core.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676
  1. /*
  2. * Linux Socket Filter - Kernel level socket filtering
  3. *
  4. * Based on the design of the Berkeley Packet Filter. The new
  5. * internal format has been designed by PLUMgrid:
  6. *
  7. * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
  8. *
  9. * Authors:
  10. *
  11. * Jay Schulist <jschlst@samba.org>
  12. * Alexei Starovoitov <ast@plumgrid.com>
  13. * Daniel Borkmann <dborkman@redhat.com>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * Andi Kleen - Fix a few bad bugs and races.
  21. * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22. */
  23. #include <linux/filter.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/random.h>
  27. #include <linux/moduleloader.h>
  28. #include <linux/bpf.h>
  29. #include <linux/frame.h>
  30. #include <linux/rbtree_latch.h>
  31. #include <linux/kallsyms.h>
  32. #include <linux/rcupdate.h>
  33. #include <asm/unaligned.h>
  34. /* Registers */
  35. #define BPF_R0 regs[BPF_REG_0]
  36. #define BPF_R1 regs[BPF_REG_1]
  37. #define BPF_R2 regs[BPF_REG_2]
  38. #define BPF_R3 regs[BPF_REG_3]
  39. #define BPF_R4 regs[BPF_REG_4]
  40. #define BPF_R5 regs[BPF_REG_5]
  41. #define BPF_R6 regs[BPF_REG_6]
  42. #define BPF_R7 regs[BPF_REG_7]
  43. #define BPF_R8 regs[BPF_REG_8]
  44. #define BPF_R9 regs[BPF_REG_9]
  45. #define BPF_R10 regs[BPF_REG_10]
  46. /* Named registers */
  47. #define DST regs[insn->dst_reg]
  48. #define SRC regs[insn->src_reg]
  49. #define FP regs[BPF_REG_FP]
  50. #define ARG1 regs[BPF_REG_ARG1]
  51. #define CTX regs[BPF_REG_CTX]
  52. #define IMM insn->imm
  53. /* No hurry in this branch
  54. *
  55. * Exported for the bpf jit load helper.
  56. */
  57. void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  58. {
  59. u8 *ptr = NULL;
  60. if (k >= SKF_NET_OFF)
  61. ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  62. else if (k >= SKF_LL_OFF)
  63. ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  64. if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  65. return ptr;
  66. return NULL;
  67. }
  68. struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
  69. {
  70. gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  71. struct bpf_prog_aux *aux;
  72. struct bpf_prog *fp;
  73. size = round_up(size, PAGE_SIZE);
  74. fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  75. if (fp == NULL)
  76. return NULL;
  77. kmemcheck_annotate_bitfield(fp, meta);
  78. aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  79. if (aux == NULL) {
  80. vfree(fp);
  81. return NULL;
  82. }
  83. fp->pages = size / PAGE_SIZE;
  84. fp->aux = aux;
  85. fp->aux->prog = fp;
  86. INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
  87. return fp;
  88. }
  89. EXPORT_SYMBOL_GPL(bpf_prog_alloc);
  90. struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
  91. gfp_t gfp_extra_flags)
  92. {
  93. gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  94. struct bpf_prog *fp;
  95. u32 pages, delta;
  96. int ret;
  97. BUG_ON(fp_old == NULL);
  98. size = round_up(size, PAGE_SIZE);
  99. pages = size / PAGE_SIZE;
  100. if (pages <= fp_old->pages)
  101. return fp_old;
  102. delta = pages - fp_old->pages;
  103. ret = __bpf_prog_charge(fp_old->aux->user, delta);
  104. if (ret)
  105. return NULL;
  106. fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  107. if (fp == NULL) {
  108. __bpf_prog_uncharge(fp_old->aux->user, delta);
  109. } else {
  110. kmemcheck_annotate_bitfield(fp, meta);
  111. memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
  112. fp->pages = pages;
  113. fp->aux->prog = fp;
  114. /* We keep fp->aux from fp_old around in the new
  115. * reallocated structure.
  116. */
  117. fp_old->aux = NULL;
  118. __bpf_prog_free(fp_old);
  119. }
  120. return fp;
  121. }
  122. void __bpf_prog_free(struct bpf_prog *fp)
  123. {
  124. kfree(fp->aux);
  125. vfree(fp);
  126. }
  127. int bpf_prog_calc_tag(struct bpf_prog *fp)
  128. {
  129. const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
  130. u32 raw_size = bpf_prog_tag_scratch_size(fp);
  131. u32 digest[SHA_DIGEST_WORDS];
  132. u32 ws[SHA_WORKSPACE_WORDS];
  133. u32 i, bsize, psize, blocks;
  134. struct bpf_insn *dst;
  135. bool was_ld_map;
  136. u8 *raw, *todo;
  137. __be32 *result;
  138. __be64 *bits;
  139. raw = vmalloc(raw_size);
  140. if (!raw)
  141. return -ENOMEM;
  142. sha_init(digest);
  143. memset(ws, 0, sizeof(ws));
  144. /* We need to take out the map fd for the digest calculation
  145. * since they are unstable from user space side.
  146. */
  147. dst = (void *)raw;
  148. for (i = 0, was_ld_map = false; i < fp->len; i++) {
  149. dst[i] = fp->insnsi[i];
  150. if (!was_ld_map &&
  151. dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
  152. dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
  153. was_ld_map = true;
  154. dst[i].imm = 0;
  155. } else if (was_ld_map &&
  156. dst[i].code == 0 &&
  157. dst[i].dst_reg == 0 &&
  158. dst[i].src_reg == 0 &&
  159. dst[i].off == 0) {
  160. was_ld_map = false;
  161. dst[i].imm = 0;
  162. } else {
  163. was_ld_map = false;
  164. }
  165. }
  166. psize = bpf_prog_insn_size(fp);
  167. memset(&raw[psize], 0, raw_size - psize);
  168. raw[psize++] = 0x80;
  169. bsize = round_up(psize, SHA_MESSAGE_BYTES);
  170. blocks = bsize / SHA_MESSAGE_BYTES;
  171. todo = raw;
  172. if (bsize - psize >= sizeof(__be64)) {
  173. bits = (__be64 *)(todo + bsize - sizeof(__be64));
  174. } else {
  175. bits = (__be64 *)(todo + bsize + bits_offset);
  176. blocks++;
  177. }
  178. *bits = cpu_to_be64((psize - 1) << 3);
  179. while (blocks--) {
  180. sha_transform(digest, todo, ws);
  181. todo += SHA_MESSAGE_BYTES;
  182. }
  183. result = (__force __be32 *)digest;
  184. for (i = 0; i < SHA_DIGEST_WORDS; i++)
  185. result[i] = cpu_to_be32(digest[i]);
  186. memcpy(fp->tag, result, sizeof(fp->tag));
  187. vfree(raw);
  188. return 0;
  189. }
  190. static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
  191. {
  192. return BPF_CLASS(insn->code) == BPF_JMP &&
  193. /* Call and Exit are both special jumps with no
  194. * target inside the BPF instruction image.
