smp-cps.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /*
  2. * Copyright (C) 2013 Imagination Technologies
  3. * Author: Paul Burton <paul.burton@mips.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. */
  10. #include <linux/cpu.h>
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/sched/task_stack.h>
  14. #include <linux/sched/hotplug.h>
  15. #include <linux/slab.h>
  16. #include <linux/smp.h>
  17. #include <linux/types.h>
  18. #include <asm/bcache.h>
  19. #include <asm/mips-cps.h>
  20. #include <asm/mips_mt.h>
  21. #include <asm/mipsregs.h>
  22. #include <asm/pm-cps.h>
  23. #include <asm/r4kcache.h>
  24. #include <asm/smp-cps.h>
  25. #include <asm/time.h>
  26. #include <asm/uasm.h>
  27. static bool threads_disabled;
  28. static DECLARE_BITMAP(core_power, NR_CPUS);
  29. struct core_boot_config *mips_cps_core_bootcfg;
  30. static int __init setup_nothreads(char *s)
  31. {
  32. threads_disabled = true;
  33. return 0;
  34. }
  35. early_param("nothreads", setup_nothreads);
  36. static unsigned core_vpe_count(unsigned int cluster, unsigned core)
  37. {
  38. if (threads_disabled)
  39. return 1;
  40. return mips_cps_numvps(cluster, core);
  41. }
  42. static void __init cps_smp_setup(void)
  43. {
  44. unsigned int nclusters, ncores, nvpes, core_vpes;
  45. unsigned long core_entry;
  46. int cl, c, v;
  47. /* Detect & record VPE topology */
  48. nvpes = 0;
  49. nclusters = mips_cps_numclusters();
  50. pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
  51. for (cl = 0; cl < nclusters; cl++) {
  52. if (cl > 0)
  53. pr_cont(",");
  54. pr_cont("{");
  55. ncores = mips_cps_numcores(cl);
  56. for (c = 0; c < ncores; c++) {
  57. core_vpes = core_vpe_count(cl, c);
  58. if (c > 0)
  59. pr_cont(",");
  60. pr_cont("%u", core_vpes);
  61. /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
  62. if (!cl && !c)
  63. smp_num_siblings = core_vpes;
  64. for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
  65. cpu_set_cluster(&cpu_data[nvpes + v], cl);
  66. cpu_set_core(&cpu_data[nvpes + v], c);
  67. cpu_set_vpe_id(&cpu_data[nvpes + v], v);
  68. }
  69. nvpes += core_vpes;
  70. }
  71. pr_cont("}");
  72. }
  73. pr_cont(" total %u\n", nvpes);
  74. /* Indicate present CPUs (CPU being synonymous with VPE) */
  75. for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
  76. set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
  77. set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
  78. __cpu_number_map[v] = v;
  79. __cpu_logical_map[v] = v;
  80. }
  81. /* Set a coherent default CCA (CWB) */
  82. change_c0_config(CONF_CM_CMASK, 0x5);
  83. /* Core 0 is powered up (we're running on it) */
  84. bitmap_set(core_power, 0, 1);
  85. /* Initialise core 0 */
  86. mips_cps_core_init();
  87. /* Make core 0 coherent with everything */
  88. write_gcr_cl_coherence(0xff);
  89. if (mips_cm_revision() >= CM_REV_CM3) {
  90. core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
  91. write_gcr_bev_base(core_entry);
  92. }
  93. #ifdef CONFIG_MIPS_MT_FPAFF
  94. /* If we have an FPU, enroll ourselves in the FPU-full mask */
  95. if (cpu_has_fpu)
  96. cpumask_set_cpu(0, &mt_fpu_cpumask);
  97. #endif /* CONFIG_MIPS_MT_FPAFF */
  98. }
  99. static void __init cps_prepare_cpus(unsigned int max_cpus)
  100. {
  101. unsigned ncores, core_vpes, c, cca;
  102. bool cca_unsuitable, cores_limited;
  103. u32 *entry_code;
  104. mips_mt_set_cpuoptions();
  105. /* Detect whether the CCA is unsuited to multi-core SMP */
  106. cca = read_c0_config() & CONF_CM_CMASK;
  107. switch (cca) {
