delayed-inode.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. refcount_set(&delayed_node->refs, 0);
  50. delayed_node->ins_root = RB_ROOT;
  51. delayed_node->del_root = RB_ROOT;
  52. mutex_init(&delayed_node->mutex);
  53. INIT_LIST_HEAD(&delayed_node->n_list);
  54. INIT_LIST_HEAD(&delayed_node->p_list);
  55. }
  56. static inline int btrfs_is_continuous_delayed_item(
  57. struct btrfs_delayed_item *item1,
  58. struct btrfs_delayed_item *item2)
  59. {
  60. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  61. item1->key.objectid == item2->key.objectid &&
  62. item1->key.type == item2->key.type &&
  63. item1->key.offset + 1 == item2->key.offset)
  64. return 1;
  65. return 0;
  66. }
  67. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68. struct btrfs_inode *btrfs_inode)
  69. {
  70. struct btrfs_root *root = btrfs_inode->root;
  71. u64 ino = btrfs_ino(btrfs_inode);
  72. struct btrfs_delayed_node *node;
  73. node = READ_ONCE(btrfs_inode->delayed_node);
  74. if (node) {
  75. refcount_inc(&node->refs);
  76. return node;
  77. }
  78. spin_lock(&root->inode_lock);
  79. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  80. if (node) {
  81. if (btrfs_inode->delayed_node) {
  82. refcount_inc(&node->refs); /* can be accessed */
  83. BUG_ON(btrfs_inode->delayed_node != node);
  84. spin_unlock(&root->inode_lock);
  85. return node;
  86. }
  87. /*
  88. * It's possible that we're racing into the middle of removing
  89. * this node from the radix tree. In this case, the refcount
  90. * was zero and it should never go back to one. Just return
  91. * NULL like it was never in the radix at all; our release
  92. * function is in the process of removing it.
  93. *
  94. * Some implementations of refcount_inc refuse to bump the
  95. * refcount once it has hit zero. If we don't do this dance
  96. * here, refcount_inc() may decide to just WARN_ONCE() instead
  97. * of actually bumping the refcount.
  98. *
  99. * If this node is properly in the radix, we want to bump the
  100. * refcount twice, once for the inode and once for this get
  101. * operation.
  102. */
  103. if (refcount_inc_not_zero(&node->refs)) {
  104. refcount_inc(&node->refs);
  105. btrfs_inode->delayed_node = node;
  106. } else {
  107. node = NULL;
  108. }
  109. spin_unlock(&root->inode_lock);
  110. return node;
  111. }
  112. spin_unlock(&root->inode_lock);
  113. return NULL;
  114. }
  115. /* Will return either the node or PTR_ERR(-ENOMEM) */
  116. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  117. struct btrfs_inode *btrfs_inode)
  118. {
  119. struct btrfs_delayed_node *node;
  120. struct btrfs_root *root = btrfs_inode->root;
  121. u64 ino = btrfs_ino(btrfs_inode);
  122. int ret;
  123. again:
  124. node = btrfs_get_delayed_node(btrfs_inode);
  125. if (node)
  126. return node;
  127. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  128. if (!node)
  129. return ERR_PTR(-ENOMEM);
  130. btrfs_init_delayed_node(node, root, ino);
  131. /* cached in the btrfs inode and can be accessed */
  132. refcount_set(&node->refs, 2);
  133. ret = radix_tree_preload(GFP_NOFS);
  134. if (ret) {
  135. kmem_cache_free(delayed_node_cache, node);
  136. return ERR_PTR(ret);
  137. }
  138. spin_lock(&root->inode_lock);
  139. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  140. if (ret == -EEXIST) {
  141. spin_unlock(&root->inode_lock);
  142. kmem_cache_free(delayed_node_cache, node);
  143. radix_tree_preload_end();
  144. goto again;
  145. }
  146. btrfs_inode->delayed_node = node;
  147. spin_unlock(&root->inode_lock);
  148. radix_tree_preload_end();
  149. return node;
  150. }
  151. /*
  152. * Call it when holding delayed_node->mutex
  153. *
  154. * If mod = 1, add this node into the prepared list.
  155. */
  156. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  157. struct btrfs_delayed_node *node,
  158. int mod)
  159. {
  160. spin_lock(&root->lock);
  161. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  162. if (!list_empty(&node->p_list))
  163. list_move_tail(&node->p_list, &root->prepare_list);
  164. else if (mod)
  165. list_add_tail(&node->p_list, &root->prepare_list);
  166. } else {
  167. list_add_tail(&node->n_list, &root->node_list);
  168. list_add_tail(&node->p_list, &root->prepare_list);
  169. refcount_inc(&node->refs); /* inserted into list */
  170. root->nodes++;
  171. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  172. }
  173. spin_unlock(&root->lock);
  174. }
  175. /* Call it when holding delayed_node->mutex */
  176. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  177. struct btrfs_delayed_node *node)
  178. {
  179. spin_lock(&root->lock);
  180. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  181. root->nodes--;
  182. refcount_dec(&node->refs); /* not in the list */
  183. list_del_init(&node->n_list);
  184. if (!list_empty(&node->p_list))
  185. list_del_init(&node->p_list);
  186. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  187. }
  188. spin_unlock(&root->lock);
  189. }
  190. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  191. struct btrfs_delayed_root *delayed_root)
  192. {
  193. struct list_head *p;
  194. struct btrfs_delayed_node *node = NULL;
  195. spin_lock(&delayed_root->lock);
  196. if (list_empty(&delayed_root->node_list))
  197. goto out;
  198. p = delayed_root->node_list.next;
  199. node = list_entry(p, struct btrfs_delayed_node, n_list);
  200. refcount_inc(&node->refs);
  201. out:
  202. spin_unlock(&delayed_root->lock);
  203. return node;
  204. }
  205. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  206. struct btrfs_delayed_node *node)
  207. {
  208. struct btrfs_delayed_root *delayed_root;
  209. struct list_head *p;
  210. struct btrfs_delayed_node *next = NULL;
  211. delayed_root = node->root->fs_info->delayed_root;
  212. spin_lock(&delayed_root->lock);
  213. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  214. /* not in the list */
  215. if (list_empty(&delayed_root->node_list))
  216. goto out;
  217. p = delayed_root->node_list.next;
  218. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  219. goto out;
  220. else
  221. p = node->n_list.next;
  222. next = list_entry(p, struct btrfs_delayed_node, n_list);
  223. refcount_inc(&next->refs);
  224. out:
  225. spin_unlock(&delayed_root->lock);
  226. return next;
  227. }
  228. static void __btrfs_release_delayed_node(
  229. struct btrfs_delayed_node *delayed_node,
  230. int mod)
  231. {
  232. struct btrfs_delayed_root *delayed_root;
  233. if (!delayed_node)
  234. return;
  235. delayed_root = delayed_node->root->fs_info->delayed_root;
  236. mutex_lock(&delayed_node->mutex);
  237. if (delayed_node->count)
  238. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  239. else
  240. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  241. mutex_unlock(&delayed_node->mutex);
  242. if (refcount_dec_and_test(&delayed_node->refs)) {
  243. struct btrfs_root *root = delayed_node->root;
  244. spin_lock(&root->inode_lock);
  245. /*
  246. * Once our refcount goes to zero, nobody is allowed to bump it
  247. * back up. We can delete it now.
