skb, but transfert all
  1413. * accounted bytes but one, to avoid unexpected reorders.
  1414. */
  1415. if (skb->destructor == sock_wfree
  1416. #ifdef CONFIG_INET
  1417. || skb->destructor == tcp_wfree
  1418. #endif
  1419. ) {
  1420. atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
  1421. skb->truesize = 1;
  1422. } else {
  1423. skb_orphan(skb);
  1424. }
  1425. }
  1426. EXPORT_SYMBOL(skb_orphan_partial);
  1427. /*
  1428. * Read buffer destructor automatically called from kfree_skb.
  1429. */
  1430. void sock_rfree(struct sk_buff *skb)
  1431. {
  1432. struct sock *sk = skb->sk;
  1433. unsigned int len = skb->truesize;
  1434. atomic_sub(len, &sk->sk_rmem_alloc);
  1435. sk_mem_uncharge(sk, len);
  1436. }
  1437. EXPORT_SYMBOL(sock_rfree);
  1438. /*
  1439. * Buffer destructor for skbs that are not used directly in read or write
  1440. * path, e.g. for error handler skbs. Automatically called from kfree_skb.
  1441. */
  1442. void sock_efree(struct sk_buff *skb)
  1443. {
  1444. sock_put(skb->sk);
  1445. }
  1446. EXPORT_SYMBOL(sock_efree);
  1447. kuid_t sock_i_uid(struct sock *sk)
  1448. {
  1449. kuid_t uid;
  1450. read_lock_bh(&sk->sk_callback_lock);
  1451. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1452. read_unlock_bh(&sk->sk_callback_lock);
  1453. return uid;
  1454. }
  1455. EXPORT_SYMBOL(sock_i_uid);
  1456. unsigned long sock_i_ino(struct sock *sk)
  1457. {
  1458. unsigned long ino;
  1459. read_lock_bh(&sk->sk_callback_lock);
  1460. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1461. read_unlock_bh(&sk->sk_callback_lock);
  1462. return ino;
  1463. }
  1464. EXPORT_SYMBOL(sock_i_ino);
  1465. /*
  1466. * Allocate a skb from the socket's send buffer.
  1467. */
  1468. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1469. gfp_t priority)
  1470. {
  1471. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1472. struct sk_buff *skb = alloc_skb(size, priority);
  1473. if (skb) {
  1474. skb_set_owner_w(skb, sk);
  1475. return skb;
  1476. }
  1477. }
  1478. return NULL;
  1479. }
  1480. EXPORT_SYMBOL(sock_wmalloc);
  1481. /*
  1482. * Allocate a memory block from the socket's option memory buffer.
  1483. */
  1484. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1485. {
  1486. if ((unsigned int)size <= sysctl_optmem_max &&
  1487. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1488. void *mem;
  1489. /* First do the add, to avoid the race if kmalloc
  1490. * might sleep.
  1491. */
  1492. atomic_add(size, &sk->sk_omem_alloc);
  1493. mem = kmalloc(size, priority);
  1494. if (mem)
  1495. return mem;
  1496. atomic_sub(size, &sk->sk_omem_alloc);
  1497. }
  1498. return NULL;
  1499. }
  1500. EXPORT_SYMBOL(sock_kmalloc);
  1501. /* Free an option memory block. Note, we actually want the inline
  1502. * here as this allows gcc to detect the nullify and fold away the
  1503. * condition entirely.
  1504. */
  1505. static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
  1506. const bool nullify)
  1507. {
  1508. if (WARN_ON_ONCE(!mem))
  1509. return;
  1510. if (nullify)
  1511. kzfree(mem);
  1512. else
  1513. kfree(mem);
  1514. atomic_sub(size, &sk->sk_omem_alloc);
  1515. }
  1516. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1517. {
  1518. __sock_kfree_s(sk, mem, size, false);
  1519. }
  1520. EXPORT_SYMBOL(sock_kfree_s);
  1521. void sock_kzfree_s(struct sock *sk, void *mem, int size)
  1522. {
  1523. __sock_kfree_s(sk, mem, size, true);
  1524. }
  1525. EXPORT_SYMBOL(sock_kzfree_s);
  1526. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1527. I think, these locks should be removed for datagram sockets.
