perf_event_intel_ds.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106
  1. #include <linux/bitops.h>
  2. #include <linux/types.h>
  3. #include <linux/slab.h>
  4. #include <asm/perf_event.h>
  5. #include <asm/insn.h>
  6. #include "perf_event.h"
  7. /* The size of a BTS record in bytes: */
  8. #define BTS_RECORD_SIZE 24
  9. #define BTS_BUFFER_SIZE (PAGE_SIZE << 4)
  10. #define PEBS_BUFFER_SIZE PAGE_SIZE
  11. #define PEBS_FIXUP_SIZE PAGE_SIZE
  12. /*
  13. * pebs_record_32 for p4 and core not supported
  14. struct pebs_record_32 {
  15. u32 flags, ip;
  16. u32 ax, bc, cx, dx;
  17. u32 si, di, bp, sp;
  18. };
  19. */
  20. union intel_x86_pebs_dse {
  21. u64 val;
  22. struct {
  23. unsigned int ld_dse:4;
  24. unsigned int ld_stlb_miss:1;
  25. unsigned int ld_locked:1;
  26. unsigned int ld_reserved:26;
  27. };
  28. struct {
  29. unsigned int st_l1d_hit:1;
  30. unsigned int st_reserved1:3;
  31. unsigned int st_stlb_miss:1;
  32. unsigned int st_locked:1;
  33. unsigned int st_reserved2:26;
  34. };
  35. };
  36. /*
  37. * Map PEBS Load Latency Data Source encodings to generic
  38. * memory data source information
  39. */
  40. #define P(a, b) PERF_MEM_S(a, b)
  41. #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
  42. #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
  43. static const u64 pebs_data_source[] = {
  44. P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
  45. OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */
  46. OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
  47. OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
  48. OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
  49. OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
  50. OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
  51. OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
  52. OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
  53. OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
  54. OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
  55. OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
  56. OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */
  57. OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */
  58. OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */
  59. OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */
  60. };
  61. static u64 precise_store_data(u64 status)
  62. {
  63. union intel_x86_pebs_dse dse;
  64. u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
  65. dse.val = status;
  66. /*
  67. * bit 4: TLB access
  68. * 1 = stored missed 2nd level TLB
  69. *
  70. * so it either hit the walker or the OS
  71. * otherwise hit 2nd level TLB
  72. */
  73. if (dse.st_stlb_miss)
  74. val |= P(TLB, MISS);
  75. else
  76. val |= P(TLB, HIT);
  77. /*
  78. * bit 0: hit L1 data cache
  79. * if not set, then all we know is that
  80. * it missed L1D
  81. */
  82. if (dse.st_l1d_hit)
  83. val |= P(LVL, HIT);
  84. else
  85. val |= P(LVL, MISS);
  86. /*
  87. * bit 5: Locked prefix
  88. */
  89. if (dse.st_locked)
  90. val |= P(LOCK, LOCKED);
  91. return val;
  92. }
  93. static u64 precise_store_data_hsw(struct perf_event *event, u64 status)
  94. {
  95. union perf_mem_data_src dse;
  96. u64 cfg = event->hw.config & INTEL_ARCH_EVENT_MASK;
  97. dse.val = 0;
  98. dse.mem_op = PERF_MEM_OP_STORE;
  99. dse.mem_lvl = PERF_MEM_LVL_NA;
  100. /*
  101. * L1 info only valid for following events:
  102. *
  103. * MEM_UOPS_RETIRED.STLB_MISS_STORES
  104. * MEM_UOPS_RETIRED.LOCK_STORES