  108. case 0x4: /* CWBE */
  109. case 0x5: /* CWB */
  110. /* The CCA is coherent, multi-core is fine */
  111. cca_unsuitable = false;
  112. break;
  113. default:
  114. /* CCA is not coherent, multi-core is not usable */
  115. cca_unsuitable = true;
  116. }
  117. /* Warn the user if the CCA prevents multi-core */
  118. cores_limited = false;
  119. if (cca_unsuitable || cpu_has_dc_aliases) {
  120. for_each_present_cpu(c) {
  121. if (cpus_are_siblings(smp_processor_id(), c))
  122. continue;
  123. set_cpu_present(c, false);
  124. cores_limited = true;
  125. }
  126. }
  127. if (cores_limited)
  128. pr_warn("Using only one core due to %s%s%s\n",
  129. cca_unsuitable ? "unsuitable CCA" : "",
  130. (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
  131. cpu_has_dc_aliases ? "dcache aliasing" : "");
  132. /*
  133. * Patch the start of mips_cps_core_entry to provide:
  134. *
  135. * s0 = kseg0 CCA
  136. */
  137. entry_code = (u32 *)&mips_cps_core_entry;
  138. uasm_i_addiu(&entry_code, 16, 0, cca);
  139. blast_dcache_range((unsigned long)&mips_cps_core_entry,
  140. (unsigned long)entry_code);
  141. bc_wback_inv((unsigned long)&mips_cps_core_entry,
  142. (void *)entry_code - (void *)&mips_cps_core_entry);
  143. __sync();
  144. /* Allocate core boot configuration structs */
  145. ncores = mips_cps_numcores(0);
  146. mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
  147. GFP_KERNEL);
  148. if (!mips_cps_core_bootcfg) {
  149. pr_err("Failed to allocate boot config for %u cores\n", ncores);
  150. goto err_out;
  151. }
  152. /* Allocate VPE boot configuration structs */
  153. for (c = 0; c < ncores; c++) {
  154. core_vpes = core_vpe_count(0, c);
  155. mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
  156. sizeof(*mips_cps_core_bootcfg[c].vpe_config),
  157. GFP_KERNEL);
  158. if (!mips_cps_core_bootcfg[c].vpe_config) {
  159. pr_err("Failed to allocate %u VPE boot configs\n",
  160. core_vpes);
  161. goto err_out;
  162. }
  163. }
  164. /* Mark this CPU as booted */
  165. atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
  166. 1 << cpu_vpe_id(&current_cpu_data));
  167. return;
  168. err_out:
  169. /* Clean up allocations */
  170. if (mips_cps_core_bootcfg) {
  171. for (c = 0; c < ncores; c++)
  172. kfree(mips_cps_core_bootcfg[c].vpe_config);
  173. kfree(mips_cps_core_bootcfg);
  174. mips_cps_core_bootcfg = NULL;
  175. }
  176. /* Effectively disable SMP by declaring CPUs not present */
  177. for_each_possible_cpu(c) {
  178. if (c == 0)
  179. continue;
  180. set_cpu_present(c, false);
  181. }
  182. }
  183. static void boot_core(unsigned int core, unsigned int vpe_id)
  184. {
  185. u32 stat, seq_state;
  186. unsigned timeout;
  187. /* Select the appropriate core */
  188. mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
  189. /* Set its reset vector */
  190. write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
  191. /* Ensure its coherency is disabled */
  192. write_gcr_co_coherence(0);
  193. /* Start it with the legacy memory map and exception base */
  194. write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
  195. /* Ensure the core can access the GCRs */
  196. set_gcr_access(1 << core);
  197. if (mips_cpc_present()) {
  198. /* Reset the core */
  199. mips_cpc_lock_other(core);
  200. if (mips_cm_revision() >= CM_REV_CM3) {
  201. /* Run only the requested VP following the reset */
  202. write_cpc_co_vp_stop(0xf);
  203. write_cpc_co_vp_run(1 << vpe_id);
  204. /*
  205. * Ensure that the VP_RUN register is written before the
  206. * core leaves reset.