  195. */
  196. BPF_OP(insn->code) != BPF_CALL &&
  197. BPF_OP(insn->code) != BPF_EXIT;
  198. }
  199. static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
  200. {
  201. struct bpf_insn *insn = prog->insnsi;
  202. u32 i, insn_cnt = prog->len;
  203. for (i = 0; i < insn_cnt; i++, insn++) {
  204. if (!bpf_is_jmp_and_has_target(insn))
  205. continue;
  206. /* Adjust offset of jmps if we cross boundaries. */
  207. if (i < pos && i + insn->off + 1 > pos)
  208. insn->off += delta;
  209. else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
  210. insn->off -= delta;
  211. }
  212. }
  213. struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
  214. const struct bpf_insn *patch, u32 len)
  215. {
  216. u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
  217. struct bpf_prog *prog_adj;
  218. /* Since our patchlet doesn't expand the image, we're done. */
  219. if (insn_delta == 0) {
  220. memcpy(prog->insnsi + off, patch, sizeof(*patch));
  221. return prog;
  222. }
  223. insn_adj_cnt = prog->len + insn_delta;
  224. /* Several new instructions need to be inserted. Make room
  225. * for them. Likely, there's no need for a new allocation as
  226. * last page could have large enough tailroom.
  227. */
  228. prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
  229. GFP_USER);
  230. if (!prog_adj)
  231. return NULL;
  232. prog_adj->len = insn_adj_cnt;
  233. /* Patching happens in 3 steps:
  234. *
  235. * 1) Move over tail of insnsi from next instruction onwards,
  236. * so we can patch the single target insn with one or more
  237. * new ones (patching is always from 1 to n insns, n > 0).
  238. * 2) Inject new instructions at the target location.
  239. * 3) Adjust branch offsets if necessary.
  240. */
  241. insn_rest = insn_adj_cnt - off - len;
  242. memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
  243. sizeof(*patch) * insn_rest);
  244. memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
  245. bpf_adj_branches(prog_adj, off, insn_delta);
  246. return prog_adj;
  247. }
  248. #ifdef CONFIG_BPF_JIT
  249. static __always_inline void
  250. bpf_get_prog_addr_region(const struct bpf_prog *prog,
  251. unsigned long *symbol_start,
  252. unsigned long *symbol_end)
  253. {
  254. const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
  255. unsigned long addr = (unsigned long)hdr;
  256. WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
  257. *symbol_start = addr;
  258. *symbol_end = addr + hdr->pages * PAGE_SIZE;
  259. }
  260. static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
  261. {
  262. const char *end = sym + KSYM_NAME_LEN;
  263. BUILD_BUG_ON(sizeof("bpf_prog_") +
  264. sizeof(prog->tag) * 2 +
  265. /* name has been null terminated.
  266. * We should need +1 for the '_' preceding
  267. * the name. However, the null character
  268. * is double counted between the name and the
  269. * sizeof("bpf_prog_") above, so we omit
  270. * the +1 here.
  271. */
  272. sizeof(prog->aux->name) > KSYM_NAME_LEN);
  273. sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
  274. sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
  275. if (prog->aux->name[0])
  276. snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
  277. else
  278. *sym = 0;
  279. }
  280. static __always_inline unsigned long
  281. bpf_get_prog_addr_start(struct latch_tree_node *n)
  282. {
  283. unsigned long symbol_start, symbol_end;
  284. const struct bpf_prog_aux *aux;
  285. aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
  286. bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
  287. return symbol_start;
  288. }
  289. static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
  290. struct latch_tree_node *b)
  291. {
  292. return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
  293. }
  294. static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
  295. {
  296. unsigned long val = (unsigned long)key;
  297. unsigned long symbol_start, symbol_end;
  298. const struct bpf_prog_aux *aux;
  299. aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
  300. bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
  301. if (val < symbol_start)
  302. return -1;
  303. if (val >= symbol_end)
  304. return 1;
  305. return 0;
  306. }
  307. static const struct latch_tree_ops bpf_tree_ops = {
  308. .less = bpf_tree_less,
  309. .comp = bpf_tree_comp,
  310. };
  311. static DEFINE_SPINLOCK(bpf_lock);
  312. static LIST_HEAD(bpf_kallsyms);
  313. static struct latch_tree_root bpf_tree __cacheline_aligned;
  314. int bpf_jit_kallsyms __read_mostly;
  315. static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
  316. {
  317. WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
  318. list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
  319. latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
  320. }
  321. static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
  322. {
  323. if (list_empty(&aux->ksym_lnode))
  324. return;
  325. latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
  326. list_del_rcu(&aux->ksym_lnode);
  327. }
  328. static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
  329. {
  330. return fp->jited && !bpf_prog_was_classic(fp);
  331. }
  332. static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
  333. {
  334. return list_empty(&fp->aux->ksym_lnode) ||
  335. fp->aux->ksym_lnode.prev == LIST_POISON2;
  336. }
  337. void bpf_prog_kallsyms_add(struct bpf_prog *fp)
  338. {
  339. if (!bpf_prog_kallsyms_candidate(fp) ||
  340. !capable(CAP_SYS_ADMIN))
  341. return;
  342. spin_lock_bh(&bpf_lock);
  343. bpf_prog_ksym_node_add(fp->aux);
  344. spin_unlock_bh(&bpf_lock);
  345. }
  346. void bpf_prog_kallsyms_del(struct bpf_prog *fp)
  347. {
  348. if (!bpf_prog_kallsyms_candidate(fp))
  349. return;
  350. spin_lock_bh(&bpf_lock);
  351. bpf_prog_ksym_node_del(fp->aux);
  352. spin_unlock_bh(&bpf_lock);
  353. }
  354. static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
  355. {
  356. struct latch_tree_node *n;
  357. if (!bpf_jit_kallsyms_enabled())
  358. return NULL;
  359. n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
  360. return n ?
