sockmap.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811
  1. /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
  2. *
  3. * This program is free software; you can redistribute it and/or
  4. * modify it under the terms of version 2 of the GNU General Public
  5. * License as published by the Free Software Foundation.
  6. *
  7. * This program is distributed in the hope that it will be useful, but
  8. * WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10. * General Public License for more details.
  11. */
  12. /* A BPF sock_map is used to store sock objects. This is primarly used
  13. * for doing socket redirect with BPF helper routines.
  14. *
  15. * A sock map may have BPF programs attached to it, currently a program
  16. * used to parse packets and a program to provide a verdict and redirect
  17. * decision on the packet are supported. Any programs attached to a sock
  18. * map are inherited by sock objects when they are added to the map. If
  19. * no BPF programs are attached the sock object may only be used for sock
  20. * redirect.
  21. *
  22. * A sock object may be in multiple maps, but can only inherit a single
  23. * parse or verdict program. If adding a sock object to a map would result
  24. * in having multiple parsing programs the update will return an EBUSY error.
  25. *
  26. * For reference this program is similar to devmap used in XDP context
  27. * reviewing these together may be useful. For an example please review
  28. * ./samples/bpf/sockmap/.
  29. */
  30. #include <linux/bpf.h>
  31. #include <net/sock.h>
  32. #include <linux/filter.h>
  33. #include <linux/errno.h>
  34. #include <linux/file.h>
  35. #include <linux/kernel.h>
  36. #include <linux/net.h>
  37. #include <linux/skbuff.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/list.h>
  40. #include <linux/mm.h>
  41. #include <net/strparser.h>
  42. #include <net/tcp.h>
  43. #include <linux/ptr_ring.h>
  44. #include <net/inet_common.h>
  45. #define SOCK_CREATE_FLAG_MASK \
  46. (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
  47. struct bpf_stab {
  48. struct bpf_map map;
  49. struct sock **sock_map;
  50. struct bpf_prog *bpf_tx_msg;
  51. struct bpf_prog *bpf_parse;
  52. struct bpf_prog *bpf_verdict;
  53. };
  54. enum smap_psock_state {
  55. SMAP_TX_RUNNING,
  56. };
  57. struct smap_psock_map_entry {
  58. struct list_head list;
  59. struct sock **entry;
  60. };
  61. struct smap_psock {
  62. struct rcu_head rcu;
  63. refcount_t refcnt;
  64. /* datapath variables */
  65. struct sk_buff_head rxqueue;
  66. bool strp_enabled;
  67. /* datapath error path cache across tx work invocations */
  68. int save_rem;
  69. int save_off;
  70. struct sk_buff *save_skb;
  71. /* datapath variables for tx_msg ULP */
  72. struct sock *sk_redir;
  73. int apply_bytes;
  74. int cork_bytes;
  75. int sg_size;
  76. int eval;
  77. struct sk_msg_buff *cork;
  78. struct list_head ingress;
  79. struct strparser strp;
  80. struct bpf_prog *bpf_tx_msg;
  81. struct bpf_prog *bpf_parse;
  82. struct bpf_prog *bpf_verdict;
  83. struct list_head maps;
  84. /* Back reference used when sock callback trigger sockmap operations */