  207. */
  208. wmb();
  209. }
  210. write_cpc_co_cmd(CPC_Cx_CMD_RESET);
  211. timeout = 100;
  212. while (true) {
  213. stat = read_cpc_co_stat_conf();
  214. seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
  215. seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
  216. /* U6 == coherent execution, ie. the core is up */
  217. if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
  218. break;
  219. /* Delay a little while before we start warning */
  220. if (timeout) {
  221. timeout--;
  222. mdelay(10);
  223. continue;
  224. }
  225. pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
  226. core, stat);
  227. mdelay(1000);
  228. }
  229. mips_cpc_unlock_other();
  230. } else {
  231. /* Take the core out of reset */
  232. write_gcr_co_reset_release(0);
  233. }
  234. mips_cm_unlock_other();
  235. /* The core is now powered up */
  236. bitmap_set(core_power, core, 1);
  237. }
  238. static void remote_vpe_boot(void *dummy)
  239. {
  240. unsigned core = cpu_core(&current_cpu_data);
  241. struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
  242. mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
  243. }
  244. static int cps_boot_secondary(int cpu, struct task_struct *idle)
  245. {
  246. unsigned core = cpu_core(&cpu_data[cpu]);
  247. unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  248. struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
  249. struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
  250. unsigned long core_entry;
  251. unsigned int remote;
  252. int err;
  253. /* We don't yet support booting CPUs in other clusters */
  254. if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
  255. return -ENOSYS;
  256. vpe_cfg->pc = (unsigned long)&smp_bootstrap;
  257. vpe_cfg->sp = __KSTK_TOS(idle);
  258. vpe_cfg->gp = (unsigned long)task_thread_info(idle);
  259. atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
  260. preempt_disable();
  261. if (!test_bit(core, core_power)) {
  262. /* Boot a VPE on a powered down core */
  263. boot_core(core, vpe_id);
  264. goto out;
  265. }
  266. if (cpu_has_vp) {
  267. mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
  268. core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
  269. write_gcr_co_reset_base(core_entry);
  270. mips_cm_unlock_other();
  271. }
  272. if (!cpus_are_siblings(cpu, smp_processor_id())) {
  273. /* Boot a VPE on another powered up core */
  274. for (remote = 0; remote < NR_CPUS; remote++) {
  275. if (!cpus_are_siblings(cpu, remote))
  276. continue;
  277. if (cpu_online(remote))
  278. break;
  279. }
  280. if (remote >= NR_CPUS) {
  281. pr_crit("No online CPU in core %u to start CPU%d\n",
  282. core, cpu);
  283. goto out;
  284. }
  285. err = smp_call_function_single(remote, remote_vpe_boot,
  286. NULL, 1);
  287. if (err)
  288. panic("Failed to call remote CPU\n");
  289. goto out;
  290. }
  291. BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
  292. /* Boot a VPE on this core */
  293. mips_cps_boot_vpes(core_cfg, vpe_id);
  294. out:
  295. preempt_enable();
  296. return 0;
  297. }
  298. static void cps_init_secondary(void)
  299. {
  300. /* Disable MT - we only want to run 1 TC per VPE */
  301. if (cpu_has_mipsmt)
  302. dmt();
  303. if (mips_cm_revision() >= CM_REV_CM3) {
  304. unsigned int ident = read_gic_vl_ident();
  305. /*
  306. * Ensure that our calculation of the VP ID matches up with
  307. * what the GIC reports, otherwise we'll have configured
  308. * interrupts incorrectly.