  1528. */
  1529. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1530. {
  1531. DEFINE_WAIT(wait);
  1532. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1533. for (;;) {
  1534. if (!timeo)
  1535. break;
  1536. if (signal_pending(current))
  1537. break;
  1538. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1539. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1540. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1541. break;
  1542. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1543. break;
  1544. if (sk->sk_err)
  1545. break;
  1546. timeo = schedule_timeout(timeo);
  1547. }
  1548. finish_wait(sk_sleep(sk), &wait);
  1549. return timeo;
  1550. }
  1551. /*
  1552. * Generic send/receive buffer handlers
  1553. */
  1554. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1555. unsigned long data_len, int noblock,
  1556. int *errcode, int max_page_order)
  1557. {
  1558. struct sk_buff *skb;
  1559. long timeo;
  1560. int err;
  1561. timeo = sock_sndtimeo(sk, noblock);
  1562. for (;;) {
  1563. err = sock_error(sk);
  1564. if (err != 0)
  1565. goto failure;
  1566. err = -EPIPE;
  1567. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1568. goto failure;
  1569. if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
  1570. break;
  1571. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1572. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1573. err = -EAGAIN;
  1574. if (!timeo)
  1575. goto failure;
  1576. if (signal_pending(current))
  1577. goto interrupted;
  1578. timeo = sock_wait_for_wmem(sk, timeo);
  1579. }
  1580. skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
  1581. errcode, sk->sk_allocation);
  1582. if (skb)
  1583. skb_set_owner_w(skb, sk);
  1584. return skb;
  1585. interrupted:
  1586. err = sock_intr_errno(timeo);
  1587. failure:
  1588. *errcode = err;
  1589. return NULL;
  1590. }
  1591. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1592. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1593. int noblock, int *errcode)
  1594. {
  1595. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1596. }
  1597. EXPORT_SYMBOL(sock_alloc_send_skb);
  1598. /* On 32bit arches, an skb frag is limited to 2^15 */
  1599. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1600. /**
  1601. * skb_page_frag_refill - check that a page_frag contains enough room
  1602. * @sz: minimum size of the fragment we want to get
  1603. * @pfrag: pointer to page_frag
  1604. * @gfp: priority for memory allocation
  1605. *
  1606. * Note: While this allocator tries to use high order pages, there is
  1607. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1608. * less or equal than PAGE_SIZE.
  1609. */
  1610. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
  1611. {
  1612. if (pfrag->page) {
  1613. if (atomic_read(&pfrag->page->_count) == 1) {
  1614. pfrag->offset = 0;
  1615. return true;
  1616. }
  1617. if (pfrag->offset + sz <= pfrag->size)
  1618. return true;
  1619. put_page(pfrag->page);
  1620. }
  1621. pfrag->offset = 0;
  1622. if (SKB_FRAG_PAGE_ORDER) {
  1623. pfrag->page = alloc_pages(gfp | __GFP_COMP |
  1624. __GFP_NOWARN | __GFP_NORETRY,
  1625. SKB_FRAG_PAGE_ORDER);
  1626. if (likely(pfrag->page)) {
  1627. pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
  1628. return true;
  1629. }
  1630. }
  1631. pfrag->page = alloc_page(gfp);
  1632. if (likely(pfrag->page)) {
  1633. pfrag->size = PAGE_SIZE;
  1634. return true;
  1635. }
  1636. return false;
  1637. }
  1638. EXPORT_SYMBOL(skb_page_frag_refill);
  1639. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1640. {
  1641. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1642. return true;
  1643. sk_enter_memory_pressure(sk);
  1644. sk_stream_moderate_sndbuf(sk);
  1645. return false;
  1646. }
  1647. EXPORT_SYMBOL(sk_page_frag_refill);
  1648. static void __lock_sock(struct sock *sk)
  1649. __releases(&sk->sk_lock.slock)
  1650. __acquires(&sk->sk_lock.slock)
  1651. {
  1652. DEFINE_WAIT(wait);
  1653. for (;;) {
  1654. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1655. TASK_UNINTERRUPTIBLE);
  1656. spin_unlock_bh(&sk->sk_lock.slock);
  1657. schedule();
  1658. spin_lock_bh(&sk->sk_lock.slock);
  1659. if (!sock_owned_by_user(sk))
  1660. break;
  1661. }
  1662. finish_wait(&sk->sk_lock.wq, &wait);
  1663. }
  1664. static void __release_sock(struct sock *sk)
  1665. __releases(&sk->sk_lock.slock)
  1666. __acquires(&sk->sk_lock.slock)
  1667. {
  1668. struct sk_buff *skb = sk->sk_backlog.head;
  1669. do {
  1670. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1671. bh_unlock_sock(sk);
  1672. do {
  1673. struct sk_buff *next = skb->next;
  1674. prefetch(next);
  1675. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1676. skb->next = NULL;
  1677. sk_backlog_rcv(sk, skb);
  1678. /*
  1679. * We are in process context here with softirqs
  1680. * disabled, use cond_resched_softirq() to preempt.
  1681. * This is safe to do because we've taken the backlog
  1682. * queue private:
  1683. */
  1684. cond_resched_softirq();
  1685. skb = next;
  1686. } while (skb != NULL);
  1687. bh_lock_sock(sk);
  1688. } while ((skb = sk->sk_backlog.head) != NULL);
  1689. /*
  1690. * Doing the zeroing here guarantee we can not loop forever
  1691. * while a wild producer attempts to flood us.
  1692. */
  1693. sk->sk_backlog.len = 0;
  1694. }
  1695. /**
  1696. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1697. * @sk: sock to wait on
  1698. * @timeo: for how long
  1699. *
  1700. * Now socket state including sk->sk_err is changed only under lock,
  1701. * hence we may omit checks after joining wait queue.
  1702. * We check receive queue before schedule() only as optimization;
  1703. * it is very likely that release_sock() added new data.
