core.c 200 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. lockdep_assert_held(&rq->lock);
  111. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  112. return;
  113. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  114. if (delta < 0)
  115. return;
  116. rq->clock += delta;
  117. update_rq_clock_task(rq, delta);
  118. }
  119. /*
  120. * Debugging: various feature bits
  121. */
  122. #define SCHED_FEAT(name, enabled) \
  123. (1UL << __SCHED_FEAT_##name) * enabled |
  124. const_debug unsigned int sysctl_sched_features =
  125. #include "features.h"
  126. 0;
  127. #undef SCHED_FEAT
  128. #ifdef CONFIG_SCHED_DEBUG
  129. #define SCHED_FEAT(name, enabled) \
  130. #name ,
  131. static const char * const sched_feat_names[] = {
  132. #include "features.h"
  133. };
  134. #undef SCHED_FEAT
  135. static int sched_feat_show(struct seq_file *m, void *v)
  136. {
  137. int i;
  138. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  139. if (!(sysctl_sched_features & (1UL << i)))
  140. seq_puts(m, "NO_");
  141. seq_printf(m, "%s ", sched_feat_names[i]);
  142. }
  143. seq_puts(m, "\n");
  144. return 0;
  145. }
  146. #ifdef HAVE_JUMP_LABEL
  147. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  148. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  149. #define SCHED_FEAT(name, enabled) \
  150. jump_label_key__##enabled ,
  151. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  152. #include "features.h"
  153. };
  154. #undef SCHED_FEAT
  155. static void sched_feat_disable(int i)
  156. {
  157. if (static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_dec(&sched_feat_keys[i]);
  159. }
  160. static void sched_feat_enable(int i)
  161. {
  162. if (!static_key_enabled(&sched_feat_keys[i]))
  163. static_key_slow_inc(&sched_feat_keys[i]);
  164. }
  165. #else
  166. static void sched_feat_disable(int i) { };
  167. static void sched_feat_enable(int i) { };
  168. #endif /* HAVE_JUMP_LABEL */
  169. static int sched_feat_set(char *cmp)
  170. {
  171. int i;
  172. int neg = 0;
  173. if (strncmp(cmp, "NO_", 3) == 0) {
  174. neg = 1;
  175. cmp += 3;
  176. }
  177. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  178. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  179. if (neg) {
  180. sysctl_sched_features &= ~(1UL << i);
  181. sched_feat_disable(i);
  182. } else {
  183. sysctl_sched_features |= (1UL << i);
  184. sched_feat_enable(i);
  185. }
  186. break;
  187. }
  188. }
  189. return i;
  190. }
  191. static ssize_t
  192. sched_feat_write(struct file *filp, const char __user *ubuf,
  193. size_t cnt, loff_t *ppos)
  194. {
  195. char buf[64];
  196. char *cmp;
  197. int i;
  198. struct inode *inode;
  199. if (cnt > 63)
  200. cnt = 63;
  201. if (copy_from_user(&buf, ubuf, cnt))
  202. return -EFAULT;
  203. buf[cnt] = 0;
  204. cmp = strstrip(buf);
  205. /* Ensure the static_key remains in a consistent state */
  206. inode = file_inode(filp);
  207. mutex_lock(&inode->i_mutex);
  208. i = sched_feat_set(cmp);
  209. mutex_unlock(&inode->i_mutex);
  210. if (i == __SCHED_FEAT_NR)
  211. return -EINVAL;
  212. *ppos += cnt;
  213. return cnt;
  214. }
  215. static int sched_feat_open(struct inode *inode, struct file *filp)
  216. {
  217. return single_open(filp, sched_feat_show, NULL);
  218. }
  219. static const struct file_operations sched_feat_fops = {
  220. .open = sched_feat_open,
  221. .write = sched_feat_write,
  222. .read = seq_read,
  223. .llseek = seq_lseek,
  224. .release = single_release,
  225. };
  226. static __init int sched_init_debug(void)
  227. {
  228. debugfs_create_file("sched_features", 0644, NULL, NULL,
  229. &sched_feat_fops);
  230. return 0;
  231. }
  232. late_initcall(sched_init_debug);
  233. #endif /* CONFIG_SCHED_DEBUG */
  234. /*
  235. * Number of tasks to iterate in a single balance run.
  236. * Limited because this is done with IRQs disabled.
  237. */
  238. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  239. /*
  240. * period over which we average the RT time consumption, measured
  241. * in ms.
  242. *
  243. * default: 1s
  244. */
  245. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  246. /*
  247. * period over which we measure -rt task cpu usage in us.
  248. * default: 1s
  249. */
  250. unsigned int sysctl_sched_rt_period = 1000000;
  251. __read_mostly int scheduler_running;
  252. /*
  253. * part of the period that we allow rt tasks to run in us.
  254. * default: 0.95s
  255. */
  256. int sysctl_sched_rt_runtime = 950000;
  257. /* cpus with isolated domains */
  258. cpumask_var_t cpu_isolated_map;
  259. /*
  260. * this_rq_lock - lock this runqueue and disable interrupts.
  261. */
  262. static struct rq *this_rq_lock(void)
  263. __acquires(rq->lock)
  264. {
  265. struct rq *rq;
  266. local_irq_disable();
  267. rq = this_rq();
  268. raw_spin_lock(&rq->lock);
  269. return rq;
  270. }
  271. #ifdef CONFIG_SCHED_HRTICK
  272. /*
  273. * Use HR-timers to deliver accurate preemption points.
  274. */
  275. static void hrtick_clear(struct rq *rq)
  276. {
  277. if (hrtimer_active(&rq->hrtick_timer))
  278. hrtimer_cancel(&rq->hrtick_timer);
  279. }
  280. /*
  281. * High-resolution timer tick.
  282. * Runs from hardirq context with interrupts disabled.
  283. */
  284. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  285. {
  286. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  287. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  288. raw_spin_lock(&rq->lock);
  289. update_rq_clock(rq);
  290. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  291. raw_spin_unlock(&rq->lock);
  292. return HRTIMER_NORESTART;
  293. }
  294. #ifdef CONFIG_SMP
  295. static int __hrtick_restart(struct rq *rq)
  296. {
  297. struct hrtimer *timer = &rq->hrtick_timer;
  298. ktime_t time = hrtimer_get_softexpires(timer);
  299. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  300. }
  301. /*
  302. * called from hardirq (IPI) context
  303. */
  304. static void __hrtick_start(void *arg)
  305. {
  306. struct rq *rq = arg;
  307. raw_spin_lock(&rq->lock);
  308. __hrtick_restart(rq);
  309. rq->hrtick_csd_pending = 0;
  310. raw_spin_unlock(&rq->lock);
  311. }
  312. /*
  313. * Called to set the hrtick timer state.
  314. *
  315. * called with rq->lock held and irqs disabled
  316. */
  317. void hrtick_start(struct rq *rq, u64 delay)
  318. {
  319. struct hrtimer *timer = &rq->hrtick_timer;
  320. ktime_t time;
  321. s64 delta;
  322. /*
  323. * Don't schedule slices shorter than 10000ns, that just
  324. * doesn't make sense and can cause timer DoS.
  325. */
  326. delta = max_t(s64, delay, 10000LL);
  327. time = ktime_add_ns(timer->base->get_time(), delta);
  328. hrtimer_set_expires(timer, time);
  329. if (rq == this_rq()) {
  330. __hrtick_restart(rq);
  331. } else if (!rq->hrtick_csd_pending) {
  332. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  333. rq->hrtick_csd_pending = 1;
  334. }
  335. }
  336. static int
  337. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  338. {
  339. int cpu = (int)(long)hcpu;
  340. switch (action) {
  341. case CPU_UP_CANCELED:
  342. case CPU_UP_CANCELED_FROZEN:
  343. case CPU_DOWN_PREPARE:
  344. case CPU_DOWN_PREPARE_FROZEN:
  345. case CPU_DEAD:
  346. case CPU_DEAD_FROZEN:
  347. hrtick_clear(cpu_rq(cpu));
  348. return NOTIFY_OK;
  349. }
  350. return NOTIFY_DONE;
  351. }
  352. static __init void init_hrtick(void)
  353. {
  354. hotcpu_notifier(hotplug_hrtick, 0);
  355. }
  356. #else
  357. /*
  358. * Called to set the hrtick timer state.
  359. *
  360. * called with rq->lock held and irqs disabled
  361. */
  362. void hrtick_start(struct rq *rq, u64 delay)
  363. {
  364. /*
  365. * Don't schedule slices shorter than 10000ns, that just
  366. * doesn't make sense. Rely on vruntime for fairness.
  367. */
  368. delay = max_t(u64, delay, 10000LL);
  369. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  370. HRTIMER_MODE_REL_PINNED, 0);
  371. }
  372. static inline void init_hrtick(void)
  373. {
  374. }
  375. #endif /* CONFIG_SMP */
  376. static void init_rq_hrtick(struct rq *rq)
  377. {
  378. #ifdef CONFIG_SMP
  379. rq->hrtick_csd_pending = 0;
  380. rq->hrtick_csd.flags = 0;
  381. rq->hrtick_csd.func = __hrtick_start;
  382. rq->hrtick_csd.info = rq;
  383. #endif
  384. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  385. rq->hrtick_timer.function = hrtick;
  386. }
  387. #else /* CONFIG_SCHED_HRTICK */
  388. static inline void hrtick_clear(struct rq *rq)
  389. {
  390. }
  391. static inline void init_rq_hrtick(struct rq *rq)
  392. {
  393. }
  394. static inline void init_hrtick(void)
  395. {
  396. }
  397. #endif /* CONFIG_SCHED_HRTICK */
  398. /*
  399. * cmpxchg based fetch_or, macro so it works for different integer types
  400. */
  401. #define fetch_or(ptr, val) \
  402. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  403. for (;;) { \
  404. __old = cmpxchg((ptr), __val, __val | (val)); \
  405. if (__old == __val) \
  406. break; \
  407. __val = __old; \
  408. } \
  409. __old; \
  410. })
  411. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  412. /*
  413. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  414. * this avoids any races wrt polling state changes and thereby avoids
  415. * spurious IPIs.
  416. */
  417. static bool set_nr_and_not_polling(struct task_struct *p)
  418. {
  419. struct thread_info *ti = task_thread_info(p);
  420. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  421. }
  422. /*
  423. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  424. *
  425. * If this returns true, then the idle task promises to call
  426. * sched_ttwu_pending() and reschedule soon.
  427. */
  428. static bool set_nr_if_polling(struct task_struct *p)
  429. {
  430. struct thread_info *ti = task_thread_info(p);
  431. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  432. for (;;) {
  433. if (!(val & _TIF_POLLING_NRFLAG))
  434. return false;
  435. if (val & _TIF_NEED_RESCHED)
  436. return true;
  437. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  438. if (old == val)
  439. break;
  440. val = old;
  441. }
  442. return true;
  443. }
  444. #else
  445. static bool set_nr_and_not_polling(struct task_struct *p)
  446. {
  447. set_tsk_need_resched(p);
  448. return true;
  449. }
  450. #ifdef CONFIG_SMP
  451. static bool set_nr_if_polling(struct task_struct *p)
  452. {
  453. return false;
  454. }
  455. #endif
  456. #endif
  457. /*
  458. * resched_curr - mark rq's current task 'to be rescheduled now'.
  459. *
  460. * On UP this means the setting of the need_resched flag, on SMP it
  461. * might also involve a cross-CPU call to trigger the scheduler on
  462. * the target CPU.
  463. */
  464. void resched_curr(struct rq *rq)
  465. {
  466. struct task_struct *curr = rq->curr;
  467. int cpu;
  468. lockdep_assert_held(&rq->lock);
  469. if (test_tsk_need_resched(curr))
  470. return;
  471. cpu = cpu_of(rq);
  472. if (cpu == smp_processor_id()) {
  473. set_tsk_need_resched(curr);
  474. set_preempt_need_resched();
  475. return;
  476. }
  477. if (set_nr_and_not_polling(curr))
  478. smp_send_reschedule(cpu);
  479. else
  480. trace_sched_wake_idle_without_ipi(cpu);
  481. }
  482. void resched_cpu(int cpu)
  483. {
  484. struct rq *rq = cpu_rq(cpu);
  485. unsigned long flags;
  486. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  487. return;
  488. resched_curr(rq);
  489. raw_spin_unlock_irqrestore(&rq->lock, flags);
  490. }
  491. #ifdef CONFIG_SMP
  492. #ifdef CONFIG_NO_HZ_COMMON
  493. /*
  494. * In the semi idle case, use the nearest busy cpu for migrating timers
  495. * from an idle cpu. This is good for power-savings.
  496. *
  497. * We don't do similar optimization for completely idle system, as
  498. * selecting an idle cpu will add more delays to the timers than intended
  499. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  500. */
  501. int get_nohz_timer_target(int pinned)
  502. {
  503. int cpu = smp_processor_id();
  504. int i;
  505. struct sched_domain *sd;
  506. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  507. return cpu;
  508. rcu_read_lock();
  509. for_each_domain(cpu, sd) {
  510. for_each_cpu(i, sched_domain_span(sd)) {
  511. if (!idle_cpu(i)) {
  512. cpu = i;
  513. goto unlock;
  514. }
  515. }
  516. }
  517. unlock:
  518. rcu_read_unlock();
  519. return cpu;
  520. }
  521. /*
  522. * When add_timer_on() enqueues a timer into the timer wheel of an
  523. * idle CPU then this timer might expire before the next timer event
  524. * which is scheduled to wake up that CPU. In case of a completely
  525. * idle system the next event might even be infinite time into the
  526. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  527. * leaves the inner idle loop so the newly added timer is taken into
  528. * account when the CPU goes back to idle and evaluates the timer
  529. * wheel for the next timer event.
  530. */
  531. static void wake_up_idle_cpu(int cpu)
  532. {
  533. struct rq *rq = cpu_rq(cpu);
  534. if (cpu == smp_processor_id())
  535. return;
  536. if (set_nr_and_not_polling(rq->idle))
  537. smp_send_reschedule(cpu);
  538. else
  539. trace_sched_wake_idle_without_ipi(cpu);
  540. }
  541. static bool wake_up_full_nohz_cpu(int cpu)
  542. {
  543. /*
  544. * We just need the target to call irq_exit() and re-evaluate
  545. * the next tick. The nohz full kick at least implies that.
  546. * If needed we can still optimize that later with an
  547. * empty IRQ.
  548. */
  549. if (tick_nohz_full_cpu(cpu)) {
  550. if (cpu != smp_processor_id() ||
  551. tick_nohz_tick_stopped())
  552. tick_nohz_full_kick_cpu(cpu);
  553. return true;
  554. }
  555. return false;
  556. }
  557. void wake_up_nohz_cpu(int cpu)
  558. {
  559. if (!wake_up_full_nohz_cpu(cpu))
  560. wake_up_idle_cpu(cpu);
  561. }
  562. static inline bool got_nohz_idle_kick(void)
  563. {
  564. int cpu = smp_processor_id();
  565. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  566. return false;
  567. if (idle_cpu(cpu) && !need_resched())
  568. return true;
  569. /*
  570. * We can't run Idle Load Balance on this CPU for this time so we
  571. * cancel it and clear NOHZ_BALANCE_KICK
  572. */
  573. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  574. return false;
  575. }
  576. #else /* CONFIG_NO_HZ_COMMON */
  577. static inline bool got_nohz_idle_kick(void)
  578. {
  579. return false;
  580. }
  581. #endif /* CONFIG_NO_HZ_COMMON */
  582. #ifdef CONFIG_NO_HZ_FULL
  583. bool sched_can_stop_tick(void)
  584. {
  585. /*
  586. * FIFO realtime policy runs the highest priority task. Other runnable
  587. * tasks are of a lower priority. The scheduler tick does nothing.
  588. */
  589. if (current->policy == SCHED_FIFO)
  590. return true;
  591. /*
  592. * Round-robin realtime tasks time slice with other tasks at the same
  593. * realtime priority. Is this task the only one at this priority?
  594. */
  595. if (current->policy == SCHED_RR) {
  596. struct sched_rt_entity *rt_se = &current->rt;
  597. return rt_se->run_list.prev == rt_se->run_list.next;
  598. }
  599. /*
  600. * More than one running task need preemption.
  601. * nr_running update is assumed to be visible
  602. * after IPI is sent from wakers.
  603. */
  604. if (this_rq()->nr_running > 1)
  605. return false;
  606. return true;
  607. }
  608. #endif /* CONFIG_NO_HZ_FULL */
  609. void sched_avg_update(struct rq *rq)
  610. {
  611. s64 period = sched_avg_period();
  612. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  613. /*
  614. * Inline assembly required to prevent the compiler
  615. * optimising this loop into a divmod call.
  616. * See __iter_div_u64_rem() for another example of this.
  617. */
  618. asm("" : "+rm" (rq->age_stamp));
  619. rq->age_stamp += period;
  620. rq->rt_avg /= 2;
  621. }
  622. }
  623. #endif /* CONFIG_SMP */
  624. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  625. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  626. /*
  627. * Iterate task_group tree rooted at *from, calling @down when first entering a
  628. * node and @up when leaving it for the final time.
  629. *
  630. * Caller must hold rcu_lock or sufficient equivalent.
  631. */
  632. int walk_tg_tree_from(struct task_group *from,
  633. tg_visitor down, tg_visitor up, void *data)
  634. {
  635. struct task_group *parent, *child;
  636. int ret;
  637. parent = from;
  638. down:
  639. ret = (*down)(parent, data);
  640. if (ret)
  641. goto out;
  642. list_for_each_entry_rcu(child, &parent->children, siblings) {
  643. parent = child;
  644. goto down;
  645. up:
  646. continue;
  647. }
  648. ret = (*up)(parent, data);
  649. if (ret || parent == from)
  650. goto out;
  651. child = parent;
  652. parent = parent->parent;
  653. if (parent)
  654. goto up;
  655. out:
  656. return ret;
  657. }
  658. int tg_nop(struct task_group *tg, void *data)
  659. {
  660. return 0;
  661. }
  662. #endif
  663. static void set_load_weight(struct task_struct *p)
  664. {
  665. int prio = p->static_prio - MAX_RT_PRIO;
  666. struct load_weight *load = &p->se.load;
  667. /*
  668. * SCHED_IDLE tasks get minimal weight:
  669. */
  670. if (p->policy == SCHED_IDLE) {
  671. load->weight = scale_load(WEIGHT_IDLEPRIO);
  672. load->inv_weight = WMULT_IDLEPRIO;
  673. return;
  674. }
  675. load->weight = scale_load(prio_to_weight[prio]);
  676. load->inv_weight = prio_to_wmult[prio];
  677. }
  678. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  679. {
  680. update_rq_clock(rq);
  681. sched_info_queued(rq, p);
  682. p->sched_class->enqueue_task(rq, p, flags);
  683. }
  684. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  685. {
  686. update_rq_clock(rq);
  687. sched_info_dequeued(rq, p);
  688. p->sched_class->dequeue_task(rq, p, flags);
  689. }
  690. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  691. {
  692. if (task_contributes_to_load(p))
  693. rq->nr_uninterruptible--;
  694. enqueue_task(rq, p, flags);
  695. }
  696. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  697. {
  698. if (task_contributes_to_load(p))
  699. rq->nr_uninterruptible++;
  700. dequeue_task(rq, p, flags);
  701. }
  702. static void update_rq_clock_task(struct rq *rq, s64 delta)
  703. {
  704. /*
  705. * In theory, the compile should just see 0 here, and optimize out the call
  706. * to sched_rt_avg_update. But I don't trust it...
  707. */
  708. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  709. s64 steal = 0, irq_delta = 0;
  710. #endif
  711. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  712. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  713. /*
  714. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  715. * this case when a previous update_rq_clock() happened inside a
  716. * {soft,}irq region.
  717. *
  718. * When this happens, we stop ->clock_task and only update the
  719. * prev_irq_time stamp to account for the part that fit, so that a next
  720. * update will consume the rest. This ensures ->clock_task is
  721. * monotonic.
  722. *
  723. * It does however cause some slight miss-attribution of {soft,}irq
  724. * time, a more accurate solution would be to update the irq_time using
  725. * the current rq->clock timestamp, except that would require using
  726. * atomic ops.
  727. */
  728. if (irq_delta > delta)
  729. irq_delta = delta;
  730. rq->prev_irq_time += irq_delta;
  731. delta -= irq_delta;
  732. #endif
  733. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  734. if (static_key_false((&paravirt_steal_rq_enabled))) {
  735. steal = paravirt_steal_clock(cpu_of(rq));
  736. steal -= rq->prev_steal_time_rq;
  737. if (unlikely(steal > delta))
  738. steal = delta;
  739. rq->prev_steal_time_rq += steal;
  740. delta -= steal;
  741. }
  742. #endif
  743. rq->clock_task += delta;
  744. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  745. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  746. sched_rt_avg_update(rq, irq_delta + steal);
  747. #endif
  748. }
  749. void sched_set_stop_task(int cpu, struct task_struct *stop)
  750. {
  751. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  752. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  753. if (stop) {
  754. /*
  755. * Make it appear like a SCHED_FIFO task, its something
  756. * userspace knows about and won't get confused about.
  757. *
  758. * Also, it will make PI more or less work without too
  759. * much confusion -- but then, stop work should not
  760. * rely on PI working anyway.
  761. */
  762. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  763. stop->sched_class = &stop_sched_class;
  764. }
  765. cpu_rq(cpu)->stop = stop;
  766. if (old_stop) {
  767. /*
  768. * Reset it back to a normal scheduling class so that
  769. * it can die in pieces.
  770. */
  771. old_stop->sched_class = &rt_sched_class;
  772. }
  773. }
  774. /*
  775. * __normal_prio - return the priority that is based on the static prio
  776. */
  777. static inline int __normal_prio(struct task_struct *p)
  778. {
  779. return p->static_prio;
  780. }
  781. /*
  782. * Calculate the expected normal priority: i.e. priority
  783. * without taking RT-inheritance into account. Might be
  784. * boosted by interactivity modifiers. Changes upon fork,
  785. * setprio syscalls, and whenever the interactivity
  786. * estimator recalculates.
  787. */
  788. static inline int normal_prio(struct task_struct *p)
  789. {
  790. int prio;
  791. if (task_has_dl_policy(p))
  792. prio = MAX_DL_PRIO-1;
  793. else if (task_has_rt_policy(p))
  794. prio = MAX_RT_PRIO-1 - p->rt_priority;
  795. else
  796. prio = __normal_prio(p);
  797. return prio;
  798. }
  799. /*
  800. * Calculate the current priority, i.e. the priority
  801. * taken into account by the scheduler. This value might
  802. * be boosted by RT tasks, or might be boosted by
  803. * interactivity modifiers. Will be RT if the task got
  804. * RT-boosted. If not then it returns p->normal_prio.
  805. */
  806. static int effective_prio(struct task_struct *p)
  807. {
  808. p->normal_prio = normal_prio(p);
  809. /*
  810. * If we are RT tasks or we were boosted to RT priority,
  811. * keep the priority unchanged. Otherwise, update priority
  812. * to the normal priority:
  813. */
  814. if (!rt_prio(p->prio))
  815. return p->normal_prio;
  816. return p->prio;
  817. }
  818. /**
  819. * task_curr - is this task currently executing on a CPU?
  820. * @p: the task in question.
  821. *
  822. * Return: 1 if the task is currently executing. 0 otherwise.
  823. */
  824. inline int task_curr(const struct task_struct *p)
  825. {
  826. return cpu_curr(task_cpu(p)) == p;
  827. }
  828. /*
  829. * Can drop rq->lock because from sched_class::switched_from() methods drop it.
  830. */
  831. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  832. const struct sched_class *prev_class,
  833. int oldprio)
  834. {
  835. if (prev_class != p->sched_class) {
  836. if (prev_class->switched_from)
  837. prev_class->switched_from(rq, p);
  838. /* Possble rq->lock 'hole'. */
  839. p->sched_class->switched_to(rq, p);
  840. } else if (oldprio != p->prio || dl_task(p))
  841. p->sched_class->prio_changed(rq, p, oldprio);
  842. }
  843. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  844. {
  845. const struct sched_class *class;
  846. if (p->sched_class == rq->curr->sched_class) {
  847. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  848. } else {
  849. for_each_class(class) {
  850. if (class == rq->curr->sched_class)
  851. break;
  852. if (class == p->sched_class) {
  853. resched_curr(rq);
  854. break;
  855. }
  856. }
  857. }
  858. /*
  859. * A queue event has occurred, and we're going to schedule. In
  860. * this case, we can save a useless back to back clock update.
  861. */
  862. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  863. rq_clock_skip_update(rq, true);
  864. }
  865. #ifdef CONFIG_SMP
  866. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  867. {
  868. #ifdef CONFIG_SCHED_DEBUG
  869. /*
  870. * We should never call set_task_cpu() on a blocked task,
  871. * ttwu() will sort out the placement.
  872. */
  873. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  874. !p->on_rq);
  875. #ifdef CONFIG_LOCKDEP
  876. /*
  877. * The caller should hold either p->pi_lock or rq->lock, when changing
  878. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  879. *
  880. * sched_move_task() holds both and thus holding either pins the cgroup,
  881. * see task_group().
  882. *
  883. * Furthermore, all task_rq users should acquire both locks, see
  884. * task_rq_lock().
  885. */
  886. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  887. lockdep_is_held(&task_rq(p)->lock)));
  888. #endif
  889. #endif
  890. trace_sched_migrate_task(p, new_cpu);
  891. if (task_cpu(p) != new_cpu) {
  892. if (p->sched_class->migrate_task_rq)
  893. p->sched_class->migrate_task_rq(p, new_cpu);
  894. p->se.nr_migrations++;
  895. perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
  896. }
  897. __set_task_cpu(p, new_cpu);
  898. }
  899. static void __migrate_swap_task(struct task_struct *p, int cpu)
  900. {
  901. if (task_on_rq_queued(p)) {
  902. struct rq *src_rq, *dst_rq;
  903. src_rq = task_rq(p);
  904. dst_rq = cpu_rq(cpu);
  905. deactivate_task(src_rq, p, 0);
  906. set_task_cpu(p, cpu);
  907. activate_task(dst_rq, p, 0);
  908. check_preempt_curr(dst_rq, p, 0);
  909. } else {
  910. /*
  911. * Task isn't running anymore; make it appear like we migrated
  912. * it before it went to sleep. This means on wakeup we make the
  913. * previous cpu our targer instead of where it really is.
  914. */
  915. p->wake_cpu = cpu;
  916. }
  917. }
  918. struct migration_swap_arg {
  919. struct task_struct *src_task, *dst_task;
  920. int src_cpu, dst_cpu;
  921. };
  922. static int migrate_swap_stop(void *data)
  923. {
  924. struct migration_swap_arg *arg = data;
  925. struct rq *src_rq, *dst_rq;
  926. int ret = -EAGAIN;
  927. src_rq = cpu_rq(arg->src_cpu);
  928. dst_rq = cpu_rq(arg->dst_cpu);
  929. double_raw_lock(&arg->src_task->pi_lock,
  930. &arg->dst_task->pi_lock);
  931. double_rq_lock(src_rq, dst_rq);
  932. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  933. goto unlock;
  934. if (task_cpu(arg->src_task) != arg->src_cpu)
  935. goto unlock;
  936. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  937. goto unlock;
  938. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  939. goto unlock;
  940. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  941. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  942. ret = 0;
  943. unlock:
  944. double_rq_unlock(src_rq, dst_rq);
  945. raw_spin_unlock(&arg->dst_task->pi_lock);
  946. raw_spin_unlock(&arg->src_task->pi_lock);
  947. return ret;
  948. }
  949. /*
  950. * Cross migrate two tasks
  951. */
  952. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  953. {
  954. struct migration_swap_arg arg;
  955. int ret = -EINVAL;
  956. arg = (struct migration_swap_arg){
  957. .src_task = cur,
  958. .src_cpu = task_cpu(cur),
  959. .dst_task = p,
  960. .dst_cpu = task_cpu(p),
  961. };
  962. if (arg.src_cpu == arg.dst_cpu)
  963. goto out;
  964. /*
  965. * These three tests are all lockless; this is OK since all of them
  966. * will be re-checked with proper locks held further down the line.
  967. */
  968. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  969. goto out;
  970. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  971. goto out;
  972. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  973. goto out;
  974. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  975. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  976. out:
  977. return ret;
  978. }
  979. struct migration_arg {
  980. struct task_struct *task;
  981. int dest_cpu;
  982. };
  983. static int migration_cpu_stop(void *data);
  984. /*
  985. * wait_task_inactive - wait for a thread to unschedule.
  986. *
  987. * If @match_state is nonzero, it's the @p->state value just checked and
  988. * not expected to change. If it changes, i.e. @p might have woken up,
  989. * then return zero. When we succeed in waiting for @p to be off its CPU,
  990. * we return a positive number (its total switch count). If a second call
  991. * a short while later returns the same number, the caller can be sure that
  992. * @p has remained unscheduled the whole time.
  993. *
  994. * The caller must ensure that the task *will* unschedule sometime soon,
  995. * else this function might spin for a *long* time. This function can't
  996. * be called with interrupts off, or it may introduce deadlock with
  997. * smp_call_function() if an IPI is sent by the same process we are
  998. * waiting to become inactive.
  999. */
  1000. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1001. {
  1002. unsigned long flags;
  1003. int running, queued;
  1004. unsigned long ncsw;
  1005. struct rq *rq;
  1006. for (;;) {
  1007. /*
  1008. * We do the initial early heuristics without holding
  1009. * any task-queue locks at all. We'll only try to get
  1010. * the runqueue lock when things look like they will
  1011. * work out!
  1012. */
  1013. rq = task_rq(p);
  1014. /*
  1015. * If the task is actively running on another CPU
  1016. * still, just relax and busy-wait without holding
  1017. * any locks.
  1018. *
  1019. * NOTE! Since we don't hold any locks, it's not
  1020. * even sure that "rq" stays as the right runqueue!
  1021. * But we don't care, since "task_running()" will
  1022. * return false if the runqueue has changed and p
  1023. * is actually now running somewhere else!