  105. * MEM_UOPS_RETIRED.SPLIT_STORES
  106. * MEM_UOPS_RETIRED.ALL_STORES
  107. */
  108. if (cfg != 0x12d0 && cfg != 0x22d0 && cfg != 0x42d0 && cfg != 0x82d0)
  109. return dse.mem_lvl;
  110. if (status & 1)
  111. dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
  112. else
  113. dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
  114. /* Nothing else supported. Sorry. */
  115. return dse.val;
  116. }
  117. static u64 load_latency_data(u64 status)
  118. {
  119. union intel_x86_pebs_dse dse;
  120. u64 val;
  121. int model = boot_cpu_data.x86_model;
  122. int fam = boot_cpu_data.x86;
  123. dse.val = status;
  124. /*
  125. * use the mapping table for bit 0-3
  126. */
  127. val = pebs_data_source[dse.ld_dse];
  128. /*
  129. * Nehalem models do not support TLB, Lock infos
  130. */
  131. if (fam == 0x6 && (model == 26 || model == 30
  132. || model == 31 || model == 46)) {
  133. val |= P(TLB, NA) | P(LOCK, NA);
  134. return val;
  135. }
  136. /*
  137. * bit 4: TLB access
  138. * 0 = did not miss 2nd level TLB
  139. * 1 = missed 2nd level TLB
  140. */
  141. if (dse.ld_stlb_miss)
  142. val |= P(TLB, MISS) | P(TLB, L2);
  143. else
  144. val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
  145. /*
  146. * bit 5: locked prefix
  147. */
  148. if (dse.ld_locked)
  149. val |= P(LOCK, LOCKED);
  150. return val;
  151. }
  152. struct pebs_record_core {
  153. u64 flags, ip;
  154. u64 ax, bx, cx, dx;
  155. u64 si, di, bp, sp;
  156. u64 r8, r9, r10, r11;
  157. u64 r12, r13, r14, r15;
  158. };
  159. struct pebs_record_nhm {
  160. u64 flags, ip;
  161. u64 ax, bx, cx, dx;
  162. u64 si, di, bp, sp;
  163. u64 r8, r9, r10, r11;
  164. u64 r12, r13, r14, r15;
  165. u64 status, dla, dse, lat;
  166. };
  167. /*
  168. * Same as pebs_record_nhm, with two additional fields.
  169. */
  170. struct pebs_record_hsw {
  171. u64 flags, ip;
  172. u64 ax, bx, cx, dx;
  173. u64 si, di, bp, sp;
  174. u64 r8, r9, r10, r11;
  175. u64 r12, r13, r14, r15;
  176. u64 status, dla, dse, lat;
  177. u64 real_ip, tsx_tuning;
  178. };
  179. union hsw_tsx_tuning {
  180. struct {
  181. u32 cycles_last_block : 32,
  182. hle_abort : 1,
  183. rtm_abort : 1,
  184. instruction_abort : 1,
  185. non_instruction_abort : 1,
  186. retry : 1,
  187. data_conflict : 1,
  188. capacity_writes : 1,
  189. capacity_reads : 1;
  190. };
  191. u64 value;
  192. };
  193. #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
  194. void init_debug_store_on_cpu(int cpu)
  195. {
  196. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  197. if (!ds)
  198. return;
  199. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
  200. (u32)((u64)(unsigned long)ds),
  201. (u32)((u64)(unsigned long)ds >> 32));
  202. }
  203. void fini_debug_store_on_cpu(int cpu)
  204. {
  205. if (!per_cpu(cpu_hw_events, cpu).ds)
  206. return;
  207. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
  208. }
  209. static DEFINE_PER_CPU(void *, insn_buffer);
  210. static int alloc_pebs_buffer(int cpu)
  211. {
  212. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  213. int node = cpu_to_node(cpu);
  214. int max, thresh = 1; /* always use a single PEBS record */
  215. void *buffer, *ibuffer;
  216. if (!x86_pmu.pebs)
  217. return 0;
  218. buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node);
  219. if (unlikely(!buffer))
  220. return -ENOMEM;
  221. /*
  222. * HSW+ already provides us the eventing ip; no need to allocate this
  223. * buffer then.