  1704. */
  1705. int sk_wait_data(struct sock *sk, long *timeo)
  1706. {
  1707. int rc;
  1708. DEFINE_WAIT(wait);
  1709. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1710. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1711. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1712. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1713. finish_wait(sk_sleep(sk), &wait);
  1714. return rc;
  1715. }
  1716. EXPORT_SYMBOL(sk_wait_data);
  1717. /**
  1718. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1719. * @sk: socket
  1720. * @size: memory size to allocate
  1721. * @kind: allocation type
  1722. *
  1723. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1724. * rmem allocation. This function assumes that protocols which have
  1725. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1726. */
  1727. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1728. {
  1729. struct proto *prot = sk->sk_prot;
  1730. int amt = sk_mem_pages(size);
  1731. long allocated;
  1732. int parent_status = UNDER_LIMIT;
  1733. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1734. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1735. /* Under limit. */
  1736. if (parent_status == UNDER_LIMIT &&
  1737. allocated <= sk_prot_mem_limits(sk, 0)) {
  1738. sk_leave_memory_pressure(sk);
  1739. return 1;
  1740. }
  1741. /* Under pressure. (we or our parents) */
  1742. if ((parent_status > SOFT_LIMIT) ||
  1743. allocated > sk_prot_mem_limits(sk, 1))
  1744. sk_enter_memory_pressure(sk);
  1745. /* Over hard limit (we or our parents) */
  1746. if ((parent_status == OVER_LIMIT) ||
  1747. (allocated > sk_prot_mem_limits(sk, 2)))
  1748. goto suppress_allocation;
  1749. /* guarantee minimum buffer size under pressure */
  1750. if (kind == SK_MEM_RECV) {
  1751. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1752. return 1;
  1753. } else { /* SK_MEM_SEND */
  1754. if (sk->sk_type == SOCK_STREAM) {
  1755. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1756. return 1;
  1757. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1758. prot->sysctl_wmem[0])
  1759. return 1;
  1760. }
  1761. if (sk_has_memory_pressure(sk)) {
  1762. int alloc;
  1763. if (!sk_under_memory_pressure(sk))
  1764. return 1;
  1765. alloc = sk_sockets_allocated_read_positive(sk);
  1766. if (sk_prot_mem_limits(sk, 2) > alloc *
  1767. sk_mem_pages(sk->sk_wmem_queued +
  1768. atomic_read(&sk->sk_rmem_alloc) +
  1769. sk->sk_forward_alloc))
  1770. return 1;
  1771. }
  1772. suppress_allocation:
  1773. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1774. sk_stream_moderate_sndbuf(sk);
  1775. /* Fail only if socket is _under_ its sndbuf.
  1776. * In this case we cannot block, so that we have to fail.
  1777. */
  1778. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1779. return 1;
  1780. }
  1781. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1782. /* Alas. Undo changes. */
  1783. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1784. sk_memory_allocated_sub(sk, amt);
  1785. return 0;
  1786. }
  1787. EXPORT_SYMBOL(__sk_mem_schedule);
  1788. /**
  1789. * __sk_reclaim - reclaim memory_allocated
  1790. * @sk: socket
  1791. */
  1792. void __sk_mem_reclaim(struct sock *sk)
  1793. {
  1794. sk_memory_allocated_sub(sk,
  1795. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1796. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1797. if (sk_under_memory_pressure(sk) &&
  1798. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1799. sk_leave_memory_pressure(sk);
  1800. }
  1801. EXPORT_SYMBOL(__sk_mem_reclaim);
  1802. /*
  1803. * Set of default routines for initialising struct proto_ops when
  1804. * the protocol does not support a particular function. In certain
  1805. * cases where it makes no sense for a protocol to have a "do nothing"
  1806. * function, some default processing is provided.