  1024. */
  1025. while (task_running(rq, p)) {
  1026. if (match_state && unlikely(p->state != match_state))
  1027. return 0;
  1028. cpu_relax();
  1029. }
  1030. /*
  1031. * Ok, time to look more closely! We need the rq
  1032. * lock now, to be *sure*. If we're wrong, we'll
  1033. * just go back and repeat.
  1034. */
  1035. rq = task_rq_lock(p, &flags);
  1036. trace_sched_wait_task(p);
  1037. running = task_running(rq, p);
  1038. queued = task_on_rq_queued(p);
  1039. ncsw = 0;
  1040. if (!match_state || p->state == match_state)
  1041. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1042. task_rq_unlock(rq, p, &flags);
  1043. /*
  1044. * If it changed from the expected state, bail out now.
  1045. */
  1046. if (unlikely(!ncsw))
  1047. break;
  1048. /*
  1049. * Was it really running after all now that we
  1050. * checked with the proper locks actually held?
  1051. *
  1052. * Oops. Go back and try again..
  1053. */
  1054. if (unlikely(running)) {
  1055. cpu_relax();
  1056. continue;
  1057. }
  1058. /*
  1059. * It's not enough that it's not actively running,
  1060. * it must be off the runqueue _entirely_, and not
  1061. * preempted!
  1062. *
  1063. * So if it was still runnable (but just not actively
  1064. * running right now), it's preempted, and we should
  1065. * yield - it could be a while.
  1066. */
  1067. if (unlikely(queued)) {
  1068. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1069. set_current_state(TASK_UNINTERRUPTIBLE);
  1070. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1071. continue;
  1072. }
  1073. /*
  1074. * Ahh, all good. It wasn't running, and it wasn't
  1075. * runnable, which means that it will never become
  1076. * running in the future either. We're all done!
  1077. */
  1078. break;
  1079. }
  1080. return ncsw;
  1081. }
  1082. /***
  1083. * kick_process - kick a running thread to enter/exit the kernel
  1084. * @p: the to-be-kicked thread
  1085. *
  1086. * Cause a process which is running on another CPU to enter
  1087. * kernel-mode, without any delay. (to get signals handled.)
  1088. *
  1089. * NOTE: this function doesn't have to take the runqueue lock,
  1090. * because all it wants to ensure is that the remote task enters
  1091. * the kernel. If the IPI races and the task has been migrated
  1092. * to another CPU then no harm is done and the purpose has been
  1093. * achieved as well.
  1094. */
  1095. void kick_process(struct task_struct *p)
  1096. {
  1097. int cpu;
  1098. preempt_disable();
  1099. cpu = task_cpu(p);
  1100. if ((cpu != smp_processor_id()) && task_curr(p))
  1101. smp_send_reschedule(cpu);
  1102. preempt_enable();
  1103. }
  1104. EXPORT_SYMBOL_GPL(kick_process);
  1105. #endif /* CONFIG_SMP */
  1106. #ifdef CONFIG_SMP
  1107. /*
  1108. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1109. */
  1110. static int select_fallback_rq(int cpu, struct task_struct *p)
  1111. {
  1112. int nid = cpu_to_node(cpu);
  1113. const struct cpumask *nodemask = NULL;
  1114. enum { cpuset, possible, fail } state = cpuset;
  1115. int dest_cpu;
  1116. /*
  1117. * If the node that the cpu is on has been offlined, cpu_to_node()
  1118. * will return -1. There is no cpu on the node, and we should
  1119. * select the cpu on the other node.
  1120. */
  1121. if (nid != -1) {
  1122. nodemask = cpumask_of_node(nid);
  1123. /* Look for allowed, online CPU in same node. */
  1124. for_each_cpu(dest_cpu, nodemask) {
  1125. if (!cpu_online(dest_cpu))
  1126. continue;
  1127. if (!cpu_active(dest_cpu))
  1128. continue;
  1129. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1130. return dest_cpu;
  1131. }
  1132. }
  1133. for (;;) {
  1134. /* Any allowed, online CPU? */
  1135. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1136. if (!cpu_online(dest_cpu))
  1137. continue;
  1138. if (!cpu_active(dest_cpu))
  1139. continue;
  1140. goto out;
  1141. }
  1142. switch (state) {
  1143. case cpuset:
  1144. /* No more Mr. Nice Guy. */
  1145. cpuset_cpus_allowed_fallback(p);
  1146. state = possible;
  1147. break;
  1148. case possible:
  1149. do_set_cpus_allowed(p, cpu_possible_mask);
  1150. state = fail;
  1151. break;
  1152. case fail:
  1153. BUG();
  1154. break;
  1155. }
  1156. }
  1157. out:
  1158. if (state != cpuset) {
  1159. /*
  1160. * Don't tell them about moving exiting tasks or
  1161. * kernel threads (both mm NULL), since they never
  1162. * leave kernel.
  1163. */
  1164. if (p->mm && printk_ratelimit()) {
  1165. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1166. task_pid_nr(p), p->comm, cpu);
  1167. }
  1168. }
  1169. return dest_cpu;
  1170. }
  1171. /*
  1172. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1173. */
  1174. static inline
  1175. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1176. {
  1177. if (p->nr_cpus_allowed > 1)
  1178. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1179. /*
  1180. * In order not to call set_task_cpu() on a blocking task we need
  1181. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1182. * cpu.
  1183. *
  1184. * Since this is common to all placement strategies, this lives here.
  1185. *
  1186. * [ this allows ->select_task() to simply return task_cpu(p) and
  1187. * not worry about this generic constraint ]
  1188. */
  1189. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1190. !cpu_online(cpu)))
  1191. cpu = select_fallback_rq(task_cpu(p), p);
  1192. return cpu;
  1193. }
  1194. static void update_avg(u64 *avg, u64 sample)
  1195. {
  1196. s64 diff = sample - *avg;
  1197. *avg += diff >> 3;
  1198. }
  1199. #endif
  1200. static void
  1201. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1202. {
  1203. #ifdef CONFIG_SCHEDSTATS
  1204. struct rq *rq = this_rq();
  1205. #ifdef CONFIG_SMP
  1206. int this_cpu = smp_processor_id();
  1207. if (cpu == this_cpu) {
  1208. schedstat_inc(rq, ttwu_local);
  1209. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1210. } else {
  1211. struct sched_domain *sd;
  1212. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1213. rcu_read_lock();
  1214. for_each_domain(this_cpu, sd) {
  1215. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1216. schedstat_inc(sd, ttwu_wake_remote);
  1217. break;
  1218. }
  1219. }
  1220. rcu_read_unlock();
  1221. }
  1222. if (wake_flags & WF_MIGRATED)
  1223. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1224. #endif /* CONFIG_SMP */
  1225. schedstat_inc(rq, ttwu_count);
  1226. schedstat_inc(p, se.statistics.nr_wakeups);
  1227. if (wake_flags & WF_SYNC)
  1228. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1229. #endif /* CONFIG_SCHEDSTATS */
  1230. }
  1231. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1232. {
  1233. activate_task(rq, p, en_flags);
  1234. p->on_rq = TASK_ON_RQ_QUEUED;
  1235. /* if a worker is waking up, notify workqueue */
  1236. if (p->flags & PF_WQ_WORKER)
  1237. wq_worker_waking_up(p, cpu_of(rq));
  1238. }
  1239. /*
  1240. * Mark the task runnable and perform wakeup-preemption.
  1241. */
  1242. static void
  1243. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1244. {
  1245. check_preempt_curr(rq, p, wake_flags);
  1246. trace_sched_wakeup(p, true);
  1247. p->state = TASK_RUNNING;
  1248. #ifdef CONFIG_SMP
  1249. if (p->sched_class->task_woken)
  1250. p->sched_class->task_woken(rq, p);
  1251. if (rq->idle_stamp) {
  1252. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1253. u64 max = 2*rq->max_idle_balance_cost;
  1254. update_avg(&rq->avg_idle, delta);
  1255. if (rq->avg_idle > max)
  1256. rq->avg_idle = max;
  1257. rq->idle_stamp = 0;
  1258. }
  1259. #endif
  1260. }
  1261. static void
  1262. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1263. {
  1264. #ifdef CONFIG_SMP
  1265. if (p->sched_contributes_to_load)
  1266. rq->nr_uninterruptible--;
  1267. #endif
  1268. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1269. ttwu_do_wakeup(rq, p, wake_flags);
  1270. }
  1271. /*
  1272. * Called in case the task @p isn't fully descheduled from its runqueue,
  1273. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1274. * since all we need to do is flip p->state to TASK_RUNNING, since
  1275. * the task is still ->on_rq.
  1276. */
  1277. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1278. {
  1279. struct rq *rq;
  1280. int ret = 0;
  1281. rq = __task_rq_lock(p);
  1282. if (task_on_rq_queued(p)) {
  1283. /* check_preempt_curr() may use rq clock */
  1284. update_rq_clock(rq);
  1285. ttwu_do_wakeup(rq, p, wake_flags);
  1286. ret = 1;
  1287. }
  1288. __task_rq_unlock(rq);
  1289. return ret;
  1290. }
  1291. #ifdef CONFIG_SMP
  1292. void sched_ttwu_pending(void)
  1293. {
  1294. struct rq *rq = this_rq();
  1295. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1296. struct task_struct *p;
  1297. unsigned long flags;
  1298. if (!llist)
  1299. return;
  1300. raw_spin_lock_irqsave(&rq->lock, flags);
  1301. while (llist) {
  1302. p = llist_entry(llist, struct task_struct, wake_entry);
  1303. llist = llist_next(llist);
  1304. ttwu_do_activate(rq, p, 0);
  1305. }
  1306. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1307. }
  1308. void scheduler_ipi(void)
  1309. {
  1310. /*
  1311. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1312. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1313. * this IPI.
  1314. */
  1315. preempt_fold_need_resched();
  1316. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1317. return;
  1318. /*
  1319. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1320. * traditionally all their work was done from the interrupt return
  1321. * path. Now that we actually do some work, we need to make sure
  1322. * we do call them.
  1323. *
  1324. * Some archs already do call them, luckily irq_enter/exit nest
  1325. * properly.
  1326. *
  1327. * Arguably we should visit all archs and update all handlers,
  1328. * however a fair share of IPIs are still resched only so this would
  1329. * somewhat pessimize the simple resched case.
  1330. */
  1331. irq_enter();
  1332. sched_ttwu_pending();
  1333. /*
  1334. * Check if someone kicked us for doing the nohz idle load balance.
  1335. */
  1336. if (unlikely(got_nohz_idle_kick())) {
  1337. this_rq()->idle_balance = 1;
  1338. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1339. }
  1340. irq_exit();
  1341. }
  1342. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1343. {
  1344. struct rq *rq = cpu_rq(cpu);
  1345. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1346. if (!set_nr_if_polling(rq->idle))
  1347. smp_send_reschedule(cpu);
  1348. else
  1349. trace_sched_wake_idle_without_ipi(cpu);
  1350. }
  1351. }
  1352. void wake_up_if_idle(int cpu)
  1353. {
  1354. struct rq *rq = cpu_rq(cpu);
  1355. unsigned long flags;
  1356. rcu_read_lock();
  1357. if (!is_idle_task(rcu_dereference(rq->curr)))
  1358. goto out;
  1359. if (set_nr_if_polling(rq->idle)) {
  1360. trace_sched_wake_idle_without_ipi(cpu);
  1361. } else {
  1362. raw_spin_lock_irqsave(&rq->lock, flags);
  1363. if (is_idle_task(rq->curr))
  1364. smp_send_reschedule(cpu);
  1365. /* Else cpu is not in idle, do nothing here */
  1366. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1367. }
  1368. out:
  1369. rcu_read_unlock();
  1370. }
  1371. bool cpus_share_cache(int this_cpu, int that_cpu)
  1372. {
  1373. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1374. }
  1375. #endif /* CONFIG_SMP */
  1376. static void ttwu_queue(struct task_struct *p, int cpu)
  1377. {
  1378. struct rq *rq = cpu_rq(cpu);
  1379. #if defined(CONFIG_SMP)
  1380. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1381. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1382. ttwu_queue_remote(p, cpu);
  1383. return;
  1384. }
  1385. #endif
  1386. raw_spin_lock(&rq->lock);
  1387. ttwu_do_activate(rq, p, 0);
  1388. raw_spin_unlock(&rq->lock);
  1389. }
  1390. /**
  1391. * try_to_wake_up - wake up a thread
  1392. * @p: the thread to be awakened
  1393. * @state: the mask of task states that can be woken
  1394. * @wake_flags: wake modifier flags (WF_*)
  1395. *
  1396. * Put it on the run-queue if it's not already there. The "current"
  1397. * thread is always on the run-queue (except when the actual
  1398. * re-schedule is in progress), and as such you're allowed to do
  1399. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1400. * runnable without the overhead of this.
  1401. *
  1402. * Return: %true if @p was woken up, %false if it was already running.
  1403. * or @state didn't match @p's state.
  1404. */
  1405. static int
  1406. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1407. {
  1408. unsigned long flags;
  1409. int cpu, success = 0;
  1410. /*
  1411. * If we are going to wake up a thread waiting for CONDITION we
  1412. * need to ensure that CONDITION=1 done by the caller can not be
  1413. * reordered with p->state check below. This pairs with mb() in
  1414. * set_current_state() the waiting thread does.
  1415. */
  1416. smp_mb__before_spinlock();
  1417. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1418. if (!(p->state & state))
  1419. goto out;
  1420. success = 1; /* we're going to change ->state */
  1421. cpu = task_cpu(p);
  1422. if (p->on_rq && ttwu_remote(p, wake_flags))
  1423. goto stat;
  1424. #ifdef CONFIG_SMP
  1425. /*
  1426. * If the owning (remote) cpu is still in the middle of schedule() with
  1427. * this task as prev, wait until its done referencing the task.
  1428. */
  1429. while (p->on_cpu)
  1430. cpu_relax();
  1431. /*
  1432. * Pairs with the smp_wmb() in finish_lock_switch().
  1433. */
  1434. smp_rmb();
  1435. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1436. p->state = TASK_WAKING;
  1437. if (p->sched_class->task_waking)
  1438. p->sched_class->task_waking(p);
  1439. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1440. if (task_cpu(p) != cpu) {
  1441. wake_flags |= WF_MIGRATED;
  1442. set_task_cpu(p, cpu);
  1443. }
  1444. #endif /* CONFIG_SMP */
  1445. ttwu_queue(p, cpu);
  1446. stat:
  1447. ttwu_stat(p, cpu, wake_flags);
  1448. out:
  1449. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1450. return success;
  1451. }
  1452. /**
  1453. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1454. * @p: the thread to be awakened
  1455. *
  1456. * Put @p on the run-queue if it's not already there. The caller must
  1457. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1458. * the current task.
  1459. */
  1460. static void try_to_wake_up_local(struct task_struct *p)
  1461. {
  1462. struct rq *rq = task_rq(p);
  1463. if (WARN_ON_ONCE(rq != this_rq()) ||
  1464. WARN_ON_ONCE(p == current))
  1465. return;
  1466. lockdep_assert_held(&rq->lock);
  1467. if (!raw_spin_trylock(&p->pi_lock)) {
  1468. raw_spin_unlock(&rq->lock);
  1469. raw_spin_lock(&p->pi_lock);
  1470. raw_spin_lock(&rq->lock);
  1471. }
  1472. if (!(p->state & TASK_NORMAL))
  1473. goto out;
  1474. if (!task_on_rq_queued(p))
  1475. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1476. ttwu_do_wakeup(rq, p, 0);
  1477. ttwu_stat(p, smp_processor_id(), 0);
  1478. out:
  1479. raw_spin_unlock(&p->pi_lock);
  1480. }
  1481. /**
  1482. * wake_up_process - Wake up a specific process
  1483. * @p: The process to be woken up.
  1484. *
  1485. * Attempt to wake up the nominated process and move it to the set of runnable
  1486. * processes.
  1487. *
  1488. * Return: 1 if the process was woken up, 0 if it was already running.
  1489. *
  1490. * It may be assumed that this function implies a write memory barrier before
  1491. * changing the task state if and only if any tasks are woken up.
  1492. */
  1493. int wake_up_process(struct task_struct *p)
  1494. {
  1495. WARN_ON(task_is_stopped_or_traced(p));
  1496. return try_to_wake_up(p, TASK_NORMAL, 0);
  1497. }
  1498. EXPORT_SYMBOL(wake_up_process);
  1499. int wake_up_state(struct task_struct *p, unsigned int state)
  1500. {
  1501. return try_to_wake_up(p, state, 0);
  1502. }
  1503. /*
  1504. * This function clears the sched_dl_entity static params.
  1505. */
  1506. void __dl_clear_params(struct task_struct *p)
  1507. {
  1508. struct sched_dl_entity *dl_se = &p->dl;
  1509. dl_se->dl_runtime = 0;
  1510. dl_se->dl_deadline = 0;
  1511. dl_se->dl_period = 0;
  1512. dl_se->flags = 0;
  1513. dl_se->dl_bw = 0;
  1514. dl_se->dl_throttled = 0;
  1515. dl_se->dl_new = 1;
  1516. dl_se->dl_yielded = 0;
  1517. }
  1518. /*
  1519. * Perform scheduler related setup for a newly forked process p.
  1520. * p is forked by current.
  1521. *
  1522. * __sched_fork() is basic setup used by init_idle() too:
  1523. */
  1524. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1525. {
  1526. p->on_rq = 0;
  1527. p->se.on_rq = 0;
  1528. p->se.exec_start = 0;
  1529. p->se.sum_exec_runtime = 0;
  1530. p->se.prev_sum_exec_runtime = 0;
  1531. p->se.nr_migrations = 0;
  1532. p->se.vruntime = 0;
  1533. #ifdef CONFIG_SMP
  1534. p->se.avg.decay_count = 0;
  1535. #endif
  1536. INIT_LIST_HEAD(&p->se.group_node);
  1537. #ifdef CONFIG_SCHEDSTATS
  1538. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1539. #endif
  1540. RB_CLEAR_NODE(&p->dl.rb_node);
  1541. init_dl_task_timer(&p->dl);
  1542. __dl_clear_params(p);
  1543. INIT_LIST_HEAD(&p->rt.run_list);
  1544. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1545. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1546. #endif
  1547. #ifdef CONFIG_NUMA_BALANCING
  1548. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1549. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1550. p->mm->numa_scan_seq = 0;
  1551. }
  1552. if (clone_flags & CLONE_VM)
  1553. p->numa_preferred_nid = current->numa_preferred_nid;
  1554. else
  1555. p->numa_preferred_nid = -1;
  1556. p->node_stamp = 0ULL;
  1557. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1558. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1559. p->numa_work.next = &p->numa_work;
  1560. p->numa_faults = NULL;
  1561. p->last_task_numa_placement = 0;
  1562. p->last_sum_exec_runtime = 0;
  1563. p->numa_group = NULL;
  1564. #endif /* CONFIG_NUMA_BALANCING */
  1565. }
  1566. #ifdef CONFIG_NUMA_BALANCING
  1567. #ifdef CONFIG_SCHED_DEBUG
  1568. void set_numabalancing_state(bool enabled)
  1569. {
  1570. if (enabled)
  1571. sched_feat_set("NUMA");
  1572. else
  1573. sched_feat_set("NO_NUMA");
  1574. }
  1575. #else
  1576. __read_mostly bool numabalancing_enabled;
  1577. void set_numabalancing_state(bool enabled)
  1578. {
  1579. numabalancing_enabled = enabled;
  1580. }
  1581. #endif /* CONFIG_SCHED_DEBUG */
  1582. #ifdef CONFIG_PROC_SYSCTL
  1583. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1584. void __user *buffer, size_t *lenp, loff_t *ppos)
  1585. {
  1586. struct ctl_table t;
  1587. int err;
  1588. int state = numabalancing_enabled;
  1589. if (write && !capable(CAP_SYS_ADMIN))
  1590. return -EPERM;
  1591. t = *table;
  1592. t.data = &state;
  1593. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1594. if (err < 0)
  1595. return err;
  1596. if (write)
  1597. set_numabalancing_state(state);
  1598. return err;
  1599. }
  1600. #endif
  1601. #endif
  1602. /*
  1603. * fork()/clone()-time setup:
  1604. */
  1605. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1606. {
  1607. unsigned long flags;
  1608. int cpu = get_cpu();
  1609. __sched_fork(clone_flags, p);
  1610. /*
  1611. * We mark the process as running here. This guarantees that
  1612. * nobody will actually run it, and a signal or other external
  1613. * event cannot wake it up and insert it on the runqueue either.
  1614. */
  1615. p->state = TASK_RUNNING;
  1616. /*
  1617. * Make sure we do not leak PI boosting priority to the child.
  1618. */
  1619. p->prio = current->normal_prio;
  1620. /*
  1621. * Revert to default priority/policy on fork if requested.
  1622. */
  1623. if (unlikely(p->sched_reset_on_fork)) {
  1624. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1625. p->policy = SCHED_NORMAL;
  1626. p->static_prio = NICE_TO_PRIO(0);
  1627. p->rt_priority = 0;
  1628. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1629. p->static_prio = NICE_TO_PRIO(0);
  1630. p->prio = p->normal_prio = __normal_prio(p);
  1631. set_load_weight(p);
  1632. /*
  1633. * We don't need the reset flag anymore after the fork. It has
  1634. * fulfilled its duty:
  1635. */
  1636. p->sched_reset_on_fork = 0;
  1637. }
  1638. if (dl_prio(p->prio)) {
  1639. put_cpu();
  1640. return -EAGAIN;
  1641. } else if (rt_prio(p->prio)) {
  1642. p->sched_class = &rt_sched_class;
  1643. } else {
  1644. p->sched_class = &fair_sched_class;
  1645. }
  1646. if (p->sched_class->task_fork)
  1647. p->sched_class->task_fork(p);
  1648. /*
  1649. * The child is not yet in the pid-hash so no cgroup attach races,
  1650. * and the cgroup is pinned to this child due to cgroup_fork()
  1651. * is ran before sched_fork().
  1652. *
  1653. * Silence PROVE_RCU.
  1654. */
  1655. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1656. set_task_cpu(p, cpu);
  1657. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1658. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1659. if (likely(sched_info_on()))
  1660. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1661. #endif
  1662. #if defined(CONFIG_SMP)
  1663. p->on_cpu = 0;
  1664. #endif
  1665. init_task_preempt_count(p);
  1666. #ifdef CONFIG_SMP
  1667. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1668. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1669. #endif
  1670. put_cpu();
  1671. return 0;
  1672. }
  1673. unsigned long to_ratio(u64 period, u64 runtime)
  1674. {
  1675. if (runtime == RUNTIME_INF)
  1676. return 1ULL << 20;
  1677. /*
  1678. * Doing this here saves a lot of checks in all
  1679. * the calling paths, and returning zero seems
  1680. * safe for them anyway.
  1681. */
  1682. if (period == 0)
  1683. return 0;
  1684. return div64_u64(runtime << 20, period);
  1685. }
  1686. #ifdef CONFIG_SMP
  1687. inline struct dl_bw *dl_bw_of(int i)
  1688. {
  1689. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1690. "sched RCU must be held");
  1691. return &cpu_rq(i)->rd->dl_bw;
  1692. }
  1693. static inline int dl_bw_cpus(int i)
  1694. {
  1695. struct root_domain *rd = cpu_rq(i)->rd;
  1696. int cpus = 0;
  1697. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1698. "sched RCU must be held");
  1699. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1700. cpus++;
  1701. return cpus;
  1702. }
  1703. #else
  1704. inline struct dl_bw *dl_bw_of(int i)
  1705. {
  1706. return &cpu_rq(i)->dl.dl_bw;
  1707. }
  1708. static inline int dl_bw_cpus(int i)
  1709. {
  1710. return 1;
  1711. }
  1712. #endif
  1713. /*
  1714. * We must be sure that accepting a new task (or allowing changing the
  1715. * parameters of an existing one) is consistent with the bandwidth
  1716. * constraints. If yes, this function also accordingly updates the currently
  1717. * allocated bandwidth to reflect the new situation.
  1718. *
  1719. * This function is called while holding p's rq->lock.
  1720. *
  1721. * XXX we should delay bw change until the task's 0-lag point, see
  1722. * __setparam_dl().
  1723. */
  1724. static int dl_overflow(struct task_struct *p, int policy,
  1725. const struct sched_attr *attr)
  1726. {
  1727. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1728. u64 period = attr->sched_period ?: attr->sched_deadline;
  1729. u64 runtime = attr->sched_runtime;
  1730. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1731. int cpus, err = -1;
  1732. if (new_bw == p->dl.dl_bw)
  1733. return 0;
  1734. /*
  1735. * Either if a task, enters, leave, or stays -deadline but changes
  1736. * its parameters, we may need to update accordingly the total
  1737. * allocated bandwidth of the container.
  1738. */
  1739. raw_spin_lock(&dl_b->lock);
  1740. cpus = dl_bw_cpus(task_cpu(p));
  1741. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1742. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1743. __dl_add(dl_b, new_bw);
  1744. err = 0;
  1745. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1746. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1747. __dl_clear(dl_b, p->dl.dl_bw);
  1748. __dl_add(dl_b, new_bw);
  1749. err = 0;
  1750. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1751. __dl_clear(dl_b, p->dl.dl_bw);
  1752. err = 0;
  1753. }
  1754. raw_spin_unlock(&dl_b->lock);
  1755. return err;
  1756. }
  1757. extern void init_dl_bw(struct dl_bw *dl_b);
  1758. /*
  1759. * wake_up_new_task - wake up a newly created task for the first time.
  1760. *
  1761. * This function will do some initial scheduler statistics housekeeping
  1762. * that must be done for every newly created context, then puts the task
  1763. * on the runqueue and wakes it.
  1764. */
  1765. void wake_up_new_task(struct task_struct *p)
  1766. {
  1767. unsigned long flags;
  1768. struct rq *rq;
  1769. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1770. #ifdef CONFIG_SMP
  1771. /*
  1772. * Fork balancing, do it here and not earlier because:
  1773. * - cpus_allowed can change in the fork path
  1774. * - any previously selected cpu might disappear through hotplug
  1775. */
  1776. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1777. #endif
  1778. /* Initialize new task's runnable average */
  1779. init_task_runnable_average(p);
  1780. rq = __task_rq_lock(p);
  1781. activate_task(rq, p, 0);
  1782. p->on_rq = TASK_ON_RQ_QUEUED;
  1783. trace_sched_wakeup_new(p, true);
  1784. check_preempt_curr(rq, p, WF_FORK);
  1785. #ifdef CONFIG_SMP
  1786. if (p->sched_class->task_woken)
  1787. p->sched_class->task_woken(rq, p);
  1788. #endif
  1789. task_rq_unlock(rq, p, &flags);
  1790. }
  1791. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1792. /**
  1793. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1794. * @notifier: notifier struct to register
  1795. */
  1796. void preempt_notifier_register(struct preempt_notifier *notifier)
  1797. {
  1798. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1799. }
  1800. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1801. /**
  1802. * preempt_notifier_unregister - no longer interested in preemption notifications
  1803. * @notifier: notifier struct to unregister
  1804. *
  1805. * This is safe to call from within a preemption notifier.
  1806. */
  1807. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1808. {
  1809. hlist_del(&notifier->link);
  1810. }
  1811. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1812. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1813. {
  1814. struct preempt_notifier *notifier;
  1815. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1816. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1817. }
  1818. static void
  1819. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1820. struct task_struct *next)
  1821. {
  1822. struct preempt_notifier *notifier;
  1823. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1824. notifier->ops->sched_out(notifier, next);
  1825. }
  1826. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1827. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1828. {
  1829. }
  1830. static void
  1831. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1832. struct task_struct *next)
  1833. {
  1834. }
  1835. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1836. /**
  1837. * prepare_task_switch - prepare to switch tasks
  1838. * @rq: the runqueue preparing to switch
  1839. * @prev: the current task that is being switched out
  1840. * @next: the task we are going to switch to.
  1841. *
  1842. * This is called with the rq lock held and interrupts off. It must
  1843. * be paired with a subsequent finish_task_switch after the context
  1844. * switch.
  1845. *
  1846. * prepare_task_switch sets up locking and calls architecture specific
  1847. * hooks.
  1848. */
  1849. static inline void
  1850. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1851. struct task_struct *next)
  1852. {
  1853. trace_sched_switch(prev, next);
  1854. sched_info_switch(rq, prev, next);
  1855. perf_event_task_sched_out(prev, next);
  1856. fire_sched_out_preempt_notifiers(prev, next);
  1857. prepare_lock_switch(rq, next);
  1858. prepare_arch_switch(next);
  1859. }
  1860. /**
  1861. * finish_task_switch - clean up after a task-switch
  1862. * @prev: the thread we just switched away from.
  1863. *
  1864. * finish_task_switch must be called after the context switch, paired
  1865. * with a prepare_task_switch call before the context switch.
  1866. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1867. * and do any other architecture-specific cleanup actions.
  1868. *
  1869. * Note that we may have delayed dropping an mm in context_switch(). If
  1870. * so, we finish that here outside of the runqueue lock. (Doing it
  1871. * with the lock held can cause deadlocks; see schedule() for
  1872. * details.)
  1873. *
  1874. * The context switch have flipped the stack from under us and restored the
  1875. * local variables which were saved when this task called schedule() in the
  1876. * past. prev == current is still correct but we need to recalculate this_rq
  1877. * because prev may have moved to another CPU.
  1878. */
  1879. static struct rq *finish_task_switch(struct task_struct *prev)
  1880. __releases(rq->lock)
  1881. {
  1882. struct rq *rq = this_rq();
  1883. struct mm_struct *mm = rq->prev_mm;
  1884. long prev_state;
  1885. rq->prev_mm = NULL;
  1886. /*
  1887. * A task struct has one reference for the use as "current".
  1888. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1889. * schedule one last time. The schedule call will never return, and
  1890. * the scheduled task must drop that reference.
  1891. * The test for TASK_DEAD must occur while the runqueue locks are
  1892. * still held, otherwise prev could be scheduled on another cpu, die
  1893. * there before we look at prev->state, and then the reference would
  1894. * be dropped twice.