  224. */
  225. if (x86_pmu.intel_cap.pebs_format < 2) {
  226. ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
  227. if (!ibuffer) {
  228. kfree(buffer);
  229. return -ENOMEM;
  230. }
  231. per_cpu(insn_buffer, cpu) = ibuffer;
  232. }
  233. max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size;
  234. ds->pebs_buffer_base = (u64)(unsigned long)buffer;
  235. ds->pebs_index = ds->pebs_buffer_base;
  236. ds->pebs_absolute_maximum = ds->pebs_buffer_base +
  237. max * x86_pmu.pebs_record_size;
  238. ds->pebs_interrupt_threshold = ds->pebs_buffer_base +
  239. thresh * x86_pmu.pebs_record_size;
  240. return 0;
  241. }
  242. static void release_pebs_buffer(int cpu)
  243. {
  244. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  245. if (!ds || !x86_pmu.pebs)
  246. return;
  247. kfree(per_cpu(insn_buffer, cpu));
  248. per_cpu(insn_buffer, cpu) = NULL;
  249. kfree((void *)(unsigned long)ds->pebs_buffer_base);
  250. ds->pebs_buffer_base = 0;
  251. }
  252. static int alloc_bts_buffer(int cpu)
  253. {
  254. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  255. int node = cpu_to_node(cpu);
  256. int max, thresh;
  257. void *buffer;
  258. if (!x86_pmu.bts)
  259. return 0;
  260. buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node);
  261. if (unlikely(!buffer)) {
  262. WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
  263. return -ENOMEM;
  264. }
  265. max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
  266. thresh = max / 16;
  267. ds->bts_buffer_base = (u64)(unsigned long)buffer;
  268. ds->bts_index = ds->bts_buffer_base;
  269. ds->bts_absolute_maximum = ds->bts_buffer_base +
  270. max * BTS_RECORD_SIZE;
  271. ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
  272. thresh * BTS_RECORD_SIZE;
  273. return 0;
  274. }
  275. static void release_bts_buffer(int cpu)
  276. {
  277. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  278. if (!ds || !x86_pmu.bts)
  279. return;
  280. kfree((void *)(unsigned long)ds->bts_buffer_base);
  281. ds->bts_buffer_base = 0;
  282. }
  283. static int alloc_ds_buffer(int cpu)
  284. {
  285. int node = cpu_to_node(cpu);
  286. struct debug_store *ds;
  287. ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node);
  288. if (unlikely(!ds))
  289. return -ENOMEM;
  290. per_cpu(cpu_hw_events, cpu).ds = ds;
  291. return 0;
  292. }
  293. static void release_ds_buffer(int cpu)
  294. {
  295. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  296. if (!ds)
  297. return;
  298. per_cpu(cpu_hw_events, cpu).ds = NULL;
  299. kfree(ds);
  300. }
  301. void release_ds_buffers(void)
  302. {
  303. int cpu;
  304. if (!x86_pmu.bts && !x86_pmu.pebs)
  305. return;
  306. get_online_cpus();
  307. for_each_online_cpu(cpu)
  308. fini_debug_store_on_cpu(cpu);
  309. for_each_possible_cpu(cpu) {
  310. release_pebs_buffer(cpu);
  311. release_bts_buffer(cpu);
  312. release_ds_buffer(cpu);
  313. }
  314. put_online_cpus();
  315. }
  316. void reserve_ds_buffers(void)
  317. {
  318. int bts_err = 0, pebs_err = 0;
  319. int cpu;
  320. x86_pmu.bts_active = 0;
  321. x86_pmu.pebs_active = 0;
  322. if (!x86_pmu.bts && !x86_pmu.pebs)
  323. return;
  324. if (!x86_pmu.bts)
  325. bts_err = 1;
  326. if (!x86_pmu.pebs)
  327. pebs_err = 1;
  328. get_online_cpus();
  329. for_each_possible_cpu(cpu) {
  330. if (alloc_ds_buffer(cpu)) {
  331. bts_err = 1;
  332. pebs_err = 1;
  333. }
  334. if (!bts_err && alloc_bts_buffer(cpu))
  335. bts_err = 1;
  336. if (!pebs_err && alloc_pebs_buffer(cpu))
  337. pebs_err = 1;
  338. if (bts_err && pebs_err)
  339. break;
  340. }
  341. if (bts_err) {
  342. for_each_possible_cpu(cpu)
  343. release_bts_buffer(cpu);
  344. }
  345. if (pebs_err) {
  346. for_each_possible_cpu(cpu)
  347. release_pebs_buffer(cpu);
  348. }
  349. if (bts_err && pebs_err) {
  350. for_each_possible_cpu(cpu)
  351. release_ds_buffer(cpu);
  352. } else {
  353. if (x86_pmu.bts && !bts_err)
  354. x86_pmu.bts_active = 1;
  355. if (x86_pmu.pebs && !pebs_err)
  356. x86_pmu.pebs_active = 1;
  357. for_each_online_cpu(cpu)
  358. init_debug_store_on_cpu(cpu);
  359. }
  360. put_online_cpus();
  361. }
  362. /*
  363. * BTS
  364. */
  365. struct event_constraint bts_constraint =
  366. EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
  367. void intel_pmu_enable_bts(u64 config)
  368. {
  369. unsigned long debugctlmsr;
  370. debugctlmsr = get_debugctlmsr();
  371. debugctlmsr |= DEBUGCTLMSR_TR;
  372. debugctlmsr |= DEBUGCTLMSR_BTS;
  373. debugctlmsr |= DEBUGCTLMSR_BTINT;
  374. if (!(config & ARCH_PERFMON_EVENTSEL_OS))
  375. debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
  376. if (!(config & ARCH_PERFMON_EVENTSEL_USR))