  361. container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
  362. NULL;
  363. }
  364. const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
  365. unsigned long *off, char *sym)
  366. {
  367. unsigned long symbol_start, symbol_end;
  368. struct bpf_prog *prog;
  369. char *ret = NULL;
  370. rcu_read_lock();
  371. prog = bpf_prog_kallsyms_find(addr);
  372. if (prog) {
  373. bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
  374. bpf_get_prog_name(prog, sym);
  375. ret = sym;
  376. if (size)
  377. *size = symbol_end - symbol_start;
  378. if (off)
  379. *off = addr - symbol_start;
  380. }
  381. rcu_read_unlock();
  382. return ret;
  383. }
  384. bool is_bpf_text_address(unsigned long addr)
  385. {
  386. bool ret;
  387. rcu_read_lock();
  388. ret = bpf_prog_kallsyms_find(addr) != NULL;
  389. rcu_read_unlock();
  390. return ret;
  391. }
  392. int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
  393. char *sym)
  394. {
  395. unsigned long symbol_start, symbol_end;
  396. struct bpf_prog_aux *aux;
  397. unsigned int it = 0;
  398. int ret = -ERANGE;
  399. if (!bpf_jit_kallsyms_enabled())
  400. return ret;
  401. rcu_read_lock();
  402. list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
  403. if (it++ != symnum)
  404. continue;
  405. bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
  406. bpf_get_prog_name(aux->prog, sym);
  407. *value = symbol_start;
  408. *type = BPF_SYM_ELF_TYPE;
  409. ret = 0;
  410. break;
  411. }
  412. rcu_read_unlock();
  413. return ret;
  414. }
  415. struct bpf_binary_header *
  416. bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
  417. unsigned int alignment,
  418. bpf_jit_fill_hole_t bpf_fill_ill_insns)
  419. {
  420. struct bpf_binary_header *hdr;
  421. unsigned int size, hole, start;
  422. /* Most of BPF filters are really small, but if some of them
  423. * fill a page, allow at least 128 extra bytes to insert a
  424. * random section of illegal instructions.
  425. */
  426. size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
  427. hdr = module_alloc(size);
  428. if (hdr == NULL)
  429. return NULL;
  430. /* Fill space with illegal/arch-dep instructions. */
  431. bpf_fill_ill_insns(hdr, size);
  432. hdr->pages = size / PAGE_SIZE;
  433. hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
  434. PAGE_SIZE - sizeof(*hdr));
  435. start = (get_random_int() % hole) & ~(alignment - 1);
  436. /* Leave a random number of instructions before BPF code. */
  437. *image_ptr = &hdr->image[start];
  438. return hdr;
  439. }
  440. void bpf_jit_binary_free(struct bpf_binary_header *hdr)
  441. {
  442. module_memfree(hdr);
  443. }
  444. /* This symbol is only overridden by archs that have different
  445. * requirements than the usual eBPF JITs, f.e. when they only
  446. * implement cBPF JIT, do not set images read-only, etc.
  447. */
  448. void __weak bpf_jit_free(struct bpf_prog *fp)
  449. {
  450. if (fp->jited) {
  451. struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
  452. bpf_jit_binary_unlock_ro(hdr);
  453. bpf_jit_binary_free(hdr);
  454. WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
  455. }
  456. bpf_prog_unlock_free(fp);
  457. }
  458. int bpf_jit_harden __read_mostly;
  459. static int bpf_jit_blind_insn(const struct bpf_insn *from,
  460. const struct bpf_insn *aux,
  461. struct bpf_insn *to_buff)
  462. {
  463. struct bpf_insn *to = to_buff;
  464. u32 imm_rnd = get_random_int();
  465. s16 off;
  466. BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
  467. BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
  468. if (from->imm == 0 &&
  469. (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
  470. from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
  471. *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
  472. goto out;
  473. }
  474. switch (from->code) {
  475. case BPF_ALU | BPF_ADD | BPF_K:
  476. case BPF_ALU | BPF_SUB | BPF_K:
  477. case BPF_ALU | BPF_AND | BPF_K:
  478. case BPF_ALU | BPF_OR | BPF_K:
  479. case BPF_ALU | BPF_XOR | BPF_K:
  480. case BPF_ALU | BPF_MUL | BPF_K:
  481. case BPF_ALU | BPF_MOV | BPF_K:
  482. case BPF_ALU | BPF_DIV | BPF_K:
  483. case BPF_ALU | BPF_MOD | BPF_K:
  484. *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  485. *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  486. *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
  487. break;
  488. case BPF_ALU64 | BPF_ADD | BPF_K:
  489. case BPF_ALU64 | BPF_SUB | BPF_K:
  490. case BPF_ALU64 | BPF_AND | BPF_K:
  491. case BPF_ALU64 | BPF_OR | BPF_K:
  492. case BPF_ALU64 | BPF_XOR | BPF_K:
  493. case BPF_ALU64 | BPF_MUL | BPF_K:
  494. case BPF_ALU64 | BPF_MOV | BPF_K:
  495. case BPF_ALU64 | BPF_DIV | BPF_K:
  496. case BPF_ALU64 | BPF_MOD | BPF_K:
  497. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  498. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  499. *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
  500. break;
  501. case BPF_JMP | BPF_JEQ | BPF_K:
  502. case BPF_JMP | BPF_JNE | BPF_K:
  503. case BPF_JMP | BPF_JGT | BPF_K:
  504. case BPF_JMP | BPF_JLT | BPF_K:
  505. case BPF_JMP | BPF_JGE | BPF_K:
  506. case BPF_JMP | BPF_JLE | BPF_K:
  507. case BPF_JMP | BPF_JSGT | BPF_K:
  508. case BPF_JMP | BPF_JSLT | BPF_K:
  509. case BPF_JMP | BPF_JSGE | BPF_K:
  510. case BPF_JMP | BPF_JSLE | BPF_K:
  511. case BPF_JMP | BPF_JSET | BPF_K:
  512. /* Accommodate for extra offset in case of a backjump. */
  513. off = from->off;
  514. if (off < 0)
  515. off -= 2;
  516. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  517. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  518. *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
  519. break;
  520. case BPF_LD | BPF_ABS | BPF_W:
  521. case BPF_LD | BPF_ABS | BPF_H:
  522. case BPF_LD | BPF_ABS | BPF_B:
  523. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  524. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  525. *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
  526. break;
  527. case BPF_LD | BPF_IND | BPF_W:
  528. case BPF_LD | BPF_IND | BPF_H:
  529. case BPF_LD | BPF_IND | BPF_B:
  530. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  531. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  532. *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
  533. *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
  534. break;
  535. case BPF_LD | BPF_IMM | BPF_DW:
  536. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
  537. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  538. *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
  539. *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
  540. break;
  541. case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
  542. *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
  543. *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  544. *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
  545. break;
  546. case BPF_ST | BPF_MEM | BPF_DW:
  547. case BPF_ST | BPF_MEM | BPF_W:
  548. case BPF_ST | BPF_MEM | BPF_H:
  549. case BPF_ST | BPF_MEM | BPF_B:
  550. *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
  551. *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
  552. *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
  553. break;
  554. }
  555. out:
  556. return to - to_buff;
  557. }
  558. static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
  559. gfp_t gfp_extra_flags)
  560. {
  561. gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  562. struct bpf_prog *fp;
  563. fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
  564. if (fp != NULL) {
  565. kmemcheck_annotate_bitfield(fp, meta);
  566. /* aux->prog still points to the fp_other one, so
  567. * when promoting the clone to the real program,
  568. * this still needs to be adapted.