  1895. * Manfred Spraul <manfred@colorfullife.com>
  1896. */
  1897. prev_state = prev->state;
  1898. vtime_task_switch(prev);
  1899. finish_arch_switch(prev);
  1900. perf_event_task_sched_in(prev, current);
  1901. finish_lock_switch(rq, prev);
  1902. finish_arch_post_lock_switch();
  1903. fire_sched_in_preempt_notifiers(current);
  1904. if (mm)
  1905. mmdrop(mm);
  1906. if (unlikely(prev_state == TASK_DEAD)) {
  1907. if (prev->sched_class->task_dead)
  1908. prev->sched_class->task_dead(prev);
  1909. /*
  1910. * Remove function-return probe instances associated with this
  1911. * task and put them back on the free list.
  1912. */
  1913. kprobe_flush_task(prev);
  1914. put_task_struct(prev);
  1915. }
  1916. tick_nohz_task_switch(current);
  1917. return rq;
  1918. }
  1919. #ifdef CONFIG_SMP
  1920. /* rq->lock is NOT held, but preemption is disabled */
  1921. static inline void post_schedule(struct rq *rq)
  1922. {
  1923. if (rq->post_schedule) {
  1924. unsigned long flags;
  1925. raw_spin_lock_irqsave(&rq->lock, flags);
  1926. if (rq->curr->sched_class->post_schedule)
  1927. rq->curr->sched_class->post_schedule(rq);
  1928. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1929. rq->post_schedule = 0;
  1930. }
  1931. }
  1932. #else
  1933. static inline void post_schedule(struct rq *rq)
  1934. {
  1935. }
  1936. #endif
  1937. /**
  1938. * schedule_tail - first thing a freshly forked thread must call.
  1939. * @prev: the thread we just switched away from.
  1940. */
  1941. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1942. __releases(rq->lock)
  1943. {
  1944. struct rq *rq;
  1945. /* finish_task_switch() drops rq->lock and enables preemtion */
  1946. preempt_disable();
  1947. rq = finish_task_switch(prev);
  1948. post_schedule(rq);
  1949. preempt_enable();
  1950. if (current->set_child_tid)
  1951. put_user(task_pid_vnr(current), current->set_child_tid);
  1952. }
  1953. /*
  1954. * context_switch - switch to the new MM and the new thread's register state.
  1955. */
  1956. static inline struct rq *
  1957. context_switch(struct rq *rq, struct task_struct *prev,
  1958. struct task_struct *next)
  1959. {
  1960. struct mm_struct *mm, *oldmm;
  1961. prepare_task_switch(rq, prev, next);
  1962. mm = next->mm;
  1963. oldmm = prev->active_mm;
  1964. /*
  1965. * For paravirt, this is coupled with an exit in switch_to to
  1966. * combine the page table reload and the switch backend into
  1967. * one hypercall.
  1968. */
  1969. arch_start_context_switch(prev);
  1970. if (!mm) {
  1971. next->active_mm = oldmm;
  1972. atomic_inc(&oldmm->mm_count);
  1973. enter_lazy_tlb(oldmm, next);
  1974. } else
  1975. switch_mm(oldmm, mm, next);
  1976. if (!prev->mm) {
  1977. prev->active_mm = NULL;
  1978. rq->prev_mm = oldmm;
  1979. }
  1980. /*
  1981. * Since the runqueue lock will be released by the next
  1982. * task (which is an invalid locking op but in the case
  1983. * of the scheduler it's an obvious special-case), so we
  1984. * do an early lockdep release here:
  1985. */
  1986. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1987. context_tracking_task_switch(prev, next);
  1988. /* Here we just switch the register state and the stack. */
  1989. switch_to(prev, next, prev);
  1990. barrier();
  1991. return finish_task_switch(prev);
  1992. }
  1993. /*
  1994. * nr_running and nr_context_switches:
  1995. *
  1996. * externally visible scheduler statistics: current number of runnable
  1997. * threads, total number of context switches performed since bootup.
  1998. */
  1999. unsigned long nr_running(void)
  2000. {
  2001. unsigned long i, sum = 0;
  2002. for_each_online_cpu(i)
  2003. sum += cpu_rq(i)->nr_running;
  2004. return sum;
  2005. }
  2006. /*
  2007. * Check if only the current task is running on the cpu.
  2008. */
  2009. bool single_task_running(void)
  2010. {
  2011. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2012. return true;
  2013. else
  2014. return false;
  2015. }
  2016. EXPORT_SYMBOL(single_task_running);
  2017. unsigned long long nr_context_switches(void)
  2018. {
  2019. int i;
  2020. unsigned long long sum = 0;
  2021. for_each_possible_cpu(i)
  2022. sum += cpu_rq(i)->nr_switches;
  2023. return sum;
  2024. }
  2025. unsigned long nr_iowait(void)
  2026. {
  2027. unsigned long i, sum = 0;
  2028. for_each_possible_cpu(i)
  2029. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2030. return sum;
  2031. }
  2032. unsigned long nr_iowait_cpu(int cpu)
  2033. {
  2034. struct rq *this = cpu_rq(cpu);
  2035. return atomic_read(&this->nr_iowait);
  2036. }
  2037. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2038. {
  2039. struct rq *this = this_rq();
  2040. *nr_waiters = atomic_read(&this->nr_iowait);
  2041. *load = this->cpu_load[0];
  2042. }
  2043. #ifdef CONFIG_SMP
  2044. /*
  2045. * sched_exec - execve() is a valuable balancing opportunity, because at
  2046. * this point the task has the smallest effective memory and cache footprint.
  2047. */
  2048. void sched_exec(void)
  2049. {
  2050. struct task_struct *p = current;
  2051. unsigned long flags;
  2052. int dest_cpu;
  2053. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2054. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2055. if (dest_cpu == smp_processor_id())
  2056. goto unlock;
  2057. if (likely(cpu_active(dest_cpu))) {
  2058. struct migration_arg arg = { p, dest_cpu };
  2059. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2060. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2061. return;
  2062. }
  2063. unlock:
  2064. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2065. }
  2066. #endif
  2067. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2068. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2069. EXPORT_PER_CPU_SYMBOL(kstat);
  2070. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2071. /*
  2072. * Return accounted runtime for the task.
  2073. * In case the task is currently running, return the runtime plus current's
  2074. * pending runtime that have not been accounted yet.
  2075. */
  2076. unsigned long long task_sched_runtime(struct task_struct *p)
  2077. {
  2078. unsigned long flags;
  2079. struct rq *rq;
  2080. u64 ns;
  2081. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2082. /*
  2083. * 64-bit doesn't need locks to atomically read a 64bit value.
  2084. * So we have a optimization chance when the task's delta_exec is 0.
  2085. * Reading ->on_cpu is racy, but this is ok.
  2086. *
  2087. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2088. * If we race with it entering cpu, unaccounted time is 0. This is
  2089. * indistinguishable from the read occurring a few cycles earlier.
  2090. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2091. * been accounted, so we're correct here as well.
  2092. */
  2093. if (!p->on_cpu || !task_on_rq_queued(p))
  2094. return p->se.sum_exec_runtime;
  2095. #endif
  2096. rq = task_rq_lock(p, &flags);
  2097. /*
  2098. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2099. * project cycles that may never be accounted to this
  2100. * thread, breaking clock_gettime().
  2101. */
  2102. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2103. update_rq_clock(rq);
  2104. p->sched_class->update_curr(rq);
  2105. }
  2106. ns = p->se.sum_exec_runtime;
  2107. task_rq_unlock(rq, p, &flags);
  2108. return ns;
  2109. }
  2110. /*
  2111. * This function gets called by the timer code, with HZ frequency.
  2112. * We call it with interrupts disabled.
  2113. */
  2114. void scheduler_tick(void)
  2115. {
  2116. int cpu = smp_processor_id();
  2117. struct rq *rq = cpu_rq(cpu);
  2118. struct task_struct *curr = rq->curr;
  2119. sched_clock_tick();
  2120. raw_spin_lock(&rq->lock);
  2121. update_rq_clock(rq);
  2122. curr->sched_class->task_tick(rq, curr, 0);
  2123. update_cpu_load_active(rq);
  2124. raw_spin_unlock(&rq->lock);
  2125. perf_event_task_tick();
  2126. #ifdef CONFIG_SMP
  2127. rq->idle_balance = idle_cpu(cpu);
  2128. trigger_load_balance(rq);
  2129. #endif
  2130. rq_last_tick_reset(rq);
  2131. }
  2132. #ifdef CONFIG_NO_HZ_FULL
  2133. /**
  2134. * scheduler_tick_max_deferment
  2135. *
  2136. * Keep at least one tick per second when a single
  2137. * active task is running because the scheduler doesn't
  2138. * yet completely support full dynticks environment.
  2139. *
  2140. * This makes sure that uptime, CFS vruntime, load
  2141. * balancing, etc... continue to move forward, even
  2142. * with a very low granularity.
  2143. *
  2144. * Return: Maximum deferment in nanoseconds.
  2145. */
  2146. u64 scheduler_tick_max_deferment(void)
  2147. {
  2148. struct rq *rq = this_rq();
  2149. unsigned long next, now = ACCESS_ONCE(jiffies);
  2150. next = rq->last_sched_tick + HZ;
  2151. if (time_before_eq(next, now))
  2152. return 0;
  2153. return jiffies_to_nsecs(next - now);
  2154. }
  2155. #endif
  2156. notrace unsigned long get_parent_ip(unsigned long addr)
  2157. {
  2158. if (in_lock_functions(addr)) {
  2159. addr = CALLER_ADDR2;
  2160. if (in_lock_functions(addr))
  2161. addr = CALLER_ADDR3;
  2162. }
  2163. return addr;
  2164. }
  2165. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2166. defined(CONFIG_PREEMPT_TRACER))
  2167. void preempt_count_add(int val)
  2168. {
  2169. #ifdef CONFIG_DEBUG_PREEMPT
  2170. /*
  2171. * Underflow?
  2172. */
  2173. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2174. return;
  2175. #endif
  2176. __preempt_count_add(val);
  2177. #ifdef CONFIG_DEBUG_PREEMPT
  2178. /*
  2179. * Spinlock count overflowing soon?
  2180. */
  2181. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2182. PREEMPT_MASK - 10);
  2183. #endif
  2184. if (preempt_count() == val) {
  2185. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2186. #ifdef CONFIG_DEBUG_PREEMPT
  2187. current->preempt_disable_ip = ip;
  2188. #endif
  2189. trace_preempt_off(CALLER_ADDR0, ip);
  2190. }
  2191. }
  2192. EXPORT_SYMBOL(preempt_count_add);
  2193. NOKPROBE_SYMBOL(preempt_count_add);
  2194. void preempt_count_sub(int val)
  2195. {
  2196. #ifdef CONFIG_DEBUG_PREEMPT
  2197. /*
  2198. * Underflow?
  2199. */
  2200. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2201. return;
  2202. /*
  2203. * Is the spinlock portion underflowing?
  2204. */
  2205. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2206. !(preempt_count() & PREEMPT_MASK)))
  2207. return;
  2208. #endif
  2209. if (preempt_count() == val)
  2210. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2211. __preempt_count_sub(val);
  2212. }
  2213. EXPORT_SYMBOL(preempt_count_sub);
  2214. NOKPROBE_SYMBOL(preempt_count_sub);
  2215. #endif
  2216. /*
  2217. * Print scheduling while atomic bug:
  2218. */
  2219. static noinline void __schedule_bug(struct task_struct *prev)
  2220. {
  2221. if (oops_in_progress)
  2222. return;
  2223. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2224. prev->comm, prev->pid, preempt_count());
  2225. debug_show_held_locks(prev);
  2226. print_modules();
  2227. if (irqs_disabled())
  2228. print_irqtrace_events(prev);
  2229. #ifdef CONFIG_DEBUG_PREEMPT
  2230. if (in_atomic_preempt_off()) {
  2231. pr_err("Preemption disabled at:");
  2232. print_ip_sym(current->preempt_disable_ip);
  2233. pr_cont("\n");
  2234. }
  2235. #endif
  2236. dump_stack();
  2237. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2238. }
  2239. /*
  2240. * Various schedule()-time debugging checks and statistics:
  2241. */
  2242. static inline void schedule_debug(struct task_struct *prev)
  2243. {
  2244. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2245. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2246. #endif
  2247. /*
  2248. * Test if we are atomic. Since do_exit() needs to call into
  2249. * schedule() atomically, we ignore that path. Otherwise whine
  2250. * if we are scheduling when we should not.
  2251. */
  2252. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2253. __schedule_bug(prev);
  2254. rcu_sleep_check();
  2255. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2256. schedstat_inc(this_rq(), sched_count);
  2257. }
  2258. /*
  2259. * Pick up the highest-prio task:
  2260. */
  2261. static inline struct task_struct *
  2262. pick_next_task(struct rq *rq, struct task_struct *prev)
  2263. {
  2264. const struct sched_class *class = &fair_sched_class;
  2265. struct task_struct *p;
  2266. /*
  2267. * Optimization: we know that if all tasks are in
  2268. * the fair class we can call that function directly:
  2269. */
  2270. if (likely(prev->sched_class == class &&
  2271. rq->nr_running == rq->cfs.h_nr_running)) {
  2272. p = fair_sched_class.pick_next_task(rq, prev);
  2273. if (unlikely(p == RETRY_TASK))
  2274. goto again;
  2275. /* assumes fair_sched_class->next == idle_sched_class */
  2276. if (unlikely(!p))
  2277. p = idle_sched_class.pick_next_task(rq, prev);
  2278. return p;
  2279. }
  2280. again:
  2281. for_each_class(class) {
  2282. p = class->pick_next_task(rq, prev);
  2283. if (p) {
  2284. if (unlikely(p == RETRY_TASK))
  2285. goto again;
  2286. return p;
  2287. }
  2288. }
  2289. BUG(); /* the idle class will always have a runnable task */
  2290. }
  2291. /*
  2292. * __schedule() is the main scheduler function.
  2293. *
  2294. * The main means of driving the scheduler and thus entering this function are:
  2295. *
  2296. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2297. *
  2298. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2299. * paths. For example, see arch/x86/entry_64.S.
  2300. *
  2301. * To drive preemption between tasks, the scheduler sets the flag in timer
  2302. * interrupt handler scheduler_tick().
  2303. *
  2304. * 3. Wakeups don't really cause entry into schedule(). They add a
  2305. * task to the run-queue and that's it.
  2306. *
  2307. * Now, if the new task added to the run-queue preempts the current
  2308. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2309. * called on the nearest possible occasion:
  2310. *
  2311. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2312. *
  2313. * - in syscall or exception context, at the next outmost
  2314. * preempt_enable(). (this might be as soon as the wake_up()'s
  2315. * spin_unlock()!)
  2316. *
  2317. * - in IRQ context, return from interrupt-handler to
  2318. * preemptible context
  2319. *
  2320. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2321. * then at the next:
  2322. *
  2323. * - cond_resched() call
  2324. * - explicit schedule() call
  2325. * - return from syscall or exception to user-space
  2326. * - return from interrupt-handler to user-space
  2327. *
  2328. * WARNING: all callers must re-check need_resched() afterward and reschedule
  2329. * accordingly in case an event triggered the need for rescheduling (such as
  2330. * an interrupt waking up a task) while preemption was disabled in __schedule().
  2331. */
  2332. static void __sched __schedule(void)
  2333. {
  2334. struct task_struct *prev, *next;
  2335. unsigned long *switch_count;
  2336. struct rq *rq;
  2337. int cpu;
  2338. preempt_disable();
  2339. cpu = smp_processor_id();
  2340. rq = cpu_rq(cpu);
  2341. rcu_note_context_switch();
  2342. prev = rq->curr;
  2343. schedule_debug(prev);
  2344. if (sched_feat(HRTICK))
  2345. hrtick_clear(rq);
  2346. /*
  2347. * Make sure that signal_pending_state()->signal_pending() below
  2348. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2349. * done by the caller to avoid the race with signal_wake_up().
  2350. */
  2351. smp_mb__before_spinlock();
  2352. raw_spin_lock_irq(&rq->lock);
  2353. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2354. switch_count = &prev->nivcsw;
  2355. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2356. if (unlikely(signal_pending_state(prev->state, prev))) {
  2357. prev->state = TASK_RUNNING;
  2358. } else {
  2359. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2360. prev->on_rq = 0;
  2361. /*
  2362. * If a worker went to sleep, notify and ask workqueue
  2363. * whether it wants to wake up a task to maintain
  2364. * concurrency.
  2365. */
  2366. if (prev->flags & PF_WQ_WORKER) {
  2367. struct task_struct *to_wakeup;
  2368. to_wakeup = wq_worker_sleeping(prev, cpu);
  2369. if (to_wakeup)
  2370. try_to_wake_up_local(to_wakeup);
  2371. }
  2372. }
  2373. switch_count = &prev->nvcsw;
  2374. }
  2375. if (task_on_rq_queued(prev))
  2376. update_rq_clock(rq);
  2377. next = pick_next_task(rq, prev);
  2378. clear_tsk_need_resched(prev);
  2379. clear_preempt_need_resched();
  2380. rq->clock_skip_update = 0;
  2381. if (likely(prev != next)) {
  2382. rq->nr_switches++;
  2383. rq->curr = next;
  2384. ++*switch_count;
  2385. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2386. cpu = cpu_of(rq);
  2387. } else
  2388. raw_spin_unlock_irq(&rq->lock);
  2389. post_schedule(rq);
  2390. sched_preempt_enable_no_resched();
  2391. }
  2392. static inline void sched_submit_work(struct task_struct *tsk)
  2393. {
  2394. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2395. return;
  2396. /*
  2397. * If we are going to sleep and we have plugged IO queued,
  2398. * make sure to submit it to avoid deadlocks.
  2399. */
  2400. if (blk_needs_flush_plug(tsk))
  2401. blk_schedule_flush_plug(tsk);
  2402. }
  2403. asmlinkage __visible void __sched schedule(void)
  2404. {
  2405. struct task_struct *tsk = current;
  2406. sched_submit_work(tsk);
  2407. do {
  2408. __schedule();
  2409. } while (need_resched());
  2410. }
  2411. EXPORT_SYMBOL(schedule);
  2412. #ifdef CONFIG_CONTEXT_TRACKING
  2413. asmlinkage __visible void __sched schedule_user(void)
  2414. {
  2415. /*
  2416. * If we come here after a random call to set_need_resched(),
  2417. * or we have been woken up remotely but the IPI has not yet arrived,
  2418. * we haven't yet exited the RCU idle mode. Do it here manually until
  2419. * we find a better solution.
  2420. *
  2421. * NB: There are buggy callers of this function. Ideally we
  2422. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2423. * too frequently to make sense yet.
  2424. */
  2425. enum ctx_state prev_state = exception_enter();
  2426. schedule();
  2427. exception_exit(prev_state);
  2428. }
  2429. #endif
  2430. /**
  2431. * schedule_preempt_disabled - called with preemption disabled
  2432. *
  2433. * Returns with preemption disabled. Note: preempt_count must be 1
  2434. */
  2435. void __sched schedule_preempt_disabled(void)
  2436. {
  2437. sched_preempt_enable_no_resched();
  2438. schedule();
  2439. preempt_disable();
  2440. }
  2441. static void __sched notrace preempt_schedule_common(void)
  2442. {
  2443. do {
  2444. __preempt_count_add(PREEMPT_ACTIVE);
  2445. __schedule();
  2446. __preempt_count_sub(PREEMPT_ACTIVE);
  2447. /*
  2448. * Check again in case we missed a preemption opportunity
  2449. * between schedule and now.
  2450. */
  2451. barrier();
  2452. } while (need_resched());
  2453. }
  2454. #ifdef CONFIG_PREEMPT
  2455. /*
  2456. * this is the entry point to schedule() from in-kernel preemption
  2457. * off of preempt_enable. Kernel preemptions off return from interrupt
  2458. * occur there and call schedule directly.
  2459. */
  2460. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2461. {
  2462. /*
  2463. * If there is a non-zero preempt_count or interrupts are disabled,
  2464. * we do not want to preempt the current task. Just return..
  2465. */
  2466. if (likely(!preemptible()))
  2467. return;
  2468. preempt_schedule_common();
  2469. }
  2470. NOKPROBE_SYMBOL(preempt_schedule);
  2471. EXPORT_SYMBOL(preempt_schedule);
  2472. #ifdef CONFIG_CONTEXT_TRACKING
  2473. /**
  2474. * preempt_schedule_context - preempt_schedule called by tracing
  2475. *
  2476. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2477. * recursion and tracing preempt enabling caused by the tracing
  2478. * infrastructure itself. But as tracing can happen in areas coming
  2479. * from userspace or just about to enter userspace, a preempt enable
  2480. * can occur before user_exit() is called. This will cause the scheduler
  2481. * to be called when the system is still in usermode.
  2482. *
  2483. * To prevent this, the preempt_enable_notrace will use this function
  2484. * instead of preempt_schedule() to exit user context if needed before
  2485. * calling the scheduler.
  2486. */
  2487. asmlinkage __visible void __sched notrace preempt_schedule_context(void)
  2488. {
  2489. enum ctx_state prev_ctx;
  2490. if (likely(!preemptible()))
  2491. return;
  2492. do {
  2493. __preempt_count_add(PREEMPT_ACTIVE);
  2494. /*
  2495. * Needs preempt disabled in case user_exit() is traced
  2496. * and the tracer calls preempt_enable_notrace() causing
  2497. * an infinite recursion.
  2498. */
  2499. prev_ctx = exception_enter();
  2500. __schedule();
  2501. exception_exit(prev_ctx);
  2502. __preempt_count_sub(PREEMPT_ACTIVE);
  2503. barrier();
  2504. } while (need_resched());
  2505. }
  2506. EXPORT_SYMBOL_GPL(preempt_schedule_context);
  2507. #endif /* CONFIG_CONTEXT_TRACKING */
  2508. #endif /* CONFIG_PREEMPT */
  2509. /*
  2510. * this is the entry point to schedule() from kernel preemption
  2511. * off of irq context.
  2512. * Note, that this is called and return with irqs disabled. This will
  2513. * protect us against recursive calling from irq.
  2514. */
  2515. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2516. {
  2517. enum ctx_state prev_state;
  2518. /* Catch callers which need to be fixed */
  2519. BUG_ON(preempt_count() || !irqs_disabled());
  2520. prev_state = exception_enter();
  2521. do {
  2522. __preempt_count_add(PREEMPT_ACTIVE);
  2523. local_irq_enable();
  2524. __schedule();
  2525. local_irq_disable();
  2526. __preempt_count_sub(PREEMPT_ACTIVE);
  2527. /*
  2528. * Check again in case we missed a preemption opportunity
  2529. * between schedule and now.
  2530. */
  2531. barrier();
  2532. } while (need_resched());
  2533. exception_exit(prev_state);
  2534. }
  2535. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2536. void *key)
  2537. {
  2538. return try_to_wake_up(curr->private, mode, wake_flags);
  2539. }
  2540. EXPORT_SYMBOL(default_wake_function);
  2541. #ifdef CONFIG_RT_MUTEXES
  2542. /*
  2543. * rt_mutex_setprio - set the current priority of a task
  2544. * @p: task
  2545. * @prio: prio value (kernel-internal form)
  2546. *
  2547. * This function changes the 'effective' priority of a task. It does
  2548. * not touch ->normal_prio like __setscheduler().
  2549. *
  2550. * Used by the rt_mutex code to implement priority inheritance
  2551. * logic. Call site only calls if the priority of the task changed.
  2552. */
  2553. void rt_mutex_setprio(struct task_struct *p, int prio)
  2554. {
  2555. int oldprio, queued, running, enqueue_flag = 0;
  2556. struct rq *rq;
  2557. const struct sched_class *prev_class;
  2558. BUG_ON(prio > MAX_PRIO);
  2559. rq = __task_rq_lock(p);
  2560. /*
  2561. * Idle task boosting is a nono in general. There is one
  2562. * exception, when PREEMPT_RT and NOHZ is active:
  2563. *
  2564. * The idle task calls get_next_timer_interrupt() and holds
  2565. * the timer wheel base->lock on the CPU and another CPU wants
  2566. * to access the timer (probably to cancel it). We can safely
  2567. * ignore the boosting request, as the idle CPU runs this code
  2568. * with interrupts disabled and will complete the lock
  2569. * protected section without being interrupted. So there is no
  2570. * real need to boost.
  2571. */
  2572. if (unlikely(p == rq->idle)) {
  2573. WARN_ON(p != rq->curr);
  2574. WARN_ON(p->pi_blocked_on);
  2575. goto out_unlock;
  2576. }
  2577. trace_sched_pi_setprio(p, prio);
  2578. oldprio = p->prio;
  2579. prev_class = p->sched_class;
  2580. queued = task_on_rq_queued(p);
  2581. running = task_current(rq, p);
  2582. if (queued)
  2583. dequeue_task(rq, p, 0);
  2584. if (running)
  2585. put_prev_task(rq, p);
  2586. /*
  2587. * Boosting condition are:
  2588. * 1. -rt task is running and holds mutex A
  2589. * --> -dl task blocks on mutex A
  2590. *
  2591. * 2. -dl task is running and holds mutex A
  2592. * --> -dl task blocks on mutex A and could preempt the
  2593. * running task
  2594. */
  2595. if (dl_prio(prio)) {
  2596. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2597. if (!dl_prio(p->normal_prio) ||
  2598. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2599. p->dl.dl_boosted = 1;
  2600. p->dl.dl_throttled = 0;
  2601. enqueue_flag = ENQUEUE_REPLENISH;
  2602. } else
  2603. p->dl.dl_boosted = 0;
  2604. p->sched_class = &dl_sched_class;
  2605. } else if (rt_prio(prio)) {
  2606. if (dl_prio(oldprio))
  2607. p->dl.dl_boosted = 0;
  2608. if (oldprio < prio)
  2609. enqueue_flag = ENQUEUE_HEAD;
  2610. p->sched_class = &rt_sched_class;
  2611. } else {
  2612. if (dl_prio(oldprio))
  2613. p->dl.dl_boosted = 0;
  2614. if (rt_prio(oldprio))
  2615. p->rt.timeout = 0;
  2616. p->sched_class = &fair_sched_class;
  2617. }
  2618. p->prio = prio;
  2619. if (running)
  2620. p->sched_class->set_curr_task(rq);
  2621. if (queued)
  2622. enqueue_task(rq, p, enqueue_flag);
  2623. check_class_changed(rq, p, prev_class, oldprio);
  2624. out_unlock:
  2625. __task_rq_unlock(rq);
  2626. }
  2627. #endif
  2628. void set_user_nice(struct task_struct *p, long nice)
  2629. {
  2630. int old_prio, delta, queued;
  2631. unsigned long flags;
  2632. struct rq *rq;
  2633. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2634. return;
  2635. /*
  2636. * We have to be careful, if called from sys_setpriority(),
  2637. * the task might be in the middle of scheduling on another CPU.
  2638. */
  2639. rq = task_rq_lock(p, &flags);
  2640. /*
  2641. * The RT priorities are set via sched_setscheduler(), but we still
  2642. * allow the 'normal' nice value to be set - but as expected
  2643. * it wont have any effect on scheduling until the task is
  2644. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2645. */
  2646. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2647. p->static_prio = NICE_TO_PRIO(nice);
  2648. goto out_unlock;
  2649. }
  2650. queued = task_on_rq_queued(p);
  2651. if (queued)
  2652. dequeue_task(rq, p, 0);
  2653. p->static_prio = NICE_TO_PRIO(nice);
  2654. set_load_weight(p);
  2655. old_prio = p->prio;
  2656. p->prio = effective_prio(p);
  2657. delta = p->prio - old_prio;
  2658. if (queued) {
  2659. enqueue_task(rq, p, 0);
  2660. /*
  2661. * If the task increased its priority or is running and
  2662. * lowered its priority, then reschedule its CPU:
  2663. */
  2664. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2665. resched_curr(rq);
  2666. }
  2667. out_unlock:
  2668. task_rq_unlock(rq, p, &flags);
  2669. }
  2670. EXPORT_SYMBOL(set_user_nice);
  2671. /*
  2672. * can_nice - check if a task can reduce its nice value
  2673. * @p: task
  2674. * @nice: nice value
  2675. */
  2676. int can_nice(const struct task_struct *p, const int nice)
  2677. {
  2678. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2679. int nice_rlim = nice_to_rlimit(nice);
  2680. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2681. capable(CAP_SYS_NICE));
  2682. }
  2683. #ifdef __ARCH_WANT_SYS_NICE
  2684. /*
  2685. * sys_nice - change the priority of the current process.
  2686. * @increment: priority increment
  2687. *
  2688. * sys_setpriority is a more generic, but much slower function that
  2689. * does similar things.
  2690. */
  2691. SYSCALL_DEFINE1(nice, int, increment)
  2692. {
  2693. long nice, retval;
  2694. /*
  2695. * Setpriority might change our priority at the same moment.
  2696. * We don't have to worry. Conceptually one call occurs first
  2697. * and we have a single winner.
  2698. */
  2699. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2700. nice = task_nice(current) + increment;
  2701. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2702. if (increment < 0 && !can_nice(current, nice))
  2703. return -EPERM;
  2704. retval = security_task_setnice(current, nice);
  2705. if (retval)
  2706. return retval;
  2707. set_user_nice(current, nice);
  2708. return 0;
  2709. }
  2710. #endif
  2711. /**
  2712. * task_prio - return the priority value of a given task.
  2713. * @p: the task in question.
  2714. *
  2715. * Return: The priority value as seen by users in /proc.
  2716. * RT tasks are offset by -200. Normal tasks are centered
  2717. * around 0, value goes from -16 to +15.
  2718. */
  2719. int task_prio(const struct task_struct *p)
  2720. {
  2721. return p->prio - MAX_RT_PRIO;
  2722. }
  2723. /**
  2724. * idle_cpu - is a given cpu idle currently?
  2725. * @cpu: the processor in question.
  2726. *
  2727. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2728. */
  2729. int idle_cpu(int cpu)
  2730. {
  2731. struct rq *rq = cpu_rq(cpu);
  2732. if (rq->curr != rq->idle)
  2733. return 0;
  2734. if (rq->nr_running)
  2735. return 0;
  2736. #ifdef CONFIG_SMP
  2737. if (!llist_empty(&rq->wake_list))
  2738. return 0;
  2739. #endif
  2740. return 1;
  2741. }
  2742. /**
  2743. * idle_task - return the idle task for a given cpu.