  248. */
  249. ASSERT(refcount_read(&delayed_node->refs) == 0);
  250. radix_tree_delete(&root->delayed_nodes_tree,
  251. delayed_node->inode_id);
  252. spin_unlock(&root->inode_lock);
  253. kmem_cache_free(delayed_node_cache, delayed_node);
  254. }
  255. }
  256. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  257. {
  258. __btrfs_release_delayed_node(node, 0);
  259. }
  260. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  261. struct btrfs_delayed_root *delayed_root)
  262. {
  263. struct list_head *p;
  264. struct btrfs_delayed_node *node = NULL;
  265. spin_lock(&delayed_root->lock);
  266. if (list_empty(&delayed_root->prepare_list))
  267. goto out;
  268. p = delayed_root->prepare_list.next;
  269. list_del_init(p);
  270. node = list_entry(p, struct btrfs_delayed_node, p_list);
  271. refcount_inc(&node->refs);
  272. out:
  273. spin_unlock(&delayed_root->lock);
  274. return node;
  275. }
  276. static inline void btrfs_release_prepared_delayed_node(
  277. struct btrfs_delayed_node *node)
  278. {
  279. __btrfs_release_delayed_node(node, 1);
  280. }
  281. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  282. {
  283. struct btrfs_delayed_item *item;
  284. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  285. if (item) {
  286. item->data_len = data_len;
  287. item->ins_or_del = 0;
  288. item->bytes_reserved = 0;
  289. item->delayed_node = NULL;
  290. refcount_set(&item->refs, 1);
  291. }
  292. return item;
  293. }
  294. /*
  295. * __btrfs_lookup_delayed_item - look up the delayed item by key
  296. * @delayed_node: pointer to the delayed node
  297. * @key: the key to look up
  298. * @prev: used to store the prev item if the right item isn't found
  299. * @next: used to store the next item if the right item isn't found
  300. *
  301. * Note: if we don't find the right item, we will return the prev item and
  302. * the next item.
  303. */
  304. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  305. struct rb_root *root,
  306. struct btrfs_key *key,
  307. struct btrfs_delayed_item **prev,
  308. struct btrfs_delayed_item **next)
  309. {
  310. struct rb_node *node, *prev_node = NULL;
  311. struct btrfs_delayed_item *delayed_item = NULL;
  312. int ret = 0;
  313. node = root->rb_node;
  314. while (node) {
  315. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  316. rb_node);
  317. prev_node = node;
  318. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  319. if (ret < 0)
  320. node = node->rb_right;
  321. else if (ret > 0)
  322. node = node->rb_left;
  323. else
  324. return delayed_item;
  325. }
  326. if (prev) {
  327. if (!prev_node)
  328. *prev = NULL;
  329. else if (ret < 0)
  330. *prev = delayed_item;
  331. else if ((node = rb_prev(prev_node)) != NULL) {
  332. *prev = rb_entry(node, struct btrfs_delayed_item,
  333. rb_node);
  334. } else
  335. *prev = NULL;
  336. }
  337. if (next) {
  338. if (!prev_node)
  339. *next = NULL;
  340. else if (ret > 0)
  341. *next = delayed_item;
  342. else if ((node = rb_next(prev_node)) != NULL) {
  343. *next = rb_entry(node, struct btrfs_delayed_item,
  344. rb_node);
  345. } else
  346. *next = NULL;
  347. }
  348. return NULL;
  349. }
  350. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  351. struct btrfs_delayed_node *delayed_node,
  352. struct btrfs_key *key)
  353. {
  354. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  355. NULL, NULL);
  356. }
  357. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  358. struct btrfs_delayed_item *ins,
  359. int action)
  360. {
  361. struct rb_node **p, *node;
  362. struct rb_node *parent_node = NULL;
  363. struct rb_root *root;
  364. struct btrfs_delayed_item *item;
  365. int cmp;
  366. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  367. root = &delayed_node->ins_root;
  368. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  369. root = &delayed_node->del_root;
  370. else
  371. BUG();
  372. p = &root->rb_node;
  373. node = &ins->rb_node;
  374. while (*p) {
  375. parent_node = *p;
  376. item = rb_entry(parent_node, struct btrfs_delayed_item,
  377. rb_node);
  378. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  379. if (cmp < 0)
  380. p = &(*p)->rb_right;
  381. else if (cmp > 0)
  382. p = &(*p)->rb_left;
  383. else
  384. return -EEXIST;
  385. }
  386. rb_link_node(node, parent_node, p);
  387. rb_insert_color(node, root);
  388. ins->delayed_node = delayed_node;
  389. ins->ins_or_del = action;
  390. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  391. action == BTRFS_DELAYED_INSERTION_ITEM &&
  392. ins->key.offset >= delayed_node->index_cnt)
  393. delayed_node->index_cnt = ins->key.offset + 1;
  394. delayed_node->count++;
  395. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  396. return 0;
  397. }
  398. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  399. struct btrfs_delayed_item *item)
  400. {
  401. return __btrfs_add_delayed_item(node, item,
  402. BTRFS_DELAYED_INSERTION_ITEM);
  403. }
  404. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  405. struct btrfs_delayed_item *item)
  406. {
  407. return __btrfs_add_delayed_item(node, item,
  408. BTRFS_DELAYED_DELETION_ITEM);
  409. }
  410. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  411. {
  412. int seq = atomic_inc_return(&delayed_root->items_seq);
  413. /*
  414. * atomic_dec_return implies a barrier for waitqueue_active
  415. */
  416. if ((atomic_dec_return(&delayed_root->items) <
  417. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  418. waitqueue_active(&delayed_root->wait))
  419. wake_up(&delayed_root->wait);
  420. }
  421. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  422. {
  423. struct rb_root *root;
  424. struct btrfs_delayed_root *delayed_root;
  425. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  426. BUG_ON(!delayed_root);
  427. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  428. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  429. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  430. root = &delayed_item->delayed_node->ins_root;
  431. else
  432. root = &delayed_item->delayed_node->del_root;
  433. rb_erase(&delayed_item->rb_node, root);
  434. delayed_item->delayed_node->count--;
  435. finish_one_item(delayed_root);
  436. }