  377. debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
  378. update_debugctlmsr(debugctlmsr);
  379. }
  380. void intel_pmu_disable_bts(void)
  381. {
  382. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  383. unsigned long debugctlmsr;
  384. if (!cpuc->ds)
  385. return;
  386. debugctlmsr = get_debugctlmsr();
  387. debugctlmsr &=
  388. ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
  389. DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
  390. update_debugctlmsr(debugctlmsr);
  391. }
  392. int intel_pmu_drain_bts_buffer(void)
  393. {
  394. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  395. struct debug_store *ds = cpuc->ds;
  396. struct bts_record {
  397. u64 from;
  398. u64 to;
  399. u64 flags;
  400. };
  401. struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
  402. struct bts_record *at, *top;
  403. struct perf_output_handle handle;
  404. struct perf_event_header header;
  405. struct perf_sample_data data;
  406. struct pt_regs regs;
  407. if (!event)
  408. return 0;
  409. if (!x86_pmu.bts_active)
  410. return 0;
  411. at = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
  412. top = (struct bts_record *)(unsigned long)ds->bts_index;
  413. if (top <= at)
  414. return 0;
  415. memset(&regs, 0, sizeof(regs));
  416. ds->bts_index = ds->bts_buffer_base;
  417. perf_sample_data_init(&data, 0, event->hw.last_period);
  418. /*
  419. * Prepare a generic sample, i.e. fill in the invariant fields.
  420. * We will overwrite the from and to address before we output
  421. * the sample.
  422. */
  423. perf_prepare_sample(&header, &data, event, &regs);
  424. if (perf_output_begin(&handle, event, header.size * (top - at)))
  425. return 1;
  426. for (; at < top; at++) {
  427. data.ip = at->from;
  428. data.addr = at->to;
  429. perf_output_sample(&handle, &header, &data, event);
  430. }
  431. perf_output_end(&handle);
  432. /* There's new data available. */
  433. event->hw.interrupts++;
  434. event->pending_kill = POLL_IN;
  435. return 1;
  436. }
  437. /*
  438. * PEBS
  439. */
  440. struct event_constraint intel_core2_pebs_event_constraints[] = {
  441. INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
  442. INTEL_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
  443. INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
  444. INTEL_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
  445. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
  446. EVENT_CONSTRAINT_END
  447. };
  448. struct event_constraint intel_atom_pebs_event_constraints[] = {
  449. INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
  450. INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
  451. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
  452. EVENT_CONSTRAINT_END
  453. };
  454. struct event_constraint intel_slm_pebs_event_constraints[] = {
  455. INTEL_UEVENT_CONSTRAINT(0x0103, 0x1), /* REHABQ.LD_BLOCK_ST_FORWARD_PS */
  456. INTEL_UEVENT_CONSTRAINT(0x0803, 0x1), /* REHABQ.LD_SPLITS_PS */
  457. INTEL_UEVENT_CONSTRAINT(0x0204, 0x1), /* MEM_UOPS_RETIRED.L2_HIT_LOADS_PS */
  458. INTEL_UEVENT_CONSTRAINT(0x0404, 0x1), /* MEM_UOPS_RETIRED.L2_MISS_LOADS_PS */
  459. INTEL_UEVENT_CONSTRAINT(0x0804, 0x1), /* MEM_UOPS_RETIRED.DTLB_MISS_LOADS_PS */
  460. INTEL_UEVENT_CONSTRAINT(0x2004, 0x1), /* MEM_UOPS_RETIRED.HITM_PS */
  461. INTEL_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY_PS */
  462. INTEL_UEVENT_CONSTRAINT(0x00c4, 0x1), /* BR_INST_RETIRED.ALL_BRANCHES_PS */
  463. INTEL_UEVENT_CONSTRAINT(0x7ec4, 0x1), /* BR_INST_RETIRED.JCC_PS */
  464. INTEL_UEVENT_CONSTRAINT(0xbfc4, 0x1), /* BR_INST_RETIRED.FAR_BRANCH_PS */
  465. INTEL_UEVENT_CONSTRAINT(0xebc4, 0x1), /* BR_INST_RETIRED.NON_RETURN_IND_PS */
  466. INTEL_UEVENT_CONSTRAINT(0xf7c4, 0x1), /* BR_INST_RETIRED.RETURN_PS */
  467. INTEL_UEVENT_CONSTRAINT(0xf9c4, 0x1), /* BR_INST_RETIRED.CALL_PS */
  468. INTEL_UEVENT_CONSTRAINT(0xfbc4, 0x1), /* BR_INST_RETIRED.IND_CALL_PS */
  469. INTEL_UEVENT_CONSTRAINT(0xfdc4, 0x1), /* BR_INST_RETIRED.REL_CALL_PS */
  470. INTEL_UEVENT_CONSTRAINT(0xfec4, 0x1), /* BR_INST_RETIRED.TAKEN_JCC_PS */
  471. INTEL_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_MISP_RETIRED.ALL_BRANCHES_PS */
  472. INTEL_UEVENT_CONSTRAINT(0x7ec5, 0x1), /* BR_INST_MISP_RETIRED.JCC_PS */
  473. INTEL_UEVENT_CONSTRAINT(0xebc5, 0x1), /* BR_INST_MISP_RETIRED.NON_RETURN_IND_PS */
  474. INTEL_UEVENT_CONSTRAINT(0xf7c5, 0x1), /* BR_INST_MISP_RETIRED.RETURN_PS */
  475. INTEL_UEVENT_CONSTRAINT(0xfbc5, 0x1), /* BR_INST_MISP_RETIRED.IND_CALL_PS */
  476. INTEL_UEVENT_CONSTRAINT(0xfec5, 0x1), /* BR_INST_MISP_RETIRED.TAKEN_JCC_PS */
  477. EVENT_CONSTRAINT_END
  478. };
  479. struct event_constraint intel_nehalem_pebs_event_constraints[] = {