  85. struct sock *sock;
  86. unsigned long state;
  87. struct work_struct tx_work;
  88. struct work_struct gc_work;
  89. struct proto *sk_proto;
  90. void (*save_close)(struct sock *sk, long timeout);
  91. void (*save_data_ready)(struct sock *sk);
  92. void (*save_write_space)(struct sock *sk);
  93. };
  94. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  95. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  96. int nonblock, int flags, int *addr_len);
  97. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
  98. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  99. int offset, size_t size, int flags);
  100. static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
  101. {
  102. return rcu_dereference_sk_user_data(sk);
  103. }
  104. static bool bpf_tcp_stream_read(const struct sock *sk)
  105. {
  106. struct smap_psock *psock;
  107. bool empty = true;
  108. rcu_read_lock();
  109. psock = smap_psock_sk(sk);
  110. if (unlikely(!psock))
  111. goto out;
  112. empty = list_empty(&psock->ingress);
  113. out:
  114. rcu_read_unlock();
  115. return !empty;
  116. }
  117. static struct proto tcp_bpf_proto;
  118. static int bpf_tcp_init(struct sock *sk)
  119. {
  120. struct smap_psock *psock;
  121. rcu_read_lock();
  122. psock = smap_psock_sk(sk);
  123. if (unlikely(!psock)) {
  124. rcu_read_unlock();
  125. return -EINVAL;
  126. }
  127. if (unlikely(psock->sk_proto)) {
  128. rcu_read_unlock();
  129. return -EBUSY;
  130. }
  131. psock->save_close = sk->sk_prot->close;
  132. psock->sk_proto = sk->sk_prot;
  133. if (psock->bpf_tx_msg) {
  134. tcp_bpf_proto.sendmsg = bpf_tcp_sendmsg;
  135. tcp_bpf_proto.sendpage = bpf_tcp_sendpage;
  136. tcp_bpf_proto.recvmsg = bpf_tcp_recvmsg;
  137. tcp_bpf_proto.stream_memory_read = bpf_tcp_stream_read;
  138. }
  139. sk->sk_prot = &tcp_bpf_proto;
  140. rcu_read_unlock();
  141. return 0;
  142. }
  143. static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
  144. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md);
  145. static void bpf_tcp_release(struct sock *sk)
  146. {
  147. struct smap_psock *psock;
  148. rcu_read_lock();
  149. psock = smap_psock_sk(sk);
  150. if (unlikely(!psock))
  151. goto out;
  152. if (psock->cork) {
  153. free_start_sg(psock->sock, psock->cork);
  154. kfree(psock->cork);
  155. psock->cork = NULL;
  156. }
  157. sk->sk_prot = psock->sk_proto;
  158. psock->sk_proto = NULL;
  159. out:
  160. rcu_read_unlock();
  161. }
  162. static void bpf_tcp_close(struct sock *sk, long timeout)
  163. {
  164. void (*close_fun)(struct sock *sk, long timeout);
  165. struct smap_psock_map_entry *e, *tmp;
  166. struct sk_msg_buff *md, *mtmp;
  167. struct smap_psock *psock;
  168. struct sock *osk;
  169. rcu_read_lock();
  170. psock = smap_psock_sk(sk);
  171. if (unlikely(!psock)) {
  172. rcu_read_unlock();
  173. return sk->sk_prot->close(sk, timeout);
  174. }
  175. /* The psock may be destroyed anytime after exiting the RCU critial
  176. * section so by the time we use close_fun the psock may no longer
  177. * be valid. However, bpf_tcp_close is called with the sock lock
  178. * held so the close hook and sk are still valid.