  309. */
  310. BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
  311. }
  312. if (cpu_has_veic)
  313. clear_c0_status(ST0_IM);
  314. else
  315. change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
  316. STATUSF_IP4 | STATUSF_IP5 |
  317. STATUSF_IP6 | STATUSF_IP7);
  318. }
  319. static void cps_smp_finish(void)
  320. {
  321. write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
  322. #ifdef CONFIG_MIPS_MT_FPAFF
  323. /* If we have an FPU, enroll ourselves in the FPU-full mask */
  324. if (cpu_has_fpu)
  325. cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
  326. #endif /* CONFIG_MIPS_MT_FPAFF */
  327. local_irq_enable();
  328. }
  329. #ifdef CONFIG_HOTPLUG_CPU
  330. static int cps_cpu_disable(void)
  331. {
  332. unsigned cpu = smp_processor_id();
  333. struct core_boot_config *core_cfg;
  334. if (!cpu)
  335. return -EBUSY;
  336. if (!cps_pm_support_state(CPS_PM_POWER_GATED))
  337. return -EINVAL;
  338. core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
  339. atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
  340. smp_mb__after_atomic();
  341. set_cpu_online(cpu, false);
  342. calculate_cpu_foreign_map();
  343. return 0;
  344. }
  345. static unsigned cpu_death_sibling;
  346. static enum {
  347. CPU_DEATH_HALT,
  348. CPU_DEATH_POWER,
  349. } cpu_death;
  350. void play_dead(void)
  351. {
  352. unsigned int cpu, core, vpe_id;
  353. local_irq_disable();
  354. idle_task_exit();
  355. cpu = smp_processor_id();
  356. core = cpu_core(&cpu_data[cpu]);
  357. cpu_death = CPU_DEATH_POWER;
  358. pr_debug("CPU%d going offline\n", cpu);
  359. if (cpu_has_mipsmt || cpu_has_vp) {
  360. core = cpu_core(&cpu_data[cpu]);
  361. /* Look for another online VPE within the core */
  362. for_each_online_cpu(cpu_death_sibling) {
  363. if (!cpus_are_siblings(cpu, cpu_death_sibling))
  364. continue;
  365. /*
  366. * There is an online VPE within the core. Just halt
  367. * this TC and leave the core alone.
  368. */
  369. cpu_death = CPU_DEATH_HALT;
  370. break;
  371. }
  372. }
  373. /* This CPU has chosen its way out */
  374. (void)cpu_report_death();
  375. if (cpu_death == CPU_DEATH_HALT) {
  376. vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  377. pr_debug("Halting core %d VP%d\n", core, vpe_id);
  378. if (cpu_has_mipsmt) {
  379. /* Halt this TC */
  380. write_c0_tchalt(TCHALT_H);
  381. instruction_hazard();
  382. } else if (cpu_has_vp) {
  383. write_cpc_cl_vp_stop(1 << vpe_id);
  384. /* Ensure that the VP_STOP register is written */
  385. wmb();
  386. }
  387. } else {
  388. pr_debug("Gating power to core %d\n", core);
  389. /* Power down the core */
  390. cps_pm_enter_state(CPS_PM_POWER_GATED);
  391. }
  392. /* This should never be reached */
  393. panic("Failed to offline CPU %u", cpu);
  394. }
  395. static void wait_for_sibling_halt(void *ptr_cpu)
  396. {
  397. unsigned cpu = (unsigned long)ptr_cpu;
  398. unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  399. unsigned halted;
  400. unsigned long flags;
  401. do {
  402. local_irq_save(flags);
  403. settc(vpe_id);
  404. halted = read_tc_c0_tchalt();
  405. local_irq_restore(flags);
  406. } while (!(halted & TCHALT_H));
  407. }
  408. static void cps_cpu_die(unsigned int cpu)
  409. {
  410. unsigned core = cpu_core(&cpu_data[cpu]);
  411. unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
  412. ktime_t fail_time;
  413. unsigned stat;
  414. int err;
  415. /* Wait for the cpu to choose its way out */
  416. if (!cpu_wait_death(cpu, 5)) {
  417. pr_err("CPU%u: didn't offline\n", cpu);
  418. return;
  419. }
  420. /*
  421. * Now wait for the CPU to actually offline. Without doing this that
  422. * offlining may race with one or more of:
  423. *
  424. * - Onlining the CPU again.