  437. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  438. {
  439. if (item) {
  440. __btrfs_remove_delayed_item(item);
  441. if (refcount_dec_and_test(&item->refs))
  442. kfree(item);
  443. }
  444. }
  445. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  446. struct btrfs_delayed_node *delayed_node)
  447. {
  448. struct rb_node *p;
  449. struct btrfs_delayed_item *item = NULL;
  450. p = rb_first(&delayed_node->ins_root);
  451. if (p)
  452. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  453. return item;
  454. }
  455. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  456. struct btrfs_delayed_node *delayed_node)
  457. {
  458. struct rb_node *p;
  459. struct btrfs_delayed_item *item = NULL;
  460. p = rb_first(&delayed_node->del_root);
  461. if (p)
  462. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  463. return item;
  464. }
  465. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  466. struct btrfs_delayed_item *item)
  467. {
  468. struct rb_node *p;
  469. struct btrfs_delayed_item *next = NULL;
  470. p = rb_next(&item->rb_node);
  471. if (p)
  472. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  473. return next;
  474. }
  475. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  476. struct btrfs_fs_info *fs_info,
  477. struct btrfs_delayed_item *item)
  478. {
  479. struct btrfs_block_rsv *src_rsv;
  480. struct btrfs_block_rsv *dst_rsv;
  481. u64 num_bytes;
  482. int ret;
  483. if (!trans->bytes_reserved)
  484. return 0;
  485. src_rsv = trans->block_rsv;
  486. dst_rsv = &fs_info->delayed_block_rsv;
  487. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  488. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  489. if (!ret) {
  490. trace_btrfs_space_reservation(fs_info, "delayed_item",
  491. item->key.objectid,
  492. num_bytes, 1);
  493. item->bytes_reserved = num_bytes;
  494. }
  495. return ret;
  496. }
  497. static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
  498. struct btrfs_delayed_item *item)
  499. {
  500. struct btrfs_block_rsv *rsv;
  501. if (!item->bytes_reserved)
  502. return;
  503. rsv = &fs_info->delayed_block_rsv;
  504. trace_btrfs_space_reservation(fs_info, "delayed_item",
  505. item->key.objectid, item->bytes_reserved,
  506. 0);
  507. btrfs_block_rsv_release(fs_info, rsv,
  508. item->bytes_reserved);
  509. }
  510. static int btrfs_delayed_inode_reserve_metadata(
  511. struct btrfs_trans_handle *trans,
  512. struct btrfs_root *root,
  513. struct btrfs_inode *inode,
  514. struct btrfs_delayed_node *node)
  515. {
  516. struct btrfs_fs_info *fs_info = root->fs_info;
  517. struct btrfs_block_rsv *src_rsv;
  518. struct btrfs_block_rsv *dst_rsv;
  519. u64 num_bytes;
  520. int ret;
  521. src_rsv = trans->block_rsv;
  522. dst_rsv = &fs_info->delayed_block_rsv;
  523. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  524. /*
  525. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  526. * which doesn't reserve space for speed. This is a problem since we
  527. * still need to reserve space for this update, so try to reserve the
  528. * space.
  529. *
  530. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  531. * we always reserve enough to update the inode item.
  532. */
  533. if (!src_rsv || (!trans->bytes_reserved &&
  534. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  535. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  536. BTRFS_RESERVE_NO_FLUSH);
  537. /*
  538. * Since we're under a transaction reserve_metadata_bytes could
  539. * try to commit the transaction which will make it return
  540. * EAGAIN to make us stop the transaction we have, so return
  541. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  542. */
  543. if (ret == -EAGAIN)
  544. ret = -ENOSPC;
  545. if (!ret) {
  546. node->bytes_reserved = num_bytes;
  547. trace_btrfs_space_reservation(fs_info,
  548. "delayed_inode",
  549. btrfs_ino(inode),
  550. num_bytes, 1);
  551. }
  552. return ret;
  553. }
  554. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  555. if (!ret) {
  556. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  557. btrfs_ino(inode), num_bytes, 1);
  558. node->bytes_reserved = num_bytes;
  559. }
  560. return ret;
  561. }
  562. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  563. struct btrfs_delayed_node *node)
  564. {
  565. struct btrfs_block_rsv *rsv;
  566. if (!node->bytes_reserved)
  567. return;
  568. rsv = &fs_info->delayed_block_rsv;
  569. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  570. node->inode_id, node->bytes_reserved, 0);
  571. btrfs_block_rsv_release(fs_info, rsv,
  572. node->bytes_reserved);
  573. node->bytes_reserved = 0;
  574. }
  575. /*
  576. * This helper will insert some continuous items into the same leaf according
  577. * to the free space of the leaf.
  578. */
  579. static int btrfs_batch_insert_items(struct btrfs_root *root,
  580. struct btrfs_path *path,
  581. struct btrfs_delayed_item *item)
  582. {
  583. struct btrfs_fs_info *fs_info = root->fs_info;
  584. struct btrfs_delayed_item *curr, *next;
  585. int free_space;
  586. int total_data_size = 0, total_size = 0;
  587. struct extent_buffer *leaf;
  588. char *data_ptr;
  589. struct btrfs_key *keys;
  590. u32 *data_size;
  591. struct list_head head;
  592. int slot;
  593. int nitems;
  594. int i;
  595. int ret = 0;
  596. BUG_ON(!path->nodes[0]);
  597. leaf = path->nodes[0];
  598. free_space = btrfs_leaf_free_space(fs_info, leaf);
  599. INIT_LIST_HEAD(&head);
  600. next = item;
  601. nitems = 0;
  602. /*
  603. * count the number of the continuous items that we can insert in batch
  604. */
  605. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  606. free_space) {
  607. total_data_size += next->data_len;
  608. total_size += next->data_len + sizeof(struct btrfs_item);
  609. list_add_tail(&next->tree_list, &head);
  610. nitems++;
  611. curr = next;
  612. next = __btrfs_next_delayed_item(curr);
  613. if (!next)
  614. break;
  615. if (!btrfs_is_continuous_delayed_item(curr, next))
  616. break;
  617. }
  618. if (!nitems) {
  619. ret = 0;
  620. goto out;
  621. }
  622. /*
  623. * we need allocate some memory space, but it might cause the task
  624. * to sleep, so we set all locked nodes in the path to blocking locks
  625. * first.