  1807. */
  1808. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1809. {
  1810. return -EOPNOTSUPP;
  1811. }
  1812. EXPORT_SYMBOL(sock_no_bind);
  1813. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1814. int len, int flags)
  1815. {
  1816. return -EOPNOTSUPP;
  1817. }
  1818. EXPORT_SYMBOL(sock_no_connect);
  1819. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1820. {
  1821. return -EOPNOTSUPP;
  1822. }
  1823. EXPORT_SYMBOL(sock_no_socketpair);
  1824. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1825. {
  1826. return -EOPNOTSUPP;
  1827. }
  1828. EXPORT_SYMBOL(sock_no_accept);
  1829. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1830. int *len, int peer)
  1831. {
  1832. return -EOPNOTSUPP;
  1833. }
  1834. EXPORT_SYMBOL(sock_no_getname);
  1835. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1836. {
  1837. return 0;
  1838. }
  1839. EXPORT_SYMBOL(sock_no_poll);
  1840. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1841. {
  1842. return -EOPNOTSUPP;
  1843. }
  1844. EXPORT_SYMBOL(sock_no_ioctl);
  1845. int sock_no_listen(struct socket *sock, int backlog)
  1846. {
  1847. return -EOPNOTSUPP;
  1848. }
  1849. EXPORT_SYMBOL(sock_no_listen);
  1850. int sock_no_shutdown(struct socket *sock, int how)
  1851. {
  1852. return -EOPNOTSUPP;
  1853. }
  1854. EXPORT_SYMBOL(sock_no_shutdown);
  1855. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1856. char __user *optval, unsigned int optlen)
  1857. {
  1858. return -EOPNOTSUPP;
  1859. }
  1860. EXPORT_SYMBOL(sock_no_setsockopt);
  1861. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1862. char __user *optval, int __user *optlen)
  1863. {
  1864. return -EOPNOTSUPP;
  1865. }
  1866. EXPORT_SYMBOL(sock_no_getsockopt);
  1867. int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
  1868. {
  1869. return -EOPNOTSUPP;
  1870. }
  1871. EXPORT_SYMBOL(sock_no_sendmsg);
  1872. int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
  1873. int flags)
  1874. {
  1875. return -EOPNOTSUPP;
  1876. }
  1877. EXPORT_SYMBOL(sock_no_recvmsg);
  1878. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1879. {
  1880. /* Mirror missing mmap method error code */
  1881. return -ENODEV;
  1882. }
  1883. EXPORT_SYMBOL(sock_no_mmap);
  1884. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1885. {
  1886. ssize_t res;
  1887. struct msghdr msg = {.msg_flags = flags};
  1888. struct kvec iov;
  1889. char *kaddr = kmap(page);
  1890. iov.iov_base = kaddr + offset;
  1891. iov.iov_len = size;
  1892. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1893. kunmap(page);
  1894. return res;
  1895. }
  1896. EXPORT_SYMBOL(sock_no_sendpage);
  1897. /*
  1898. * Default Socket Callbacks
  1899. */
  1900. static void sock_def_wakeup(struct sock *sk)
  1901. {
  1902. struct socket_wq *wq;
  1903. rcu_read_lock();
  1904. wq = rcu_dereference(sk->sk_wq);
  1905. if (wq_has_sleeper(wq))
  1906. wake_up_interruptible_all(&wq->wait);
  1907. rcu_read_unlock();
  1908. }
  1909. static void sock_def_error_report(struct sock *sk)
  1910. {
  1911. struct socket_wq *wq;
  1912. rcu_read_lock();
  1913. wq = rcu_dereference(sk->sk_wq);
  1914. if (wq_has_sleeper(wq))
  1915. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1916. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1917. rcu_read_unlock();
  1918. }
  1919. static void sock_def_readable(struct sock *sk)
  1920. {
  1921. struct socket_wq *wq;
  1922. rcu_read_lock();
  1923. wq = rcu_dereference(sk->sk_wq);
  1924. if (wq_has_sleeper(wq))
  1925. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1926. POLLRDNORM | POLLRDBAND);
  1927. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1928. rcu_read_unlock();
  1929. }
  1930. static void sock_def_write_space(struct sock *sk)
  1931. {
  1932. struct socket_wq *wq;
  1933. rcu_read_lock();
  1934. /* Do not wake up a writer until he can make "significant"
  1935. * progress. --DaveM
  1936. */
  1937. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1938. wq = rcu_dereference(sk->sk_wq);
  1939. if (wq_has_sleeper(wq))
  1940. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1941. POLLWRNORM | POLLWRBAND);
  1942. /* Should agree with poll, otherwise some programs break */
  1943. if (sock_writeable(sk))
  1944. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1945. }
  1946. rcu_read_unlock();
  1947. }
  1948. static void sock_def_destruct(struct sock *sk)
  1949. {
  1950. kfree(sk->sk_protinfo);
  1951. }
  1952. void sk_send_sigurg(struct sock *sk)
  1953. {
  1954. if (sk->sk_socket && sk->sk_socket->file)
  1955. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1956. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1957. }
  1958. EXPORT_SYMBOL(sk_send_sigurg);
  1959. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1960. unsigned long expires)
  1961. {
  1962. if (!mod_timer(timer, expires))
  1963. sock_hold(sk);
  1964. }
  1965. EXPORT_SYMBOL(sk_reset_timer);