  425. * - Powering down the core if another VPE within it is offlined.
  426. * - A sibling VPE entering a non-coherent state.
  427. *
  428. * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
  429. * with which we could race, so do nothing.
  430. */
  431. if (cpu_death == CPU_DEATH_POWER) {
  432. /*
  433. * Wait for the core to enter a powered down or clock gated
  434. * state, the latter happening when a JTAG probe is connected
  435. * in which case the CPC will refuse to power down the core.
  436. */
  437. fail_time = ktime_add_ms(ktime_get(), 2000);
  438. do {
  439. mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
  440. mips_cpc_lock_other(core);
  441. stat = read_cpc_co_stat_conf();
  442. stat &= CPC_Cx_STAT_CONF_SEQSTATE;
  443. stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
  444. mips_cpc_unlock_other();
  445. mips_cm_unlock_other();
  446. if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
  447. stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
  448. stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
  449. break;
  450. /*
  451. * The core ought to have powered down, but didn't &
  452. * now we don't really know what state it's in. It's
  453. * likely that its _pwr_up pin has been wired to logic
  454. * 1 & it powered back up as soon as we powered it
  455. * down...
  456. *
  457. * The best we can do is warn the user & continue in
  458. * the hope that the core is doing nothing harmful &
  459. * might behave properly if we online it later.
  460. */
  461. if (WARN(ktime_after(ktime_get(), fail_time),
  462. "CPU%u hasn't powered down, seq. state %u\n",
  463. cpu, stat))
  464. break;
  465. } while (1);
  466. /* Indicate the core is powered off */
  467. bitmap_clear(core_power, core, 1);
  468. } else if (cpu_has_mipsmt) {
  469. /*
  470. * Have a CPU with access to the offlined CPUs registers wait
  471. * for its TC to halt.
  472. */
  473. err = smp_call_function_single(cpu_death_sibling,
  474. wait_for_sibling_halt,
  475. (void *)(unsigned long)cpu, 1);
  476. if (err)
  477. panic("Failed to call remote sibling CPU\n");
  478. } else if (cpu_has_vp) {
  479. do {
  480. mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
  481. stat = read_cpc_co_vp_running();
  482. mips_cm_unlock_other();
  483. } while (stat & (1 << vpe_id));
  484. }
  485. }
  486. #endif /* CONFIG_HOTPLUG_CPU */
  487. static const struct plat_smp_ops cps_smp_ops = {
  488. .smp_setup = cps_smp_setup,
  489. .prepare_cpus = cps_prepare_cpus,
  490. .boot_secondary = cps_boot_secondary,
  491. .init_secondary = cps_init_secondary,
  492. .smp_finish = cps_smp_finish,
  493. .send_ipi_single = mips_smp_send_ipi_single,
  494. .send_ipi_mask = mips_smp_send_ipi_mask,
  495. #ifdef CONFIG_HOTPLUG_CPU
  496. .cpu_disable = cps_cpu_disable,
  497. .cpu_die = cps_cpu_die,
  498. #endif
  499. };
  500. bool mips_cps_smp_in_use(void)
  501. {
  502. extern const struct plat_smp_ops *mp_ops;
  503. return mp_ops == &cps_smp_ops;
  504. }
  505. int register_cps_smp_ops(void)
  506. {
  507. if (!mips_cm_present()) {
  508. pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
  509. return -ENODEV;
  510. }
  511. /* check we have a GIC - we need one for IPIs */
  512. if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
  513. pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
  514. return -ENODEV;
  515. }
  516. register_smp_ops(&cps_smp_ops);
  517. return 0;
  518. }