  2744. * @cpu: the processor in question.
  2745. *
  2746. * Return: The idle task for the cpu @cpu.
  2747. */
  2748. struct task_struct *idle_task(int cpu)
  2749. {
  2750. return cpu_rq(cpu)->idle;
  2751. }
  2752. /**
  2753. * find_process_by_pid - find a process with a matching PID value.
  2754. * @pid: the pid in question.
  2755. *
  2756. * The task of @pid, if found. %NULL otherwise.
  2757. */
  2758. static struct task_struct *find_process_by_pid(pid_t pid)
  2759. {
  2760. return pid ? find_task_by_vpid(pid) : current;
  2761. }
  2762. /*
  2763. * This function initializes the sched_dl_entity of a newly becoming
  2764. * SCHED_DEADLINE task.
  2765. *
  2766. * Only the static values are considered here, the actual runtime and the
  2767. * absolute deadline will be properly calculated when the task is enqueued
  2768. * for the first time with its new policy.
  2769. */
  2770. static void
  2771. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2772. {
  2773. struct sched_dl_entity *dl_se = &p->dl;
  2774. dl_se->dl_runtime = attr->sched_runtime;
  2775. dl_se->dl_deadline = attr->sched_deadline;
  2776. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2777. dl_se->flags = attr->sched_flags;
  2778. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2779. /*
  2780. * Changing the parameters of a task is 'tricky' and we're not doing
  2781. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  2782. *
  2783. * What we SHOULD do is delay the bandwidth release until the 0-lag
  2784. * point. This would include retaining the task_struct until that time
  2785. * and change dl_overflow() to not immediately decrement the current
  2786. * amount.
  2787. *
  2788. * Instead we retain the current runtime/deadline and let the new
  2789. * parameters take effect after the current reservation period lapses.
  2790. * This is safe (albeit pessimistic) because the 0-lag point is always
  2791. * before the current scheduling deadline.
  2792. *
  2793. * We can still have temporary overloads because we do not delay the
  2794. * change in bandwidth until that time; so admission control is
  2795. * not on the safe side. It does however guarantee tasks will never
  2796. * consume more than promised.
  2797. */
  2798. }
  2799. /*
  2800. * sched_setparam() passes in -1 for its policy, to let the functions
  2801. * it calls know not to change it.
  2802. */
  2803. #define SETPARAM_POLICY -1
  2804. static void __setscheduler_params(struct task_struct *p,
  2805. const struct sched_attr *attr)
  2806. {
  2807. int policy = attr->sched_policy;
  2808. if (policy == SETPARAM_POLICY)
  2809. policy = p->policy;
  2810. p->policy = policy;
  2811. if (dl_policy(policy))
  2812. __setparam_dl(p, attr);
  2813. else if (fair_policy(policy))
  2814. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2815. /*
  2816. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2817. * !rt_policy. Always setting this ensures that things like
  2818. * getparam()/getattr() don't report silly values for !rt tasks.
  2819. */
  2820. p->rt_priority = attr->sched_priority;
  2821. p->normal_prio = normal_prio(p);
  2822. set_load_weight(p);
  2823. }
  2824. /* Actually do priority change: must hold pi & rq lock. */
  2825. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2826. const struct sched_attr *attr)
  2827. {
  2828. __setscheduler_params(p, attr);
  2829. /*
  2830. * If we get here, there was no pi waiters boosting the
  2831. * task. It is safe to use the normal prio.
  2832. */
  2833. p->prio = normal_prio(p);
  2834. if (dl_prio(p->prio))
  2835. p->sched_class = &dl_sched_class;
  2836. else if (rt_prio(p->prio))
  2837. p->sched_class = &rt_sched_class;
  2838. else
  2839. p->sched_class = &fair_sched_class;
  2840. }
  2841. static void
  2842. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2843. {
  2844. struct sched_dl_entity *dl_se = &p->dl;
  2845. attr->sched_priority = p->rt_priority;
  2846. attr->sched_runtime = dl_se->dl_runtime;
  2847. attr->sched_deadline = dl_se->dl_deadline;
  2848. attr->sched_period = dl_se->dl_period;
  2849. attr->sched_flags = dl_se->flags;
  2850. }
  2851. /*
  2852. * This function validates the new parameters of a -deadline task.
  2853. * We ask for the deadline not being zero, and greater or equal
  2854. * than the runtime, as well as the period of being zero or
  2855. * greater than deadline. Furthermore, we have to be sure that
  2856. * user parameters are above the internal resolution of 1us (we
  2857. * check sched_runtime only since it is always the smaller one) and
  2858. * below 2^63 ns (we have to check both sched_deadline and
  2859. * sched_period, as the latter can be zero).
  2860. */
  2861. static bool
  2862. __checkparam_dl(const struct sched_attr *attr)
  2863. {
  2864. /* deadline != 0 */
  2865. if (attr->sched_deadline == 0)
  2866. return false;
  2867. /*
  2868. * Since we truncate DL_SCALE bits, make sure we're at least
  2869. * that big.
  2870. */
  2871. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2872. return false;
  2873. /*
  2874. * Since we use the MSB for wrap-around and sign issues, make
  2875. * sure it's not set (mind that period can be equal to zero).
  2876. */
  2877. if (attr->sched_deadline & (1ULL << 63) ||
  2878. attr->sched_period & (1ULL << 63))
  2879. return false;
  2880. /* runtime <= deadline <= period (if period != 0) */
  2881. if ((attr->sched_period != 0 &&
  2882. attr->sched_period < attr->sched_deadline) ||
  2883. attr->sched_deadline < attr->sched_runtime)
  2884. return false;
  2885. return true;
  2886. }
  2887. /*
  2888. * check the target process has a UID that matches the current process's
  2889. */
  2890. static bool check_same_owner(struct task_struct *p)
  2891. {
  2892. const struct cred *cred = current_cred(), *pcred;
  2893. bool match;
  2894. rcu_read_lock();
  2895. pcred = __task_cred(p);
  2896. match = (uid_eq(cred->euid, pcred->euid) ||
  2897. uid_eq(cred->euid, pcred->uid));
  2898. rcu_read_unlock();
  2899. return match;
  2900. }
  2901. static bool dl_param_changed(struct task_struct *p,
  2902. const struct sched_attr *attr)
  2903. {
  2904. struct sched_dl_entity *dl_se = &p->dl;
  2905. if (dl_se->dl_runtime != attr->sched_runtime ||
  2906. dl_se->dl_deadline != attr->sched_deadline ||
  2907. dl_se->dl_period != attr->sched_period ||
  2908. dl_se->flags != attr->sched_flags)
  2909. return true;
  2910. return false;
  2911. }
  2912. static int __sched_setscheduler(struct task_struct *p,
  2913. const struct sched_attr *attr,
  2914. bool user)
  2915. {
  2916. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2917. MAX_RT_PRIO - 1 - attr->sched_priority;
  2918. int retval, oldprio, oldpolicy = -1, queued, running;
  2919. int policy = attr->sched_policy;
  2920. unsigned long flags;
  2921. const struct sched_class *prev_class;
  2922. struct rq *rq;
  2923. int reset_on_fork;
  2924. /* may grab non-irq protected spin_locks */
  2925. BUG_ON(in_interrupt());
  2926. recheck:
  2927. /* double check policy once rq lock held */
  2928. if (policy < 0) {
  2929. reset_on_fork = p->sched_reset_on_fork;
  2930. policy = oldpolicy = p->policy;
  2931. } else {
  2932. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2933. if (policy != SCHED_DEADLINE &&
  2934. policy != SCHED_FIFO && policy != SCHED_RR &&
  2935. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2936. policy != SCHED_IDLE)
  2937. return -EINVAL;
  2938. }
  2939. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2940. return -EINVAL;
  2941. /*
  2942. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2943. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2944. * SCHED_BATCH and SCHED_IDLE is 0.
  2945. */
  2946. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2947. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2948. return -EINVAL;
  2949. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2950. (rt_policy(policy) != (attr->sched_priority != 0)))
  2951. return -EINVAL;
  2952. /*
  2953. * Allow unprivileged RT tasks to decrease priority:
  2954. */
  2955. if (user && !capable(CAP_SYS_NICE)) {
  2956. if (fair_policy(policy)) {
  2957. if (attr->sched_nice < task_nice(p) &&
  2958. !can_nice(p, attr->sched_nice))
  2959. return -EPERM;
  2960. }
  2961. if (rt_policy(policy)) {
  2962. unsigned long rlim_rtprio =
  2963. task_rlimit(p, RLIMIT_RTPRIO);
  2964. /* can't set/change the rt policy */
  2965. if (policy != p->policy && !rlim_rtprio)
  2966. return -EPERM;
  2967. /* can't increase priority */
  2968. if (attr->sched_priority > p->rt_priority &&
  2969. attr->sched_priority > rlim_rtprio)
  2970. return -EPERM;
  2971. }
  2972. /*
  2973. * Can't set/change SCHED_DEADLINE policy at all for now
  2974. * (safest behavior); in the future we would like to allow
  2975. * unprivileged DL tasks to increase their relative deadline
  2976. * or reduce their runtime (both ways reducing utilization)
  2977. */
  2978. if (dl_policy(policy))
  2979. return -EPERM;
  2980. /*
  2981. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2982. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2983. */
  2984. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2985. if (!can_nice(p, task_nice(p)))
  2986. return -EPERM;
  2987. }
  2988. /* can't change other user's priorities */
  2989. if (!check_same_owner(p))
  2990. return -EPERM;
  2991. /* Normal users shall not reset the sched_reset_on_fork flag */
  2992. if (p->sched_reset_on_fork && !reset_on_fork)
  2993. return -EPERM;
  2994. }
  2995. if (user) {
  2996. retval = security_task_setscheduler(p);
  2997. if (retval)
  2998. return retval;
  2999. }
  3000. /*
  3001. * make sure no PI-waiters arrive (or leave) while we are
  3002. * changing the priority of the task:
  3003. *
  3004. * To be able to change p->policy safely, the appropriate
  3005. * runqueue lock must be held.
  3006. */
  3007. rq = task_rq_lock(p, &flags);
  3008. /*
  3009. * Changing the policy of the stop threads its a very bad idea
  3010. */
  3011. if (p == rq->stop) {
  3012. task_rq_unlock(rq, p, &flags);
  3013. return -EINVAL;
  3014. }
  3015. /*
  3016. * If not changing anything there's no need to proceed further,
  3017. * but store a possible modification of reset_on_fork.
  3018. */
  3019. if (unlikely(policy == p->policy)) {
  3020. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3021. goto change;
  3022. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3023. goto change;
  3024. if (dl_policy(policy) && dl_param_changed(p, attr))
  3025. goto change;
  3026. p->sched_reset_on_fork = reset_on_fork;
  3027. task_rq_unlock(rq, p, &flags);
  3028. return 0;
  3029. }
  3030. change:
  3031. if (user) {
  3032. #ifdef CONFIG_RT_GROUP_SCHED
  3033. /*
  3034. * Do not allow realtime tasks into groups that have no runtime
  3035. * assigned.
  3036. */
  3037. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3038. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3039. !task_group_is_autogroup(task_group(p))) {
  3040. task_rq_unlock(rq, p, &flags);
  3041. return -EPERM;
  3042. }
  3043. #endif
  3044. #ifdef CONFIG_SMP
  3045. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3046. cpumask_t *span = rq->rd->span;
  3047. /*
  3048. * Don't allow tasks with an affinity mask smaller than
  3049. * the entire root_domain to become SCHED_DEADLINE. We
  3050. * will also fail if there's no bandwidth available.
  3051. */
  3052. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3053. rq->rd->dl_bw.bw == 0) {
  3054. task_rq_unlock(rq, p, &flags);
  3055. return -EPERM;
  3056. }
  3057. }
  3058. #endif
  3059. }
  3060. /* recheck policy now with rq lock held */
  3061. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3062. policy = oldpolicy = -1;
  3063. task_rq_unlock(rq, p, &flags);
  3064. goto recheck;
  3065. }
  3066. /*
  3067. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3068. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3069. * is available.
  3070. */
  3071. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3072. task_rq_unlock(rq, p, &flags);
  3073. return -EBUSY;
  3074. }
  3075. p->sched_reset_on_fork = reset_on_fork;
  3076. oldprio = p->prio;
  3077. /*
  3078. * Special case for priority boosted tasks.
  3079. *
  3080. * If the new priority is lower or equal (user space view)
  3081. * than the current (boosted) priority, we just store the new
  3082. * normal parameters and do not touch the scheduler class and
  3083. * the runqueue. This will be done when the task deboost
  3084. * itself.
  3085. */
  3086. if (rt_mutex_check_prio(p, newprio)) {
  3087. __setscheduler_params(p, attr);
  3088. task_rq_unlock(rq, p, &flags);
  3089. return 0;
  3090. }
  3091. queued = task_on_rq_queued(p);
  3092. running = task_current(rq, p);
  3093. if (queued)
  3094. dequeue_task(rq, p, 0);
  3095. if (running)
  3096. put_prev_task(rq, p);
  3097. prev_class = p->sched_class;
  3098. __setscheduler(rq, p, attr);
  3099. if (running)
  3100. p->sched_class->set_curr_task(rq);
  3101. if (queued) {
  3102. /*
  3103. * We enqueue to tail when the priority of a task is
  3104. * increased (user space view).
  3105. */
  3106. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3107. }
  3108. check_class_changed(rq, p, prev_class, oldprio);
  3109. task_rq_unlock(rq, p, &flags);
  3110. rt_mutex_adjust_pi(p);
  3111. return 0;
  3112. }
  3113. static int _sched_setscheduler(struct task_struct *p, int policy,
  3114. const struct sched_param *param, bool check)
  3115. {
  3116. struct sched_attr attr = {
  3117. .sched_policy = policy,
  3118. .sched_priority = param->sched_priority,
  3119. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3120. };
  3121. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3122. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3123. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3124. policy &= ~SCHED_RESET_ON_FORK;
  3125. attr.sched_policy = policy;
  3126. }
  3127. return __sched_setscheduler(p, &attr, check);
  3128. }
  3129. /**
  3130. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3131. * @p: the task in question.
  3132. * @policy: new policy.
  3133. * @param: structure containing the new RT priority.
  3134. *
  3135. * Return: 0 on success. An error code otherwise.
  3136. *
  3137. * NOTE that the task may be already dead.
  3138. */
  3139. int sched_setscheduler(struct task_struct *p, int policy,
  3140. const struct sched_param *param)
  3141. {
  3142. return _sched_setscheduler(p, policy, param, true);
  3143. }
  3144. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3145. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3146. {
  3147. return __sched_setscheduler(p, attr, true);
  3148. }
  3149. EXPORT_SYMBOL_GPL(sched_setattr);
  3150. /**
  3151. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3152. * @p: the task in question.
  3153. * @policy: new policy.
  3154. * @param: structure containing the new RT priority.
  3155. *
  3156. * Just like sched_setscheduler, only don't bother checking if the
  3157. * current context has permission. For example, this is needed in
  3158. * stop_machine(): we create temporary high priority worker threads,
  3159. * but our caller might not have that capability.
  3160. *
  3161. * Return: 0 on success. An error code otherwise.
  3162. */
  3163. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3164. const struct sched_param *param)
  3165. {
  3166. return _sched_setscheduler(p, policy, param, false);
  3167. }
  3168. static int
  3169. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3170. {
  3171. struct sched_param lparam;
  3172. struct task_struct *p;
  3173. int retval;
  3174. if (!param || pid < 0)
  3175. return -EINVAL;
  3176. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3177. return -EFAULT;
  3178. rcu_read_lock();
  3179. retval = -ESRCH;
  3180. p = find_process_by_pid(pid);
  3181. if (p != NULL)
  3182. retval = sched_setscheduler(p, policy, &lparam);
  3183. rcu_read_unlock();
  3184. return retval;
  3185. }
  3186. /*
  3187. * Mimics kernel/events/core.c perf_copy_attr().
  3188. */
  3189. static int sched_copy_attr(struct sched_attr __user *uattr,
  3190. struct sched_attr *attr)
  3191. {
  3192. u32 size;
  3193. int ret;
  3194. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3195. return -EFAULT;
  3196. /*
  3197. * zero the full structure, so that a short copy will be nice.
  3198. */
  3199. memset(attr, 0, sizeof(*attr));
  3200. ret = get_user(size, &uattr->size);
  3201. if (ret)
  3202. return ret;
  3203. if (size > PAGE_SIZE) /* silly large */
  3204. goto err_size;
  3205. if (!size) /* abi compat */
  3206. size = SCHED_ATTR_SIZE_VER0;
  3207. if (size < SCHED_ATTR_SIZE_VER0)
  3208. goto err_size;
  3209. /*
  3210. * If we're handed a bigger struct than we know of,
  3211. * ensure all the unknown bits are 0 - i.e. new
  3212. * user-space does not rely on any kernel feature
  3213. * extensions we dont know about yet.
  3214. */
  3215. if (size > sizeof(*attr)) {
  3216. unsigned char __user *addr;
  3217. unsigned char __user *end;
  3218. unsigned char val;
  3219. addr = (void __user *)uattr + sizeof(*attr);
  3220. end = (void __user *)uattr + size;
  3221. for (; addr < end; addr++) {
  3222. ret = get_user(val, addr);
  3223. if (ret)
  3224. return ret;
  3225. if (val)
  3226. goto err_size;
  3227. }
  3228. size = sizeof(*attr);
  3229. }
  3230. ret = copy_from_user(attr, uattr, size);
  3231. if (ret)
  3232. return -EFAULT;
  3233. /*
  3234. * XXX: do we want to be lenient like existing syscalls; or do we want
  3235. * to be strict and return an error on out-of-bounds values?
  3236. */
  3237. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3238. return 0;
  3239. err_size:
  3240. put_user(sizeof(*attr), &uattr->size);
  3241. return -E2BIG;
  3242. }
  3243. /**
  3244. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3245. * @pid: the pid in question.
  3246. * @policy: new policy.
  3247. * @param: structure containing the new RT priority.
  3248. *
  3249. * Return: 0 on success. An error code otherwise.
  3250. */
  3251. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3252. struct sched_param __user *, param)
  3253. {
  3254. /* negative values for policy are not valid */
  3255. if (policy < 0)
  3256. return -EINVAL;
  3257. return do_sched_setscheduler(pid, policy, param);
  3258. }
  3259. /**
  3260. * sys_sched_setparam - set/change the RT priority of a thread
  3261. * @pid: the pid in question.
  3262. * @param: structure containing the new RT priority.
  3263. *
  3264. * Return: 0 on success. An error code otherwise.
  3265. */
  3266. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3267. {
  3268. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3269. }
  3270. /**
  3271. * sys_sched_setattr - same as above, but with extended sched_attr
  3272. * @pid: the pid in question.
  3273. * @uattr: structure containing the extended parameters.
  3274. * @flags: for future extension.
  3275. */
  3276. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3277. unsigned int, flags)
  3278. {
  3279. struct sched_attr attr;
  3280. struct task_struct *p;
  3281. int retval;
  3282. if (!uattr || pid < 0 || flags)
  3283. return -EINVAL;
  3284. retval = sched_copy_attr(uattr, &attr);
  3285. if (retval)
  3286. return retval;
  3287. if ((int)attr.sched_policy < 0)
  3288. return -EINVAL;
  3289. rcu_read_lock();
  3290. retval = -ESRCH;
  3291. p = find_process_by_pid(pid);
  3292. if (p != NULL)
  3293. retval = sched_setattr(p, &attr);
  3294. rcu_read_unlock();
  3295. return retval;
  3296. }
  3297. /**
  3298. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3299. * @pid: the pid in question.
  3300. *
  3301. * Return: On success, the policy of the thread. Otherwise, a negative error
  3302. * code.
  3303. */
  3304. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3305. {
  3306. struct task_struct *p;
  3307. int retval;
  3308. if (pid < 0)
  3309. return -EINVAL;
  3310. retval = -ESRCH;
  3311. rcu_read_lock();
  3312. p = find_process_by_pid(pid);
  3313. if (p) {
  3314. retval = security_task_getscheduler(p);
  3315. if (!retval)
  3316. retval = p->policy
  3317. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3318. }
  3319. rcu_read_unlock();
  3320. return retval;
  3321. }
  3322. /**
  3323. * sys_sched_getparam - get the RT priority of a thread
  3324. * @pid: the pid in question.
  3325. * @param: structure containing the RT priority.
  3326. *
  3327. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3328. * code.
  3329. */
  3330. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3331. {
  3332. struct sched_param lp = { .sched_priority = 0 };
  3333. struct task_struct *p;
  3334. int retval;
  3335. if (!param || pid < 0)
  3336. return -EINVAL;
  3337. rcu_read_lock();
  3338. p = find_process_by_pid(pid);
  3339. retval = -ESRCH;
  3340. if (!p)
  3341. goto out_unlock;
  3342. retval = security_task_getscheduler(p);
  3343. if (retval)
  3344. goto out_unlock;
  3345. if (task_has_rt_policy(p))
  3346. lp.sched_priority = p->rt_priority;
  3347. rcu_read_unlock();
  3348. /*
  3349. * This one might sleep, we cannot do it with a spinlock held ...
  3350. */
  3351. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3352. return retval;
  3353. out_unlock:
  3354. rcu_read_unlock();
  3355. return retval;
  3356. }
  3357. static int sched_read_attr(struct sched_attr __user *uattr,
  3358. struct sched_attr *attr,
  3359. unsigned int usize)
  3360. {
  3361. int ret;
  3362. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3363. return -EFAULT;
  3364. /*
  3365. * If we're handed a smaller struct than we know of,
  3366. * ensure all the unknown bits are 0 - i.e. old
  3367. * user-space does not get uncomplete information.
  3368. */
  3369. if (usize < sizeof(*attr)) {
  3370. unsigned char *addr;
  3371. unsigned char *end;
  3372. addr = (void *)attr + usize;
  3373. end = (void *)attr + sizeof(*attr);
  3374. for (; addr < end; addr++) {
  3375. if (*addr)
  3376. return -EFBIG;
  3377. }
  3378. attr->size = usize;
  3379. }
  3380. ret = copy_to_user(uattr, attr, attr->size);
  3381. if (ret)
  3382. return -EFAULT;
  3383. return 0;
  3384. }
  3385. /**
  3386. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3387. * @pid: the pid in question.
  3388. * @uattr: structure containing the extended parameters.
  3389. * @size: sizeof(attr) for fwd/bwd comp.
  3390. * @flags: for future extension.
  3391. */
  3392. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3393. unsigned int, size, unsigned int, flags)
  3394. {
  3395. struct sched_attr attr = {
  3396. .size = sizeof(struct sched_attr),
  3397. };
  3398. struct task_struct *p;
  3399. int retval;
  3400. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3401. size < SCHED_ATTR_SIZE_VER0 || flags)
  3402. return -EINVAL;
  3403. rcu_read_lock();
  3404. p = find_process_by_pid(pid);
  3405. retval = -ESRCH;
  3406. if (!p)
  3407. goto out_unlock;
  3408. retval = security_task_getscheduler(p);
  3409. if (retval)
  3410. goto out_unlock;
  3411. attr.sched_policy = p->policy;
  3412. if (p->sched_reset_on_fork)
  3413. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3414. if (task_has_dl_policy(p))
  3415. __getparam_dl(p, &attr);
  3416. else if (task_has_rt_policy(p))
  3417. attr.sched_priority = p->rt_priority;
  3418. else
  3419. attr.sched_nice = task_nice(p);
  3420. rcu_read_unlock();
  3421. retval = sched_read_attr(uattr, &attr, size);
  3422. return retval;
  3423. out_unlock:
  3424. rcu_read_unlock();
  3425. return retval;
  3426. }
  3427. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3428. {
  3429. cpumask_var_t cpus_allowed, new_mask;
  3430. struct task_struct *p;
  3431. int retval;
  3432. rcu_read_lock();
  3433. p = find_process_by_pid(pid);
  3434. if (!p) {
  3435. rcu_read_unlock();
  3436. return -ESRCH;
  3437. }
  3438. /* Prevent p going away */
  3439. get_task_struct(p);
  3440. rcu_read_unlock();
  3441. if (p->flags & PF_NO_SETAFFINITY) {
  3442. retval = -EINVAL;
  3443. goto out_put_task;
  3444. }
  3445. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3446. retval = -ENOMEM;
  3447. goto out_put_task;
  3448. }
  3449. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3450. retval = -ENOMEM;
  3451. goto out_free_cpus_allowed;
  3452. }
  3453. retval = -EPERM;
  3454. if (!check_same_owner(p)) {
  3455. rcu_read_lock();
  3456. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3457. rcu_read_unlock();
  3458. goto out_free_new_mask;
  3459. }
  3460. rcu_read_unlock();
  3461. }
  3462. retval = security_task_setscheduler(p);
  3463. if (retval)
  3464. goto out_free_new_mask;
  3465. cpuset_cpus_allowed(p, cpus_allowed);
  3466. cpumask_and(new_mask, in_mask, cpus_allowed);
  3467. /*
  3468. * Since bandwidth control happens on root_domain basis,
  3469. * if admission test is enabled, we only admit -deadline
  3470. * tasks allowed to run on all the CPUs in the task's
  3471. * root_domain.
  3472. */
  3473. #ifdef CONFIG_SMP
  3474. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3475. rcu_read_lock();
  3476. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3477. retval = -EBUSY;
  3478. rcu_read_unlock();
  3479. goto out_free_new_mask;
  3480. }
  3481. rcu_read_unlock();
  3482. }
  3483. #endif
  3484. again:
  3485. retval = set_cpus_allowed_ptr(p, new_mask);
  3486. if (!retval) {
  3487. cpuset_cpus_allowed(p, cpus_allowed);
  3488. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3489. /*
  3490. * We must have raced with a concurrent cpuset
  3491. * update. Just reset the cpus_allowed to the
  3492. * cpuset's cpus_allowed
  3493. */
  3494. cpumask_copy(new_mask, cpus_allowed);
  3495. goto again;
  3496. }
  3497. }
  3498. out_free_new_mask:
  3499. free_cpumask_var(new_mask);
  3500. out_free_cpus_allowed:
  3501. free_cpumask_var(cpus_allowed);
  3502. out_put_task:
  3503. put_task_struct(p);
  3504. return retval;
  3505. }
  3506. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3507. struct cpumask *new_mask)
  3508. {
  3509. if (len < cpumask_size())
  3510. cpumask_clear(new_mask);
  3511. else if (len > cpumask_size())
  3512. len = cpumask_size();
  3513. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3514. }
  3515. /**
  3516. * sys_sched_setaffinity - set the cpu affinity of a process
  3517. * @pid: pid of the process
  3518. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3519. * @user_mask_ptr: user-space pointer to the new cpu mask
  3520. *
  3521. * Return: 0 on success. An error code otherwise.
  3522. */
  3523. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3524. unsigned long __user *, user_mask_ptr)
  3525. {
  3526. cpumask_var_t new_mask;
  3527. int retval;
  3528. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3529. return -ENOMEM;
  3530. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3531. if (retval == 0)
  3532. retval = sched_setaffinity(pid, new_mask);
  3533. free_cpumask_var(new_mask);
  3534. return retval;
  3535. }
  3536. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3537. {
  3538. struct task_struct *p;
  3539. unsigned long flags;
  3540. int retval;
  3541. rcu_read_lock();
  3542. retval = -ESRCH;
  3543. p = find_process_by_pid(pid);
  3544. if (!p)
  3545. goto out_unlock;
  3546. retval = security_task_getscheduler(p);
  3547. if (retval)
  3548. goto out_unlock;
  3549. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3550. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3551. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3552. out_unlock:
  3553. rcu_read_unlock();
  3554. return retval;
  3555. }
  3556. /**
  3557. * sys_sched_getaffinity - get the cpu affinity of a process
  3558. * @pid: pid of the process
  3559. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3560. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3561. *
  3562. * Return: 0 on success. An error code otherwise.
  3563. */
  3564. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3565. unsigned long __user *, user_mask_ptr)
  3566. {
  3567. int ret;
  3568. cpumask_var_t mask;
  3569. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3570. return -EINVAL;
  3571. if (len & (sizeof(unsigned long)-1))
  3572. return -EINVAL;
  3573. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3574. return -ENOMEM;
  3575. ret = sched_getaffinity(pid, mask);
  3576. if (ret == 0) {
  3577. size_t retlen = min_t(size_t, len, cpumask_size());
  3578. if (copy_to_user(user_mask_ptr, mask, retlen))
  3579. ret = -EFAULT;
  3580. else
  3581. ret = retlen;
  3582. }
  3583. free_cpumask_var(mask);
  3584. return ret;
  3585. }
  3586. /**
  3587. * sys_sched_yield - yield the current processor to other threads.
  3588. *
  3589. * This function yields the current CPU to other tasks. If there are no
  3590. * other threads running on this CPU then this function will return.
  3591. *
  3592. * Return: 0.
  3593. */
  3594. SYSCALL_DEFINE0(sched_yield)
  3595. {
  3596. struct rq *rq = this_rq_lock();
  3597. schedstat_inc(rq, yld_count);
  3598. current->sched_class->yield_task(rq);
  3599. /*
  3600. * Since we are going to call schedule() anyway, there's
  3601. * no need to preempt or enable interrupts:
  3602. */
  3603. __release(rq->lock);
  3604. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3605. do_raw_spin_unlock(&rq->lock);
  3606. sched_preempt_enable_no_resched();
  3607. schedule();
  3608. return 0;
  3609. }
  3610. int __sched _cond_resched(void)
  3611. {
  3612. if (should_resched()) {
  3613. preempt_schedule_common();
  3614. return 1;
  3615. }
  3616. return 0;
  3617. }
  3618. EXPORT_SYMBOL(_cond_resched);
  3619. /*
  3620. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3621. * call schedule, and on return reacquire the lock.
  3622. *
  3623. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3624. * operations here to prevent schedule() from being called twice (once via
  3625. * spin_unlock(), once by hand).