  1966. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1967. {
  1968. if (del_timer(timer))
  1969. __sock_put(sk);
  1970. }
  1971. EXPORT_SYMBOL(sk_stop_timer);
  1972. void sock_init_data(struct socket *sock, struct sock *sk)
  1973. {
  1974. skb_queue_head_init(&sk->sk_receive_queue);
  1975. skb_queue_head_init(&sk->sk_write_queue);
  1976. skb_queue_head_init(&sk->sk_error_queue);
  1977. sk->sk_send_head = NULL;
  1978. init_timer(&sk->sk_timer);
  1979. sk->sk_allocation = GFP_KERNEL;
  1980. sk->sk_rcvbuf = sysctl_rmem_default;
  1981. sk->sk_sndbuf = sysctl_wmem_default;
  1982. sk->sk_state = TCP_CLOSE;
  1983. sk_set_socket(sk, sock);
  1984. sock_set_flag(sk, SOCK_ZAPPED);
  1985. if (sock) {
  1986. sk->sk_type = sock->type;
  1987. sk->sk_wq = sock->wq;
  1988. sock->sk = sk;
  1989. } else
  1990. sk->sk_wq = NULL;
  1991. spin_lock_init(&sk->sk_dst_lock);
  1992. rwlock_init(&sk->sk_callback_lock);
  1993. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1994. af_callback_keys + sk->sk_family,
  1995. af_family_clock_key_strings[sk->sk_family]);
  1996. sk->sk_state_change = sock_def_wakeup;
  1997. sk->sk_data_ready = sock_def_readable;
  1998. sk->sk_write_space = sock_def_write_space;
  1999. sk->sk_error_report = sock_def_error_report;
  2000. sk->sk_destruct = sock_def_destruct;
  2001. sk->sk_frag.page = NULL;
  2002. sk->sk_frag.offset = 0;
  2003. sk->sk_peek_off = -1;
  2004. sk->sk_peer_pid = NULL;
  2005. sk->sk_peer_cred = NULL;
  2006. sk->sk_write_pending = 0;
  2007. sk->sk_rcvlowat = 1;
  2008. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  2009. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  2010. sk->sk_stamp = ktime_set(-1L, 0);
  2011. #ifdef CONFIG_NET_RX_BUSY_POLL
  2012. sk->sk_napi_id = 0;
  2013. sk->sk_ll_usec = sysctl_net_busy_read;
  2014. #endif
  2015. sk->sk_max_pacing_rate = ~0U;
  2016. sk->sk_pacing_rate = ~0U;
  2017. /*
  2018. * Before updating sk_refcnt, we must commit prior changes to memory
  2019. * (Documentation/RCU/rculist_nulls.txt for details)
  2020. */
  2021. smp_wmb();
  2022. atomic_set(&sk->sk_refcnt, 1);
  2023. atomic_set(&sk->sk_drops, 0);
  2024. }
  2025. EXPORT_SYMBOL(sock_init_data);
  2026. void lock_sock_nested(struct sock *sk, int subclass)
  2027. {
  2028. might_sleep();
  2029. spin_lock_bh(&sk->sk_lock.slock);
  2030. if (sk->sk_lock.owned)
  2031. __lock_sock(sk);
  2032. sk->sk_lock.owned = 1;
  2033. spin_unlock(&sk->sk_lock.slock);
  2034. /*
  2035. * The sk_lock has mutex_lock() semantics here:
  2036. */
  2037. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2038. local_bh_enable();
  2039. }
  2040. EXPORT_SYMBOL(lock_sock_nested);
  2041. void release_sock(struct sock *sk)
  2042. {
  2043. /*
  2044. * The sk_lock has mutex_unlock() semantics:
  2045. */
  2046. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  2047. spin_lock_bh(&sk->sk_lock.slock);
  2048. if (sk->sk_backlog.tail)
  2049. __release_sock(sk);
  2050. /* Warning : release_cb() might need to release sk ownership,
  2051. * ie call sock_release_ownership(sk) before us.
  2052. */
  2053. if (sk->sk_prot->release_cb)
  2054. sk->sk_prot->release_cb(sk);
  2055. sock_release_ownership(sk);
  2056. if (waitqueue_active(&sk->sk_lock.wq))
  2057. wake_up(&sk->sk_lock.wq);
  2058. spin_unlock_bh(&sk->sk_lock.slock);
  2059. }
  2060. EXPORT_SYMBOL(release_sock);
  2061. /**
  2062. * lock_sock_fast - fast version of lock_sock
  2063. * @sk: socket
  2064. *
  2065. * This version should be used for very small section, where process wont block
  2066. * return false if fast path is taken
  2067. * sk_lock.slock locked, owned = 0, BH disabled
  2068. * return true if slow path is taken
  2069. * sk_lock.slock unlocked, owned = 1, BH enabled
  2070. */
  2071. bool lock_sock_fast(struct sock *sk)
  2072. {
  2073. might_sleep();
  2074. spin_lock_bh(&sk->sk_lock.slock);
  2075. if (!sk->sk_lock.owned)
  2076. /*
  2077. * Note : We must disable BH
  2078. */
  2079. return false;
  2080. __lock_sock(sk);
  2081. sk->sk_lock.owned = 1;
  2082. spin_unlock(&sk->sk_lock.slock);
  2083. /*
  2084. * The sk_lock has mutex_lock() semantics here:
  2085. */
  2086. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2087. local_bh_enable();
  2088. return true;
  2089. }
  2090. EXPORT_SYMBOL(lock_sock_fast);
  2091. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2092. {
  2093. struct timeval tv;
  2094. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2095. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2096. tv = ktime_to_timeval(sk->sk_stamp);
  2097. if (tv.tv_sec == -1)
  2098. return -ENOENT;
  2099. if (tv.tv_sec == 0) {
  2100. sk->sk_stamp = ktime_get_real();
  2101. tv = ktime_to_timeval(sk->sk_stamp);
  2102. }
  2103. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2104. }
  2105. EXPORT_SYMBOL(sock_get_timestamp);
  2106. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2107. {
  2108. struct timespec ts;