  569. */
  570. memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
  571. }
  572. return fp;
  573. }
  574. static void bpf_prog_clone_free(struct bpf_prog *fp)
  575. {
  576. /* aux was stolen by the other clone, so we cannot free
  577. * it from this path! It will be freed eventually by the
  578. * other program on release.
  579. *
  580. * At this point, we don't need a deferred release since
  581. * clone is guaranteed to not be locked.
  582. */
  583. fp->aux = NULL;
  584. __bpf_prog_free(fp);
  585. }
  586. void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
  587. {
  588. /* We have to repoint aux->prog to self, as we don't
  589. * know whether fp here is the clone or the original.
  590. */
  591. fp->aux->prog = fp;
  592. bpf_prog_clone_free(fp_other);
  593. }
  594. struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
  595. {
  596. struct bpf_insn insn_buff[16], aux[2];
  597. struct bpf_prog *clone, *tmp;
  598. int insn_delta, insn_cnt;
  599. struct bpf_insn *insn;
  600. int i, rewritten;
  601. if (!bpf_jit_blinding_enabled())
  602. return prog;
  603. clone = bpf_prog_clone_create(prog, GFP_USER);
  604. if (!clone)
  605. return ERR_PTR(-ENOMEM);
  606. insn_cnt = clone->len;
  607. insn = clone->insnsi;
  608. for (i = 0; i < insn_cnt; i++, insn++) {
  609. /* We temporarily need to hold the original ld64 insn
  610. * so that we can still access the first part in the
  611. * second blinding run.
  612. */
  613. if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
  614. insn[1].code == 0)
  615. memcpy(aux, insn, sizeof(aux));
  616. rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
  617. if (!rewritten)
  618. continue;
  619. tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
  620. if (!tmp) {
  621. /* Patching may have repointed aux->prog during
  622. * realloc from the original one, so we need to
  623. * fix it up here on error.
  624. */
  625. bpf_jit_prog_release_other(prog, clone);
  626. return ERR_PTR(-ENOMEM);
  627. }
  628. clone = tmp;
  629. insn_delta = rewritten - 1;
  630. /* Walk new program and skip insns we just inserted. */
  631. insn = clone->insnsi + i + insn_delta;
  632. insn_cnt += insn_delta;
  633. i += insn_delta;
  634. }
  635. return clone;
  636. }
  637. #endif /* CONFIG_BPF_JIT */
  638. /* Base function for offset calculation. Needs to go into .text section,
  639. * therefore keeping it non-static as well; will also be used by JITs
  640. * anyway later on, so do not let the compiler omit it.
  641. */
  642. noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  643. {
  644. return 0;
  645. }
  646. EXPORT_SYMBOL_GPL(__bpf_call_base);
  647. /**
  648. * __bpf_prog_run - run eBPF program on a given context
  649. * @ctx: is the data we are operating on
  650. * @insn: is the array of eBPF instructions
  651. *
  652. * Decode and execute eBPF instructions.
  653. */
  654. static unsigned int ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn,
  655. u64 *stack)
  656. {
  657. u64 tmp;
  658. static const void *jumptable[256] = {
  659. [0 ... 255] = &&default_label,
  660. /* Now overwrite non-defaults ... */
  661. /* 32 bit ALU operations */
  662. [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
  663. [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
  664. [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
  665. [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
  666. [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
  667. [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
  668. [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
  669. [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
  670. [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
  671. [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
  672. [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
  673. [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
  674. [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
  675. [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
  676. [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
  677. [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
  678. [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
  679. [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
  680. [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
  681. [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
  682. [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
  683. [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
  684. [BPF_ALU | BPF_NEG] = &&ALU_NEG,
  685. [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
  686. [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
  687. /* 64 bit ALU operations */
  688. [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
  689. [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
  690. [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
  691. [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
  692. [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
  693. [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
  694. [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
  695. [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
  696. [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
  697. [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
  698. [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
  699. [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
  700. [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
  701. [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
  702. [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
  703. [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
  704. [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
  705. [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
  706. [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
  707. [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
  708. [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
  709. [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
  710. [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
  711. [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
  712. [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
  713. /* Call instruction */
  714. [BPF_JMP | BPF_CALL] = &&JMP_CALL,
  715. [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
  716. /* Jumps */
  717. [BPF_JMP | BPF_JA] = &&JMP_JA,