  626. */
  627. btrfs_set_path_blocking(path);
  628. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  629. if (!keys) {
  630. ret = -ENOMEM;
  631. goto out;
  632. }
  633. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  634. if (!data_size) {
  635. ret = -ENOMEM;
  636. goto error;
  637. }
  638. /* get keys of all the delayed items */
  639. i = 0;
  640. list_for_each_entry(next, &head, tree_list) {
  641. keys[i] = next->key;
  642. data_size[i] = next->data_len;
  643. i++;
  644. }
  645. /* reset all the locked nodes in the patch to spinning locks. */
  646. btrfs_clear_path_blocking(path, NULL, 0);
  647. /* insert the keys of the items */
  648. setup_items_for_insert(root, path, keys, data_size,
  649. total_data_size, total_size, nitems);
  650. /* insert the dir index items */
  651. slot = path->slots[0];
  652. list_for_each_entry_safe(curr, next, &head, tree_list) {
  653. data_ptr = btrfs_item_ptr(leaf, slot, char);
  654. write_extent_buffer(leaf, &curr->data,
  655. (unsigned long)data_ptr,
  656. curr->data_len);
  657. slot++;
  658. btrfs_delayed_item_release_metadata(fs_info, curr);
  659. list_del(&curr->tree_list);
  660. btrfs_release_delayed_item(curr);
  661. }
  662. error:
  663. kfree(data_size);
  664. kfree(keys);
  665. out:
  666. return ret;
  667. }
  668. /*
  669. * This helper can just do simple insertion that needn't extend item for new
  670. * data, such as directory name index insertion, inode insertion.
  671. */
  672. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  673. struct btrfs_root *root,
  674. struct btrfs_path *path,
  675. struct btrfs_delayed_item *delayed_item)
  676. {
  677. struct btrfs_fs_info *fs_info = root->fs_info;
  678. struct extent_buffer *leaf;
  679. char *ptr;
  680. int ret;
  681. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  682. delayed_item->data_len);
  683. if (ret < 0 && ret != -EEXIST)
  684. return ret;
  685. leaf = path->nodes[0];
  686. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  687. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  688. delayed_item->data_len);
  689. btrfs_mark_buffer_dirty(leaf);
  690. btrfs_delayed_item_release_metadata(fs_info, delayed_item);
  691. return 0;
  692. }
  693. /*
  694. * we insert an item first, then if there are some continuous items, we try
  695. * to insert those items into the same leaf.
  696. */
  697. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  698. struct btrfs_path *path,
  699. struct btrfs_root *root,
  700. struct btrfs_delayed_node *node)
  701. {
  702. struct btrfs_delayed_item *curr, *prev;
  703. int ret = 0;
  704. do_again:
  705. mutex_lock(&node->mutex);
  706. curr = __btrfs_first_delayed_insertion_item(node);
  707. if (!curr)
  708. goto insert_end;
  709. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  710. if (ret < 0) {
  711. btrfs_release_path(path);
  712. goto insert_end;
  713. }
  714. prev = curr;
  715. curr = __btrfs_next_delayed_item(prev);
  716. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  717. /* insert the continuous items into the same leaf */
  718. path->slots[0]++;
  719. btrfs_batch_insert_items(root, path, curr);
  720. }
  721. btrfs_release_delayed_item(prev);
  722. btrfs_mark_buffer_dirty(path->nodes[0]);
  723. btrfs_release_path(path);
  724. mutex_unlock(&node->mutex);
  725. goto do_again;
  726. insert_end:
  727. mutex_unlock(&node->mutex);
  728. return ret;
  729. }
  730. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  731. struct btrfs_root *root,
  732. struct btrfs_path *path,
  733. struct btrfs_delayed_item *item)
  734. {
  735. struct btrfs_fs_info *fs_info = root->fs_info;
  736. struct btrfs_delayed_item *curr, *next;
  737. struct extent_buffer *leaf;
  738. struct btrfs_key key;
  739. struct list_head head;
  740. int nitems, i, last_item;
  741. int ret = 0;
  742. BUG_ON(!path->nodes[0]);
  743. leaf = path->nodes[0];
  744. i = path->slots[0];
  745. last_item = btrfs_header_nritems(leaf) - 1;
  746. if (i > last_item)
  747. return -ENOENT; /* FIXME: Is errno suitable? */
  748. next = item;
  749. INIT_LIST_HEAD(&head);
  750. btrfs_item_key_to_cpu(leaf, &key, i);
  751. nitems = 0;
  752. /*
  753. * count the number of the dir index items that we can delete in batch
  754. */
  755. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  756. list_add_tail(&next->tree_list, &head);
  757. nitems++;
  758. curr = next;
  759. next = __btrfs_next_delayed_item(curr);
  760. if (!next)
  761. break;
  762. if (!btrfs_is_continuous_delayed_item(curr, next))
  763. break;
  764. i++;
  765. if (i > last_item)
  766. break;
  767. btrfs_item_key_to_cpu(leaf, &key, i);
  768. }
  769. if (!nitems)
  770. return 0;
  771. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  772. if (ret)
  773. goto out;
  774. list_for_each_entry_safe(curr, next, &head, tree_list) {
  775. btrfs_delayed_item_release_metadata(fs_info, curr);
  776. list_del(&curr->tree_list);
  777. btrfs_release_delayed_item(curr);
  778. }
  779. out:
  780. return ret;
  781. }
  782. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  783. struct btrfs_path *path,
  784. struct btrfs_root *root,
  785. struct btrfs_delayed_node *node)
  786. {
  787. struct btrfs_delayed_item *curr, *prev;
  788. int ret = 0;
  789. do_again:
  790. mutex_lock(&node->mutex);
  791. curr = __btrfs_first_delayed_deletion_item(node);
  792. if (!curr)
  793. goto delete_fail;
  794. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  795. if (ret < 0)
  796. goto delete_fail;
  797. else if (ret > 0) {
  798. /*
  799. * can't find the item which the node points to, so this node
  800. * is invalid, just drop it.