  2109. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2110. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2111. ts = ktime_to_timespec(sk->sk_stamp);
  2112. if (ts.tv_sec == -1)
  2113. return -ENOENT;
  2114. if (ts.tv_sec == 0) {
  2115. sk->sk_stamp = ktime_get_real();
  2116. ts = ktime_to_timespec(sk->sk_stamp);
  2117. }
  2118. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2119. }
  2120. EXPORT_SYMBOL(sock_get_timestampns);
  2121. void sock_enable_timestamp(struct sock *sk, int flag)
  2122. {
  2123. if (!sock_flag(sk, flag)) {
  2124. unsigned long previous_flags = sk->sk_flags;
  2125. sock_set_flag(sk, flag);
  2126. /*
  2127. * we just set one of the two flags which require net
  2128. * time stamping, but time stamping might have been on
  2129. * already because of the other one
  2130. */
  2131. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2132. net_enable_timestamp();
  2133. }
  2134. }
  2135. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2136. int level, int type)
  2137. {
  2138. struct sock_exterr_skb *serr;
  2139. struct sk_buff *skb;
  2140. int copied, err;
  2141. err = -EAGAIN;
  2142. skb = sock_dequeue_err_skb(sk);
  2143. if (skb == NULL)
  2144. goto out;
  2145. copied = skb->len;
  2146. if (copied > len) {
  2147. msg->msg_flags |= MSG_TRUNC;
  2148. copied = len;
  2149. }
  2150. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  2151. if (err)
  2152. goto out_free_skb;
  2153. sock_recv_timestamp(msg, sk, skb);
  2154. serr = SKB_EXT_ERR(skb);
  2155. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2156. msg->msg_flags |= MSG_ERRQUEUE;
  2157. err = copied;
  2158. out_free_skb:
  2159. kfree_skb(skb);
  2160. out:
  2161. return err;
  2162. }
  2163. EXPORT_SYMBOL(sock_recv_errqueue);
  2164. /*
  2165. * Get a socket option on an socket.
  2166. *
  2167. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2168. * asynchronous errors should be reported by getsockopt. We assume
  2169. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2170. */
  2171. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2172. char __user *optval, int __user *optlen)
  2173. {
  2174. struct sock *sk = sock->sk;
  2175. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2176. }
  2177. EXPORT_SYMBOL(sock_common_getsockopt);
  2178. #ifdef CONFIG_COMPAT
  2179. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2180. char __user *optval, int __user *optlen)
  2181. {
  2182. struct sock *sk = sock->sk;
  2183. if (sk->sk_prot->compat_getsockopt != NULL)
  2184. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2185. optval, optlen);
  2186. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2187. }
  2188. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2189. #endif
  2190. int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
  2191. int flags)
  2192. {
  2193. struct sock *sk = sock->sk;
  2194. int addr_len = 0;
  2195. int err;
  2196. err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
  2197. flags & ~MSG_DONTWAIT, &addr_len);
  2198. if (err >= 0)
  2199. msg->msg_namelen = addr_len;
  2200. return err;
  2201. }
  2202. EXPORT_SYMBOL(sock_common_recvmsg);
  2203. /*
  2204. * Set socket options on an inet socket.
  2205. */
  2206. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2207. char __user *optval, unsigned int optlen)
  2208. {
  2209. struct sock *sk = sock->sk;
  2210. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2211. }
  2212. EXPORT_SYMBOL(sock_common_setsockopt);
  2213. #ifdef CONFIG_COMPAT
  2214. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2215. char __user *optval, unsigned int optlen)
  2216. {
  2217. struct sock *sk = sock->sk;
  2218. if (sk->sk_prot->compat_setsockopt != NULL)
  2219. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2220. optval, optlen);
  2221. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2222. }
  2223. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2224. #endif
  2225. void sk_common_release(struct sock *sk)
  2226. {
  2227. if (sk->sk_prot->destroy)
  2228. sk->sk_prot->destroy(sk);
  2229. /*
  2230. * Observation: when sock_common_release is called, processes have
  2231. * no access to socket. But net still has.
  2232. * Step one, detach it from networking:
  2233. *
  2234. * A. Remove from hash tables.
  2235. */
  2236. sk->sk_prot->unhash(sk);
  2237. /*
  2238. * In this point socket cannot receive new packets, but it is possible
  2239. * that some packets are in flight because some CPU runs receiver and
  2240. * did hash table lookup before we unhashed socket. They will achieve
  2241. * receive queue and will be purged by socket destructor.
  2242. *
  2243. * Also we still have packets pending on receive queue and probably,
  2244. * our own packets waiting in device queues. sock_destroy will drain
  2245. * receive queue, but transmitted packets will delay socket destruction
  2246. * until the last reference will be released.