  718. [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
  719. [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
  720. [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
  721. [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
  722. [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
  723. [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
  724. [BPF_JMP | BPF_JLT | BPF_X] = &&JMP_JLT_X,
  725. [BPF_JMP | BPF_JLT | BPF_K] = &&JMP_JLT_K,
  726. [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
  727. [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
  728. [BPF_JMP | BPF_JLE | BPF_X] = &&JMP_JLE_X,
  729. [BPF_JMP | BPF_JLE | BPF_K] = &&JMP_JLE_K,
  730. [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
  731. [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
  732. [BPF_JMP | BPF_JSLT | BPF_X] = &&JMP_JSLT_X,
  733. [BPF_JMP | BPF_JSLT | BPF_K] = &&JMP_JSLT_K,
  734. [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
  735. [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
  736. [BPF_JMP | BPF_JSLE | BPF_X] = &&JMP_JSLE_X,
  737. [BPF_JMP | BPF_JSLE | BPF_K] = &&JMP_JSLE_K,
  738. [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
  739. [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
  740. /* Program return */
  741. [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
  742. /* Store instructions */
  743. [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
  744. [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
  745. [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
  746. [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
  747. [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
  748. [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
  749. [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
  750. [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
  751. [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
  752. [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
  753. /* Load instructions */
  754. [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
  755. [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
  756. [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
  757. [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
  758. [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
  759. [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
  760. [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
  761. [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
  762. [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
  763. [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
  764. [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
  765. };
  766. u32 tail_call_cnt = 0;
  767. void *ptr;
  768. int off;
  769. #define CONT ({ insn++; goto select_insn; })
  770. #define CONT_JMP ({ insn++; goto select_insn; })
  771. select_insn:
  772. goto *jumptable[insn->code];
  773. /* ALU */
  774. #define ALU(OPCODE, OP) \
  775. ALU64_##OPCODE##_X: \
  776. DST = DST OP SRC; \
  777. CONT; \
  778. ALU_##OPCODE##_X: \
  779. DST = (u32) DST OP (u32) SRC; \
  780. CONT; \
  781. ALU64_##OPCODE##_K: \
  782. DST = DST OP IMM; \
  783. CONT; \
  784. ALU_##OPCODE##_K: \
  785. DST = (u32) DST OP (u32) IMM; \
  786. CONT;
  787. ALU(ADD, +)
  788. ALU(SUB, -)
  789. ALU(AND, &)
  790. ALU(OR, |)
  791. ALU(LSH, <<)
  792. ALU(RSH, >>)
  793. ALU(XOR, ^)
  794. ALU(MUL, *)
  795. #undef ALU
  796. ALU_NEG:
  797. DST = (u32) -DST;
  798. CONT;
  799. ALU64_NEG:
  800. DST = -DST;
  801. CONT;
  802. ALU_MOV_X:
  803. DST = (u32) SRC;
  804. CONT;
  805. ALU_MOV_K:
  806. DST = (u32) IMM;
  807. CONT;
  808. ALU64_MOV_X:
  809. DST = SRC;
  810. CONT;
  811. ALU64_MOV_K:
  812. DST = IMM;
  813. CONT;
  814. LD_IMM_DW:
  815. DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
  816. insn++;
  817. CONT;
  818. ALU64_ARSH_X:
  819. (*(s64 *) &DST) >>= SRC;
  820. CONT;
  821. ALU64_ARSH_K:
  822. (*(s64 *) &DST) >>= IMM;
  823. CONT;
  824. ALU64_MOD_X:
  825. if (unlikely(SRC == 0))
  826. return 0;
  827. div64_u64_rem(DST, SRC, &tmp);
  828. DST = tmp;
  829. CONT;
  830. ALU_MOD_X:
  831. if (unlikely(SRC == 0))
  832. return 0;
  833. tmp = (u32) DST;
  834. DST = do_div(tmp, (u32) SRC);
  835. CONT;
  836. ALU64_MOD_K:
  837. div64_u64_rem(DST, IMM, &tmp);
  838. DST = tmp;
  839. CONT;
  840. ALU_MOD_K:
  841. tmp = (u32) DST;
  842. DST = do_div(tmp, (u32) IMM);
  843. CONT;
  844. ALU64_DIV_X:
  845. if (unlikely(SRC == 0))
  846. return 0;
  847. DST = div64_u64(DST, SRC);
  848. CONT;
  849. ALU_DIV_X:
  850. if (unlikely(SRC == 0))
  851. return 0;
  852. tmp = (u32) DST;
  853. do_div(tmp, (u32) SRC);
  854. DST = (u32) tmp;
  855. CONT;
  856. ALU64_DIV_K:
  857. DST = div64_u64(DST, IMM);
  858. CONT;
  859. ALU_DIV_K:
  860. tmp = (u32) DST;
  861. do_div(tmp, (u32) IMM);
  862. DST = (u32) tmp;
  863. CONT;
  864. ALU_END_TO_BE:
  865. switch (IMM) {
  866. case 16:
  867. DST = (__force u16) cpu_to_be16(DST);
  868. break;
  869. case 32:
  870. DST = (__force u32) cpu_to_be32(DST);
  871. break;
  872. case 64:
  873. DST = (__force u64) cpu_to_be64(DST);
  874. break;
  875. }
  876. CONT;
  877. ALU_END_TO_LE:
  878. switch (IMM) {
  879. case 16:
  880. DST = (__force u16) cpu_to_le16(DST);
  881. break;
  882. case 32:
  883. DST = (__force u32) cpu_to_le32(DST);
  884. break;
  885. case 64:
  886. DST = (__force u64) cpu_to_le64(DST);
  887. break;
  888. }
  889. CONT;
  890. /* CALL */
  891. JMP_CALL:
  892. /* Function call scratches BPF_R1-BPF_R5 registers,
  893. * preserves BPF_R6-BPF_R9, and stores return value
  894. * into BPF_R0.
  895. */
  896. BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
  897. BPF_R4, BPF_R5);
  898. CONT;
  899. JMP_TAIL_CALL: {
  900. struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
  901. struct bpf_array *array = container_of(map, struct bpf_array, map);
  902. struct bpf_prog *prog;
  903. u32 index = BPF_R3;
  904. if (unlikely(index >= array->map.max_entries))
  905. goto out;
  906. if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
  907. goto out;
  908. tail_call_cnt++;
  909. prog = READ_ONCE(array->ptrs[index]);
  910. if (!prog)
  911. goto out;
  912. /* ARG1 at this point is guaranteed to point to CTX from
  913. * the verifier side due to the fact that the tail call is
  914. * handeled like a helper, that is, bpf_tail_call_proto,
  915. * where arg1_type is ARG_PTR_TO_CTX.