  3626. */
  3627. int __cond_resched_lock(spinlock_t *lock)
  3628. {
  3629. int resched = should_resched();
  3630. int ret = 0;
  3631. lockdep_assert_held(lock);
  3632. if (spin_needbreak(lock) || resched) {
  3633. spin_unlock(lock);
  3634. if (resched)
  3635. preempt_schedule_common();
  3636. else
  3637. cpu_relax();
  3638. ret = 1;
  3639. spin_lock(lock);
  3640. }
  3641. return ret;
  3642. }
  3643. EXPORT_SYMBOL(__cond_resched_lock);
  3644. int __sched __cond_resched_softirq(void)
  3645. {
  3646. BUG_ON(!in_softirq());
  3647. if (should_resched()) {
  3648. local_bh_enable();
  3649. preempt_schedule_common();
  3650. local_bh_disable();
  3651. return 1;
  3652. }
  3653. return 0;
  3654. }
  3655. EXPORT_SYMBOL(__cond_resched_softirq);
  3656. /**
  3657. * yield - yield the current processor to other threads.
  3658. *
  3659. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3660. *
  3661. * The scheduler is at all times free to pick the calling task as the most
  3662. * eligible task to run, if removing the yield() call from your code breaks
  3663. * it, its already broken.
  3664. *
  3665. * Typical broken usage is:
  3666. *
  3667. * while (!event)
  3668. * yield();
  3669. *
  3670. * where one assumes that yield() will let 'the other' process run that will
  3671. * make event true. If the current task is a SCHED_FIFO task that will never
  3672. * happen. Never use yield() as a progress guarantee!!
  3673. *
  3674. * If you want to use yield() to wait for something, use wait_event().
  3675. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3676. * If you still want to use yield(), do not!
  3677. */
  3678. void __sched yield(void)
  3679. {
  3680. set_current_state(TASK_RUNNING);
  3681. sys_sched_yield();
  3682. }
  3683. EXPORT_SYMBOL(yield);
  3684. /**
  3685. * yield_to - yield the current processor to another thread in
  3686. * your thread group, or accelerate that thread toward the
  3687. * processor it's on.
  3688. * @p: target task
  3689. * @preempt: whether task preemption is allowed or not
  3690. *
  3691. * It's the caller's job to ensure that the target task struct
  3692. * can't go away on us before we can do any checks.
  3693. *
  3694. * Return:
  3695. * true (>0) if we indeed boosted the target task.
  3696. * false (0) if we failed to boost the target.
  3697. * -ESRCH if there's no task to yield to.
  3698. */
  3699. int __sched yield_to(struct task_struct *p, bool preempt)
  3700. {
  3701. struct task_struct *curr = current;
  3702. struct rq *rq, *p_rq;
  3703. unsigned long flags;
  3704. int yielded = 0;
  3705. local_irq_save(flags);
  3706. rq = this_rq();
  3707. again:
  3708. p_rq = task_rq(p);
  3709. /*
  3710. * If we're the only runnable task on the rq and target rq also
  3711. * has only one task, there's absolutely no point in yielding.
  3712. */
  3713. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3714. yielded = -ESRCH;
  3715. goto out_irq;
  3716. }
  3717. double_rq_lock(rq, p_rq);
  3718. if (task_rq(p) != p_rq) {
  3719. double_rq_unlock(rq, p_rq);
  3720. goto again;
  3721. }
  3722. if (!curr->sched_class->yield_to_task)
  3723. goto out_unlock;
  3724. if (curr->sched_class != p->sched_class)
  3725. goto out_unlock;
  3726. if (task_running(p_rq, p) || p->state)
  3727. goto out_unlock;
  3728. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3729. if (yielded) {
  3730. schedstat_inc(rq, yld_count);
  3731. /*
  3732. * Make p's CPU reschedule; pick_next_entity takes care of
  3733. * fairness.
  3734. */
  3735. if (preempt && rq != p_rq)
  3736. resched_curr(p_rq);
  3737. }
  3738. out_unlock:
  3739. double_rq_unlock(rq, p_rq);
  3740. out_irq:
  3741. local_irq_restore(flags);
  3742. if (yielded > 0)
  3743. schedule();
  3744. return yielded;
  3745. }
  3746. EXPORT_SYMBOL_GPL(yield_to);
  3747. /*
  3748. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3749. * that process accounting knows that this is a task in IO wait state.
  3750. */
  3751. long __sched io_schedule_timeout(long timeout)
  3752. {
  3753. int old_iowait = current->in_iowait;
  3754. struct rq *rq;
  3755. long ret;
  3756. current->in_iowait = 1;
  3757. if (old_iowait)
  3758. blk_schedule_flush_plug(current);
  3759. else
  3760. blk_flush_plug(current);
  3761. delayacct_blkio_start();
  3762. rq = raw_rq();
  3763. atomic_inc(&rq->nr_iowait);
  3764. ret = schedule_timeout(timeout);
  3765. current->in_iowait = old_iowait;
  3766. atomic_dec(&rq->nr_iowait);
  3767. delayacct_blkio_end();
  3768. return ret;
  3769. }
  3770. EXPORT_SYMBOL(io_schedule_timeout);
  3771. /**
  3772. * sys_sched_get_priority_max - return maximum RT priority.
  3773. * @policy: scheduling class.
  3774. *
  3775. * Return: On success, this syscall returns the maximum
  3776. * rt_priority that can be used by a given scheduling class.
  3777. * On failure, a negative error code is returned.
  3778. */
  3779. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3780. {
  3781. int ret = -EINVAL;
  3782. switch (policy) {
  3783. case SCHED_FIFO:
  3784. case SCHED_RR:
  3785. ret = MAX_USER_RT_PRIO-1;
  3786. break;
  3787. case SCHED_DEADLINE:
  3788. case SCHED_NORMAL:
  3789. case SCHED_BATCH:
  3790. case SCHED_IDLE:
  3791. ret = 0;
  3792. break;
  3793. }
  3794. return ret;
  3795. }
  3796. /**
  3797. * sys_sched_get_priority_min - return minimum RT priority.
  3798. * @policy: scheduling class.
  3799. *
  3800. * Return: On success, this syscall returns the minimum
  3801. * rt_priority that can be used by a given scheduling class.
  3802. * On failure, a negative error code is returned.
  3803. */
  3804. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3805. {
  3806. int ret = -EINVAL;
  3807. switch (policy) {
  3808. case SCHED_FIFO:
  3809. case SCHED_RR:
  3810. ret = 1;
  3811. break;
  3812. case SCHED_DEADLINE:
  3813. case SCHED_NORMAL:
  3814. case SCHED_BATCH:
  3815. case SCHED_IDLE:
  3816. ret = 0;
  3817. }
  3818. return ret;
  3819. }
  3820. /**
  3821. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3822. * @pid: pid of the process.
  3823. * @interval: userspace pointer to the timeslice value.
  3824. *
  3825. * this syscall writes the default timeslice value of a given process
  3826. * into the user-space timespec buffer. A value of '0' means infinity.
  3827. *
  3828. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3829. * an error code.
  3830. */
  3831. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3832. struct timespec __user *, interval)
  3833. {
  3834. struct task_struct *p;
  3835. unsigned int time_slice;
  3836. unsigned long flags;
  3837. struct rq *rq;
  3838. int retval;
  3839. struct timespec t;
  3840. if (pid < 0)
  3841. return -EINVAL;
  3842. retval = -ESRCH;
  3843. rcu_read_lock();
  3844. p = find_process_by_pid(pid);
  3845. if (!p)
  3846. goto out_unlock;
  3847. retval = security_task_getscheduler(p);
  3848. if (retval)
  3849. goto out_unlock;
  3850. rq = task_rq_lock(p, &flags);
  3851. time_slice = 0;
  3852. if (p->sched_class->get_rr_interval)
  3853. time_slice = p->sched_class->get_rr_interval(rq, p);
  3854. task_rq_unlock(rq, p, &flags);
  3855. rcu_read_unlock();
  3856. jiffies_to_timespec(time_slice, &t);
  3857. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3858. return retval;
  3859. out_unlock:
  3860. rcu_read_unlock();
  3861. return retval;
  3862. }
  3863. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3864. void sched_show_task(struct task_struct *p)
  3865. {
  3866. unsigned long free = 0;
  3867. int ppid;
  3868. unsigned long state = p->state;
  3869. if (state)
  3870. state = __ffs(state) + 1;
  3871. printk(KERN_INFO "%-15.15s %c", p->comm,
  3872. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3873. #if BITS_PER_LONG == 32
  3874. if (state == TASK_RUNNING)
  3875. printk(KERN_CONT " running ");
  3876. else
  3877. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3878. #else
  3879. if (state == TASK_RUNNING)
  3880. printk(KERN_CONT " running task ");
  3881. else
  3882. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3883. #endif
  3884. #ifdef CONFIG_DEBUG_STACK_USAGE
  3885. free = stack_not_used(p);
  3886. #endif
  3887. ppid = 0;
  3888. rcu_read_lock();
  3889. if (pid_alive(p))
  3890. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3891. rcu_read_unlock();
  3892. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3893. task_pid_nr(p), ppid,
  3894. (unsigned long)task_thread_info(p)->flags);
  3895. print_worker_info(KERN_INFO, p);
  3896. show_stack(p, NULL);
  3897. }
  3898. void show_state_filter(unsigned long state_filter)
  3899. {
  3900. struct task_struct *g, *p;
  3901. #if BITS_PER_LONG == 32
  3902. printk(KERN_INFO
  3903. " task PC stack pid father\n");
  3904. #else
  3905. printk(KERN_INFO
  3906. " task PC stack pid father\n");
  3907. #endif
  3908. rcu_read_lock();
  3909. for_each_process_thread(g, p) {
  3910. /*
  3911. * reset the NMI-timeout, listing all files on a slow
  3912. * console might take a lot of time:
  3913. */
  3914. touch_nmi_watchdog();
  3915. if (!state_filter || (p->state & state_filter))
  3916. sched_show_task(p);
  3917. }
  3918. touch_all_softlockup_watchdogs();
  3919. #ifdef CONFIG_SCHED_DEBUG
  3920. sysrq_sched_debug_show();
  3921. #endif
  3922. rcu_read_unlock();
  3923. /*
  3924. * Only show locks if all tasks are dumped:
  3925. */
  3926. if (!state_filter)
  3927. debug_show_all_locks();
  3928. }
  3929. void init_idle_bootup_task(struct task_struct *idle)
  3930. {
  3931. idle->sched_class = &idle_sched_class;
  3932. }
  3933. /**
  3934. * init_idle - set up an idle thread for a given CPU
  3935. * @idle: task in question
  3936. * @cpu: cpu the idle task belongs to
  3937. *
  3938. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3939. * flag, to make booting more robust.
  3940. */
  3941. void init_idle(struct task_struct *idle, int cpu)
  3942. {
  3943. struct rq *rq = cpu_rq(cpu);
  3944. unsigned long flags;
  3945. raw_spin_lock_irqsave(&rq->lock, flags);
  3946. __sched_fork(0, idle);
  3947. idle->state = TASK_RUNNING;
  3948. idle->se.exec_start = sched_clock();
  3949. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3950. /*
  3951. * We're having a chicken and egg problem, even though we are
  3952. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3953. * lockdep check in task_group() will fail.
  3954. *
  3955. * Similar case to sched_fork(). / Alternatively we could
  3956. * use task_rq_lock() here and obtain the other rq->lock.
  3957. *
  3958. * Silence PROVE_RCU
  3959. */
  3960. rcu_read_lock();
  3961. __set_task_cpu(idle, cpu);
  3962. rcu_read_unlock();
  3963. rq->curr = rq->idle = idle;
  3964. idle->on_rq = TASK_ON_RQ_QUEUED;
  3965. #if defined(CONFIG_SMP)
  3966. idle->on_cpu = 1;
  3967. #endif
  3968. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3969. /* Set the preempt count _outside_ the spinlocks! */
  3970. init_idle_preempt_count(idle, cpu);
  3971. /*
  3972. * The idle tasks have their own, simple scheduling class:
  3973. */
  3974. idle->sched_class = &idle_sched_class;
  3975. ftrace_graph_init_idle_task(idle, cpu);
  3976. vtime_init_idle(idle, cpu);
  3977. #if defined(CONFIG_SMP)
  3978. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3979. #endif
  3980. }
  3981. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  3982. const struct cpumask *trial)
  3983. {
  3984. int ret = 1, trial_cpus;
  3985. struct dl_bw *cur_dl_b;
  3986. unsigned long flags;
  3987. if (!cpumask_weight(cur))
  3988. return ret;
  3989. rcu_read_lock_sched();
  3990. cur_dl_b = dl_bw_of(cpumask_any(cur));
  3991. trial_cpus = cpumask_weight(trial);
  3992. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  3993. if (cur_dl_b->bw != -1 &&
  3994. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  3995. ret = 0;
  3996. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  3997. rcu_read_unlock_sched();
  3998. return ret;
  3999. }
  4000. int task_can_attach(struct task_struct *p,
  4001. const struct cpumask *cs_cpus_allowed)
  4002. {
  4003. int ret = 0;
  4004. /*
  4005. * Kthreads which disallow setaffinity shouldn't be moved
  4006. * to a new cpuset; we don't want to change their cpu
  4007. * affinity and isolating such threads by their set of
  4008. * allowed nodes is unnecessary. Thus, cpusets are not
  4009. * applicable for such threads. This prevents checking for
  4010. * success of set_cpus_allowed_ptr() on all attached tasks
  4011. * before cpus_allowed may be changed.
  4012. */
  4013. if (p->flags & PF_NO_SETAFFINITY) {
  4014. ret = -EINVAL;
  4015. goto out;
  4016. }
  4017. #ifdef CONFIG_SMP
  4018. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4019. cs_cpus_allowed)) {
  4020. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4021. cs_cpus_allowed);
  4022. struct dl_bw *dl_b;
  4023. bool overflow;
  4024. int cpus;
  4025. unsigned long flags;
  4026. rcu_read_lock_sched();
  4027. dl_b = dl_bw_of(dest_cpu);
  4028. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4029. cpus = dl_bw_cpus(dest_cpu);
  4030. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4031. if (overflow)
  4032. ret = -EBUSY;
  4033. else {
  4034. /*
  4035. * We reserve space for this task in the destination
  4036. * root_domain, as we can't fail after this point.
  4037. * We will free resources in the source root_domain
  4038. * later on (see set_cpus_allowed_dl()).
  4039. */
  4040. __dl_add(dl_b, p->dl.dl_bw);
  4041. }
  4042. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4043. rcu_read_unlock_sched();
  4044. }
  4045. #endif
  4046. out:
  4047. return ret;
  4048. }
  4049. #ifdef CONFIG_SMP
  4050. /*
  4051. * move_queued_task - move a queued task to new rq.
  4052. *
  4053. * Returns (locked) new rq. Old rq's lock is released.
  4054. */
  4055. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  4056. {
  4057. struct rq *rq = task_rq(p);
  4058. lockdep_assert_held(&rq->lock);
  4059. dequeue_task(rq, p, 0);
  4060. p->on_rq = TASK_ON_RQ_MIGRATING;
  4061. set_task_cpu(p, new_cpu);
  4062. raw_spin_unlock(&rq->lock);
  4063. rq = cpu_rq(new_cpu);
  4064. raw_spin_lock(&rq->lock);
  4065. BUG_ON(task_cpu(p) != new_cpu);
  4066. p->on_rq = TASK_ON_RQ_QUEUED;
  4067. enqueue_task(rq, p, 0);
  4068. check_preempt_curr(rq, p, 0);
  4069. return rq;
  4070. }
  4071. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4072. {
  4073. if (p->sched_class->set_cpus_allowed)
  4074. p->sched_class->set_cpus_allowed(p, new_mask);
  4075. cpumask_copy(&p->cpus_allowed, new_mask);
  4076. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4077. }
  4078. /*
  4079. * This is how migration works:
  4080. *
  4081. * 1) we invoke migration_cpu_stop() on the target CPU using
  4082. * stop_one_cpu().
  4083. * 2) stopper starts to run (implicitly forcing the migrated thread
  4084. * off the CPU)
  4085. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4086. * 4) if it's in the wrong runqueue then the migration thread removes
  4087. * it and puts it into the right queue.
  4088. * 5) stopper completes and stop_one_cpu() returns and the migration
  4089. * is done.
  4090. */
  4091. /*
  4092. * Change a given task's CPU affinity. Migrate the thread to a
  4093. * proper CPU and schedule it away if the CPU it's executing on
  4094. * is removed from the allowed bitmask.
  4095. *
  4096. * NOTE: the caller must have a valid reference to the task, the
  4097. * task must not exit() & deallocate itself prematurely. The
  4098. * call is not atomic; no spinlocks may be held.
  4099. */
  4100. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4101. {
  4102. unsigned long flags;
  4103. struct rq *rq;
  4104. unsigned int dest_cpu;
  4105. int ret = 0;
  4106. rq = task_rq_lock(p, &flags);
  4107. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4108. goto out;
  4109. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4110. ret = -EINVAL;
  4111. goto out;
  4112. }
  4113. do_set_cpus_allowed(p, new_mask);
  4114. /* Can the task run on the task's current CPU? If so, we're done */
  4115. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4116. goto out;
  4117. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4118. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4119. struct migration_arg arg = { p, dest_cpu };
  4120. /* Need help from migration thread: drop lock and wait. */
  4121. task_rq_unlock(rq, p, &flags);
  4122. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4123. tlb_migrate_finish(p->mm);
  4124. return 0;
  4125. } else if (task_on_rq_queued(p))
  4126. rq = move_queued_task(p, dest_cpu);
  4127. out:
  4128. task_rq_unlock(rq, p, &flags);
  4129. return ret;
  4130. }
  4131. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4132. /*
  4133. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4134. * this because either it can't run here any more (set_cpus_allowed()
  4135. * away from this CPU, or CPU going down), or because we're
  4136. * attempting to rebalance this task on exec (sched_exec).
  4137. *
  4138. * So we race with normal scheduler movements, but that's OK, as long
  4139. * as the task is no longer on this CPU.
  4140. *
  4141. * Returns non-zero if task was successfully migrated.
  4142. */
  4143. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4144. {
  4145. struct rq *rq;
  4146. int ret = 0;
  4147. if (unlikely(!cpu_active(dest_cpu)))
  4148. return ret;
  4149. rq = cpu_rq(src_cpu);
  4150. raw_spin_lock(&p->pi_lock);
  4151. raw_spin_lock(&rq->lock);
  4152. /* Already moved. */
  4153. if (task_cpu(p) != src_cpu)
  4154. goto done;
  4155. /* Affinity changed (again). */
  4156. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4157. goto fail;
  4158. /*
  4159. * If we're not on a rq, the next wake-up will ensure we're
  4160. * placed properly.
  4161. */
  4162. if (task_on_rq_queued(p))
  4163. rq = move_queued_task(p, dest_cpu);
  4164. done:
  4165. ret = 1;
  4166. fail:
  4167. raw_spin_unlock(&rq->lock);
  4168. raw_spin_unlock(&p->pi_lock);
  4169. return ret;
  4170. }
  4171. #ifdef CONFIG_NUMA_BALANCING
  4172. /* Migrate current task p to target_cpu */
  4173. int migrate_task_to(struct task_struct *p, int target_cpu)
  4174. {
  4175. struct migration_arg arg = { p, target_cpu };
  4176. int curr_cpu = task_cpu(p);
  4177. if (curr_cpu == target_cpu)
  4178. return 0;
  4179. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4180. return -EINVAL;
  4181. /* TODO: This is not properly updating schedstats */
  4182. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4183. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4184. }
  4185. /*
  4186. * Requeue a task on a given node and accurately track the number of NUMA
  4187. * tasks on the runqueues
  4188. */
  4189. void sched_setnuma(struct task_struct *p, int nid)
  4190. {
  4191. struct rq *rq;
  4192. unsigned long flags;
  4193. bool queued, running;
  4194. rq = task_rq_lock(p, &flags);
  4195. queued = task_on_rq_queued(p);
  4196. running = task_current(rq, p);
  4197. if (queued)
  4198. dequeue_task(rq, p, 0);
  4199. if (running)
  4200. put_prev_task(rq, p);
  4201. p->numa_preferred_nid = nid;
  4202. if (running)
  4203. p->sched_class->set_curr_task(rq);
  4204. if (queued)
  4205. enqueue_task(rq, p, 0);
  4206. task_rq_unlock(rq, p, &flags);
  4207. }
  4208. #endif
  4209. /*
  4210. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4211. * and performs thread migration by bumping thread off CPU then
  4212. * 'pushing' onto another runqueue.
  4213. */
  4214. static int migration_cpu_stop(void *data)
  4215. {
  4216. struct migration_arg *arg = data;
  4217. /*
  4218. * The original target cpu might have gone down and we might
  4219. * be on another cpu but it doesn't matter.
  4220. */
  4221. local_irq_disable();
  4222. /*
  4223. * We need to explicitly wake pending tasks before running
  4224. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4225. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4226. */
  4227. sched_ttwu_pending();
  4228. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4229. local_irq_enable();
  4230. return 0;
  4231. }
  4232. #ifdef CONFIG_HOTPLUG_CPU
  4233. /*
  4234. * Ensures that the idle task is using init_mm right before its cpu goes
  4235. * offline.
  4236. */
  4237. void idle_task_exit(void)
  4238. {
  4239. struct mm_struct *mm = current->active_mm;
  4240. BUG_ON(cpu_online(smp_processor_id()));
  4241. if (mm != &init_mm) {
  4242. switch_mm(mm, &init_mm, current);
  4243. finish_arch_post_lock_switch();
  4244. }
  4245. mmdrop(mm);
  4246. }
  4247. /*
  4248. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4249. * we might have. Assumes we're called after migrate_tasks() so that the
  4250. * nr_active count is stable.
  4251. *
  4252. * Also see the comment "Global load-average calculations".
  4253. */
  4254. static void calc_load_migrate(struct rq *rq)
  4255. {
  4256. long delta = calc_load_fold_active(rq);
  4257. if (delta)
  4258. atomic_long_add(delta, &calc_load_tasks);
  4259. }
  4260. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4261. {
  4262. }
  4263. static const struct sched_class fake_sched_class = {
  4264. .put_prev_task = put_prev_task_fake,
  4265. };
  4266. static struct task_struct fake_task = {
  4267. /*
  4268. * Avoid pull_{rt,dl}_task()
  4269. */
  4270. .prio = MAX_PRIO + 1,
  4271. .sched_class = &fake_sched_class,
  4272. };
  4273. /*
  4274. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4275. * try_to_wake_up()->select_task_rq().
  4276. *
  4277. * Called with rq->lock held even though we'er in stop_machine() and
  4278. * there's no concurrency possible, we hold the required locks anyway
  4279. * because of lock validation efforts.
  4280. */
  4281. static void migrate_tasks(unsigned int dead_cpu)
  4282. {
  4283. struct rq *rq = cpu_rq(dead_cpu);
  4284. struct task_struct *next, *stop = rq->stop;
  4285. int dest_cpu;
  4286. /*
  4287. * Fudge the rq selection such that the below task selection loop
  4288. * doesn't get stuck on the currently eligible stop task.
  4289. *
  4290. * We're currently inside stop_machine() and the rq is either stuck
  4291. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4292. * either way we should never end up calling schedule() until we're
  4293. * done here.
  4294. */
  4295. rq->stop = NULL;
  4296. /*
  4297. * put_prev_task() and pick_next_task() sched
  4298. * class method both need to have an up-to-date
  4299. * value of rq->clock[_task]
  4300. */
  4301. update_rq_clock(rq);
  4302. for ( ; ; ) {
  4303. /*
  4304. * There's this thread running, bail when that's the only
  4305. * remaining thread.
  4306. */
  4307. if (rq->nr_running == 1)
  4308. break;
  4309. next = pick_next_task(rq, &fake_task);
  4310. BUG_ON(!next);
  4311. next->sched_class->put_prev_task(rq, next);
  4312. /* Find suitable destination for @next, with force if needed. */
  4313. dest_cpu = select_fallback_rq(dead_cpu, next);
  4314. raw_spin_unlock(&rq->lock);
  4315. __migrate_task(next, dead_cpu, dest_cpu);
  4316. raw_spin_lock(&rq->lock);
  4317. }
  4318. rq->stop = stop;
  4319. }
  4320. #endif /* CONFIG_HOTPLUG_CPU */
  4321. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4322. static struct ctl_table sd_ctl_dir[] = {
  4323. {
  4324. .procname = "sched_domain",
  4325. .mode = 0555,
  4326. },
  4327. {}
  4328. };
  4329. static struct ctl_table sd_ctl_root[] = {
  4330. {
  4331. .procname = "kernel",
  4332. .mode = 0555,
  4333. .child = sd_ctl_dir,
  4334. },
  4335. {}
  4336. };
  4337. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4338. {
  4339. struct ctl_table *entry =
  4340. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4341. return entry;
  4342. }
  4343. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4344. {
  4345. struct ctl_table *entry;
  4346. /*
  4347. * In the intermediate directories, both the child directory and
  4348. * procname are dynamically allocated and could fail but the mode
  4349. * will always be set. In the lowest directory the names are
  4350. * static strings and all have proc handlers.
  4351. */
  4352. for (entry = *tablep; entry->mode; entry++) {
  4353. if (entry->child)
  4354. sd_free_ctl_entry(&entry->child);
  4355. if (entry->proc_handler == NULL)
  4356. kfree(entry->procname);
  4357. }
  4358. kfree(*tablep);
  4359. *tablep = NULL;
  4360. }
  4361. static int min_load_idx = 0;
  4362. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4363. static void
  4364. set_table_entry(struct ctl_table *entry,
  4365. const char *procname, void *data, int maxlen,
  4366. umode_t mode, proc_handler *proc_handler,
  4367. bool load_idx)
  4368. {
  4369. entry->procname = procname;
  4370. entry->data = data;
  4371. entry->maxlen = maxlen;
  4372. entry->mode = mode;
  4373. entry->proc_handler = proc_handler;
  4374. if (load_idx) {
  4375. entry->extra1 = &min_load_idx;
  4376. entry->extra2 = &max_load_idx;
  4377. }
  4378. }
  4379. static struct ctl_table *
  4380. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4381. {
  4382. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4383. if (table == NULL)
  4384. return NULL;
  4385. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4386. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4387. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4388. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4389. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4390. sizeof(int), 0644, proc_dointvec_minmax, true);
  4391. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4392. sizeof(int), 0644, proc_dointvec_minmax, true);
  4393. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4394. sizeof(int), 0644, proc_dointvec_minmax, true);
  4395. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4396. sizeof(int), 0644, proc_dointvec_minmax, true);
  4397. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4398. sizeof(int), 0644, proc_dointvec_minmax, true);
  4399. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4400. sizeof(int), 0644, proc_dointvec_minmax, false);
  4401. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4402. sizeof(int), 0644, proc_dointvec_minmax, false);
  4403. set_table_entry(&table[9], "cache_nice_tries",
  4404. &sd->cache_nice_tries,
  4405. sizeof(int), 0644, proc_dointvec_minmax, false);
  4406. set_table_entry(&table[10], "flags", &sd->flags,
  4407. sizeof(int), 0644, proc_dointvec_minmax, false);
  4408. set_table_entry(&table[11], "max_newidle_lb_cost",
  4409. &sd->max_newidle_lb_cost,
  4410. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4411. set_table_entry(&table[12], "name", sd->name,
  4412. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4413. /* &table[13] is terminator */
  4414. return table;
  4415. }
  4416. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4417. {
  4418. struct ctl_table *entry, *table;
  4419. struct sched_domain *sd;
  4420. int domain_num = 0, i;
  4421. char buf[32];
  4422. for_each_domain(cpu, sd)
  4423. domain_num++;
  4424. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4425. if (table == NULL)
  4426. return NULL;
  4427. i = 0;
  4428. for_each_domain(cpu, sd) {
  4429. snprintf(buf, 32, "domain%d", i);
  4430. entry->procname = kstrdup(buf, GFP_KERNEL);
  4431. entry->mode = 0555;
  4432. entry->child = sd_alloc_ctl_domain_table(sd);
  4433. entry++;
  4434. i++;
  4435. }
  4436. return table;
  4437. }
  4438. static struct ctl_table_header *sd_sysctl_header;
  4439. static void register_sched_domain_sysctl(void)
  4440. {
  4441. int i, cpu_num = num_possible_cpus();
  4442. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4443. char buf[32];
  4444. WARN_ON(sd_ctl_dir[0].child);
  4445. sd_ctl_dir[0].child = entry;
  4446. if (entry == NULL)
  4447. return;
  4448. for_each_possible_cpu(i) {
  4449. snprintf(buf, 32, "cpu%d", i);
  4450. entry->procname = kstrdup(buf, GFP_KERNEL);
  4451. entry->mode = 0555;
  4452. entry->child = sd_alloc_ctl_cpu_table(i);
  4453. entry++;
  4454. }
  4455. WARN_ON(sd_sysctl_header);
  4456. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4457. }
  4458. /* may be called multiple times per register */
  4459. static void unregister_sched_domain_sysctl(void)
  4460. {
  4461. if (sd_sysctl_header)
  4462. unregister_sysctl_table(sd_sysctl_header);
  4463. sd_sysctl_header = NULL;
  4464. if (sd_ctl_dir[0].child)
  4465. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4466. }
  4467. #else
  4468. static void register_sched_domain_sysctl(void)
  4469. {
  4470. }
  4471. static void unregister_sched_domain_sysctl(void)
  4472. {
  4473. }
  4474. #endif
  4475. static void set_rq_online(struct rq *rq)
  4476. {
  4477. if (!rq->online) {
  4478. const struct sched_class *class;
  4479. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4480. rq->online = 1;
  4481. for_each_class(class) {
  4482. if (class->rq_online)
  4483. class->rq_online(rq);
  4484. }
  4485. }
  4486. }
  4487. static void set_rq_offline(struct rq *rq)
  4488. {
  4489. if (rq->online) {
  4490. const struct sched_class *class;
  4491. for_each_class(class) {
  4492. if (class->rq_offline)
  4493. class->rq_offline(rq);
  4494. }
  4495. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4496. rq->online = 0;
  4497. }
  4498. }
  4499. /*
  4500. * migration_call - callback that gets triggered when a CPU is added.