  2247. */
  2248. sock_orphan(sk);
  2249. xfrm_sk_free_policy(sk);
  2250. sk_refcnt_debug_release(sk);
  2251. if (sk->sk_frag.page) {
  2252. put_page(sk->sk_frag.page);
  2253. sk->sk_frag.page = NULL;
  2254. }
  2255. sock_put(sk);
  2256. }
  2257. EXPORT_SYMBOL(sk_common_release);
  2258. #ifdef CONFIG_PROC_FS
  2259. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2260. struct prot_inuse {
  2261. int val[PROTO_INUSE_NR];
  2262. };
  2263. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2264. #ifdef CONFIG_NET_NS
  2265. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2266. {
  2267. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2268. }
  2269. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2270. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2271. {
  2272. int cpu, idx = prot->inuse_idx;
  2273. int res = 0;
  2274. for_each_possible_cpu(cpu)
  2275. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2276. return res >= 0 ? res : 0;
  2277. }
  2278. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2279. static int __net_init sock_inuse_init_net(struct net *net)
  2280. {
  2281. net->core.inuse = alloc_percpu(struct prot_inuse);
  2282. return net->core.inuse ? 0 : -ENOMEM;
  2283. }
  2284. static void __net_exit sock_inuse_exit_net(struct net *net)
  2285. {
  2286. free_percpu(net->core.inuse);
  2287. }
  2288. static struct pernet_operations net_inuse_ops = {
  2289. .init = sock_inuse_init_net,
  2290. .exit = sock_inuse_exit_net,
  2291. };
  2292. static __init int net_inuse_init(void)
  2293. {
  2294. if (register_pernet_subsys(&net_inuse_ops))
  2295. panic("Cannot initialize net inuse counters");
  2296. return 0;
  2297. }
  2298. core_initcall(net_inuse_init);
  2299. #else
  2300. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2301. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2302. {
  2303. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2304. }
  2305. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2306. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2307. {
  2308. int cpu, idx = prot->inuse_idx;
  2309. int res = 0;
  2310. for_each_possible_cpu(cpu)
  2311. res += per_cpu(prot_inuse, cpu).val[idx];
  2312. return res >= 0 ? res : 0;
  2313. }
  2314. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2315. #endif
  2316. static void assign_proto_idx(struct proto *prot)
  2317. {
  2318. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2319. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2320. pr_err("PROTO_INUSE_NR exhausted\n");
  2321. return;
  2322. }
  2323. set_bit(prot->inuse_idx, proto_inuse_idx);
  2324. }
  2325. static void release_proto_idx(struct proto *prot)
  2326. {
  2327. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2328. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2329. }
  2330. #else
  2331. static inline void assign_proto_idx(struct proto *prot)
  2332. {
  2333. }
  2334. static inline void release_proto_idx(struct proto *prot)
  2335. {
  2336. }
  2337. #endif
  2338. static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
  2339. {
  2340. if (!rsk_prot)
  2341. return;
  2342. kfree(rsk_prot->slab_name);
  2343. rsk_prot->slab_name = NULL;
  2344. if (rsk_prot->slab) {
  2345. kmem_cache_destroy(rsk_prot->slab);
  2346. rsk_prot->slab = NULL;
  2347. }
  2348. }
  2349. static int req_prot_init(const struct proto *prot)
  2350. {
  2351. struct request_sock_ops *rsk_prot = prot->rsk_prot;
  2352. if (!rsk_prot)
  2353. return 0;
  2354. rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
  2355. prot->name);
  2356. if (!rsk_prot->slab_name)
  2357. return -ENOMEM;
  2358. rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
  2359. rsk_prot->obj_size, 0,
  2360. 0, NULL);
  2361. if (!rsk_prot->slab) {
  2362. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2363. prot->name);
  2364. return -ENOMEM;
  2365. }
  2366. return 0;
  2367. }
  2368. int proto_register(struct proto *prot, int alloc_slab)
  2369. {
  2370. if (alloc_slab) {
  2371. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2372. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2373. NULL);
  2374. if (prot->slab == NULL) {
  2375. pr_crit("%s: Can't create sock SLAB cache!\n",
  2376. prot->name);
  2377. goto out;
  2378. }
  2379. if (req_prot_init(prot))
  2380. goto out_free_request_sock_slab;
  2381. if (prot->twsk_prot != NULL) {
  2382. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2383. if (prot->twsk_prot->twsk_slab_name == NULL)
  2384. goto out_free_request_sock_slab;
  2385. prot->twsk_prot->twsk_slab =
  2386. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2387. prot->twsk_prot->twsk_obj_size,
  2388. 0,
  2389. prot->slab_flags,
  2390. NULL);
  2391. if (prot->twsk_prot->twsk_slab == NULL)
  2392. goto out_free_timewait_sock_slab_name;
  2393. }
  2394. }
  2395. mutex_lock(&proto_list_mutex);
  2396. list_add(&prot->node, &proto_list);
  2397. assign_proto_idx(prot);
  2398. mutex_unlock(&proto_list_mutex);
  2399. return 0;
  2400. out_free_timewait_sock_slab_name:
  2401. kfree(prot->twsk_prot->twsk_slab_name);
  2402. out_free_request_sock_slab:
  2403. req_prot_cleanup(prot->rsk_prot);
  2404. kmem_cache_destroy(prot->slab);
  2405. prot->slab = NULL;
  2406. out:
  2407. return -ENOBUFS;
  2408. }
  2409. EXPORT_SYMBOL(proto_register);
  2410. void proto_unregister(struct proto *prot)
  2411. {
  2412. mutex_lock(&proto_list_mutex);
  2413. release_proto_idx(prot);
  2414. list_del(&prot->node);
  2415. mutex_unlock(&proto_list_mutex);
  2416. if (prot->slab != NULL) {
  2417. kmem_cache_destroy(prot->slab);
  2418. prot->slab = NULL;
  2419. }
  2420. req_prot_cleanup(prot->rsk_prot);
  2421. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2422. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2423. kfree(prot->twsk_prot->twsk_slab_name);
  2424. prot->twsk_prot->twsk_slab = NULL;
  2425. }
  2426. }
  2427. EXPORT_SYMBOL(proto_unregister);
  2428. #ifdef CONFIG_PROC_FS
  2429. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2430. __acquires(proto_list_mutex)
  2431. {
  2432. mutex_lock(&proto_list_mutex);
  2433. return seq_list_start_head(&proto_list, *pos);
  2434. }
  2435. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2436. {
  2437. return seq_list_next(v, &proto_list, pos);
  2438. }
  2439. static void proto_seq_stop(struct seq_file *seq, void *v)
  2440. __releases(proto_list_mutex)
  2441. {
  2442. mutex_unlock(&proto_list_mutex);
  2443. }
  2444. static char proto_method_implemented(const void *method)
  2445. {
  2446. return method == NULL ? 'n' : 'y';
  2447. }
  2448. static long sock_prot_memory_allocated(struct proto *proto)
  2449. {
  2450. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2451. }
  2452. static char *sock_prot_memory_pressure(struct proto *proto)
  2453. {
  2454. return proto->memory_pressure != NULL ?
  2455. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2456. }
  2457. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2458. {
  2459. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2460. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2461. proto->name,
  2462. proto->obj_size,
  2463. sock_prot_inuse_get(seq_file_net(seq), proto),
  2464. sock_prot_memory_allocated(proto),
  2465. sock_prot_memory_pressure(proto),
  2466. proto->max_header,
  2467. proto->slab == NULL ? "no" : "yes",
  2468. module_name(proto->owner),
  2469. proto_method_implemented(proto->close),
  2470. proto_method_implemented(proto->connect),
  2471. proto_method_implemented(proto->disconnect),
  2472. proto_method_implemented(proto->accept),
  2473. proto_method_implemented(proto->ioctl),
  2474. proto_method_implemented(proto->init),
  2475. proto_method_implemented(proto->destroy),
  2476. proto_method_implemented(proto->shutdown),
  2477. proto_method_implemented(proto->setsockopt),
  2478. proto_method_implemented(proto->getsockopt),
  2479. proto_method_implemented(proto->sendmsg),
  2480. proto_method_implemented(proto->recvmsg),
  2481. proto_method_implemented(proto->sendpage),
  2482. proto_method_implemented(proto->bind),
  2483. proto_method_implemented(proto->backlog_rcv),
  2484. proto_method_implemented(proto->hash),
  2485. proto_method_implemented(proto->unhash),
  2486. proto_method_implemented(proto->get_port),
  2487. proto_method_implemented(proto->enter_memory_pressure));
  2488. }
  2489. static int proto_seq_show(struct seq_file *seq, void *v)
  2490. {
  2491. if (v == &proto_list)
  2492. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2493. "protocol",
  2494. "size",
  2495. "sockets",
  2496. "memory",
  2497. "press",
  2498. "maxhdr",
  2499. "slab",
  2500. "module",
  2501. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2502. else
  2503. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2504. return 0;
  2505. }
  2506. static const struct seq_operations proto_seq_ops = {
  2507. .start = proto_seq_start,
  2508. .next = proto_seq_next,
  2509. .stop = proto_seq_stop,
  2510. .show = proto_seq_show,
  2511. };
  2512. static int proto_seq_open(struct inode *inode, struct file *file)
  2513. {
  2514. return seq_open_net(inode, file, &proto_seq_ops,
  2515. sizeof(struct seq_net_private));
  2516. }
  2517. static const struct file_operations proto_seq_fops = {
  2518. .owner = THIS_MODULE,
  2519. .open = proto_seq_open,
  2520. .read = seq_read,
  2521. .llseek = seq_lseek,
  2522. .release = seq_release_net,
  2523. };
  2524. static __net_init int proto_init_net(struct net *net)
  2525. {
  2526. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2527. return -ENOMEM;
  2528. return 0;
  2529. }
  2530. static __net_exit void proto_exit_net(struct net *net)
  2531. {
  2532. remove_proc_entry("protocols", net->proc_net);
  2533. }
  2534. static __net_initdata struct pernet_operations proto_net_ops = {
  2535. .init = proto_init_net,
  2536. .exit = proto_exit_net,
  2537. };
  2538. static int __init proto_init(void)
  2539. {
  2540. return register_pernet_subsys(&proto_net_ops);
  2541. }
  2542. subsys_initcall(proto_init);
  2543. #endif /* PROC_FS */