  916. */
  917. insn = prog->insnsi;
  918. goto select_insn;
  919. out:
  920. CONT;
  921. }
  922. /* JMP */
  923. JMP_JA:
  924. insn += insn->off;
  925. CONT;
  926. JMP_JEQ_X:
  927. if (DST == SRC) {
  928. insn += insn->off;
  929. CONT_JMP;
  930. }
  931. CONT;
  932. JMP_JEQ_K:
  933. if (DST == IMM) {
  934. insn += insn->off;
  935. CONT_JMP;
  936. }
  937. CONT;
  938. JMP_JNE_X:
  939. if (DST != SRC) {
  940. insn += insn->off;
  941. CONT_JMP;
  942. }
  943. CONT;
  944. JMP_JNE_K:
  945. if (DST != IMM) {
  946. insn += insn->off;
  947. CONT_JMP;
  948. }
  949. CONT;
  950. JMP_JGT_X:
  951. if (DST > SRC) {
  952. insn += insn->off;
  953. CONT_JMP;
  954. }
  955. CONT;
  956. JMP_JGT_K:
  957. if (DST > IMM) {
  958. insn += insn->off;
  959. CONT_JMP;
  960. }
  961. CONT;
  962. JMP_JLT_X:
  963. if (DST < SRC) {
  964. insn += insn->off;
  965. CONT_JMP;
  966. }
  967. CONT;
  968. JMP_JLT_K:
  969. if (DST < IMM) {
  970. insn += insn->off;
  971. CONT_JMP;
  972. }
  973. CONT;
  974. JMP_JGE_X:
  975. if (DST >= SRC) {
  976. insn += insn->off;
  977. CONT_JMP;
  978. }
  979. CONT;
  980. JMP_JGE_K:
  981. if (DST >= IMM) {
  982. insn += insn->off;
  983. CONT_JMP;
  984. }
  985. CONT;
  986. JMP_JLE_X:
  987. if (DST <= SRC) {
  988. insn += insn->off;
  989. CONT_JMP;
  990. }
  991. CONT;
  992. JMP_JLE_K:
  993. if (DST <= IMM) {
  994. insn += insn->off;
  995. CONT_JMP;
  996. }
  997. CONT;
  998. JMP_JSGT_X:
  999. if (((s64) DST) > ((s64) SRC)) {
  1000. insn += insn->off;
  1001. CONT_JMP;
  1002. }
  1003. CONT;
  1004. JMP_JSGT_K:
  1005. if (((s64) DST) > ((s64) IMM)) {
  1006. insn += insn->off;
  1007. CONT_JMP;
  1008. }
  1009. CONT;
  1010. JMP_JSLT_X:
  1011. if (((s64) DST) < ((s64) SRC)) {
  1012. insn += insn->off;
  1013. CONT_JMP;
  1014. }
  1015. CONT;
  1016. JMP_JSLT_K:
  1017. if (((s64) DST) < ((s64) IMM)) {
  1018. insn += insn->off;
  1019. CONT_JMP;
  1020. }
  1021. CONT;
  1022. JMP_JSGE_X:
  1023. if (((s64) DST) >= ((s64) SRC)) {
  1024. insn += insn->off;
  1025. CONT_JMP;
  1026. }
  1027. CONT;
  1028. JMP_JSGE_K:
  1029. if (((s64) DST) >= ((s64) IMM)) {
  1030. insn += insn->off;
  1031. CONT_JMP;
  1032. }
  1033. CONT;
  1034. JMP_JSLE_X:
  1035. if (((s64) DST) <= ((s64) SRC)) {
  1036. insn += insn->off;
  1037. CONT_JMP;
  1038. }
  1039. CONT;
  1040. JMP_JSLE_K:
  1041. if (((s64) DST) <= ((s64) IMM)) {
  1042. insn += insn->off;
  1043. CONT_JMP;
  1044. }
  1045. CONT;
  1046. JMP_JSET_X:
  1047. if (DST & SRC) {
  1048. insn += insn->off;
  1049. CONT_JMP;
  1050. }
  1051. CONT;
  1052. JMP_JSET_K:
  1053. if (DST & IMM) {
  1054. insn += insn->off;
  1055. CONT_JMP;
  1056. }
  1057. CONT;
  1058. JMP_EXIT:
  1059. return BPF_R0;
  1060. /* STX and ST and LDX*/
  1061. #define LDST(SIZEOP, SIZE) \
  1062. STX_MEM_##SIZEOP: \
  1063. *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
  1064. CONT; \
  1065. ST_MEM_##SIZEOP: \
  1066. *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
  1067. CONT; \
  1068. LDX_MEM_##SIZEOP: \
  1069. DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
  1070. CONT;
  1071. LDST(B, u8)
  1072. LDST(H, u16)
  1073. LDST(W, u32)
  1074. LDST(DW, u64)
  1075. #undef LDST
  1076. STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
  1077. atomic_add((u32) SRC, (atomic_t *)(unsigned long)
  1078. (DST + insn->off));
  1079. CONT;
  1080. STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
  1081. atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
  1082. (DST + insn->off));
  1083. CONT;
  1084. LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
  1085. off = IMM;
  1086. load_word:
  1087. /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
  1088. * appearing in the programs where ctx == skb
  1089. * (see may_access_skb() in the verifier). All programs
  1090. * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
  1091. * bpf_convert_filter() saves it in BPF_R6, internal BPF
  1092. * verifier will check that BPF_R6 == ctx.
  1093. *
  1094. * BPF_ABS and BPF_IND are wrappers of function calls,
  1095. * so they scratch BPF_R1-BPF_R5 registers, preserve
  1096. * BPF_R6-BPF_R9, and store return value into BPF_R0.