  4501. * Here we can start up the necessary migration thread for the new CPU.
  4502. */
  4503. static int
  4504. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4505. {
  4506. int cpu = (long)hcpu;
  4507. unsigned long flags;
  4508. struct rq *rq = cpu_rq(cpu);
  4509. switch (action & ~CPU_TASKS_FROZEN) {
  4510. case CPU_UP_PREPARE:
  4511. rq->calc_load_update = calc_load_update;
  4512. break;
  4513. case CPU_ONLINE:
  4514. /* Update our root-domain */
  4515. raw_spin_lock_irqsave(&rq->lock, flags);
  4516. if (rq->rd) {
  4517. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4518. set_rq_online(rq);
  4519. }
  4520. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4521. break;
  4522. #ifdef CONFIG_HOTPLUG_CPU
  4523. case CPU_DYING:
  4524. sched_ttwu_pending();
  4525. /* Update our root-domain */
  4526. raw_spin_lock_irqsave(&rq->lock, flags);
  4527. if (rq->rd) {
  4528. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4529. set_rq_offline(rq);
  4530. }
  4531. migrate_tasks(cpu);
  4532. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4533. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4534. break;
  4535. case CPU_DEAD:
  4536. calc_load_migrate(rq);
  4537. break;
  4538. #endif
  4539. }
  4540. update_max_interval();
  4541. return NOTIFY_OK;
  4542. }
  4543. /*
  4544. * Register at high priority so that task migration (migrate_all_tasks)
  4545. * happens before everything else. This has to be lower priority than
  4546. * the notifier in the perf_event subsystem, though.
  4547. */
  4548. static struct notifier_block migration_notifier = {
  4549. .notifier_call = migration_call,
  4550. .priority = CPU_PRI_MIGRATION,
  4551. };
  4552. static void __cpuinit set_cpu_rq_start_time(void)
  4553. {
  4554. int cpu = smp_processor_id();
  4555. struct rq *rq = cpu_rq(cpu);
  4556. rq->age_stamp = sched_clock_cpu(cpu);
  4557. }
  4558. static int sched_cpu_active(struct notifier_block *nfb,
  4559. unsigned long action, void *hcpu)
  4560. {
  4561. switch (action & ~CPU_TASKS_FROZEN) {
  4562. case CPU_STARTING:
  4563. set_cpu_rq_start_time();
  4564. return NOTIFY_OK;
  4565. case CPU_DOWN_FAILED:
  4566. set_cpu_active((long)hcpu, true);
  4567. return NOTIFY_OK;
  4568. default:
  4569. return NOTIFY_DONE;
  4570. }
  4571. }
  4572. static int sched_cpu_inactive(struct notifier_block *nfb,
  4573. unsigned long action, void *hcpu)
  4574. {
  4575. switch (action & ~CPU_TASKS_FROZEN) {
  4576. case CPU_DOWN_PREPARE:
  4577. set_cpu_active((long)hcpu, false);
  4578. return NOTIFY_OK;
  4579. default:
  4580. return NOTIFY_DONE;
  4581. }
  4582. }
  4583. static int __init migration_init(void)
  4584. {
  4585. void *cpu = (void *)(long)smp_processor_id();
  4586. int err;
  4587. /* Initialize migration for the boot CPU */
  4588. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4589. BUG_ON(err == NOTIFY_BAD);
  4590. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4591. register_cpu_notifier(&migration_notifier);
  4592. /* Register cpu active notifiers */
  4593. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4594. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4595. return 0;
  4596. }
  4597. early_initcall(migration_init);
  4598. #endif
  4599. #ifdef CONFIG_SMP
  4600. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4601. #ifdef CONFIG_SCHED_DEBUG
  4602. static __read_mostly int sched_debug_enabled;
  4603. static int __init sched_debug_setup(char *str)
  4604. {
  4605. sched_debug_enabled = 1;
  4606. return 0;
  4607. }
  4608. early_param("sched_debug", sched_debug_setup);
  4609. static inline bool sched_debug(void)
  4610. {
  4611. return sched_debug_enabled;
  4612. }
  4613. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4614. struct cpumask *groupmask)
  4615. {
  4616. struct sched_group *group = sd->groups;
  4617. cpumask_clear(groupmask);
  4618. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4619. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4620. printk("does not load-balance\n");
  4621. if (sd->parent)
  4622. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4623. " has parent");
  4624. return -1;
  4625. }
  4626. printk(KERN_CONT "span %*pbl level %s\n",
  4627. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4628. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4629. printk(KERN_ERR "ERROR: domain->span does not contain "
  4630. "CPU%d\n", cpu);
  4631. }
  4632. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4633. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4634. " CPU%d\n", cpu);
  4635. }
  4636. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4637. do {
  4638. if (!group) {
  4639. printk("\n");
  4640. printk(KERN_ERR "ERROR: group is NULL\n");
  4641. break;
  4642. }
  4643. if (!cpumask_weight(sched_group_cpus(group))) {
  4644. printk(KERN_CONT "\n");
  4645. printk(KERN_ERR "ERROR: empty group\n");
  4646. break;
  4647. }
  4648. if (!(sd->flags & SD_OVERLAP) &&
  4649. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4650. printk(KERN_CONT "\n");
  4651. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4652. break;
  4653. }
  4654. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4655. printk(KERN_CONT " %*pbl",
  4656. cpumask_pr_args(sched_group_cpus(group)));
  4657. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4658. printk(KERN_CONT " (cpu_capacity = %d)",
  4659. group->sgc->capacity);
  4660. }
  4661. group = group->next;
  4662. } while (group != sd->groups);
  4663. printk(KERN_CONT "\n");
  4664. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4665. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4666. if (sd->parent &&
  4667. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4668. printk(KERN_ERR "ERROR: parent span is not a superset "
  4669. "of domain->span\n");
  4670. return 0;
  4671. }
  4672. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4673. {
  4674. int level = 0;
  4675. if (!sched_debug_enabled)
  4676. return;
  4677. if (!sd) {
  4678. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4679. return;
  4680. }
  4681. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4682. for (;;) {
  4683. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4684. break;
  4685. level++;
  4686. sd = sd->parent;
  4687. if (!sd)
  4688. break;
  4689. }
  4690. }
  4691. #else /* !CONFIG_SCHED_DEBUG */
  4692. # define sched_domain_debug(sd, cpu) do { } while (0)
  4693. static inline bool sched_debug(void)
  4694. {
  4695. return false;
  4696. }
  4697. #endif /* CONFIG_SCHED_DEBUG */
  4698. static int sd_degenerate(struct sched_domain *sd)
  4699. {
  4700. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4701. return 1;
  4702. /* Following flags need at least 2 groups */
  4703. if (sd->flags & (SD_LOAD_BALANCE |
  4704. SD_BALANCE_NEWIDLE |
  4705. SD_BALANCE_FORK |
  4706. SD_BALANCE_EXEC |
  4707. SD_SHARE_CPUCAPACITY |
  4708. SD_SHARE_PKG_RESOURCES |
  4709. SD_SHARE_POWERDOMAIN)) {
  4710. if (sd->groups != sd->groups->next)
  4711. return 0;
  4712. }
  4713. /* Following flags don't use groups */
  4714. if (sd->flags & (SD_WAKE_AFFINE))
  4715. return 0;
  4716. return 1;
  4717. }
  4718. static int
  4719. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4720. {
  4721. unsigned long cflags = sd->flags, pflags = parent->flags;
  4722. if (sd_degenerate(parent))
  4723. return 1;
  4724. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4725. return 0;
  4726. /* Flags needing groups don't count if only 1 group in parent */
  4727. if (parent->groups == parent->groups->next) {
  4728. pflags &= ~(SD_LOAD_BALANCE |
  4729. SD_BALANCE_NEWIDLE |
  4730. SD_BALANCE_FORK |
  4731. SD_BALANCE_EXEC |
  4732. SD_SHARE_CPUCAPACITY |
  4733. SD_SHARE_PKG_RESOURCES |
  4734. SD_PREFER_SIBLING |
  4735. SD_SHARE_POWERDOMAIN);
  4736. if (nr_node_ids == 1)
  4737. pflags &= ~SD_SERIALIZE;
  4738. }
  4739. if (~cflags & pflags)
  4740. return 0;
  4741. return 1;
  4742. }
  4743. static void free_rootdomain(struct rcu_head *rcu)
  4744. {
  4745. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4746. cpupri_cleanup(&rd->cpupri);
  4747. cpudl_cleanup(&rd->cpudl);
  4748. free_cpumask_var(rd->dlo_mask);
  4749. free_cpumask_var(rd->rto_mask);
  4750. free_cpumask_var(rd->online);
  4751. free_cpumask_var(rd->span);
  4752. kfree(rd);
  4753. }
  4754. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4755. {
  4756. struct root_domain *old_rd = NULL;
  4757. unsigned long flags;
  4758. raw_spin_lock_irqsave(&rq->lock, flags);
  4759. if (rq->rd) {
  4760. old_rd = rq->rd;
  4761. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4762. set_rq_offline(rq);
  4763. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4764. /*
  4765. * If we dont want to free the old_rd yet then
  4766. * set old_rd to NULL to skip the freeing later
  4767. * in this function:
  4768. */
  4769. if (!atomic_dec_and_test(&old_rd->refcount))
  4770. old_rd = NULL;
  4771. }
  4772. atomic_inc(&rd->refcount);
  4773. rq->rd = rd;
  4774. cpumask_set_cpu(rq->cpu, rd->span);
  4775. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4776. set_rq_online(rq);
  4777. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4778. if (old_rd)
  4779. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4780. }
  4781. static int init_rootdomain(struct root_domain *rd)
  4782. {
  4783. memset(rd, 0, sizeof(*rd));
  4784. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4785. goto out;
  4786. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4787. goto free_span;
  4788. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4789. goto free_online;
  4790. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4791. goto free_dlo_mask;
  4792. init_dl_bw(&rd->dl_bw);
  4793. if (cpudl_init(&rd->cpudl) != 0)
  4794. goto free_dlo_mask;
  4795. if (cpupri_init(&rd->cpupri) != 0)
  4796. goto free_rto_mask;
  4797. return 0;
  4798. free_rto_mask:
  4799. free_cpumask_var(rd->rto_mask);
  4800. free_dlo_mask:
  4801. free_cpumask_var(rd->dlo_mask);
  4802. free_online:
  4803. free_cpumask_var(rd->online);
  4804. free_span:
  4805. free_cpumask_var(rd->span);
  4806. out:
  4807. return -ENOMEM;
  4808. }
  4809. /*
  4810. * By default the system creates a single root-domain with all cpus as
  4811. * members (mimicking the global state we have today).
  4812. */
  4813. struct root_domain def_root_domain;
  4814. static void init_defrootdomain(void)
  4815. {
  4816. init_rootdomain(&def_root_domain);
  4817. atomic_set(&def_root_domain.refcount, 1);
  4818. }
  4819. static struct root_domain *alloc_rootdomain(void)
  4820. {
  4821. struct root_domain *rd;
  4822. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4823. if (!rd)
  4824. return NULL;
  4825. if (init_rootdomain(rd) != 0) {
  4826. kfree(rd);
  4827. return NULL;
  4828. }
  4829. return rd;
  4830. }
  4831. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4832. {
  4833. struct sched_group *tmp, *first;
  4834. if (!sg)
  4835. return;
  4836. first = sg;
  4837. do {
  4838. tmp = sg->next;
  4839. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4840. kfree(sg->sgc);
  4841. kfree(sg);
  4842. sg = tmp;
  4843. } while (sg != first);
  4844. }
  4845. static void free_sched_domain(struct rcu_head *rcu)
  4846. {
  4847. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4848. /*
  4849. * If its an overlapping domain it has private groups, iterate and
  4850. * nuke them all.
  4851. */
  4852. if (sd->flags & SD_OVERLAP) {
  4853. free_sched_groups(sd->groups, 1);
  4854. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4855. kfree(sd->groups->sgc);
  4856. kfree(sd->groups);
  4857. }
  4858. kfree(sd);
  4859. }
  4860. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4861. {
  4862. call_rcu(&sd->rcu, free_sched_domain);
  4863. }
  4864. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4865. {
  4866. for (; sd; sd = sd->parent)
  4867. destroy_sched_domain(sd, cpu);
  4868. }
  4869. /*
  4870. * Keep a special pointer to the highest sched_domain that has
  4871. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4872. * allows us to avoid some pointer chasing select_idle_sibling().
  4873. *
  4874. * Also keep a unique ID per domain (we use the first cpu number in
  4875. * the cpumask of the domain), this allows us to quickly tell if
  4876. * two cpus are in the same cache domain, see cpus_share_cache().
  4877. */
  4878. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4879. DEFINE_PER_CPU(int, sd_llc_size);
  4880. DEFINE_PER_CPU(int, sd_llc_id);
  4881. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4882. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4883. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4884. static void update_top_cache_domain(int cpu)
  4885. {
  4886. struct sched_domain *sd;
  4887. struct sched_domain *busy_sd = NULL;
  4888. int id = cpu;
  4889. int size = 1;
  4890. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4891. if (sd) {
  4892. id = cpumask_first(sched_domain_span(sd));
  4893. size = cpumask_weight(sched_domain_span(sd));
  4894. busy_sd = sd->parent; /* sd_busy */
  4895. }
  4896. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4897. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4898. per_cpu(sd_llc_size, cpu) = size;
  4899. per_cpu(sd_llc_id, cpu) = id;
  4900. sd = lowest_flag_domain(cpu, SD_NUMA);
  4901. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4902. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4903. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4904. }
  4905. /*
  4906. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4907. * hold the hotplug lock.
  4908. */
  4909. static void
  4910. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4911. {
  4912. struct rq *rq = cpu_rq(cpu);
  4913. struct sched_domain *tmp;
  4914. /* Remove the sched domains which do not contribute to scheduling. */
  4915. for (tmp = sd; tmp; ) {
  4916. struct sched_domain *parent = tmp->parent;
  4917. if (!parent)
  4918. break;
  4919. if (sd_parent_degenerate(tmp, parent)) {
  4920. tmp->parent = parent->parent;
  4921. if (parent->parent)
  4922. parent->parent->child = tmp;
  4923. /*
  4924. * Transfer SD_PREFER_SIBLING down in case of a
  4925. * degenerate parent; the spans match for this
  4926. * so the property transfers.
  4927. */
  4928. if (parent->flags & SD_PREFER_SIBLING)
  4929. tmp->flags |= SD_PREFER_SIBLING;
  4930. destroy_sched_domain(parent, cpu);
  4931. } else
  4932. tmp = tmp->parent;
  4933. }
  4934. if (sd && sd_degenerate(sd)) {
  4935. tmp = sd;
  4936. sd = sd->parent;
  4937. destroy_sched_domain(tmp, cpu);
  4938. if (sd)
  4939. sd->child = NULL;
  4940. }
  4941. sched_domain_debug(sd, cpu);
  4942. rq_attach_root(rq, rd);
  4943. tmp = rq->sd;
  4944. rcu_assign_pointer(rq->sd, sd);
  4945. destroy_sched_domains(tmp, cpu);
  4946. update_top_cache_domain(cpu);
  4947. }
  4948. /* Setup the mask of cpus configured for isolated domains */
  4949. static int __init isolated_cpu_setup(char *str)
  4950. {
  4951. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4952. cpulist_parse(str, cpu_isolated_map);
  4953. return 1;
  4954. }
  4955. __setup("isolcpus=", isolated_cpu_setup);
  4956. struct s_data {
  4957. struct sched_domain ** __percpu sd;
  4958. struct root_domain *rd;
  4959. };
  4960. enum s_alloc {
  4961. sa_rootdomain,
  4962. sa_sd,
  4963. sa_sd_storage,
  4964. sa_none,
  4965. };
  4966. /*
  4967. * Build an iteration mask that can exclude certain CPUs from the upwards
  4968. * domain traversal.
  4969. *
  4970. * Asymmetric node setups can result in situations where the domain tree is of
  4971. * unequal depth, make sure to skip domains that already cover the entire
  4972. * range.
  4973. *
  4974. * In that case build_sched_domains() will have terminated the iteration early
  4975. * and our sibling sd spans will be empty. Domains should always include the
  4976. * cpu they're built on, so check that.
  4977. *
  4978. */
  4979. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4980. {
  4981. const struct cpumask *span = sched_domain_span(sd);
  4982. struct sd_data *sdd = sd->private;
  4983. struct sched_domain *sibling;
  4984. int i;
  4985. for_each_cpu(i, span) {
  4986. sibling = *per_cpu_ptr(sdd->sd, i);
  4987. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4988. continue;
  4989. cpumask_set_cpu(i, sched_group_mask(sg));
  4990. }
  4991. }
  4992. /*
  4993. * Return the canonical balance cpu for this group, this is the first cpu
  4994. * of this group that's also in the iteration mask.
  4995. */
  4996. int group_balance_cpu(struct sched_group *sg)
  4997. {
  4998. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4999. }
  5000. static int
  5001. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5002. {
  5003. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5004. const struct cpumask *span = sched_domain_span(sd);
  5005. struct cpumask *covered = sched_domains_tmpmask;
  5006. struct sd_data *sdd = sd->private;
  5007. struct sched_domain *sibling;
  5008. int i;
  5009. cpumask_clear(covered);
  5010. for_each_cpu(i, span) {
  5011. struct cpumask *sg_span;
  5012. if (cpumask_test_cpu(i, covered))
  5013. continue;
  5014. sibling = *per_cpu_ptr(sdd->sd, i);
  5015. /* See the comment near build_group_mask(). */
  5016. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5017. continue;
  5018. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5019. GFP_KERNEL, cpu_to_node(cpu));
  5020. if (!sg)
  5021. goto fail;
  5022. sg_span = sched_group_cpus(sg);
  5023. if (sibling->child)
  5024. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5025. else
  5026. cpumask_set_cpu(i, sg_span);
  5027. cpumask_or(covered, covered, sg_span);
  5028. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5029. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5030. build_group_mask(sd, sg);
  5031. /*
  5032. * Initialize sgc->capacity such that even if we mess up the
  5033. * domains and no possible iteration will get us here, we won't
  5034. * die on a /0 trap.
  5035. */
  5036. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5037. /*
  5038. * Make sure the first group of this domain contains the
  5039. * canonical balance cpu. Otherwise the sched_domain iteration
  5040. * breaks. See update_sg_lb_stats().
  5041. */
  5042. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5043. group_balance_cpu(sg) == cpu)
  5044. groups = sg;
  5045. if (!first)
  5046. first = sg;
  5047. if (last)
  5048. last->next = sg;
  5049. last = sg;
  5050. last->next = first;
  5051. }
  5052. sd->groups = groups;
  5053. return 0;
  5054. fail:
  5055. free_sched_groups(first, 0);
  5056. return -ENOMEM;
  5057. }
  5058. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5059. {
  5060. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5061. struct sched_domain *child = sd->child;
  5062. if (child)
  5063. cpu = cpumask_first(sched_domain_span(child));
  5064. if (sg) {
  5065. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5066. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5067. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5068. }
  5069. return cpu;
  5070. }
  5071. /*
  5072. * build_sched_groups will build a circular linked list of the groups
  5073. * covered by the given span, and will set each group's ->cpumask correctly,
  5074. * and ->cpu_capacity to 0.
  5075. *
  5076. * Assumes the sched_domain tree is fully constructed
  5077. */
  5078. static int
  5079. build_sched_groups(struct sched_domain *sd, int cpu)
  5080. {
  5081. struct sched_group *first = NULL, *last = NULL;
  5082. struct sd_data *sdd = sd->private;
  5083. const struct cpumask *span = sched_domain_span(sd);
  5084. struct cpumask *covered;
  5085. int i;
  5086. get_group(cpu, sdd, &sd->groups);
  5087. atomic_inc(&sd->groups->ref);
  5088. if (cpu != cpumask_first(span))
  5089. return 0;
  5090. lockdep_assert_held(&sched_domains_mutex);
  5091. covered = sched_domains_tmpmask;
  5092. cpumask_clear(covered);
  5093. for_each_cpu(i, span) {
  5094. struct sched_group *sg;
  5095. int group, j;
  5096. if (cpumask_test_cpu(i, covered))
  5097. continue;
  5098. group = get_group(i, sdd, &sg);
  5099. cpumask_setall(sched_group_mask(sg));
  5100. for_each_cpu(j, span) {
  5101. if (get_group(j, sdd, NULL) != group)
  5102. continue;
  5103. cpumask_set_cpu(j, covered);
  5104. cpumask_set_cpu(j, sched_group_cpus(sg));
  5105. }
  5106. if (!first)
  5107. first = sg;
  5108. if (last)
  5109. last->next = sg;
  5110. last = sg;
  5111. }
  5112. last->next = first;
  5113. return 0;
  5114. }
  5115. /*
  5116. * Initialize sched groups cpu_capacity.
  5117. *
  5118. * cpu_capacity indicates the capacity of sched group, which is used while
  5119. * distributing the load between different sched groups in a sched domain.
  5120. * Typically cpu_capacity for all the groups in a sched domain will be same
  5121. * unless there are asymmetries in the topology. If there are asymmetries,
  5122. * group having more cpu_capacity will pickup more load compared to the
  5123. * group having less cpu_capacity.
  5124. */
  5125. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5126. {
  5127. struct sched_group *sg = sd->groups;
  5128. WARN_ON(!sg);
  5129. do {
  5130. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5131. sg = sg->next;
  5132. } while (sg != sd->groups);
  5133. if (cpu != group_balance_cpu(sg))
  5134. return;
  5135. update_group_capacity(sd, cpu);
  5136. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5137. }
  5138. /*
  5139. * Initializers for schedule domains
  5140. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5141. */
  5142. static int default_relax_domain_level = -1;
  5143. int sched_domain_level_max;
  5144. static int __init setup_relax_domain_level(char *str)
  5145. {
  5146. if (kstrtoint(str, 0, &default_relax_domain_level))
  5147. pr_warn("Unable to set relax_domain_level\n");
  5148. return 1;
  5149. }
  5150. __setup("relax_domain_level=", setup_relax_domain_level);
  5151. static void set_domain_attribute(struct sched_domain *sd,
  5152. struct sched_domain_attr *attr)
  5153. {
  5154. int request;
  5155. if (!attr || attr->relax_domain_level < 0) {
  5156. if (default_relax_domain_level < 0)
  5157. return;
  5158. else
  5159. request = default_relax_domain_level;
  5160. } else
  5161. request = attr->relax_domain_level;
  5162. if (request < sd->level) {
  5163. /* turn off idle balance on this domain */
  5164. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5165. } else {
  5166. /* turn on idle balance on this domain */
  5167. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5168. }
  5169. }
  5170. static void __sdt_free(const struct cpumask *cpu_map);
  5171. static int __sdt_alloc(const struct cpumask *cpu_map);
  5172. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5173. const struct cpumask *cpu_map)
  5174. {
  5175. switch (what) {
  5176. case sa_rootdomain:
  5177. if (!atomic_read(&d->rd->refcount))
  5178. free_rootdomain(&d->rd->rcu); /* fall through */
  5179. case sa_sd:
  5180. free_percpu(d->sd); /* fall through */
  5181. case sa_sd_storage:
  5182. __sdt_free(cpu_map); /* fall through */
  5183. case sa_none:
  5184. break;
  5185. }
  5186. }
  5187. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5188. const struct cpumask *cpu_map)
  5189. {
  5190. memset(d, 0, sizeof(*d));
  5191. if (__sdt_alloc(cpu_map))
  5192. return sa_sd_storage;
  5193. d->sd = alloc_percpu(struct sched_domain *);
  5194. if (!d->sd)
  5195. return sa_sd_storage;
  5196. d->rd = alloc_rootdomain();
  5197. if (!d->rd)
  5198. return sa_sd;
  5199. return sa_rootdomain;
  5200. }
  5201. /*
  5202. * NULL the sd_data elements we've used to build the sched_domain and
  5203. * sched_group structure so that the subsequent __free_domain_allocs()
  5204. * will not free the data we're using.
  5205. */
  5206. static void claim_allocations(int cpu, struct sched_domain *sd)
  5207. {
  5208. struct sd_data *sdd = sd->private;
  5209. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5210. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5211. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5212. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5213. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5214. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5215. }
  5216. #ifdef CONFIG_NUMA
  5217. static int sched_domains_numa_levels;
  5218. enum numa_topology_type sched_numa_topology_type;
  5219. static int *sched_domains_numa_distance;
  5220. int sched_max_numa_distance;
  5221. static struct cpumask ***sched_domains_numa_masks;
  5222. static int sched_domains_curr_level;
  5223. #endif
  5224. /*
  5225. * SD_flags allowed in topology descriptions.
  5226. *
  5227. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5228. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5229. * SD_NUMA - describes NUMA topologies
  5230. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5231. *
  5232. * Odd one out:
  5233. * SD_ASYM_PACKING - describes SMT quirks
  5234. */
  5235. #define TOPOLOGY_SD_FLAGS \
  5236. (SD_SHARE_CPUCAPACITY | \
  5237. SD_SHARE_PKG_RESOURCES | \
  5238. SD_NUMA | \
  5239. SD_ASYM_PACKING | \
  5240. SD_SHARE_POWERDOMAIN)
  5241. static struct sched_domain *
  5242. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5243. {
  5244. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5245. int sd_weight, sd_flags = 0;
  5246. #ifdef CONFIG_NUMA
  5247. /*
  5248. * Ugly hack to pass state to sd_numa_mask()...
  5249. */
  5250. sched_domains_curr_level = tl->numa_level;
  5251. #endif
  5252. sd_weight = cpumask_weight(tl->mask(cpu));
  5253. if (tl->sd_flags)
  5254. sd_flags = (*tl->sd_flags)();
  5255. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5256. "wrong sd_flags in topology description\n"))
  5257. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5258. *sd = (struct sched_domain){
  5259. .min_interval = sd_weight,
  5260. .max_interval = 2*sd_weight,
  5261. .busy_factor = 32,
  5262. .imbalance_pct = 125,
  5263. .cache_nice_tries = 0,
  5264. .busy_idx = 0,
  5265. .idle_idx = 0,
  5266. .newidle_idx = 0,
  5267. .wake_idx = 0,
  5268. .forkexec_idx = 0,
  5269. .flags = 1*SD_LOAD_BALANCE
  5270. | 1*SD_BALANCE_NEWIDLE
  5271. | 1*SD_BALANCE_EXEC
  5272. | 1*SD_BALANCE_FORK
  5273. | 0*SD_BALANCE_WAKE
  5274. | 1*SD_WAKE_AFFINE
  5275. | 0*SD_SHARE_CPUCAPACITY
  5276. | 0*SD_SHARE_PKG_RESOURCES
  5277. | 0*SD_SERIALIZE
  5278. | 0*SD_PREFER_SIBLING
  5279. | 0*SD_NUMA
  5280. | sd_flags
  5281. ,
  5282. .last_balance = jiffies,
  5283. .balance_interval = sd_weight,
  5284. .smt_gain = 0,
  5285. .max_newidle_lb_cost = 0,
  5286. .next_decay_max_lb_cost = jiffies,
  5287. #ifdef CONFIG_SCHED_DEBUG
  5288. .name = tl->name,
  5289. #endif
  5290. };
  5291. /*
  5292. * Convert topological properties into behaviour.
  5293. */
  5294. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5295. sd->flags |= SD_PREFER_SIBLING;
  5296. sd->imbalance_pct = 110;
  5297. sd->smt_gain = 1178; /* ~15% */
  5298. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5299. sd->imbalance_pct = 117;
  5300. sd->cache_nice_tries = 1;
  5301. sd->busy_idx = 2;
  5302. #ifdef CONFIG_NUMA
  5303. } else if (sd->flags & SD_NUMA) {
  5304. sd->cache_nice_tries = 2;
  5305. sd->busy_idx = 3;
  5306. sd->idle_idx = 2;
  5307. sd->flags |= SD_SERIALIZE;
  5308. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5309. sd->flags &= ~(SD_BALANCE_EXEC |
  5310. SD_BALANCE_FORK |
  5311. SD_WAKE_AFFINE);
  5312. }
  5313. #endif
  5314. } else {
  5315. sd->flags |= SD_PREFER_SIBLING;
  5316. sd->cache_nice_tries = 1;
  5317. sd->busy_idx = 2;
  5318. sd->idle_idx = 1;
  5319. }
  5320. sd->private = &tl->data;
  5321. return sd;
  5322. }
  5323. /*
  5324. * Topology list, bottom-up.
  5325. */
  5326. static struct sched_domain_topology_level default_topology[] = {
  5327. #ifdef CONFIG_SCHED_SMT
  5328. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5329. #endif
  5330. #ifdef CONFIG_SCHED_MC
  5331. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5332. #endif
  5333. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5334. { NULL, },
  5335. };
  5336. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5337. #define for_each_sd_topology(tl) \
  5338. for (tl = sched_domain_topology; tl->mask; tl++)
  5339. void set_sched_topology(struct sched_domain_topology_level *tl)
  5340. {
  5341. sched_domain_topology = tl;
  5342. }
  5343. #ifdef CONFIG_NUMA
  5344. static const struct cpumask *sd_numa_mask(int cpu)
  5345. {
  5346. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5347. }
  5348. static void sched_numa_warn(const char *str)
  5349. {
  5350. static int done = false;
  5351. int i,j;
  5352. if (done)
  5353. return;
  5354. done = true;
  5355. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5356. for (i = 0; i < nr_node_ids; i++) {
  5357. printk(KERN_WARNING " ");
  5358. for (j = 0; j < nr_node_ids; j++)
  5359. printk(KERN_CONT "%02d ", node_distance(i,j));
  5360. printk(KERN_CONT "\n");
  5361. }
  5362. printk(KERN_WARNING "\n");
  5363. }
  5364. bool find_numa_distance(int distance)
  5365. {
  5366. int i;
  5367. if (distance == node_distance(0, 0))
  5368. return true;
  5369. for (i = 0; i < sched_domains_numa_levels; i++) {
  5370. if (sched_domains_numa_distance[i] == distance)
  5371. return true;
  5372. }
  5373. return false;
  5374. }
  5375. /*
  5376. * A system can have three types of NUMA topology:
  5377. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5378. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5379. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5380. *
  5381. * The difference between a glueless mesh topology and a backplane
  5382. * topology lies in whether communication between not directly
  5383. * connected nodes goes through intermediary nodes (where programs
  5384. * could run), or through backplane controllers. This affects
  5385. * placement of programs.