  480. INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
  481. INTEL_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
  482. INTEL_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
  483. INTEL_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
  484. INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
  485. INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
  486. INTEL_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
  487. INTEL_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
  488. INTEL_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
  489. INTEL_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
  490. INTEL_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
  491. EVENT_CONSTRAINT_END
  492. };
  493. struct event_constraint intel_westmere_pebs_event_constraints[] = {
  494. INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
  495. INTEL_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
  496. INTEL_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
  497. INTEL_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
  498. INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
  499. INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
  500. INTEL_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
  501. INTEL_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
  502. INTEL_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
  503. INTEL_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
  504. INTEL_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
  505. EVENT_CONSTRAINT_END
  506. };
  507. struct event_constraint intel_snb_pebs_event_constraints[] = {
  508. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
  509. INTEL_UEVENT_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
  510. INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
  511. INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
  512. INTEL_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
  513. INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
  514. INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
  515. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
  516. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  517. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  518. INTEL_EVENT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  519. INTEL_UEVENT_CONSTRAINT(0x02d4, 0xf), /* MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS */
  520. EVENT_CONSTRAINT_END
  521. };
  522. struct event_constraint intel_ivb_pebs_event_constraints[] = {
  523. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
  524. INTEL_UEVENT_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
  525. INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
  526. INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
  527. INTEL_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
  528. INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
  529. INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
  530. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
  531. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  532. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  533. INTEL_EVENT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  534. EVENT_CONSTRAINT_END
  535. };
  536. struct event_constraint intel_hsw_pebs_event_constraints[] = {
  537. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
  538. INTEL_PST_HSW_CONSTRAINT(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
  539. INTEL_UEVENT_CONSTRAINT(0x02c2, 0xf), /* UOPS_RETIRED.RETIRE_SLOTS */
  540. INTEL_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
  541. INTEL_UEVENT_CONSTRAINT(0x01c5, 0xf), /* BR_MISP_RETIRED.CONDITIONAL */
  542. INTEL_UEVENT_CONSTRAINT(0x04c5, 0xf), /* BR_MISP_RETIRED.ALL_BRANCHES */
  543. INTEL_UEVENT_CONSTRAINT(0x20c5, 0xf), /* BR_MISP_RETIRED.NEAR_TAKEN */
  544. INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.* */
  545. /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
  546. INTEL_UEVENT_CONSTRAINT(0x11d0, 0xf),
  547. /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
  548. INTEL_UEVENT_CONSTRAINT(0x12d0, 0xf),
  549. INTEL_UEVENT_CONSTRAINT(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
  550. INTEL_UEVENT_CONSTRAINT(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
  551. /* MEM_UOPS_RETIRED.SPLIT_STORES */
  552. INTEL_UEVENT_CONSTRAINT(0x42d0, 0xf),
  553. INTEL_UEVENT_CONSTRAINT(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
  554. INTEL_PST_HSW_CONSTRAINT(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
  555. INTEL_UEVENT_CONSTRAINT(0x01d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L1_HIT */
  556. INTEL_UEVENT_CONSTRAINT(0x02d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L2_HIT */