  179. */
  180. close_fun = psock->save_close;
  181. write_lock_bh(&sk->sk_callback_lock);
  182. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  183. list_del(&md->list);
  184. free_start_sg(psock->sock, md);
  185. kfree(md);
  186. }
  187. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  188. osk = cmpxchg(e->entry, sk, NULL);
  189. if (osk == sk) {
  190. list_del(&e->list);
  191. smap_release_sock(psock, sk);
  192. }
  193. }
  194. write_unlock_bh(&sk->sk_callback_lock);
  195. rcu_read_unlock();
  196. close_fun(sk, timeout);
  197. }
  198. enum __sk_action {
  199. __SK_DROP = 0,
  200. __SK_PASS,
  201. __SK_REDIRECT,
  202. __SK_NONE,
  203. };
  204. static struct tcp_ulp_ops bpf_tcp_ulp_ops __read_mostly = {
  205. .name = "bpf_tcp",
  206. .uid = TCP_ULP_BPF,
  207. .user_visible = false,
  208. .owner = NULL,
  209. .init = bpf_tcp_init,
  210. .release = bpf_tcp_release,
  211. };
  212. static int memcopy_from_iter(struct sock *sk,
  213. struct sk_msg_buff *md,
  214. struct iov_iter *from, int bytes)
  215. {
  216. struct scatterlist *sg = md->sg_data;
  217. int i = md->sg_curr, rc = -ENOSPC;
  218. do {
  219. int copy;
  220. char *to;
  221. if (md->sg_copybreak >= sg[i].length) {
  222. md->sg_copybreak = 0;
  223. if (++i == MAX_SKB_FRAGS)
  224. i = 0;
  225. if (i == md->sg_end)
  226. break;
  227. }
  228. copy = sg[i].length - md->sg_copybreak;
  229. to = sg_virt(&sg[i]) + md->sg_copybreak;
  230. md->sg_copybreak += copy;
  231. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  232. rc = copy_from_iter_nocache(to, copy, from);
  233. else
  234. rc = copy_from_iter(to, copy, from);
  235. if (rc != copy) {
  236. rc = -EFAULT;
  237. goto out;
  238. }
  239. bytes -= copy;
  240. if (!bytes)
  241. break;
  242. md->sg_copybreak = 0;
  243. if (++i == MAX_SKB_FRAGS)
  244. i = 0;
  245. } while (i != md->sg_end);
  246. out:
  247. md->sg_curr = i;
  248. return rc;
  249. }
  250. static int bpf_tcp_push(struct sock *sk, int apply_bytes,
  251. struct sk_msg_buff *md,
  252. int flags, bool uncharge)
  253. {
  254. bool apply = apply_bytes;
  255. struct scatterlist *sg;
  256. int offset, ret = 0;
  257. struct page *p;
  258. size_t size;
  259. while (1) {
  260. sg = md->sg_data + md->sg_start;
  261. size = (apply && apply_bytes < sg->length) ?
  262. apply_bytes : sg->length;
  263. offset = sg->offset;
  264. tcp_rate_check_app_limited(sk);
  265. p = sg_page(sg);
  266. retry:
  267. ret = do_tcp_sendpages(sk, p, offset, size, flags);
  268. if (ret != size) {
  269. if (ret > 0) {
  270. if (apply)
  271. apply_bytes -= ret;
  272. size -= ret;
  273. offset += ret;
  274. if (uncharge)
  275. sk_mem_uncharge(sk, ret);
  276. goto retry;
  277. }
  278. sg->length = size;
  279. sg->offset = offset;
  280. return ret;
  281. }
  282. if (apply)
  283. apply_bytes -= ret;
  284. sg->offset += ret;
  285. sg->length -= ret;
  286. if (uncharge)
  287. sk_mem_uncharge(sk, ret);
  288. if (!sg->length) {
  289. put_page(p);
  290. md->sg_start++;
  291. if (md->sg_start == MAX_SKB_FRAGS)
  292. md->sg_start = 0;
  293. memset(sg, 0, sizeof(*sg));
  294. if (md->sg_start == md->sg_end)
  295. break;
  296. }
  297. if (apply && !apply_bytes)
  298. break;
  299. }
  300. return 0;
  301. }
  302. static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
  303. {
  304. struct scatterlist *sg = md->sg_data + md->sg_start;
  305. if (md->sg_copy[md->sg_start]) {
  306. md->data = md->data_end = 0;
  307. } else {
  308. md->data = sg_virt(sg);
  309. md->data_end = md->data + sg->length;
  310. }
  311. }
  312. static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
  313. {
  314. struct scatterlist *sg = md->sg_data;
  315. int i = md->sg_start;
  316. do {