  5386. *
  5387. * The type of topology can be discerned with the following tests:
  5388. * - If the maximum distance between any nodes is 1 hop, the system
  5389. * is directly connected.
  5390. * - If for two nodes A and B, located N > 1 hops away from each other,
  5391. * there is an intermediary node C, which is < N hops away from both
  5392. * nodes A and B, the system is a glueless mesh.
  5393. */
  5394. static void init_numa_topology_type(void)
  5395. {
  5396. int a, b, c, n;
  5397. n = sched_max_numa_distance;
  5398. if (n <= 1)
  5399. sched_numa_topology_type = NUMA_DIRECT;
  5400. for_each_online_node(a) {
  5401. for_each_online_node(b) {
  5402. /* Find two nodes furthest removed from each other. */
  5403. if (node_distance(a, b) < n)
  5404. continue;
  5405. /* Is there an intermediary node between a and b? */
  5406. for_each_online_node(c) {
  5407. if (node_distance(a, c) < n &&
  5408. node_distance(b, c) < n) {
  5409. sched_numa_topology_type =
  5410. NUMA_GLUELESS_MESH;
  5411. return;
  5412. }
  5413. }
  5414. sched_numa_topology_type = NUMA_BACKPLANE;
  5415. return;
  5416. }
  5417. }
  5418. }
  5419. static void sched_init_numa(void)
  5420. {
  5421. int next_distance, curr_distance = node_distance(0, 0);
  5422. struct sched_domain_topology_level *tl;
  5423. int level = 0;
  5424. int i, j, k;
  5425. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5426. if (!sched_domains_numa_distance)
  5427. return;
  5428. /*
  5429. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5430. * unique distances in the node_distance() table.
  5431. *
  5432. * Assumes node_distance(0,j) includes all distances in
  5433. * node_distance(i,j) in order to avoid cubic time.
  5434. */
  5435. next_distance = curr_distance;
  5436. for (i = 0; i < nr_node_ids; i++) {
  5437. for (j = 0; j < nr_node_ids; j++) {
  5438. for (k = 0; k < nr_node_ids; k++) {
  5439. int distance = node_distance(i, k);
  5440. if (distance > curr_distance &&
  5441. (distance < next_distance ||
  5442. next_distance == curr_distance))
  5443. next_distance = distance;
  5444. /*
  5445. * While not a strong assumption it would be nice to know
  5446. * about cases where if node A is connected to B, B is not
  5447. * equally connected to A.
  5448. */
  5449. if (sched_debug() && node_distance(k, i) != distance)
  5450. sched_numa_warn("Node-distance not symmetric");
  5451. if (sched_debug() && i && !find_numa_distance(distance))
  5452. sched_numa_warn("Node-0 not representative");
  5453. }
  5454. if (next_distance != curr_distance) {
  5455. sched_domains_numa_distance[level++] = next_distance;
  5456. sched_domains_numa_levels = level;
  5457. curr_distance = next_distance;
  5458. } else break;
  5459. }
  5460. /*
  5461. * In case of sched_debug() we verify the above assumption.
  5462. */
  5463. if (!sched_debug())
  5464. break;
  5465. }
  5466. if (!level)
  5467. return;
  5468. /*
  5469. * 'level' contains the number of unique distances, excluding the
  5470. * identity distance node_distance(i,i).
  5471. *
  5472. * The sched_domains_numa_distance[] array includes the actual distance
  5473. * numbers.
  5474. */
  5475. /*
  5476. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5477. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5478. * the array will contain less then 'level' members. This could be
  5479. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5480. * in other functions.
  5481. *
  5482. * We reset it to 'level' at the end of this function.
  5483. */
  5484. sched_domains_numa_levels = 0;
  5485. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5486. if (!sched_domains_numa_masks)
  5487. return;
  5488. /*
  5489. * Now for each level, construct a mask per node which contains all
  5490. * cpus of nodes that are that many hops away from us.
  5491. */
  5492. for (i = 0; i < level; i++) {
  5493. sched_domains_numa_masks[i] =
  5494. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5495. if (!sched_domains_numa_masks[i])
  5496. return;
  5497. for (j = 0; j < nr_node_ids; j++) {
  5498. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5499. if (!mask)
  5500. return;
  5501. sched_domains_numa_masks[i][j] = mask;
  5502. for (k = 0; k < nr_node_ids; k++) {
  5503. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5504. continue;
  5505. cpumask_or(mask, mask, cpumask_of_node(k));
  5506. }
  5507. }
  5508. }
  5509. /* Compute default topology size */
  5510. for (i = 0; sched_domain_topology[i].mask; i++);
  5511. tl = kzalloc((i + level + 1) *
  5512. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5513. if (!tl)
  5514. return;
  5515. /*
  5516. * Copy the default topology bits..
  5517. */
  5518. for (i = 0; sched_domain_topology[i].mask; i++)
  5519. tl[i] = sched_domain_topology[i];
  5520. /*
  5521. * .. and append 'j' levels of NUMA goodness.
  5522. */
  5523. for (j = 0; j < level; i++, j++) {
  5524. tl[i] = (struct sched_domain_topology_level){
  5525. .mask = sd_numa_mask,
  5526. .sd_flags = cpu_numa_flags,
  5527. .flags = SDTL_OVERLAP,
  5528. .numa_level = j,
  5529. SD_INIT_NAME(NUMA)
  5530. };
  5531. }
  5532. sched_domain_topology = tl;
  5533. sched_domains_numa_levels = level;
  5534. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5535. init_numa_topology_type();
  5536. }
  5537. static void sched_domains_numa_masks_set(int cpu)
  5538. {
  5539. int i, j;
  5540. int node = cpu_to_node(cpu);
  5541. for (i = 0; i < sched_domains_numa_levels; i++) {
  5542. for (j = 0; j < nr_node_ids; j++) {
  5543. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5544. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5545. }
  5546. }
  5547. }
  5548. static void sched_domains_numa_masks_clear(int cpu)
  5549. {
  5550. int i, j;
  5551. for (i = 0; i < sched_domains_numa_levels; i++) {
  5552. for (j = 0; j < nr_node_ids; j++)
  5553. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5554. }
  5555. }
  5556. /*
  5557. * Update sched_domains_numa_masks[level][node] array when new cpus
  5558. * are onlined.
  5559. */
  5560. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5561. unsigned long action,
  5562. void *hcpu)
  5563. {
  5564. int cpu = (long)hcpu;
  5565. switch (action & ~CPU_TASKS_FROZEN) {
  5566. case CPU_ONLINE:
  5567. sched_domains_numa_masks_set(cpu);
  5568. break;
  5569. case CPU_DEAD:
  5570. sched_domains_numa_masks_clear(cpu);
  5571. break;
  5572. default:
  5573. return NOTIFY_DONE;
  5574. }
  5575. return NOTIFY_OK;
  5576. }
  5577. #else
  5578. static inline void sched_init_numa(void)
  5579. {
  5580. }
  5581. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5582. unsigned long action,
  5583. void *hcpu)
  5584. {
  5585. return 0;
  5586. }
  5587. #endif /* CONFIG_NUMA */
  5588. static int __sdt_alloc(const struct cpumask *cpu_map)
  5589. {
  5590. struct sched_domain_topology_level *tl;
  5591. int j;
  5592. for_each_sd_topology(tl) {
  5593. struct sd_data *sdd = &tl->data;
  5594. sdd->sd = alloc_percpu(struct sched_domain *);
  5595. if (!sdd->sd)
  5596. return -ENOMEM;
  5597. sdd->sg = alloc_percpu(struct sched_group *);
  5598. if (!sdd->sg)
  5599. return -ENOMEM;
  5600. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5601. if (!sdd->sgc)
  5602. return -ENOMEM;
  5603. for_each_cpu(j, cpu_map) {
  5604. struct sched_domain *sd;
  5605. struct sched_group *sg;
  5606. struct sched_group_capacity *sgc;
  5607. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5608. GFP_KERNEL, cpu_to_node(j));
  5609. if (!sd)
  5610. return -ENOMEM;
  5611. *per_cpu_ptr(sdd->sd, j) = sd;
  5612. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5613. GFP_KERNEL, cpu_to_node(j));
  5614. if (!sg)
  5615. return -ENOMEM;
  5616. sg->next = sg;
  5617. *per_cpu_ptr(sdd->sg, j) = sg;
  5618. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5619. GFP_KERNEL, cpu_to_node(j));
  5620. if (!sgc)
  5621. return -ENOMEM;
  5622. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5623. }
  5624. }
  5625. return 0;
  5626. }
  5627. static void __sdt_free(const struct cpumask *cpu_map)
  5628. {
  5629. struct sched_domain_topology_level *tl;
  5630. int j;
  5631. for_each_sd_topology(tl) {
  5632. struct sd_data *sdd = &tl->data;
  5633. for_each_cpu(j, cpu_map) {
  5634. struct sched_domain *sd;
  5635. if (sdd->sd) {
  5636. sd = *per_cpu_ptr(sdd->sd, j);
  5637. if (sd && (sd->flags & SD_OVERLAP))
  5638. free_sched_groups(sd->groups, 0);
  5639. kfree(*per_cpu_ptr(sdd->sd, j));
  5640. }
  5641. if (sdd->sg)
  5642. kfree(*per_cpu_ptr(sdd->sg, j));
  5643. if (sdd->sgc)
  5644. kfree(*per_cpu_ptr(sdd->sgc, j));
  5645. }
  5646. free_percpu(sdd->sd);
  5647. sdd->sd = NULL;
  5648. free_percpu(sdd->sg);
  5649. sdd->sg = NULL;
  5650. free_percpu(sdd->sgc);
  5651. sdd->sgc = NULL;
  5652. }
  5653. }
  5654. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5655. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5656. struct sched_domain *child, int cpu)
  5657. {
  5658. struct sched_domain *sd = sd_init(tl, cpu);
  5659. if (!sd)
  5660. return child;
  5661. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5662. if (child) {
  5663. sd->level = child->level + 1;
  5664. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5665. child->parent = sd;
  5666. sd->child = child;
  5667. if (!cpumask_subset(sched_domain_span(child),
  5668. sched_domain_span(sd))) {
  5669. pr_err("BUG: arch topology borken\n");
  5670. #ifdef CONFIG_SCHED_DEBUG
  5671. pr_err(" the %s domain not a subset of the %s domain\n",
  5672. child->name, sd->name);
  5673. #endif
  5674. /* Fixup, ensure @sd has at least @child cpus. */
  5675. cpumask_or(sched_domain_span(sd),
  5676. sched_domain_span(sd),
  5677. sched_domain_span(child));
  5678. }
  5679. }
  5680. set_domain_attribute(sd, attr);
  5681. return sd;
  5682. }
  5683. /*
  5684. * Build sched domains for a given set of cpus and attach the sched domains
  5685. * to the individual cpus
  5686. */
  5687. static int build_sched_domains(const struct cpumask *cpu_map,
  5688. struct sched_domain_attr *attr)
  5689. {
  5690. enum s_alloc alloc_state;
  5691. struct sched_domain *sd;
  5692. struct s_data d;
  5693. int i, ret = -ENOMEM;
  5694. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5695. if (alloc_state != sa_rootdomain)
  5696. goto error;
  5697. /* Set up domains for cpus specified by the cpu_map. */
  5698. for_each_cpu(i, cpu_map) {
  5699. struct sched_domain_topology_level *tl;
  5700. sd = NULL;
  5701. for_each_sd_topology(tl) {
  5702. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5703. if (tl == sched_domain_topology)
  5704. *per_cpu_ptr(d.sd, i) = sd;
  5705. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5706. sd->flags |= SD_OVERLAP;
  5707. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5708. break;
  5709. }
  5710. }
  5711. /* Build the groups for the domains */
  5712. for_each_cpu(i, cpu_map) {
  5713. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5714. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5715. if (sd->flags & SD_OVERLAP) {
  5716. if (build_overlap_sched_groups(sd, i))
  5717. goto error;
  5718. } else {
  5719. if (build_sched_groups(sd, i))
  5720. goto error;
  5721. }
  5722. }
  5723. }
  5724. /* Calculate CPU capacity for physical packages and nodes */
  5725. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5726. if (!cpumask_test_cpu(i, cpu_map))
  5727. continue;
  5728. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5729. claim_allocations(i, sd);
  5730. init_sched_groups_capacity(i, sd);
  5731. }
  5732. }
  5733. /* Attach the domains */
  5734. rcu_read_lock();
  5735. for_each_cpu(i, cpu_map) {
  5736. sd = *per_cpu_ptr(d.sd, i);
  5737. cpu_attach_domain(sd, d.rd, i);
  5738. }
  5739. rcu_read_unlock();
  5740. ret = 0;
  5741. error:
  5742. __free_domain_allocs(&d, alloc_state, cpu_map);
  5743. return ret;
  5744. }
  5745. static cpumask_var_t *doms_cur; /* current sched domains */
  5746. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5747. static struct sched_domain_attr *dattr_cur;
  5748. /* attribues of custom domains in 'doms_cur' */
  5749. /*
  5750. * Special case: If a kmalloc of a doms_cur partition (array of
  5751. * cpumask) fails, then fallback to a single sched domain,
  5752. * as determined by the single cpumask fallback_doms.
  5753. */
  5754. static cpumask_var_t fallback_doms;
  5755. /*
  5756. * arch_update_cpu_topology lets virtualized architectures update the
  5757. * cpu core maps. It is supposed to return 1 if the topology changed
  5758. * or 0 if it stayed the same.
  5759. */
  5760. int __weak arch_update_cpu_topology(void)
  5761. {
  5762. return 0;
  5763. }
  5764. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5765. {
  5766. int i;
  5767. cpumask_var_t *doms;
  5768. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5769. if (!doms)
  5770. return NULL;
  5771. for (i = 0; i < ndoms; i++) {
  5772. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5773. free_sched_domains(doms, i);
  5774. return NULL;
  5775. }
  5776. }
  5777. return doms;
  5778. }
  5779. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5780. {
  5781. unsigned int i;
  5782. for (i = 0; i < ndoms; i++)
  5783. free_cpumask_var(doms[i]);
  5784. kfree(doms);
  5785. }
  5786. /*
  5787. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5788. * For now this just excludes isolated cpus, but could be used to
  5789. * exclude other special cases in the future.
  5790. */
  5791. static int init_sched_domains(const struct cpumask *cpu_map)
  5792. {
  5793. int err;
  5794. arch_update_cpu_topology();
  5795. ndoms_cur = 1;
  5796. doms_cur = alloc_sched_domains(ndoms_cur);
  5797. if (!doms_cur)
  5798. doms_cur = &fallback_doms;
  5799. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5800. err = build_sched_domains(doms_cur[0], NULL);
  5801. register_sched_domain_sysctl();
  5802. return err;
  5803. }
  5804. /*
  5805. * Detach sched domains from a group of cpus specified in cpu_map
  5806. * These cpus will now be attached to the NULL domain
  5807. */
  5808. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5809. {
  5810. int i;
  5811. rcu_read_lock();
  5812. for_each_cpu(i, cpu_map)
  5813. cpu_attach_domain(NULL, &def_root_domain, i);
  5814. rcu_read_unlock();
  5815. }
  5816. /* handle null as "default" */
  5817. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5818. struct sched_domain_attr *new, int idx_new)
  5819. {
  5820. struct sched_domain_attr tmp;
  5821. /* fast path */
  5822. if (!new && !cur)
  5823. return 1;
  5824. tmp = SD_ATTR_INIT;
  5825. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5826. new ? (new + idx_new) : &tmp,
  5827. sizeof(struct sched_domain_attr));
  5828. }
  5829. /*
  5830. * Partition sched domains as specified by the 'ndoms_new'
  5831. * cpumasks in the array doms_new[] of cpumasks. This compares
  5832. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5833. * It destroys each deleted domain and builds each new domain.
  5834. *
  5835. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5836. * The masks don't intersect (don't overlap.) We should setup one
  5837. * sched domain for each mask. CPUs not in any of the cpumasks will
  5838. * not be load balanced. If the same cpumask appears both in the
  5839. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5840. * it as it is.
  5841. *
  5842. * The passed in 'doms_new' should be allocated using
  5843. * alloc_sched_domains. This routine takes ownership of it and will
  5844. * free_sched_domains it when done with it. If the caller failed the
  5845. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5846. * and partition_sched_domains() will fallback to the single partition
  5847. * 'fallback_doms', it also forces the domains to be rebuilt.
  5848. *
  5849. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5850. * ndoms_new == 0 is a special case for destroying existing domains,
  5851. * and it will not create the default domain.
  5852. *
  5853. * Call with hotplug lock held
  5854. */
  5855. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5856. struct sched_domain_attr *dattr_new)
  5857. {
  5858. int i, j, n;
  5859. int new_topology;
  5860. mutex_lock(&sched_domains_mutex);
  5861. /* always unregister in case we don't destroy any domains */
  5862. unregister_sched_domain_sysctl();
  5863. /* Let architecture update cpu core mappings. */
  5864. new_topology = arch_update_cpu_topology();
  5865. n = doms_new ? ndoms_new : 0;
  5866. /* Destroy deleted domains */
  5867. for (i = 0; i < ndoms_cur; i++) {
  5868. for (j = 0; j < n && !new_topology; j++) {
  5869. if (cpumask_equal(doms_cur[i], doms_new[j])
  5870. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5871. goto match1;
  5872. }
  5873. /* no match - a current sched domain not in new doms_new[] */
  5874. detach_destroy_domains(doms_cur[i]);
  5875. match1:
  5876. ;
  5877. }
  5878. n = ndoms_cur;
  5879. if (doms_new == NULL) {
  5880. n = 0;
  5881. doms_new = &fallback_doms;
  5882. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5883. WARN_ON_ONCE(dattr_new);
  5884. }
  5885. /* Build new domains */
  5886. for (i = 0; i < ndoms_new; i++) {
  5887. for (j = 0; j < n && !new_topology; j++) {
  5888. if (cpumask_equal(doms_new[i], doms_cur[j])
  5889. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5890. goto match2;
  5891. }
  5892. /* no match - add a new doms_new */
  5893. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5894. match2:
  5895. ;
  5896. }
  5897. /* Remember the new sched domains */
  5898. if (doms_cur != &fallback_doms)
  5899. free_sched_domains(doms_cur, ndoms_cur);
  5900. kfree(dattr_cur); /* kfree(NULL) is safe */
  5901. doms_cur = doms_new;
  5902. dattr_cur = dattr_new;
  5903. ndoms_cur = ndoms_new;
  5904. register_sched_domain_sysctl();
  5905. mutex_unlock(&sched_domains_mutex);
  5906. }
  5907. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5908. /*
  5909. * Update cpusets according to cpu_active mask. If cpusets are
  5910. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5911. * around partition_sched_domains().
  5912. *
  5913. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5914. * want to restore it back to its original state upon resume anyway.
  5915. */
  5916. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5917. void *hcpu)
  5918. {
  5919. switch (action) {
  5920. case CPU_ONLINE_FROZEN:
  5921. case CPU_DOWN_FAILED_FROZEN:
  5922. /*
  5923. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5924. * resume sequence. As long as this is not the last online
  5925. * operation in the resume sequence, just build a single sched
  5926. * domain, ignoring cpusets.
  5927. */
  5928. num_cpus_frozen--;
  5929. if (likely(num_cpus_frozen)) {
  5930. partition_sched_domains(1, NULL, NULL);
  5931. break;
  5932. }
  5933. /*
  5934. * This is the last CPU online operation. So fall through and
  5935. * restore the original sched domains by considering the
  5936. * cpuset configurations.
  5937. */
  5938. case CPU_ONLINE:
  5939. cpuset_update_active_cpus(true);
  5940. break;
  5941. default:
  5942. return NOTIFY_DONE;
  5943. }
  5944. return NOTIFY_OK;
  5945. }
  5946. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5947. void *hcpu)
  5948. {
  5949. unsigned long flags;
  5950. long cpu = (long)hcpu;
  5951. struct dl_bw *dl_b;
  5952. switch (action & ~CPU_TASKS_FROZEN) {
  5953. case CPU_DOWN_PREPARE:
  5954. /* explicitly allow suspend */
  5955. if (!(action & CPU_TASKS_FROZEN)) {
  5956. bool overflow;
  5957. int cpus;
  5958. rcu_read_lock_sched();
  5959. dl_b = dl_bw_of(cpu);
  5960. raw_spin_lock_irqsave(&dl_b->lock, flags);
  5961. cpus = dl_bw_cpus(cpu);
  5962. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  5963. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  5964. rcu_read_unlock_sched();
  5965. if (overflow)
  5966. return notifier_from_errno(-EBUSY);
  5967. }
  5968. cpuset_update_active_cpus(false);
  5969. break;
  5970. case CPU_DOWN_PREPARE_FROZEN:
  5971. num_cpus_frozen++;
  5972. partition_sched_domains(1, NULL, NULL);
  5973. break;
  5974. default:
  5975. return NOTIFY_DONE;
  5976. }
  5977. return NOTIFY_OK;
  5978. }
  5979. void __init sched_init_smp(void)
  5980. {
  5981. cpumask_var_t non_isolated_cpus;
  5982. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5983. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5984. sched_init_numa();
  5985. /*
  5986. * There's no userspace yet to cause hotplug operations; hence all the
  5987. * cpu masks are stable and all blatant races in the below code cannot
  5988. * happen.
  5989. */
  5990. mutex_lock(&sched_domains_mutex);
  5991. init_sched_domains(cpu_active_mask);
  5992. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5993. if (cpumask_empty(non_isolated_cpus))
  5994. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5995. mutex_unlock(&sched_domains_mutex);
  5996. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5997. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5998. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5999. init_hrtick();
  6000. /* Move init over to a non-isolated CPU */
  6001. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6002. BUG();
  6003. sched_init_granularity();
  6004. free_cpumask_var(non_isolated_cpus);
  6005. init_sched_rt_class();
  6006. init_sched_dl_class();
  6007. }
  6008. #else
  6009. void __init sched_init_smp(void)
  6010. {
  6011. sched_init_granularity();
  6012. }
  6013. #endif /* CONFIG_SMP */
  6014. const_debug unsigned int sysctl_timer_migration = 1;
  6015. int in_sched_functions(unsigned long addr)
  6016. {
  6017. return in_lock_functions(addr) ||
  6018. (addr >= (unsigned long)__sched_text_start
  6019. && addr < (unsigned long)__sched_text_end);
  6020. }
  6021. #ifdef CONFIG_CGROUP_SCHED
  6022. /*
  6023. * Default task group.
  6024. * Every task in system belongs to this group at bootup.
  6025. */
  6026. struct task_group root_task_group;
  6027. LIST_HEAD(task_groups);
  6028. #endif
  6029. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6030. void __init sched_init(void)
  6031. {
  6032. int i, j;
  6033. unsigned long alloc_size = 0, ptr;
  6034. #ifdef CONFIG_FAIR_GROUP_SCHED
  6035. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6036. #endif
  6037. #ifdef CONFIG_RT_GROUP_SCHED
  6038. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6039. #endif
  6040. if (alloc_size) {
  6041. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6042. #ifdef CONFIG_FAIR_GROUP_SCHED
  6043. root_task_group.se = (struct sched_entity **)ptr;
  6044. ptr += nr_cpu_ids * sizeof(void **);
  6045. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6046. ptr += nr_cpu_ids * sizeof(void **);
  6047. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6048. #ifdef CONFIG_RT_GROUP_SCHED
  6049. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6050. ptr += nr_cpu_ids * sizeof(void **);
  6051. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6052. ptr += nr_cpu_ids * sizeof(void **);
  6053. #endif /* CONFIG_RT_GROUP_SCHED */
  6054. }
  6055. #ifdef CONFIG_CPUMASK_OFFSTACK
  6056. for_each_possible_cpu(i) {
  6057. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6058. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6059. }
  6060. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6061. init_rt_bandwidth(&def_rt_bandwidth,
  6062. global_rt_period(), global_rt_runtime());
  6063. init_dl_bandwidth(&def_dl_bandwidth,
  6064. global_rt_period(), global_rt_runtime());
  6065. #ifdef CONFIG_SMP
  6066. init_defrootdomain();
  6067. #endif
  6068. #ifdef CONFIG_RT_GROUP_SCHED
  6069. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6070. global_rt_period(), global_rt_runtime());
  6071. #endif /* CONFIG_RT_GROUP_SCHED */
  6072. #ifdef CONFIG_CGROUP_SCHED
  6073. list_add(&root_task_group.list, &task_groups);
  6074. INIT_LIST_HEAD(&root_task_group.children);
  6075. INIT_LIST_HEAD(&root_task_group.siblings);
  6076. autogroup_init(&init_task);
  6077. #endif /* CONFIG_CGROUP_SCHED */
  6078. for_each_possible_cpu(i) {
  6079. struct rq *rq;
  6080. rq = cpu_rq(i);
  6081. raw_spin_lock_init(&rq->lock);
  6082. rq->nr_running = 0;
  6083. rq->calc_load_active = 0;
  6084. rq->calc_load_update = jiffies + LOAD_FREQ;
  6085. init_cfs_rq(&rq->cfs);
  6086. init_rt_rq(&rq->rt);
  6087. init_dl_rq(&rq->dl);
  6088. #ifdef CONFIG_FAIR_GROUP_SCHED
  6089. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6090. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6091. /*
  6092. * How much cpu bandwidth does root_task_group get?
  6093. *
  6094. * In case of task-groups formed thr' the cgroup filesystem, it
  6095. * gets 100% of the cpu resources in the system. This overall
  6096. * system cpu resource is divided among the tasks of
  6097. * root_task_group and its child task-groups in a fair manner,
  6098. * based on each entity's (task or task-group's) weight
  6099. * (se->load.weight).
  6100. *
  6101. * In other words, if root_task_group has 10 tasks of weight
  6102. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6103. * then A0's share of the cpu resource is:
  6104. *
  6105. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6106. *
  6107. * We achieve this by letting root_task_group's tasks sit
  6108. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6109. */
  6110. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6111. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6112. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6113. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6114. #ifdef CONFIG_RT_GROUP_SCHED
  6115. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6116. #endif
  6117. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6118. rq->cpu_load[j] = 0;
  6119. rq->last_load_update_tick = jiffies;
  6120. #ifdef CONFIG_SMP
  6121. rq->sd = NULL;
  6122. rq->rd = NULL;
  6123. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6124. rq->post_schedule = 0;
  6125. rq->active_balance = 0;
  6126. rq->next_balance = jiffies;
  6127. rq->push_cpu = 0;
  6128. rq->cpu = i;
  6129. rq->online = 0;
  6130. rq->idle_stamp = 0;
  6131. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6132. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6133. INIT_LIST_HEAD(&rq->cfs_tasks);
  6134. rq_attach_root(rq, &def_root_domain);
  6135. #ifdef CONFIG_NO_HZ_COMMON
  6136. rq->nohz_flags = 0;
  6137. #endif
  6138. #ifdef CONFIG_NO_HZ_FULL
  6139. rq->last_sched_tick = 0;
  6140. #endif
  6141. #endif
  6142. init_rq_hrtick(rq);
  6143. atomic_set(&rq->nr_iowait, 0);
  6144. }
  6145. set_load_weight(&init_task);
  6146. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6147. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6148. #endif
  6149. /*
  6150. * The boot idle thread does lazy MMU switching as well:
  6151. */
  6152. atomic_inc(&init_mm.mm_count);
  6153. enter_lazy_tlb(&init_mm, current);
  6154. /*
  6155. * During early bootup we pretend to be a normal task:
  6156. */
  6157. current->sched_class = &fair_sched_class;
  6158. /*
  6159. * Make us the idle thread. Technically, schedule() should not be
  6160. * called from this thread, however somewhere below it might be,
  6161. * but because we are the idle thread, we just pick up running again
  6162. * when this runqueue becomes "idle".
  6163. */
  6164. init_idle(current, smp_processor_id());
  6165. calc_load_update = jiffies + LOAD_FREQ;
  6166. #ifdef CONFIG_SMP
  6167. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6168. /* May be allocated at isolcpus cmdline parse time */
  6169. if (cpu_isolated_map == NULL)
  6170. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6171. idle_thread_set_boot_cpu();
  6172. set_cpu_rq_start_time();
  6173. #endif
  6174. init_sched_fair_class();
  6175. scheduler_running = 1;
  6176. }
  6177. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6178. static inline int preempt_count_equals(int preempt_offset)
  6179. {
  6180. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6181. return (nested == preempt_offset);
  6182. }
  6183. void __might_sleep(const char *file, int line, int preempt_offset)
  6184. {
  6185. /*
  6186. * Blocking primitives will set (and therefore destroy) current->state,
  6187. * since we will exit with TASK_RUNNING make sure we enter with it,
  6188. * otherwise we will destroy state.