  1097. *
  1098. * Implicit input:
  1099. * ctx == skb == BPF_R6 == CTX
  1100. *
  1101. * Explicit input:
  1102. * SRC == any register
  1103. * IMM == 32-bit immediate
  1104. *
  1105. * Output:
  1106. * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
  1107. */
  1108. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
  1109. if (likely(ptr != NULL)) {
  1110. BPF_R0 = get_unaligned_be32(ptr);
  1111. CONT;
  1112. }
  1113. return 0;
  1114. LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
  1115. off = IMM;
  1116. load_half:
  1117. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
  1118. if (likely(ptr != NULL)) {
  1119. BPF_R0 = get_unaligned_be16(ptr);
  1120. CONT;
  1121. }
  1122. return 0;
  1123. LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
  1124. off = IMM;
  1125. load_byte:
  1126. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
  1127. if (likely(ptr != NULL)) {
  1128. BPF_R0 = *(u8 *)ptr;
  1129. CONT;
  1130. }
  1131. return 0;
  1132. LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
  1133. off = IMM + SRC;
  1134. goto load_word;
  1135. LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
  1136. off = IMM + SRC;
  1137. goto load_half;
  1138. LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
  1139. off = IMM + SRC;
  1140. goto load_byte;
  1141. default_label:
  1142. /* If we ever reach this, we have a bug somewhere. */
  1143. WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
  1144. return 0;
  1145. }
  1146. STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
  1147. #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
  1148. #define DEFINE_BPF_PROG_RUN(stack_size) \
  1149. static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
  1150. { \
  1151. u64 stack[stack_size / sizeof(u64)]; \
  1152. u64 regs[MAX_BPF_REG]; \
  1153. \
  1154. FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
  1155. ARG1 = (u64) (unsigned long) ctx; \
  1156. return ___bpf_prog_run(regs, insn, stack); \
  1157. }
  1158. #define EVAL1(FN, X) FN(X)
  1159. #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
  1160. #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
  1161. #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
  1162. #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
  1163. #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
  1164. EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
  1165. EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
  1166. EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
  1167. #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
  1168. static unsigned int (*interpreters[])(const void *ctx,
  1169. const struct bpf_insn *insn) = {
  1170. EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
  1171. EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
  1172. EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
  1173. };
  1174. bool bpf_prog_array_compatible(struct bpf_array *array,
  1175. const struct bpf_prog *fp)
  1176. {
  1177. if (!array->owner_prog_type) {
  1178. /* There's no owner yet where we could check for
  1179. * compatibility.
  1180. */
  1181. array->owner_prog_type = fp->type;
  1182. array->owner_jited = fp->jited;
  1183. return true;
  1184. }
  1185. return array->owner_prog_type == fp->type &&
  1186. array->owner_jited == fp->jited;
  1187. }
  1188. static int bpf_check_tail_call(const struct bpf_prog *fp)
  1189. {
  1190. struct bpf_prog_aux *aux = fp->aux;
  1191. int i;
  1192. for (i = 0; i < aux->used_map_cnt; i++) {
  1193. struct bpf_map *map = aux->used_maps[i];
  1194. struct bpf_array *array;
  1195. if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
  1196. continue;
  1197. array = container_of(map, struct bpf_array, map);
  1198. if (!bpf_prog_array_compatible(array, fp))
  1199. return -EINVAL;
  1200. }
  1201. return 0;
  1202. }
  1203. /**
  1204. * bpf_prog_select_runtime - select exec runtime for BPF program
  1205. * @fp: bpf_prog populated with internal BPF program
  1206. * @err: pointer to error variable
  1207. *
  1208. * Try to JIT eBPF program, if JIT is not available, use interpreter.
  1209. * The BPF program will be executed via BPF_PROG_RUN() macro.
  1210. */
  1211. struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
  1212. {
  1213. u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
  1214. fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
  1215. /* eBPF JITs can rewrite the program in case constant
  1216. * blinding is active. However, in case of error during
  1217. * blinding, bpf_int_jit_compile() must always return a
  1218. * valid program, which in this case would simply not
  1219. * be JITed, but falls back to the interpreter.
  1220. */
  1221. if (!bpf_prog_is_dev_bound(fp->aux)) {
  1222. fp = bpf_int_jit_compile(fp);
  1223. } else {
  1224. *err = bpf_prog_offload_compile(fp);
  1225. if (*err)
  1226. return fp;
  1227. }
  1228. bpf_prog_lock_ro(fp);
  1229. /* The tail call compatibility check can only be done at
  1230. * this late stage as we need to determine, if we deal
  1231. * with JITed or non JITed program concatenations and not
  1232. * all eBPF JITs might immediately support all features.
  1233. */
  1234. *err = bpf_check_tail_call(fp);
  1235. return fp;
  1236. }
  1237. EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
  1238. static unsigned int __bpf_prog_ret1(const void *ctx,
  1239. const struct bpf_insn *insn)
  1240. {
  1241. return 1;
  1242. }
  1243. static struct bpf_prog_dummy {
  1244. struct bpf_prog prog;
  1245. } dummy_bpf_prog = {
  1246. .prog = {
  1247. .bpf_func = __bpf_prog_ret1,
  1248. },
  1249. };
  1250. /* to avoid allocating empty bpf_prog_array for cgroups that
  1251. * don't have bpf program attached use one global 'empty_prog_array'
  1252. * It will not be modified the caller of bpf_prog_array_alloc()
  1253. * (since caller requested prog_cnt == 0)
  1254. * that pointer should be 'freed' by bpf_prog_array_free()
  1255. */
  1256. static struct {
  1257. struct bpf_prog_array hdr;
  1258. struct bpf_prog *null_prog;
  1259. } empty_prog_array = {
  1260. .null_prog = NULL,
  1261. };
  1262. struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
  1263. {
  1264. if (prog_cnt)
  1265. return kzalloc(sizeof(struct bpf_prog_array) +
  1266. sizeof(struct bpf_prog *) * (prog_cnt + 1),
  1267. flags);
  1268. return &empty_prog_array.hdr;
  1269. }
  1270. void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
  1271. {
  1272. if (!progs ||
  1273. progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
  1274. return;
  1275. kfree_rcu(progs, rcu);
  1276. }
  1277. int bpf_prog_array_length(struct bpf_prog_array __rcu *progs)
  1278. {
  1279. struct bpf_prog **prog;
  1280. u32 cnt = 0;
  1281. rcu_read_lock();
  1282. prog = rcu_dereference(progs)->progs;
  1283. for (; *prog; prog++)
  1284. cnt++;
  1285. rcu_read_unlock();
  1286. return cnt;
  1287. }
  1288. int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
  1289. __u32 __user *prog_ids, u32 cnt)
  1290. {
  1291. struct bpf_prog **prog;
  1292. u32 i = 0, id;
  1293. rcu_read_lock();
  1294. prog = rcu_dereference(progs)->progs;
  1295. for (; *prog; prog++) {
  1296. id = (*prog)->aux->id;
  1297. if (copy_to_user(prog_ids + i, &id, sizeof(id))) {
  1298. rcu_read_unlock();
  1299. return -EFAULT;
  1300. }
  1301. if (++i == cnt) {
  1302. prog++;
  1303. break;
  1304. }
  1305. }
  1306. rcu_read_unlock();
  1307. if (*prog)
  1308. return -ENOSPC;
  1309. return 0;
  1310. }
  1311. void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
  1312. struct bpf_prog *old_prog)
  1313. {
  1314. struct bpf_prog **prog = progs->progs;
  1315. for (; *prog; prog++)
  1316. if (*prog == old_prog) {
  1317. WRITE_ONCE(*prog, &dummy_bpf_prog.prog);
  1318. break;
  1319. }
  1320. }
  1321. int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
  1322. struct bpf_prog *exclude_prog,
  1323. struct bpf_prog *include_prog,
  1324. struct bpf_prog_array **new_array)
  1325. {
  1326. int new_prog_cnt, carry_prog_cnt = 0;
  1327. struct bpf_prog **existing_prog;
  1328. struct bpf_prog_array *array;
  1329. int new_prog_idx = 0;
  1330. /* Figure out how many existing progs we need to carry over to
  1331. * the new array.