  317. int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
  318. sk_mem_uncharge(sk, uncharge);
  319. bytes -= uncharge;
  320. if (!bytes)
  321. break;
  322. i++;
  323. if (i == MAX_SKB_FRAGS)
  324. i = 0;
  325. } while (i != md->sg_end);
  326. }
  327. static void free_bytes_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
  328. {
  329. struct scatterlist *sg = md->sg_data;
  330. int i = md->sg_start, free;
  331. while (bytes && sg[i].length) {
  332. free = sg[i].length;
  333. if (bytes < free) {
  334. sg[i].length -= bytes;
  335. sg[i].offset += bytes;
  336. sk_mem_uncharge(sk, bytes);
  337. break;
  338. }
  339. sk_mem_uncharge(sk, sg[i].length);
  340. put_page(sg_page(&sg[i]));
  341. bytes -= sg[i].length;
  342. sg[i].length = 0;
  343. sg[i].page_link = 0;
  344. sg[i].offset = 0;
  345. i++;
  346. if (i == MAX_SKB_FRAGS)
  347. i = 0;
  348. }
  349. }
  350. static int free_sg(struct sock *sk, int start, struct sk_msg_buff *md)
  351. {
  352. struct scatterlist *sg = md->sg_data;
  353. int i = start, free = 0;
  354. while (sg[i].length) {
  355. free += sg[i].length;
  356. sk_mem_uncharge(sk, sg[i].length);
  357. put_page(sg_page(&sg[i]));
  358. sg[i].length = 0;
  359. sg[i].page_link = 0;
  360. sg[i].offset = 0;
  361. i++;
  362. if (i == MAX_SKB_FRAGS)
  363. i = 0;
  364. }
  365. return free;
  366. }
  367. static int free_start_sg(struct sock *sk, struct sk_msg_buff *md)
  368. {
  369. int free = free_sg(sk, md->sg_start, md);
  370. md->sg_start = md->sg_end;
  371. return free;
  372. }
  373. static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
  374. {
  375. return free_sg(sk, md->sg_curr, md);
  376. }
  377. static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
  378. {
  379. return ((_rc == SK_PASS) ?
  380. (md->map ? __SK_REDIRECT : __SK_PASS) :
  381. __SK_DROP);
  382. }
  383. static unsigned int smap_do_tx_msg(struct sock *sk,
  384. struct smap_psock *psock,
  385. struct sk_msg_buff *md)
  386. {
  387. struct bpf_prog *prog;
  388. unsigned int rc, _rc;
  389. preempt_disable();
  390. rcu_read_lock();
  391. /* If the policy was removed mid-send then default to 'accept' */
  392. prog = READ_ONCE(psock->bpf_tx_msg);
  393. if (unlikely(!prog)) {
  394. _rc = SK_PASS;
  395. goto verdict;
  396. }
  397. bpf_compute_data_pointers_sg(md);
  398. rc = (*prog->bpf_func)(md, prog->insnsi);
  399. psock->apply_bytes = md->apply_bytes;
  400. /* Moving return codes from UAPI namespace into internal namespace */
  401. _rc = bpf_map_msg_verdict(rc, md);
  402. /* The psock has a refcount on the sock but not on the map and because
  403. * we need to drop rcu read lock here its possible the map could be
  404. * removed between here and when we need it to execute the sock
  405. * redirect. So do the map lookup now for future use.
  406. */
  407. if (_rc == __SK_REDIRECT) {
  408. if (psock->sk_redir)
  409. sock_put(psock->sk_redir);
  410. psock->sk_redir = do_msg_redirect_map(md);
  411. if (!psock->sk_redir) {
  412. _rc = __SK_DROP;
  413. goto verdict;
  414. }
  415. sock_hold(psock->sk_redir);
  416. }
  417. verdict:
  418. rcu_read_unlock();
  419. preempt_enable();
  420. return _rc;
  421. }
  422. static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
  423. struct smap_psock *psock,
  424. struct sk_msg_buff *md, int flags)
  425. {
  426. bool apply = apply_bytes;
  427. size_t size, copied = 0;
  428. struct sk_msg_buff *r;
  429. int err = 0, i;
  430. r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
  431. if (unlikely(!r))
  432. return -ENOMEM;
  433. lock_sock(sk);
  434. r->sg_start = md->sg_start;
  435. i = md->sg_start;
  436. do {
  437. r->sg_data[i] = md->sg_data[i];
  438. size = (apply && apply_bytes < md->sg_data[i].length) ?