  801. */
  802. prev = curr;
  803. curr = __btrfs_next_delayed_item(prev);
  804. btrfs_release_delayed_item(prev);
  805. ret = 0;
  806. btrfs_release_path(path);
  807. if (curr) {
  808. mutex_unlock(&node->mutex);
  809. goto do_again;
  810. } else
  811. goto delete_fail;
  812. }
  813. btrfs_batch_delete_items(trans, root, path, curr);
  814. btrfs_release_path(path);
  815. mutex_unlock(&node->mutex);
  816. goto do_again;
  817. delete_fail:
  818. btrfs_release_path(path);
  819. mutex_unlock(&node->mutex);
  820. return ret;
  821. }
  822. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  823. {
  824. struct btrfs_delayed_root *delayed_root;
  825. if (delayed_node &&
  826. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  827. BUG_ON(!delayed_node->root);
  828. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  829. delayed_node->count--;
  830. delayed_root = delayed_node->root->fs_info->delayed_root;
  831. finish_one_item(delayed_root);
  832. }
  833. }
  834. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  835. {
  836. struct btrfs_delayed_root *delayed_root;
  837. ASSERT(delayed_node->root);
  838. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  839. delayed_node->count--;
  840. delayed_root = delayed_node->root->fs_info->delayed_root;
  841. finish_one_item(delayed_root);
  842. }
  843. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  844. struct btrfs_root *root,
  845. struct btrfs_path *path,
  846. struct btrfs_delayed_node *node)
  847. {
  848. struct btrfs_fs_info *fs_info = root->fs_info;
  849. struct btrfs_key key;
  850. struct btrfs_inode_item *inode_item;
  851. struct extent_buffer *leaf;
  852. int mod;
  853. int ret;
  854. key.objectid = node->inode_id;
  855. key.type = BTRFS_INODE_ITEM_KEY;
  856. key.offset = 0;
  857. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  858. mod = -1;
  859. else
  860. mod = 1;
  861. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  862. if (ret > 0) {
  863. btrfs_release_path(path);
  864. return -ENOENT;
  865. } else if (ret < 0) {
  866. return ret;
  867. }
  868. leaf = path->nodes[0];
  869. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  870. struct btrfs_inode_item);
  871. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  872. sizeof(struct btrfs_inode_item));
  873. btrfs_mark_buffer_dirty(leaf);
  874. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  875. goto no_iref;
  876. path->slots[0]++;
  877. if (path->slots[0] >= btrfs_header_nritems(leaf))
  878. goto search;
  879. again:
  880. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  881. if (key.objectid != node->inode_id)
  882. goto out;
  883. if (key.type != BTRFS_INODE_REF_KEY &&
  884. key.type != BTRFS_INODE_EXTREF_KEY)
  885. goto out;
  886. /*
  887. * Delayed iref deletion is for the inode who has only one link,
  888. * so there is only one iref. The case that several irefs are
  889. * in the same item doesn't exist.
  890. */
  891. btrfs_del_item(trans, root, path);
  892. out:
  893. btrfs_release_delayed_iref(node);
  894. no_iref:
  895. btrfs_release_path(path);
  896. err_out:
  897. btrfs_delayed_inode_release_metadata(fs_info, node);
  898. btrfs_release_delayed_inode(node);
  899. return ret;
  900. search:
  901. btrfs_release_path(path);
  902. key.type = BTRFS_INODE_EXTREF_KEY;
  903. key.offset = -1;
  904. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  905. if (ret < 0)
  906. goto err_out;
  907. ASSERT(ret);
  908. ret = 0;
  909. leaf = path->nodes[0];
  910. path->slots[0]--;
  911. goto again;
  912. }
  913. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  914. struct btrfs_root *root,
  915. struct btrfs_path *path,
  916. struct btrfs_delayed_node *node)
  917. {
  918. int ret;
  919. mutex_lock(&node->mutex);
  920. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  921. mutex_unlock(&node->mutex);
  922. return 0;
  923. }
  924. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  925. mutex_unlock(&node->mutex);
  926. return ret;
  927. }
  928. static inline int
  929. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  930. struct btrfs_path *path,
  931. struct btrfs_delayed_node *node)
  932. {
  933. int ret;
  934. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  935. if (ret)
  936. return ret;
  937. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  938. if (ret)
  939. return ret;
  940. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  941. return ret;
  942. }
  943. /*
  944. * Called when committing the transaction.
  945. * Returns 0 on success.
  946. * Returns < 0 on error and returns with an aborted transaction with any
  947. * outstanding delayed items cleaned up.
  948. */
  949. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  950. struct btrfs_fs_info *fs_info, int nr)
  951. {
  952. struct btrfs_delayed_root *delayed_root;
  953. struct btrfs_delayed_node *curr_node, *prev_node;
  954. struct btrfs_path *path;
  955. struct btrfs_block_rsv *block_rsv;
  956. int ret = 0;
  957. bool count = (nr > 0);
  958. if (trans->aborted)
  959. return -EIO;
  960. path = btrfs_alloc_path();
  961. if (!path)
  962. return -ENOMEM;
  963. path->leave_spinning = 1;
  964. block_rsv = trans->block_rsv;
  965. trans->block_rsv = &fs_info->delayed_block_rsv;
  966. delayed_root = fs_info->delayed_root;
  967. curr_node = btrfs_first_delayed_node(delayed_root);
  968. while (curr_node && (!count || (count && nr--))) {
  969. ret = __btrfs_commit_inode_delayed_items(trans, path,
  970. curr_node);
  971. if (ret) {
  972. btrfs_release_delayed_node(curr_node);
  973. curr_node = NULL;
  974. btrfs_abort_transaction(trans, ret);
  975. break;
  976. }
  977. prev_node = curr_node;
  978. curr_node = btrfs_next_delayed_node(curr_node);
  979. btrfs_release_delayed_node(prev_node);
  980. }
  981. if (curr_node)
  982. btrfs_release_delayed_node(curr_node);
  983. btrfs_free_path(path);
  984. trans->block_rsv = block_rsv;
  985. return ret;
  986. }
  987. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  988. struct btrfs_fs_info *fs_info)
  989. {
  990. return __btrfs_run_delayed_items(trans, fs_info, -1);
  991. }
  992. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  993. struct btrfs_fs_info *fs_info, int nr)
  994. {
  995. return __btrfs_run_delayed_items(trans, fs_info, nr);
  996. }
  997. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  998. struct btrfs_inode *inode)
  999. {
  1000. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1001. struct btrfs_path *path;
  1002. struct btrfs_block_rsv *block_rsv;
  1003. int ret;
  1004. if (!delayed_node)
  1005. return 0;
  1006. mutex_lock(&delayed_node->mutex);
  1007. if (!delayed_node->count) {
  1008. mutex_unlock(&delayed_node->mutex);
  1009. btrfs_release_delayed_node(delayed_node);
  1010. return 0;
  1011. }
  1012. mutex_unlock(&delayed_node->mutex);
  1013. path = btrfs_alloc_path();
  1014. if (!path) {
  1015. btrfs_release_delayed_node(delayed_node);
  1016. return -ENOMEM;
  1017. }
  1018. path->leave_spinning = 1;
  1019. block_rsv = trans->block_rsv;
  1020. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1021. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1022. btrfs_release_delayed_node(delayed_node);
  1023. btrfs_free_path(path);
  1024. trans->block_rsv = block_rsv;
  1025. return ret;
  1026. }
  1027. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1028. {
  1029. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1030. struct btrfs_trans_handle *trans;
  1031. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1032. struct btrfs_path *path;
  1033. struct btrfs_block_rsv *block_rsv;
  1034. int ret;
  1035. if (!delayed_node)
  1036. return 0;
  1037. mutex_lock(&delayed_node->mutex);
  1038. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1039. mutex_unlock(&delayed_node->mutex);
  1040. btrfs_release_delayed_node(delayed_node);
  1041. return 0;
  1042. }
  1043. mutex_unlock(&delayed_node->mutex);
  1044. trans = btrfs_join_transaction(delayed_node->root);