  557. INTEL_UEVENT_CONSTRAINT(0x04d1, 0xf), /* MEM_LOAD_UOPS_RETIRED.L3_HIT */
  558. /* MEM_LOAD_UOPS_RETIRED.HIT_LFB */
  559. INTEL_UEVENT_CONSTRAINT(0x40d1, 0xf),
  560. /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS */
  561. INTEL_UEVENT_CONSTRAINT(0x01d2, 0xf),
  562. /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT */
  563. INTEL_UEVENT_CONSTRAINT(0x02d2, 0xf),
  564. /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM */
  565. INTEL_UEVENT_CONSTRAINT(0x01d3, 0xf),
  566. INTEL_UEVENT_CONSTRAINT(0x04c8, 0xf), /* HLE_RETIRED.Abort */
  567. INTEL_UEVENT_CONSTRAINT(0x04c9, 0xf), /* RTM_RETIRED.Abort */
  568. EVENT_CONSTRAINT_END
  569. };
  570. struct event_constraint *intel_pebs_constraints(struct perf_event *event)
  571. {
  572. struct event_constraint *c;
  573. if (!event->attr.precise_ip)
  574. return NULL;
  575. if (x86_pmu.pebs_constraints) {
  576. for_each_event_constraint(c, x86_pmu.pebs_constraints) {
  577. if ((event->hw.config & c->cmask) == c->code) {
  578. event->hw.flags |= c->flags;
  579. return c;
  580. }
  581. }
  582. }
  583. return &emptyconstraint;
  584. }
  585. void intel_pmu_pebs_enable(struct perf_event *event)
  586. {
  587. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  588. struct hw_perf_event *hwc = &event->hw;
  589. hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
  590. cpuc->pebs_enabled |= 1ULL << hwc->idx;
  591. if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT)
  592. cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
  593. else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
  594. cpuc->pebs_enabled |= 1ULL << 63;
  595. }
  596. void intel_pmu_pebs_disable(struct perf_event *event)
  597. {
  598. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  599. struct hw_perf_event *hwc = &event->hw;
  600. cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
  601. if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_LDLAT)
  602. cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
  603. else if (event->hw.constraint->flags & PERF_X86_EVENT_PEBS_ST)
  604. cpuc->pebs_enabled &= ~(1ULL << 63);
  605. if (cpuc->enabled)
  606. wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
  607. hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
  608. }
  609. void intel_pmu_pebs_enable_all(void)
  610. {
  611. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  612. if (cpuc->pebs_enabled)
  613. wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
  614. }
  615. void intel_pmu_pebs_disable_all(void)
  616. {
  617. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  618. if (cpuc->pebs_enabled)
  619. wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
  620. }
  621. static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
  622. {
  623. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  624. unsigned long from = cpuc->lbr_entries[0].from;
  625. unsigned long old_to, to = cpuc->lbr_entries[0].to;
  626. unsigned long ip = regs->ip;
  627. int is_64bit = 0;
  628. void *kaddr;
  629. /*
  630. * We don't need to fixup if the PEBS assist is fault like
  631. */
  632. if (!x86_pmu.intel_cap.pebs_trap)
  633. return 1;
  634. /*
  635. * No LBR entry, no basic block, no rewinding
  636. */
  637. if (!cpuc->lbr_stack.nr || !from || !to)
  638. return 0;
  639. /*
  640. * Basic blocks should never cross user/kernel boundaries
  641. */
  642. if (kernel_ip(ip) != kernel_ip(to))
  643. return 0;
  644. /*
  645. * unsigned math, either ip is before the start (impossible) or
  646. * the basic block is larger than 1 page (sanity)
  647. */
  648. if ((ip - to) > PEBS_FIXUP_SIZE)
  649. return 0;
  650. /*
  651. * We sampled a branch insn, rewind using the LBR stack
  652. */
  653. if (ip == to) {
  654. set_linear_ip(regs, from);
  655. return 1;
  656. }
  657. if (!kernel_ip(ip)) {
  658. int size, bytes;
  659. u8 *buf = this_cpu_read(insn_buffer);
  660. size = ip - to; /* Must fit our buffer, see above */
  661. bytes = copy_from_user_nmi(buf, (void __user *)to, size);
  662. if (bytes != 0)
  663. return 0;
  664. kaddr = buf;
  665. } else {
  666. kaddr = (void *)to;
  667. }
  668. do {
  669. struct insn insn;
  670. old_to = to;
  671. #ifdef CONFIG_X86_64
  672. is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32);
  673. #endif
  674. insn_init(&insn, kaddr, is_64bit);
  675. insn_get_length(&insn);
  676. to += insn.length;
  677. kaddr += insn.length;
  678. } while (to < ip);
  679. if (to == ip) {
  680. set_linear_ip(regs, old_to);
  681. return 1;
  682. }
  683. /*
  684. * Even though we decoded the basic block, the instruction stream
  685. * never matched the given IP, either the TO or the IP got corrupted.