  1332. */
  1333. if (old_array) {
  1334. existing_prog = old_array->progs;
  1335. for (; *existing_prog; existing_prog++) {
  1336. if (*existing_prog != exclude_prog &&
  1337. *existing_prog != &dummy_bpf_prog.prog)
  1338. carry_prog_cnt++;
  1339. if (*existing_prog == include_prog)
  1340. return -EEXIST;
  1341. }
  1342. }
  1343. /* How many progs (not NULL) will be in the new array? */
  1344. new_prog_cnt = carry_prog_cnt;
  1345. if (include_prog)
  1346. new_prog_cnt += 1;
  1347. /* Do we have any prog (not NULL) in the new array? */
  1348. if (!new_prog_cnt) {
  1349. *new_array = NULL;
  1350. return 0;
  1351. }
  1352. /* +1 as the end of prog_array is marked with NULL */
  1353. array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
  1354. if (!array)
  1355. return -ENOMEM;
  1356. /* Fill in the new prog array */
  1357. if (carry_prog_cnt) {
  1358. existing_prog = old_array->progs;
  1359. for (; *existing_prog; existing_prog++)
  1360. if (*existing_prog != exclude_prog &&
  1361. *existing_prog != &dummy_bpf_prog.prog)
  1362. array->progs[new_prog_idx++] = *existing_prog;
  1363. }
  1364. if (include_prog)
  1365. array->progs[new_prog_idx++] = include_prog;
  1366. array->progs[new_prog_idx] = NULL;
  1367. *new_array = array;
  1368. return 0;
  1369. }
  1370. static void bpf_prog_free_deferred(struct work_struct *work)
  1371. {
  1372. struct bpf_prog_aux *aux;
  1373. aux = container_of(work, struct bpf_prog_aux, work);
  1374. if (bpf_prog_is_dev_bound(aux))
  1375. bpf_prog_offload_destroy(aux->prog);
  1376. bpf_jit_free(aux->prog);
  1377. }
  1378. /* Free internal BPF program */
  1379. void bpf_prog_free(struct bpf_prog *fp)
  1380. {
  1381. struct bpf_prog_aux *aux = fp->aux;
  1382. INIT_WORK(&aux->work, bpf_prog_free_deferred);
  1383. schedule_work(&aux->work);
  1384. }
  1385. EXPORT_SYMBOL_GPL(bpf_prog_free);
  1386. /* RNG for unpriviledged user space with separated state from prandom_u32(). */
  1387. static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
  1388. void bpf_user_rnd_init_once(void)
  1389. {
  1390. prandom_init_once(&bpf_user_rnd_state);
  1391. }
  1392. BPF_CALL_0(bpf_user_rnd_u32)
  1393. {
  1394. /* Should someone ever have the rather unwise idea to use some
  1395. * of the registers passed into this function, then note that
  1396. * this function is called from native eBPF and classic-to-eBPF
  1397. * transformations. Register assignments from both sides are
  1398. * different, f.e. classic always sets fn(ctx, A, X) here.
  1399. */
  1400. struct rnd_state *state;
  1401. u32 res;
  1402. state = &get_cpu_var(bpf_user_rnd_state);
  1403. res = prandom_u32_state(state);
  1404. put_cpu_var(bpf_user_rnd_state);
  1405. return res;
  1406. }
  1407. /* Weak definitions of helper functions in case we don't have bpf syscall. */
  1408. const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
  1409. const struct bpf_func_proto bpf_map_update_elem_proto __weak;
  1410. const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
  1411. const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
  1412. const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
  1413. const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
  1414. const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
  1415. const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
  1416. const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
  1417. const struct bpf_func_proto bpf_get_current_comm_proto __weak;
  1418. const struct bpf_func_proto bpf_sock_map_update_proto __weak;
  1419. const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
  1420. {
  1421. return NULL;
  1422. }
  1423. u64 __weak
  1424. bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
  1425. void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
  1426. {
  1427. return -ENOTSUPP;
  1428. }
  1429. /* Always built-in helper functions. */
  1430. const struct bpf_func_proto bpf_tail_call_proto = {
  1431. .func = NULL,
  1432. .gpl_only = false,
  1433. .ret_type = RET_VOID,
  1434. .arg1_type = ARG_PTR_TO_CTX,
  1435. .arg2_type = ARG_CONST_MAP_PTR,
  1436. .arg3_type = ARG_ANYTHING,
  1437. };
  1438. /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
  1439. * It is encouraged to implement bpf_int_jit_compile() instead, so that
  1440. * eBPF and implicitly also cBPF can get JITed!
  1441. */
  1442. struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
  1443. {
  1444. return prog;
  1445. }
  1446. /* Stub for JITs that support eBPF. All cBPF code gets transformed into
  1447. * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
  1448. */
  1449. void __weak bpf_jit_compile(struct bpf_prog *prog)
  1450. {
  1451. }
  1452. bool __weak bpf_helper_changes_pkt_data(void *func)
  1453. {
  1454. return false;
  1455. }
  1456. /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
  1457. * skb_copy_bits(), so provide a weak definition of it for NET-less config.
  1458. */
  1459. int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
  1460. int len)
  1461. {
  1462. return -EFAULT;
  1463. }
  1464. /* All definitions of tracepoints related to BPF. */
  1465. #define CREATE_TRACE_POINTS
  1466. #include <linux/bpf_trace.h>
  1467. EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
  1468. /* These are only used within the BPF_SYSCALL code */
  1469. #ifdef CONFIG_BPF_SYSCALL
  1470. EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
  1471. EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);
  1472. #endif