  1045. if (IS_ERR(trans)) {
  1046. ret = PTR_ERR(trans);
  1047. goto out;
  1048. }
  1049. path = btrfs_alloc_path();
  1050. if (!path) {
  1051. ret = -ENOMEM;
  1052. goto trans_out;
  1053. }
  1054. path->leave_spinning = 1;
  1055. block_rsv = trans->block_rsv;
  1056. trans->block_rsv = &fs_info->delayed_block_rsv;
  1057. mutex_lock(&delayed_node->mutex);
  1058. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1059. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1060. path, delayed_node);
  1061. else
  1062. ret = 0;
  1063. mutex_unlock(&delayed_node->mutex);
  1064. btrfs_free_path(path);
  1065. trans->block_rsv = block_rsv;
  1066. trans_out:
  1067. btrfs_end_transaction(trans);
  1068. btrfs_btree_balance_dirty(fs_info);
  1069. out:
  1070. btrfs_release_delayed_node(delayed_node);
  1071. return ret;
  1072. }
  1073. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1074. {
  1075. struct btrfs_delayed_node *delayed_node;
  1076. delayed_node = READ_ONCE(inode->delayed_node);
  1077. if (!delayed_node)
  1078. return;
  1079. inode->delayed_node = NULL;
  1080. btrfs_release_delayed_node(delayed_node);
  1081. }
  1082. struct btrfs_async_delayed_work {
  1083. struct btrfs_delayed_root *delayed_root;
  1084. int nr;
  1085. struct btrfs_work work;
  1086. };
  1087. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1088. {
  1089. struct btrfs_async_delayed_work *async_work;
  1090. struct btrfs_delayed_root *delayed_root;
  1091. struct btrfs_trans_handle *trans;
  1092. struct btrfs_path *path;
  1093. struct btrfs_delayed_node *delayed_node = NULL;
  1094. struct btrfs_root *root;
  1095. struct btrfs_block_rsv *block_rsv;
  1096. int total_done = 0;
  1097. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1098. delayed_root = async_work->delayed_root;
  1099. path = btrfs_alloc_path();
  1100. if (!path)
  1101. goto out;
  1102. again:
  1103. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1104. goto free_path;
  1105. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1106. if (!delayed_node)
  1107. goto free_path;
  1108. path->leave_spinning = 1;
  1109. root = delayed_node->root;
  1110. trans = btrfs_join_transaction(root);
  1111. if (IS_ERR(trans))
  1112. goto release_path;
  1113. block_rsv = trans->block_rsv;
  1114. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1115. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1116. trans->block_rsv = block_rsv;
  1117. btrfs_end_transaction(trans);
  1118. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1119. release_path:
  1120. btrfs_release_path(path);
  1121. total_done++;
  1122. btrfs_release_prepared_delayed_node(delayed_node);
  1123. if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
  1124. total_done < async_work->nr)
  1125. goto again;
  1126. free_path:
  1127. btrfs_free_path(path);
  1128. out:
  1129. wake_up(&delayed_root->wait);
  1130. kfree(async_work);
  1131. }
  1132. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1133. struct btrfs_fs_info *fs_info, int nr)
  1134. {
  1135. struct btrfs_async_delayed_work *async_work;
  1136. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
  1137. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1138. return 0;
  1139. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1140. if (!async_work)
  1141. return -ENOMEM;
  1142. async_work->delayed_root = delayed_root;
  1143. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1144. btrfs_async_run_delayed_root, NULL, NULL);
  1145. async_work->nr = nr;
  1146. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1147. return 0;
  1148. }
  1149. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1150. {
  1151. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1152. }
  1153. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1154. {
  1155. int val = atomic_read(&delayed_root->items_seq);
  1156. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1157. return 1;
  1158. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1159. return 1;
  1160. return 0;
  1161. }
  1162. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1163. {
  1164. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1165. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1166. return;
  1167. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1168. int seq;
  1169. int ret;
  1170. seq = atomic_read(&delayed_root->items_seq);
  1171. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1172. if (ret)
  1173. return;
  1174. wait_event_interruptible(delayed_root->wait,
  1175. could_end_wait(delayed_root, seq));
  1176. return;
  1177. }
  1178. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1179. }
  1180. /* Will return 0 or -ENOMEM */
  1181. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1182. struct btrfs_fs_info *fs_info,
  1183. const char *name, int name_len,
  1184. struct btrfs_inode *dir,
  1185. struct btrfs_disk_key *disk_key, u8 type,
  1186. u64 index)
  1187. {
  1188. struct btrfs_delayed_node *delayed_node;
  1189. struct btrfs_delayed_item *delayed_item;
  1190. struct btrfs_dir_item *dir_item;
  1191. int ret;
  1192. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1193. if (IS_ERR(delayed_node))
  1194. return PTR_ERR(delayed_node);
  1195. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1196. if (!delayed_item) {
  1197. ret = -ENOMEM;
  1198. goto release_node;
  1199. }
  1200. delayed_item->key.objectid = btrfs_ino(dir);
  1201. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1202. delayed_item->key.offset = index;
  1203. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1204. dir_item->location = *disk_key;
  1205. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1206. btrfs_set_stack_dir_data_len(dir_item, 0);
  1207. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1208. btrfs_set_stack_dir_type(dir_item, type);
  1209. memcpy((char *)(dir_item + 1), name, name_len);
  1210. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
  1211. /*
  1212. * we have reserved enough space when we start a new transaction,
  1213. * so reserving metadata failure is impossible
  1214. */
  1215. BUG_ON(ret);
  1216. mutex_lock(&delayed_node->mutex);
  1217. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1218. if (unlikely(ret)) {
  1219. btrfs_err(fs_info,
  1220. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1221. name_len, name, delayed_node->root->objectid,
  1222. delayed_node->inode_id, ret);
  1223. BUG();
  1224. }
  1225. mutex_unlock(&delayed_node->mutex);
  1226. release_node:
  1227. btrfs_release_delayed_node(delayed_node);
  1228. return ret;
  1229. }
  1230. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1231. struct btrfs_delayed_node *node,
  1232. struct btrfs_key *key)
  1233. {
  1234. struct btrfs_delayed_item *item;
  1235. mutex_lock(&node->mutex);
  1236. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1237. if (!item) {
  1238. mutex_unlock(&node->mutex);
  1239. return 1;
  1240. }
  1241. btrfs_delayed_item_release_metadata(fs_info, item);
  1242. btrfs_release_delayed_item(item);
  1243. mutex_unlock(&node->mutex);
  1244. return 0;
  1245. }
  1246. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1247. struct btrfs_fs_info *fs_info,
  1248. struct btrfs_inode *dir, u64 index)
  1249. {
  1250. struct btrfs_delayed_node *node;
  1251. struct btrfs_delayed_item *item;
  1252. struct btrfs_key item_key;
  1253. int ret;
  1254. node = btrfs_get_or_create_delayed_node(dir);
  1255. if (IS_ERR(node))
  1256. return PTR_ERR(node);
  1257. item_key.objectid = btrfs_ino(dir);
  1258. item_key.type = BTRFS_DIR_INDEX_KEY;
  1259. item_key.offset = index;
  1260. ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
  1261. if (!ret)
  1262. goto end;
  1263. item = btrfs_alloc_delayed_item(0);
  1264. if (!item) {
  1265. ret = -ENOMEM;
  1266. goto end;
  1267. }
  1268. item->key = item_key;
  1269. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
  1270. /*
  1271. * we have reserved enough space when we start a new transaction,
  1272. * so reserving metadata failure is impossible.