  686. */
  687. return 0;
  688. }
  689. static inline u64 intel_hsw_weight(struct pebs_record_hsw *pebs)
  690. {
  691. if (pebs->tsx_tuning) {
  692. union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning };
  693. return tsx.cycles_last_block;
  694. }
  695. return 0;
  696. }
  697. static inline u64 intel_hsw_transaction(struct pebs_record_hsw *pebs)
  698. {
  699. u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
  700. /* For RTM XABORTs also log the abort code from AX */
  701. if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1))
  702. txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
  703. return txn;
  704. }
  705. static void __intel_pmu_pebs_event(struct perf_event *event,
  706. struct pt_regs *iregs, void *__pebs)
  707. {
  708. /*
  709. * We cast to the biggest pebs_record but are careful not to
  710. * unconditionally access the 'extra' entries.
  711. */
  712. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  713. struct pebs_record_hsw *pebs = __pebs;
  714. struct perf_sample_data data;
  715. struct pt_regs regs;
  716. u64 sample_type;
  717. int fll, fst;
  718. if (!intel_pmu_save_and_restart(event))
  719. return;
  720. fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
  721. fst = event->hw.flags & (PERF_X86_EVENT_PEBS_ST |
  722. PERF_X86_EVENT_PEBS_ST_HSW);
  723. perf_sample_data_init(&data, 0, event->hw.last_period);
  724. data.period = event->hw.last_period;
  725. sample_type = event->attr.sample_type;
  726. /*
  727. * if PEBS-LL or PreciseStore
  728. */
  729. if (fll || fst) {
  730. /*
  731. * Use latency for weight (only avail with PEBS-LL)
  732. */
  733. if (fll && (sample_type & PERF_SAMPLE_WEIGHT))
  734. data.weight = pebs->lat;
  735. /*
  736. * data.data_src encodes the data source
  737. */
  738. if (sample_type & PERF_SAMPLE_DATA_SRC) {
  739. if (fll)
  740. data.data_src.val = load_latency_data(pebs->dse);
  741. else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
  742. data.data_src.val =
  743. precise_store_data_hsw(event, pebs->dse);
  744. else
  745. data.data_src.val = precise_store_data(pebs->dse);
  746. }
  747. }
  748. /*
  749. * We use the interrupt regs as a base because the PEBS record
  750. * does not contain a full regs set, specifically it seems to
  751. * lack segment descriptors, which get used by things like
  752. * user_mode().
  753. *
  754. * In the simple case fix up only the IP and BP,SP regs, for
  755. * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly.
  756. * A possible PERF_SAMPLE_REGS will have to transfer all regs.