  439. apply_bytes : md->sg_data[i].length;
  440. if (!sk_wmem_schedule(sk, size)) {
  441. if (!copied)
  442. err = -ENOMEM;
  443. break;
  444. }
  445. sk_mem_charge(sk, size);
  446. r->sg_data[i].length = size;
  447. md->sg_data[i].length -= size;
  448. md->sg_data[i].offset += size;
  449. copied += size;
  450. if (md->sg_data[i].length) {
  451. get_page(sg_page(&r->sg_data[i]));
  452. r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
  453. } else {
  454. i++;
  455. if (i == MAX_SKB_FRAGS)
  456. i = 0;
  457. r->sg_end = i;
  458. }
  459. if (apply) {
  460. apply_bytes -= size;
  461. if (!apply_bytes)
  462. break;
  463. }
  464. } while (i != md->sg_end);
  465. md->sg_start = i;
  466. if (!err) {
  467. list_add_tail(&r->list, &psock->ingress);
  468. sk->sk_data_ready(sk);
  469. } else {
  470. free_start_sg(sk, r);
  471. kfree(r);
  472. }
  473. release_sock(sk);
  474. return err;
  475. }
  476. static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
  477. struct sk_msg_buff *md,
  478. int flags)
  479. {
  480. struct smap_psock *psock;
  481. struct scatterlist *sg;
  482. int i, err, free = 0;
  483. bool ingress = !!(md->flags & BPF_F_INGRESS);
  484. sg = md->sg_data;
  485. rcu_read_lock();
  486. psock = smap_psock_sk(sk);
  487. if (unlikely(!psock))
  488. goto out_rcu;
  489. if (!refcount_inc_not_zero(&psock->refcnt))
  490. goto out_rcu;
  491. rcu_read_unlock();
  492. if (ingress) {
  493. err = bpf_tcp_ingress(sk, send, psock, md, flags);
  494. } else {
  495. lock_sock(sk);
  496. err = bpf_tcp_push(sk, send, md, flags, false);
  497. release_sock(sk);
  498. }
  499. smap_release_sock(psock, sk);
  500. if (unlikely(err))
  501. goto out;
  502. return 0;
  503. out_rcu:
  504. rcu_read_unlock();
  505. out:
  506. i = md->sg_start;
  507. while (sg[i].length) {
  508. free += sg[i].length;
  509. put_page(sg_page(&sg[i]));
  510. sg[i].length = 0;
  511. i++;
  512. if (i == MAX_SKB_FRAGS)
  513. i = 0;
  514. }
  515. return free;
  516. }
  517. static inline void bpf_md_init(struct smap_psock *psock)
  518. {
  519. if (!psock->apply_bytes) {
  520. psock->eval = __SK_NONE;
  521. if (psock->sk_redir) {
  522. sock_put(psock->sk_redir);
  523. psock->sk_redir = NULL;
  524. }
  525. }
  526. }
  527. static void apply_bytes_dec(struct smap_psock *psock, int i)
  528. {
  529. if (psock->apply_bytes) {
  530. if (psock->apply_bytes < i)
  531. psock->apply_bytes = 0;
  532. else
  533. psock->apply_bytes -= i;
  534. }
  535. }
  536. static int bpf_exec_tx_verdict(struct smap_psock *psock,
  537. struct sk_msg_buff *m,
  538. struct sock *sk,
  539. int *copied, int flags)
  540. {
  541. bool cork = false, enospc = (m->sg_start == m->sg_end);
  542. struct sock *redir;
  543. int err = 0;
  544. int send;
  545. more_data:
  546. if (psock->eval == __SK_NONE)
  547. psock->eval = smap_do_tx_msg(sk, psock, m);
  548. if (m->cork_bytes &&