  1273. */
  1274. BUG_ON(ret);
  1275. mutex_lock(&node->mutex);
  1276. ret = __btrfs_add_delayed_deletion_item(node, item);
  1277. if (unlikely(ret)) {
  1278. btrfs_err(fs_info,
  1279. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1280. index, node->root->objectid, node->inode_id, ret);
  1281. BUG();
  1282. }
  1283. mutex_unlock(&node->mutex);
  1284. end:
  1285. btrfs_release_delayed_node(node);
  1286. return ret;
  1287. }
  1288. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1289. {
  1290. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1291. if (!delayed_node)
  1292. return -ENOENT;
  1293. /*
  1294. * Since we have held i_mutex of this directory, it is impossible that
  1295. * a new directory index is added into the delayed node and index_cnt
  1296. * is updated now. So we needn't lock the delayed node.
  1297. */
  1298. if (!delayed_node->index_cnt) {
  1299. btrfs_release_delayed_node(delayed_node);
  1300. return -EINVAL;
  1301. }
  1302. inode->index_cnt = delayed_node->index_cnt;
  1303. btrfs_release_delayed_node(delayed_node);
  1304. return 0;
  1305. }
  1306. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1307. struct list_head *ins_list,
  1308. struct list_head *del_list)
  1309. {
  1310. struct btrfs_delayed_node *delayed_node;
  1311. struct btrfs_delayed_item *item;
  1312. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1313. if (!delayed_node)
  1314. return false;
  1315. /*
  1316. * We can only do one readdir with delayed items at a time because of
  1317. * item->readdir_list.
  1318. */
  1319. inode_unlock_shared(inode);
  1320. inode_lock(inode);
  1321. mutex_lock(&delayed_node->mutex);
  1322. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1323. while (item) {
  1324. refcount_inc(&item->refs);
  1325. list_add_tail(&item->readdir_list, ins_list);
  1326. item = __btrfs_next_delayed_item(item);
  1327. }
  1328. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1329. while (item) {
  1330. refcount_inc(&item->refs);
  1331. list_add_tail(&item->readdir_list, del_list);
  1332. item = __btrfs_next_delayed_item(item);
  1333. }
  1334. mutex_unlock(&delayed_node->mutex);
  1335. /*
  1336. * This delayed node is still cached in the btrfs inode, so refs
  1337. * must be > 1 now, and we needn't check it is going to be freed
  1338. * or not.
  1339. *
  1340. * Besides that, this function is used to read dir, we do not
  1341. * insert/delete delayed items in this period. So we also needn't
  1342. * requeue or dequeue this delayed node.
  1343. */
  1344. refcount_dec(&delayed_node->refs);
  1345. return true;
  1346. }
  1347. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1348. struct list_head *ins_list,
  1349. struct list_head *del_list)
  1350. {
  1351. struct btrfs_delayed_item *curr, *next;
  1352. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1353. list_del(&curr->readdir_list);
  1354. if (refcount_dec_and_test(&curr->refs))
  1355. kfree(curr);
  1356. }
  1357. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1358. list_del(&curr->readdir_list);
  1359. if (refcount_dec_and_test(&curr->refs))
  1360. kfree(curr);
  1361. }
  1362. /*
  1363. * The VFS is going to do up_read(), so we need to downgrade back to a
  1364. * read lock.
  1365. */
  1366. downgrade_write(&inode->i_rwsem);
  1367. }
  1368. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1369. u64 index)
  1370. {
  1371. struct btrfs_delayed_item *curr, *next;
  1372. int ret;
  1373. if (list_empty(del_list))
  1374. return 0;
  1375. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1376. if (curr->key.offset > index)
  1377. break;
  1378. list_del(&curr->readdir_list);
  1379. ret = (curr->key.offset == index);
  1380. if (refcount_dec_and_test(&curr->refs))
  1381. kfree(curr);
  1382. if (ret)
  1383. return 1;
  1384. else
  1385. continue;
  1386. }
  1387. return 0;
  1388. }
  1389. /*
  1390. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1391. *
  1392. */
  1393. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1394. struct list_head *ins_list)
  1395. {
  1396. struct btrfs_dir_item *di;
  1397. struct btrfs_delayed_item *curr, *next;
  1398. struct btrfs_key location;
  1399. char *name;
  1400. int name_len;
  1401. int over = 0;
  1402. unsigned char d_type;
  1403. if (list_empty(ins_list))
  1404. return 0;
  1405. /*
  1406. * Changing the data of the delayed item is impossible. So
  1407. * we needn't lock them. And we have held i_mutex of the
  1408. * directory, nobody can delete any directory indexes now.