  757. */
  758. regs = *iregs;
  759. regs.flags = pebs->flags;
  760. set_linear_ip(&regs, pebs->ip);
  761. regs.bp = pebs->bp;
  762. regs.sp = pebs->sp;
  763. if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) {
  764. regs.ip = pebs->real_ip;
  765. regs.flags |= PERF_EFLAGS_EXACT;
  766. } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(&regs))
  767. regs.flags |= PERF_EFLAGS_EXACT;
  768. else
  769. regs.flags &= ~PERF_EFLAGS_EXACT;
  770. if ((event->attr.sample_type & PERF_SAMPLE_ADDR) &&
  771. x86_pmu.intel_cap.pebs_format >= 1)
  772. data.addr = pebs->dla;
  773. if (x86_pmu.intel_cap.pebs_format >= 2) {
  774. /* Only set the TSX weight when no memory weight. */
  775. if ((event->attr.sample_type & PERF_SAMPLE_WEIGHT) && !fll)
  776. data.weight = intel_hsw_weight(pebs);
  777. if (event->attr.sample_type & PERF_SAMPLE_TRANSACTION)
  778. data.txn = intel_hsw_transaction(pebs);
  779. }
  780. if (has_branch_stack(event))
  781. data.br_stack = &cpuc->lbr_stack;
  782. if (perf_event_overflow(event, &data, &regs))
  783. x86_pmu_stop(event, 0);
  784. }
  785. static void intel_pmu_drain_pebs_core(struct pt_regs *iregs)
  786. {
  787. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  788. struct debug_store *ds = cpuc->ds;
  789. struct perf_event *event = cpuc->events[0]; /* PMC0 only */
  790. struct pebs_record_core *at, *top;
  791. int n;
  792. if (!x86_pmu.pebs_active)
  793. return;
  794. at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
  795. top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
  796. /*
  797. * Whatever else happens, drain the thing
  798. */
  799. ds->pebs_index = ds->pebs_buffer_base;
  800. if (!test_bit(0, cpuc->active_mask))
  801. return;
  802. WARN_ON_ONCE(!event);
  803. if (!event->attr.precise_ip)
  804. return;
  805. n = top - at;
  806. if (n <= 0)
  807. return;
  808. /*
  809. * Should not happen, we program the threshold at 1 and do not
  810. * set a reset value.
  811. */
  812. WARN_ONCE(n > 1, "bad leftover pebs %d\n", n);
  813. at += n - 1;
  814. __intel_pmu_pebs_event(event, iregs, at);
  815. }
  816. static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs)
  817. {
  818. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  819. struct debug_store *ds = cpuc->ds;
  820. struct perf_event *event = NULL;
  821. void *at, *top;
  822. u64 status = 0;
  823. int bit;
  824. if (!x86_pmu.pebs_active)
  825. return;
  826. at = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
  827. top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
  828. ds->pebs_index = ds->pebs_buffer_base;
  829. if (unlikely(at > top))
  830. return;
  831. /*
  832. * Should not happen, we program the threshold at 1 and do not
  833. * set a reset value.
  834. */
  835. WARN_ONCE(top - at > x86_pmu.max_pebs_events * x86_pmu.pebs_record_size,
  836. "Unexpected number of pebs records %ld\n",
  837. (long)(top - at) / x86_pmu.pebs_record_size);
  838. for (; at < top; at += x86_pmu.pebs_record_size) {
  839. struct pebs_record_nhm *p = at;
  840. for_each_set_bit(bit, (unsigned long *)&p->status,
  841. x86_pmu.max_pebs_events) {
  842. event = cpuc->events[bit];
  843. if (!test_bit(bit, cpuc->active_mask))
  844. continue;
  845. WARN_ON_ONCE(!event);
  846. if (!event->attr.precise_ip)
  847. continue;
  848. if (__test_and_set_bit(bit, (unsigned long *)&status))
  849. continue;
  850. break;
  851. }
  852. if (!event || bit >= x86_pmu.max_pebs_events)
  853. continue;
  854. __intel_pmu_pebs_event(event, iregs, at);
  855. }
  856. }
  857. /*
  858. * BTS, PEBS probe and setup
  859. */
  860. void intel_ds_init(void)
  861. {
  862. /*
  863. * No support for 32bit formats
  864. */
  865. if (!boot_cpu_has(X86_FEATURE_DTES64))
  866. return;
  867. x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
  868. x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
  869. if (x86_pmu.pebs) {
  870. char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
  871. int format = x86_pmu.intel_cap.pebs_format;
  872. switch (format) {
  873. case 0:
  874. printk(KERN_CONT "PEBS fmt0%c, ", pebs_type);
  875. x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
  876. x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
  877. break;
  878. case 1:
  879. printk(KERN_CONT "PEBS fmt1%c, ", pebs_type);
  880. x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
  881. x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
  882. break;
  883. case 2:
  884. pr_cont("PEBS fmt2%c, ", pebs_type);
  885. x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
  886. x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
  887. break;
  888. default:
  889. printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type);
  890. x86_pmu.pebs = 0;
  891. }
  892. }
  893. }
  894. void perf_restore_debug_store(void)
  895. {
  896. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  897. if (!x86_pmu.bts && !x86_pmu.pebs)
  898. return;
  899. wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
  900. }