  6189. */
  6190. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6191. "do not call blocking ops when !TASK_RUNNING; "
  6192. "state=%lx set at [<%p>] %pS\n",
  6193. current->state,
  6194. (void *)current->task_state_change,
  6195. (void *)current->task_state_change);
  6196. ___might_sleep(file, line, preempt_offset);
  6197. }
  6198. EXPORT_SYMBOL(__might_sleep);
  6199. void ___might_sleep(const char *file, int line, int preempt_offset)
  6200. {
  6201. static unsigned long prev_jiffy; /* ratelimiting */
  6202. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6203. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6204. !is_idle_task(current)) ||
  6205. system_state != SYSTEM_RUNNING || oops_in_progress)
  6206. return;
  6207. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6208. return;
  6209. prev_jiffy = jiffies;
  6210. printk(KERN_ERR
  6211. "BUG: sleeping function called from invalid context at %s:%d\n",
  6212. file, line);
  6213. printk(KERN_ERR
  6214. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6215. in_atomic(), irqs_disabled(),
  6216. current->pid, current->comm);
  6217. if (task_stack_end_corrupted(current))
  6218. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6219. debug_show_held_locks(current);
  6220. if (irqs_disabled())
  6221. print_irqtrace_events(current);
  6222. #ifdef CONFIG_DEBUG_PREEMPT
  6223. if (!preempt_count_equals(preempt_offset)) {
  6224. pr_err("Preemption disabled at:");
  6225. print_ip_sym(current->preempt_disable_ip);
  6226. pr_cont("\n");
  6227. }
  6228. #endif
  6229. dump_stack();
  6230. }
  6231. EXPORT_SYMBOL(___might_sleep);
  6232. #endif
  6233. #ifdef CONFIG_MAGIC_SYSRQ
  6234. static void normalize_task(struct rq *rq, struct task_struct *p)
  6235. {
  6236. const struct sched_class *prev_class = p->sched_class;
  6237. struct sched_attr attr = {
  6238. .sched_policy = SCHED_NORMAL,
  6239. };
  6240. int old_prio = p->prio;
  6241. int queued;
  6242. queued = task_on_rq_queued(p);
  6243. if (queued)
  6244. dequeue_task(rq, p, 0);
  6245. __setscheduler(rq, p, &attr);
  6246. if (queued) {
  6247. enqueue_task(rq, p, 0);
  6248. resched_curr(rq);
  6249. }
  6250. check_class_changed(rq, p, prev_class, old_prio);
  6251. }
  6252. void normalize_rt_tasks(void)
  6253. {
  6254. struct task_struct *g, *p;
  6255. unsigned long flags;
  6256. struct rq *rq;
  6257. read_lock(&tasklist_lock);
  6258. for_each_process_thread(g, p) {
  6259. /*
  6260. * Only normalize user tasks:
  6261. */
  6262. if (p->flags & PF_KTHREAD)
  6263. continue;
  6264. p->se.exec_start = 0;
  6265. #ifdef CONFIG_SCHEDSTATS
  6266. p->se.statistics.wait_start = 0;
  6267. p->se.statistics.sleep_start = 0;
  6268. p->se.statistics.block_start = 0;
  6269. #endif
  6270. if (!dl_task(p) && !rt_task(p)) {
  6271. /*
  6272. * Renice negative nice level userspace
  6273. * tasks back to 0:
  6274. */
  6275. if (task_nice(p) < 0)
  6276. set_user_nice(p, 0);
  6277. continue;
  6278. }
  6279. rq = task_rq_lock(p, &flags);
  6280. normalize_task(rq, p);
  6281. task_rq_unlock(rq, p, &flags);
  6282. }
  6283. read_unlock(&tasklist_lock);
  6284. }
  6285. #endif /* CONFIG_MAGIC_SYSRQ */
  6286. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6287. /*
  6288. * These functions are only useful for the IA64 MCA handling, or kdb.
  6289. *
  6290. * They can only be called when the whole system has been
  6291. * stopped - every CPU needs to be quiescent, and no scheduling
  6292. * activity can take place. Using them for anything else would
  6293. * be a serious bug, and as a result, they aren't even visible
  6294. * under any other configuration.
  6295. */
  6296. /**
  6297. * curr_task - return the current task for a given cpu.
  6298. * @cpu: the processor in question.
  6299. *
  6300. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6301. *
  6302. * Return: The current task for @cpu.
  6303. */
  6304. struct task_struct *curr_task(int cpu)
  6305. {
  6306. return cpu_curr(cpu);
  6307. }
  6308. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6309. #ifdef CONFIG_IA64
  6310. /**
  6311. * set_curr_task - set the current task for a given cpu.
  6312. * @cpu: the processor in question.
  6313. * @p: the task pointer to set.
  6314. *
  6315. * Description: This function must only be used when non-maskable interrupts
  6316. * are serviced on a separate stack. It allows the architecture to switch the
  6317. * notion of the current task on a cpu in a non-blocking manner. This function
  6318. * must be called with all CPU's synchronized, and interrupts disabled, the
  6319. * and caller must save the original value of the current task (see
  6320. * curr_task() above) and restore that value before reenabling interrupts and
  6321. * re-starting the system.
  6322. *
  6323. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6324. */
  6325. void set_curr_task(int cpu, struct task_struct *p)
  6326. {
  6327. cpu_curr(cpu) = p;
  6328. }
  6329. #endif
  6330. #ifdef CONFIG_CGROUP_SCHED
  6331. /* task_group_lock serializes the addition/removal of task groups */
  6332. static DEFINE_SPINLOCK(task_group_lock);
  6333. static void free_sched_group(struct task_group *tg)
  6334. {
  6335. free_fair_sched_group(tg);
  6336. free_rt_sched_group(tg);
  6337. autogroup_free(tg);
  6338. kfree(tg);
  6339. }
  6340. /* allocate runqueue etc for a new task group */
  6341. struct task_group *sched_create_group(struct task_group *parent)
  6342. {
  6343. struct task_group *tg;
  6344. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6345. if (!tg)
  6346. return ERR_PTR(-ENOMEM);
  6347. if (!alloc_fair_sched_group(tg, parent))
  6348. goto err;
  6349. if (!alloc_rt_sched_group(tg, parent))
  6350. goto err;
  6351. return tg;
  6352. err:
  6353. free_sched_group(tg);
  6354. return ERR_PTR(-ENOMEM);
  6355. }
  6356. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6357. {
  6358. unsigned long flags;
  6359. spin_lock_irqsave(&task_group_lock, flags);
  6360. list_add_rcu(&tg->list, &task_groups);
  6361. WARN_ON(!parent); /* root should already exist */
  6362. tg->parent = parent;
  6363. INIT_LIST_HEAD(&tg->children);
  6364. list_add_rcu(&tg->siblings, &parent->children);
  6365. spin_unlock_irqrestore(&task_group_lock, flags);
  6366. }
  6367. /* rcu callback to free various structures associated with a task group */
  6368. static void free_sched_group_rcu(struct rcu_head *rhp)
  6369. {
  6370. /* now it should be safe to free those cfs_rqs */
  6371. free_sched_group(container_of(rhp, struct task_group, rcu));
  6372. }
  6373. /* Destroy runqueue etc associated with a task group */
  6374. void sched_destroy_group(struct task_group *tg)
  6375. {
  6376. /* wait for possible concurrent references to cfs_rqs complete */
  6377. call_rcu(&tg->rcu, free_sched_group_rcu);
  6378. }
  6379. void sched_offline_group(struct task_group *tg)
  6380. {
  6381. unsigned long flags;
  6382. int i;
  6383. /* end participation in shares distribution */
  6384. for_each_possible_cpu(i)
  6385. unregister_fair_sched_group(tg, i);
  6386. spin_lock_irqsave(&task_group_lock, flags);
  6387. list_del_rcu(&tg->list);
  6388. list_del_rcu(&tg->siblings);
  6389. spin_unlock_irqrestore(&task_group_lock, flags);
  6390. }
  6391. /* change task's runqueue when it moves between groups.
  6392. * The caller of this function should have put the task in its new group
  6393. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6394. * reflect its new group.
  6395. */
  6396. void sched_move_task(struct task_struct *tsk)
  6397. {
  6398. struct task_group *tg;
  6399. int queued, running;
  6400. unsigned long flags;
  6401. struct rq *rq;
  6402. rq = task_rq_lock(tsk, &flags);
  6403. running = task_current(rq, tsk);
  6404. queued = task_on_rq_queued(tsk);
  6405. if (queued)
  6406. dequeue_task(rq, tsk, 0);
  6407. if (unlikely(running))
  6408. put_prev_task(rq, tsk);
  6409. /*
  6410. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6411. * which is pointless here. Thus, we pass "true" to task_css_check()
  6412. * to prevent lockdep warnings.
  6413. */
  6414. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6415. struct task_group, css);
  6416. tg = autogroup_task_group(tsk, tg);
  6417. tsk->sched_task_group = tg;
  6418. #ifdef CONFIG_FAIR_GROUP_SCHED
  6419. if (tsk->sched_class->task_move_group)
  6420. tsk->sched_class->task_move_group(tsk, queued);
  6421. else
  6422. #endif
  6423. set_task_rq(tsk, task_cpu(tsk));
  6424. if (unlikely(running))
  6425. tsk->sched_class->set_curr_task(rq);
  6426. if (queued)
  6427. enqueue_task(rq, tsk, 0);
  6428. task_rq_unlock(rq, tsk, &flags);
  6429. }
  6430. #endif /* CONFIG_CGROUP_SCHED */
  6431. #ifdef CONFIG_RT_GROUP_SCHED
  6432. /*
  6433. * Ensure that the real time constraints are schedulable.
  6434. */
  6435. static DEFINE_MUTEX(rt_constraints_mutex);
  6436. /* Must be called with tasklist_lock held */
  6437. static inline int tg_has_rt_tasks(struct task_group *tg)
  6438. {
  6439. struct task_struct *g, *p;
  6440. /*
  6441. * Autogroups do not have RT tasks; see autogroup_create().
  6442. */
  6443. if (task_group_is_autogroup(tg))
  6444. return 0;
  6445. for_each_process_thread(g, p) {
  6446. if (rt_task(p) && task_group(p) == tg)
  6447. return 1;
  6448. }
  6449. return 0;
  6450. }
  6451. struct rt_schedulable_data {
  6452. struct task_group *tg;
  6453. u64 rt_period;
  6454. u64 rt_runtime;
  6455. };
  6456. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6457. {
  6458. struct rt_schedulable_data *d = data;
  6459. struct task_group *child;
  6460. unsigned long total, sum = 0;
  6461. u64 period, runtime;
  6462. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6463. runtime = tg->rt_bandwidth.rt_runtime;
  6464. if (tg == d->tg) {
  6465. period = d->rt_period;
  6466. runtime = d->rt_runtime;
  6467. }
  6468. /*
  6469. * Cannot have more runtime than the period.
  6470. */
  6471. if (runtime > period && runtime != RUNTIME_INF)
  6472. return -EINVAL;
  6473. /*
  6474. * Ensure we don't starve existing RT tasks.
  6475. */
  6476. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6477. return -EBUSY;
  6478. total = to_ratio(period, runtime);
  6479. /*
  6480. * Nobody can have more than the global setting allows.
  6481. */
  6482. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6483. return -EINVAL;
  6484. /*
  6485. * The sum of our children's runtime should not exceed our own.
  6486. */
  6487. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6488. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6489. runtime = child->rt_bandwidth.rt_runtime;
  6490. if (child == d->tg) {
  6491. period = d->rt_period;
  6492. runtime = d->rt_runtime;
  6493. }
  6494. sum += to_ratio(period, runtime);
  6495. }
  6496. if (sum > total)
  6497. return -EINVAL;
  6498. return 0;
  6499. }
  6500. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6501. {
  6502. int ret;
  6503. struct rt_schedulable_data data = {
  6504. .tg = tg,
  6505. .rt_period = period,
  6506. .rt_runtime = runtime,
  6507. };
  6508. rcu_read_lock();
  6509. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6510. rcu_read_unlock();
  6511. return ret;
  6512. }
  6513. static int tg_set_rt_bandwidth(struct task_group *tg,
  6514. u64 rt_period, u64 rt_runtime)
  6515. {
  6516. int i, err = 0;
  6517. /*
  6518. * Disallowing the root group RT runtime is BAD, it would disallow the
  6519. * kernel creating (and or operating) RT threads.
  6520. */
  6521. if (tg == &root_task_group && rt_runtime == 0)
  6522. return -EINVAL;
  6523. /* No period doesn't make any sense. */
  6524. if (rt_period == 0)
  6525. return -EINVAL;
  6526. mutex_lock(&rt_constraints_mutex);
  6527. read_lock(&tasklist_lock);
  6528. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6529. if (err)
  6530. goto unlock;
  6531. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6532. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6533. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6534. for_each_possible_cpu(i) {
  6535. struct rt_rq *rt_rq = tg->rt_rq[i];
  6536. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6537. rt_rq->rt_runtime = rt_runtime;
  6538. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6539. }
  6540. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6541. unlock:
  6542. read_unlock(&tasklist_lock);
  6543. mutex_unlock(&rt_constraints_mutex);
  6544. return err;
  6545. }
  6546. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6547. {
  6548. u64 rt_runtime, rt_period;
  6549. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6550. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6551. if (rt_runtime_us < 0)
  6552. rt_runtime = RUNTIME_INF;
  6553. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6554. }
  6555. static long sched_group_rt_runtime(struct task_group *tg)
  6556. {
  6557. u64 rt_runtime_us;
  6558. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6559. return -1;
  6560. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6561. do_div(rt_runtime_us, NSEC_PER_USEC);
  6562. return rt_runtime_us;
  6563. }
  6564. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6565. {
  6566. u64 rt_runtime, rt_period;
  6567. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6568. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6569. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6570. }
  6571. static long sched_group_rt_period(struct task_group *tg)
  6572. {
  6573. u64 rt_period_us;
  6574. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6575. do_div(rt_period_us, NSEC_PER_USEC);
  6576. return rt_period_us;
  6577. }
  6578. #endif /* CONFIG_RT_GROUP_SCHED */
  6579. #ifdef CONFIG_RT_GROUP_SCHED
  6580. static int sched_rt_global_constraints(void)
  6581. {
  6582. int ret = 0;
  6583. mutex_lock(&rt_constraints_mutex);
  6584. read_lock(&tasklist_lock);
  6585. ret = __rt_schedulable(NULL, 0, 0);
  6586. read_unlock(&tasklist_lock);
  6587. mutex_unlock(&rt_constraints_mutex);
  6588. return ret;
  6589. }
  6590. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6591. {
  6592. /* Don't accept realtime tasks when there is no way for them to run */
  6593. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6594. return 0;
  6595. return 1;
  6596. }
  6597. #else /* !CONFIG_RT_GROUP_SCHED */
  6598. static int sched_rt_global_constraints(void)
  6599. {
  6600. unsigned long flags;
  6601. int i, ret = 0;
  6602. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6603. for_each_possible_cpu(i) {
  6604. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6605. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6606. rt_rq->rt_runtime = global_rt_runtime();
  6607. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6608. }
  6609. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6610. return ret;
  6611. }
  6612. #endif /* CONFIG_RT_GROUP_SCHED */
  6613. static int sched_dl_global_validate(void)
  6614. {
  6615. u64 runtime = global_rt_runtime();
  6616. u64 period = global_rt_period();
  6617. u64 new_bw = to_ratio(period, runtime);
  6618. struct dl_bw *dl_b;
  6619. int cpu, ret = 0;
  6620. unsigned long flags;
  6621. /*
  6622. * Here we want to check the bandwidth not being set to some
  6623. * value smaller than the currently allocated bandwidth in
  6624. * any of the root_domains.
  6625. *
  6626. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6627. * cycling on root_domains... Discussion on different/better
  6628. * solutions is welcome!
  6629. */
  6630. for_each_possible_cpu(cpu) {
  6631. rcu_read_lock_sched();
  6632. dl_b = dl_bw_of(cpu);
  6633. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6634. if (new_bw < dl_b->total_bw)
  6635. ret = -EBUSY;
  6636. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6637. rcu_read_unlock_sched();
  6638. if (ret)
  6639. break;
  6640. }
  6641. return ret;
  6642. }
  6643. static void sched_dl_do_global(void)
  6644. {
  6645. u64 new_bw = -1;
  6646. struct dl_bw *dl_b;
  6647. int cpu;
  6648. unsigned long flags;
  6649. def_dl_bandwidth.dl_period = global_rt_period();
  6650. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6651. if (global_rt_runtime() != RUNTIME_INF)
  6652. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6653. /*
  6654. * FIXME: As above...
  6655. */
  6656. for_each_possible_cpu(cpu) {
  6657. rcu_read_lock_sched();
  6658. dl_b = dl_bw_of(cpu);
  6659. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6660. dl_b->bw = new_bw;
  6661. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6662. rcu_read_unlock_sched();
  6663. }
  6664. }
  6665. static int sched_rt_global_validate(void)
  6666. {
  6667. if (sysctl_sched_rt_period <= 0)
  6668. return -EINVAL;
  6669. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6670. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6671. return -EINVAL;
  6672. return 0;
  6673. }
  6674. static void sched_rt_do_global(void)
  6675. {
  6676. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6677. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6678. }
  6679. int sched_rt_handler(struct ctl_table *table, int write,
  6680. void __user *buffer, size_t *lenp,
  6681. loff_t *ppos)
  6682. {
  6683. int old_period, old_runtime;
  6684. static DEFINE_MUTEX(mutex);
  6685. int ret;
  6686. mutex_lock(&mutex);
  6687. old_period = sysctl_sched_rt_period;
  6688. old_runtime = sysctl_sched_rt_runtime;
  6689. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6690. if (!ret && write) {
  6691. ret = sched_rt_global_validate();
  6692. if (ret)
  6693. goto undo;
  6694. ret = sched_dl_global_validate();
  6695. if (ret)
  6696. goto undo;
  6697. ret = sched_rt_global_constraints();
  6698. if (ret)
  6699. goto undo;
  6700. sched_rt_do_global();
  6701. sched_dl_do_global();
  6702. }
  6703. if (0) {
  6704. undo:
  6705. sysctl_sched_rt_period = old_period;
  6706. sysctl_sched_rt_runtime = old_runtime;
  6707. }
  6708. mutex_unlock(&mutex);
  6709. return ret;
  6710. }
  6711. int sched_rr_handler(struct ctl_table *table, int write,
  6712. void __user *buffer, size_t *lenp,
  6713. loff_t *ppos)
  6714. {
  6715. int ret;
  6716. static DEFINE_MUTEX(mutex);
  6717. mutex_lock(&mutex);
  6718. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6719. /* make sure that internally we keep jiffies */
  6720. /* also, writing zero resets timeslice to default */
  6721. if (!ret && write) {
  6722. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6723. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6724. }
  6725. mutex_unlock(&mutex);
  6726. return ret;
  6727. }
  6728. #ifdef CONFIG_CGROUP_SCHED
  6729. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6730. {
  6731. return css ? container_of(css, struct task_group, css) : NULL;
  6732. }
  6733. static struct cgroup_subsys_state *
  6734. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6735. {
  6736. struct task_group *parent = css_tg(parent_css);
  6737. struct task_group *tg;
  6738. if (!parent) {
  6739. /* This is early initialization for the top cgroup */
  6740. return &root_task_group.css;
  6741. }
  6742. tg = sched_create_group(parent);
  6743. if (IS_ERR(tg))
  6744. return ERR_PTR(-ENOMEM);
  6745. return &tg->css;
  6746. }
  6747. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6748. {
  6749. struct task_group *tg = css_tg(css);
  6750. struct task_group *parent = css_tg(css->parent);
  6751. if (parent)
  6752. sched_online_group(tg, parent);
  6753. return 0;
  6754. }
  6755. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6756. {
  6757. struct task_group *tg = css_tg(css);
  6758. sched_destroy_group(tg);
  6759. }
  6760. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6761. {
  6762. struct task_group *tg = css_tg(css);
  6763. sched_offline_group(tg);
  6764. }
  6765. static void cpu_cgroup_fork(struct task_struct *task)
  6766. {
  6767. sched_move_task(task);
  6768. }
  6769. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6770. struct cgroup_taskset *tset)
  6771. {
  6772. struct task_struct *task;
  6773. cgroup_taskset_for_each(task, tset) {
  6774. #ifdef CONFIG_RT_GROUP_SCHED
  6775. if (!sched_rt_can_attach(css_tg(css), task))
  6776. return -EINVAL;
  6777. #else
  6778. /* We don't support RT-tasks being in separate groups */
  6779. if (task->sched_class != &fair_sched_class)
  6780. return -EINVAL;
  6781. #endif
  6782. }
  6783. return 0;
  6784. }
  6785. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6786. struct cgroup_taskset *tset)
  6787. {
  6788. struct task_struct *task;
  6789. cgroup_taskset_for_each(task, tset)
  6790. sched_move_task(task);
  6791. }
  6792. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6793. struct cgroup_subsys_state *old_css,
  6794. struct task_struct *task)
  6795. {
  6796. /*
  6797. * cgroup_exit() is called in the copy_process() failure path.
  6798. * Ignore this case since the task hasn't ran yet, this avoids
  6799. * trying to poke a half freed task state from generic code.
  6800. */
  6801. if (!(task->flags & PF_EXITING))
  6802. return;
  6803. sched_move_task(task);
  6804. }
  6805. #ifdef CONFIG_FAIR_GROUP_SCHED
  6806. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6807. struct cftype *cftype, u64 shareval)
  6808. {
  6809. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6810. }
  6811. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6812. struct cftype *cft)
  6813. {
  6814. struct task_group *tg = css_tg(css);
  6815. return (u64) scale_load_down(tg->shares);
  6816. }
  6817. #ifdef CONFIG_CFS_BANDWIDTH
  6818. static DEFINE_MUTEX(cfs_constraints_mutex);
  6819. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6820. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6821. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6822. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6823. {
  6824. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6825. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6826. if (tg == &root_task_group)
  6827. return -EINVAL;
  6828. /*
  6829. * Ensure we have at some amount of bandwidth every period. This is
  6830. * to prevent reaching a state of large arrears when throttled via
  6831. * entity_tick() resulting in prolonged exit starvation.
  6832. */
  6833. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6834. return -EINVAL;
  6835. /*
  6836. * Likewise, bound things on the otherside by preventing insane quota
  6837. * periods. This also allows us to normalize in computing quota
  6838. * feasibility.
  6839. */
  6840. if (period > max_cfs_quota_period)
  6841. return -EINVAL;
  6842. /*
  6843. * Prevent race between setting of cfs_rq->runtime_enabled and
  6844. * unthrottle_offline_cfs_rqs().
  6845. */
  6846. get_online_cpus();
  6847. mutex_lock(&cfs_constraints_mutex);
  6848. ret = __cfs_schedulable(tg, period, quota);
  6849. if (ret)
  6850. goto out_unlock;
  6851. runtime_enabled = quota != RUNTIME_INF;
  6852. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6853. /*
  6854. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6855. * before making related changes, and on->off must occur afterwards
  6856. */
  6857. if (runtime_enabled && !runtime_was_enabled)
  6858. cfs_bandwidth_usage_inc();
  6859. raw_spin_lock_irq(&cfs_b->lock);
  6860. cfs_b->period = ns_to_ktime(period);
  6861. cfs_b->quota = quota;
  6862. __refill_cfs_bandwidth_runtime(cfs_b);
  6863. /* restart the period timer (if active) to handle new period expiry */
  6864. if (runtime_enabled && cfs_b->timer_active) {
  6865. /* force a reprogram */
  6866. __start_cfs_bandwidth(cfs_b, true);
  6867. }
  6868. raw_spin_unlock_irq(&cfs_b->lock);
  6869. for_each_online_cpu(i) {
  6870. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6871. struct rq *rq = cfs_rq->rq;
  6872. raw_spin_lock_irq(&rq->lock);
  6873. cfs_rq->runtime_enabled = runtime_enabled;
  6874. cfs_rq->runtime_remaining = 0;
  6875. if (cfs_rq->throttled)
  6876. unthrottle_cfs_rq(cfs_rq);
  6877. raw_spin_unlock_irq(&rq->lock);
  6878. }
  6879. if (runtime_was_enabled && !runtime_enabled)
  6880. cfs_bandwidth_usage_dec();
  6881. out_unlock:
  6882. mutex_unlock(&cfs_constraints_mutex);
  6883. put_online_cpus();
  6884. return ret;
  6885. }
  6886. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6887. {
  6888. u64 quota, period;
  6889. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6890. if (cfs_quota_us < 0)
  6891. quota = RUNTIME_INF;
  6892. else
  6893. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6894. return tg_set_cfs_bandwidth(tg, period, quota);
  6895. }
  6896. long tg_get_cfs_quota(struct task_group *tg)
  6897. {
  6898. u64 quota_us;
  6899. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6900. return -1;
  6901. quota_us = tg->cfs_bandwidth.quota;
  6902. do_div(quota_us, NSEC_PER_USEC);
  6903. return quota_us;
  6904. }
  6905. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6906. {
  6907. u64 quota, period;
  6908. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6909. quota = tg->cfs_bandwidth.quota;
  6910. return tg_set_cfs_bandwidth(tg, period, quota);
  6911. }
  6912. long tg_get_cfs_period(struct task_group *tg)
  6913. {
  6914. u64 cfs_period_us;
  6915. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6916. do_div(cfs_period_us, NSEC_PER_USEC);
  6917. return cfs_period_us;
  6918. }
  6919. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6920. struct cftype *cft)
  6921. {
  6922. return tg_get_cfs_quota(css_tg(css));
  6923. }
  6924. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6925. struct cftype *cftype, s64 cfs_quota_us)
  6926. {
  6927. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6928. }
  6929. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6930. struct cftype *cft)
  6931. {
  6932. return tg_get_cfs_period(css_tg(css));
  6933. }
  6934. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6935. struct cftype *cftype, u64 cfs_period_us)
  6936. {
  6937. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6938. }
  6939. struct cfs_schedulable_data {
  6940. struct task_group *tg;
  6941. u64 period, quota;
  6942. };
  6943. /*
  6944. * normalize group quota/period to be quota/max_period
  6945. * note: units are usecs
  6946. */
  6947. static u64 normalize_cfs_quota(struct task_group *tg,
  6948. struct cfs_schedulable_data *d)
  6949. {
  6950. u64 quota, period;
  6951. if (tg == d->tg) {
  6952. period = d->period;
  6953. quota = d->quota;
  6954. } else {
  6955. period = tg_get_cfs_period(tg);
  6956. quota = tg_get_cfs_quota(tg);
  6957. }
  6958. /* note: these should typically be equivalent */
  6959. if (quota == RUNTIME_INF || quota == -1)
  6960. return RUNTIME_INF;
  6961. return to_ratio(period, quota);
  6962. }
  6963. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6964. {
  6965. struct cfs_schedulable_data *d = data;
  6966. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6967. s64 quota = 0, parent_quota = -1;
  6968. if (!tg->parent) {
  6969. quota = RUNTIME_INF;
  6970. } else {
  6971. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6972. quota = normalize_cfs_quota(tg, d);
  6973. parent_quota = parent_b->hierarchical_quota;
  6974. /*
  6975. * ensure max(child_quota) <= parent_quota, inherit when no
  6976. * limit is set
  6977. */
  6978. if (quota == RUNTIME_INF)
  6979. quota = parent_quota;
  6980. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6981. return -EINVAL;
  6982. }
  6983. cfs_b->hierarchical_quota = quota;
  6984. return 0;
  6985. }
  6986. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6987. {
  6988. int ret;
  6989. struct cfs_schedulable_data data = {
  6990. .tg = tg,
  6991. .period = period,
  6992. .quota = quota,
  6993. };
  6994. if (quota != RUNTIME_INF) {
  6995. do_div(data.period, NSEC_PER_USEC);
  6996. do_div(data.quota, NSEC_PER_USEC);
  6997. }
  6998. rcu_read_lock();
  6999. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7000. rcu_read_unlock();
  7001. return ret;
  7002. }
  7003. static int cpu_stats_show(struct seq_file *sf, void *v)
  7004. {
  7005. struct task_group *tg = css_tg(seq_css(sf));
  7006. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7007. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7008. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7009. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7010. return 0;
  7011. }
  7012. #endif /* CONFIG_CFS_BANDWIDTH */
  7013. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7014. #ifdef CONFIG_RT_GROUP_SCHED
  7015. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7016. struct cftype *cft, s64 val)
  7017. {
  7018. return sched_group_set_rt_runtime(css_tg(css), val);
  7019. }
  7020. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7021. struct cftype *cft)
  7022. {
  7023. return sched_group_rt_runtime(css_tg(css));
  7024. }
  7025. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7026. struct cftype *cftype, u64 rt_period_us)
  7027. {
  7028. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7029. }
  7030. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7031. struct cftype *cft)
  7032. {
  7033. return sched_group_rt_period(css_tg(css));
  7034. }
  7035. #endif /* CONFIG_RT_GROUP_SCHED */
  7036. static struct cftype cpu_files[] = {
  7037. #ifdef CONFIG_FAIR_GROUP_SCHED
  7038. {
  7039. .name = "shares",
  7040. .read_u64 = cpu_shares_read_u64,
  7041. .write_u64 = cpu_shares_write_u64,
  7042. },
  7043. #endif
  7044. #ifdef CONFIG_CFS_BANDWIDTH
  7045. {
  7046. .name = "cfs_quota_us",
  7047. .read_s64 = cpu_cfs_quota_read_s64,
  7048. .write_s64 = cpu_cfs_quota_write_s64,
  7049. },
  7050. {
  7051. .name = "cfs_period_us",
  7052. .read_u64 = cpu_cfs_period_read_u64,
  7053. .write_u64 = cpu_cfs_period_write_u64,
  7054. },
  7055. {
  7056. .name = "stat",
  7057. .seq_show = cpu_stats_show,
  7058. },
  7059. #endif
  7060. #ifdef CONFIG_RT_GROUP_SCHED
  7061. {
  7062. .name = "rt_runtime_us",
  7063. .read_s64 = cpu_rt_runtime_read,
  7064. .write_s64 = cpu_rt_runtime_write,
  7065. },
  7066. {
  7067. .name = "rt_period_us",
  7068. .read_u64 = cpu_rt_period_read_uint,
  7069. .write_u64 = cpu_rt_period_write_uint,
  7070. },
  7071. #endif
  7072. { } /* terminate */
  7073. };
  7074. struct cgroup_subsys cpu_cgrp_subsys = {
  7075. .css_alloc = cpu_cgroup_css_alloc,
  7076. .css_free = cpu_cgroup_css_free,
  7077. .css_online = cpu_cgroup_css_online,
  7078. .css_offline = cpu_cgroup_css_offline,
  7079. .fork = cpu_cgroup_fork,
  7080. .can_attach = cpu_cgroup_can_attach,
  7081. .attach = cpu_cgroup_attach,
  7082. .exit = cpu_cgroup_exit,
  7083. .legacy_cftypes = cpu_files,
  7084. .early_init = 1,
  7085. };
  7086. #endif /* CONFIG_CGROUP_SCHED */
  7087. void dump_cpu_task(int cpu)
  7088. {
  7089. pr_info("Task dump for CPU %d:\n", cpu);
  7090. sched_show_task(cpu_curr(cpu));
  7091. }