  1409. */
  1410. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1411. list_del(&curr->readdir_list);
  1412. if (curr->key.offset < ctx->pos) {
  1413. if (refcount_dec_and_test(&curr->refs))
  1414. kfree(curr);
  1415. continue;
  1416. }
  1417. ctx->pos = curr->key.offset;
  1418. di = (struct btrfs_dir_item *)curr->data;
  1419. name = (char *)(di + 1);
  1420. name_len = btrfs_stack_dir_name_len(di);
  1421. d_type = btrfs_filetype_table[di->type];
  1422. btrfs_disk_key_to_cpu(&location, &di->location);
  1423. over = !dir_emit(ctx, name, name_len,
  1424. location.objectid, d_type);
  1425. if (refcount_dec_and_test(&curr->refs))
  1426. kfree(curr);
  1427. if (over)
  1428. return 1;
  1429. ctx->pos++;
  1430. }
  1431. return 0;
  1432. }
  1433. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1434. struct btrfs_inode_item *inode_item,
  1435. struct inode *inode)
  1436. {
  1437. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1438. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1439. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1440. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1441. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1442. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1443. btrfs_set_stack_inode_generation(inode_item,
  1444. BTRFS_I(inode)->generation);
  1445. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1446. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1447. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1448. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1449. btrfs_set_stack_inode_block_group(inode_item, 0);
  1450. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1451. inode->i_atime.tv_sec);
  1452. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1453. inode->i_atime.tv_nsec);
  1454. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1455. inode->i_mtime.tv_sec);
  1456. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1457. inode->i_mtime.tv_nsec);
  1458. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1459. inode->i_ctime.tv_sec);
  1460. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1461. inode->i_ctime.tv_nsec);
  1462. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1463. BTRFS_I(inode)->i_otime.tv_sec);
  1464. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1465. BTRFS_I(inode)->i_otime.tv_nsec);
  1466. }
  1467. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1468. {
  1469. struct btrfs_delayed_node *delayed_node;
  1470. struct btrfs_inode_item *inode_item;
  1471. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1472. if (!delayed_node)
  1473. return -ENOENT;
  1474. mutex_lock(&delayed_node->mutex);
  1475. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1476. mutex_unlock(&delayed_node->mutex);
  1477. btrfs_release_delayed_node(delayed_node);
  1478. return -ENOENT;
  1479. }
  1480. inode_item = &delayed_node->inode_item;
  1481. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1482. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1483. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1484. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1485. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1486. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1487. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1488. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1489. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1490. inode->i_rdev = 0;
  1491. *rdev = btrfs_stack_inode_rdev(inode_item);
  1492. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1493. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1494. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1495. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1496. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1497. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1498. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1499. BTRFS_I(inode)->i_otime.tv_sec =
  1500. btrfs_stack_timespec_sec(&inode_item->otime);
  1501. BTRFS_I(inode)->i_otime.tv_nsec =
  1502. btrfs_stack_timespec_nsec(&inode_item->otime);
  1503. inode->i_generation = BTRFS_I(inode)->generation;
  1504. BTRFS_I(inode)->index_cnt = (u64)-1;
  1505. mutex_unlock(&delayed_node->mutex);
  1506. btrfs_release_delayed_node(delayed_node);
  1507. return 0;
  1508. }
  1509. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1510. struct btrfs_root *root, struct inode *inode)
  1511. {
  1512. struct btrfs_delayed_node *delayed_node;
  1513. int ret = 0;
  1514. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1515. if (IS_ERR(delayed_node))
  1516. return PTR_ERR(delayed_node);
  1517. mutex_lock(&delayed_node->mutex);
  1518. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1519. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1520. goto release_node;
  1521. }
  1522. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1523. delayed_node);
  1524. if (ret)
  1525. goto release_node;
  1526. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1527. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1528. delayed_node->count++;
  1529. atomic_inc(&root->fs_info->delayed_root->items);
  1530. release_node:
  1531. mutex_unlock(&delayed_node->mutex);
  1532. btrfs_release_delayed_node(delayed_node);
  1533. return ret;
  1534. }
  1535. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1536. {
  1537. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1538. struct btrfs_delayed_node *delayed_node;
  1539. /*
  1540. * we don't do delayed inode updates during log recovery because it
  1541. * leads to enospc problems. This means we also can't do
  1542. * delayed inode refs
  1543. */
  1544. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1545. return -EAGAIN;
  1546. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1547. if (IS_ERR(delayed_node))
  1548. return PTR_ERR(delayed_node);
  1549. /*
  1550. * We don't reserve space for inode ref deletion is because:
  1551. * - We ONLY do async inode ref deletion for the inode who has only
  1552. * one link(i_nlink == 1), it means there is only one inode ref.
  1553. * And in most case, the inode ref and the inode item are in the
  1554. * same leaf, and we will deal with them at the same time.
  1555. * Since we are sure we will reserve the space for the inode item,
  1556. * it is unnecessary to reserve space for inode ref deletion.
  1557. * - If the inode ref and the inode item are not in the same leaf,
  1558. * We also needn't worry about enospc problem, because we reserve
  1559. * much more space for the inode update than it needs.
  1560. * - At the worst, we can steal some space from the global reservation.
  1561. * It is very rare.
  1562. */
  1563. mutex_lock(&delayed_node->mutex);
  1564. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1565. goto release_node;
  1566. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1567. delayed_node->count++;
  1568. atomic_inc(&fs_info->delayed_root->items);
  1569. release_node:
  1570. mutex_unlock(&delayed_node->mutex);
  1571. btrfs_release_delayed_node(delayed_node);
  1572. return 0;
  1573. }
  1574. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1575. {
  1576. struct btrfs_root *root = delayed_node->root;
  1577. struct btrfs_fs_info *fs_info = root->fs_info;
  1578. struct btrfs_delayed_item *curr_item, *prev_item;
  1579. mutex_lock(&delayed_node->mutex);
  1580. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1581. while (curr_item) {
  1582. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1583. prev_item = curr_item;
  1584. curr_item = __btrfs_next_delayed_item(prev_item);
  1585. btrfs_release_delayed_item(prev_item);
  1586. }
  1587. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1588. while (curr_item) {
  1589. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1590. prev_item = curr_item;
  1591. curr_item = __btrfs_next_delayed_item(prev_item);
  1592. btrfs_release_delayed_item(prev_item);
  1593. }
  1594. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1595. btrfs_release_delayed_iref(delayed_node);
  1596. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1597. btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
  1598. btrfs_release_delayed_inode(delayed_node);
  1599. }
  1600. mutex_unlock(&delayed_node->mutex);
  1601. }
  1602. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1603. {
  1604. struct btrfs_delayed_node *delayed_node;
  1605. delayed_node = btrfs_get_delayed_node(inode);
  1606. if (!delayed_node)
  1607. return;
  1608. __btrfs_kill_delayed_node(delayed_node);
  1609. btrfs_release_delayed_node(delayed_node);
  1610. }
  1611. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1612. {
  1613. u64 inode_id = 0;
  1614. struct btrfs_delayed_node *delayed_nodes[8];
  1615. int i, n;
  1616. while (1) {
  1617. spin_lock(&root->inode_lock);
  1618. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1619. (void **)delayed_nodes, inode_id,
  1620. ARRAY_SIZE(delayed_nodes));
  1621. if (!n) {
  1622. spin_unlock(&root->inode_lock);
  1623. break;
  1624. }
  1625. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1626. for (i = 0; i < n; i++)
  1627. refcount_inc(&delayed_nodes[i]->refs);
  1628. spin_unlock(&root->inode_lock);
  1629. for (i = 0; i < n; i++) {
  1630. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1631. btrfs_release_delayed_node(delayed_nodes[i]);
  1632. }
  1633. }
  1634. }
  1635. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1636. {
  1637. struct btrfs_delayed_node *curr_node, *prev_node;
  1638. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1639. while (curr_node) {
  1640. __btrfs_kill_delayed_node(curr_node);
  1641. prev_node = curr_node;
  1642. curr_node = btrfs_next_delayed_node(curr_node);
  1643. btrfs_release_delayed_node(prev_node);
  1644. }
  1645. }