  549. m->cork_bytes > psock->sg_size && !enospc) {
  550. psock->cork_bytes = m->cork_bytes - psock->sg_size;
  551. if (!psock->cork) {
  552. psock->cork = kcalloc(1,
  553. sizeof(struct sk_msg_buff),
  554. GFP_ATOMIC | __GFP_NOWARN);
  555. if (!psock->cork) {
  556. err = -ENOMEM;
  557. goto out_err;
  558. }
  559. }
  560. memcpy(psock->cork, m, sizeof(*m));
  561. goto out_err;
  562. }
  563. send = psock->sg_size;
  564. if (psock->apply_bytes && psock->apply_bytes < send)
  565. send = psock->apply_bytes;
  566. switch (psock->eval) {
  567. case __SK_PASS:
  568. err = bpf_tcp_push(sk, send, m, flags, true);
  569. if (unlikely(err)) {
  570. *copied -= free_start_sg(sk, m);
  571. break;
  572. }
  573. apply_bytes_dec(psock, send);
  574. psock->sg_size -= send;
  575. break;
  576. case __SK_REDIRECT:
  577. redir = psock->sk_redir;
  578. apply_bytes_dec(psock, send);
  579. if (psock->cork) {
  580. cork = true;
  581. psock->cork = NULL;
  582. }
  583. return_mem_sg(sk, send, m);
  584. release_sock(sk);
  585. err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
  586. lock_sock(sk);
  587. if (cork) {
  588. free_start_sg(sk, m);
  589. kfree(m);
  590. m = NULL;
  591. }
  592. if (unlikely(err))
  593. *copied -= err;
  594. else
  595. psock->sg_size -= send;
  596. break;
  597. case __SK_DROP:
  598. default:
  599. free_bytes_sg(sk, send, m);
  600. apply_bytes_dec(psock, send);
  601. *copied -= send;
  602. psock->sg_size -= send;
  603. err = -EACCES;
  604. break;
  605. }
  606. if (likely(!err)) {
  607. bpf_md_init(psock);
  608. if (m &&
  609. m->sg_data[m->sg_start].page_link &&
  610. m->sg_data[m->sg_start].length)
  611. goto more_data;
  612. }
  613. out_err:
  614. return err;
  615. }
  616. static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  617. int nonblock, int flags, int *addr_len)
  618. {
  619. struct iov_iter *iter = &msg->msg_iter;
  620. struct smap_psock *psock;
  621. int copied = 0;
  622. if (unlikely(flags & MSG_ERRQUEUE))
  623. return inet_recv_error(sk, msg, len, addr_len);
  624. rcu_read_lock();
  625. psock = smap_psock_sk(sk);
  626. if (unlikely(!psock))
  627. goto out;
  628. if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
  629. goto out;
  630. rcu_read_unlock();
  631. if (!skb_queue_empty(&sk->sk_receive_queue))
  632. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  633. lock_sock(sk);
  634. while (copied != len) {
  635. struct scatterlist *sg;
  636. struct sk_msg_buff *md;
  637. int i;
  638. md = list_first_entry_or_null(&psock->ingress,
  639. struct sk_msg_buff, list);
  640. if (unlikely(!md))
  641. break;
  642. i = md->sg_start;
  643. do {
  644. struct page *page;
  645. int n, copy;
  646. sg = &md->sg_data[i];
  647. copy = sg->length;
  648. page = sg_page(sg);
  649. if (copied + copy > len)
  650. copy = len - copied;
  651. n = copy_page_to_iter(page, sg->offset, copy, iter);
  652. if (n != copy) {
  653. md->sg_start = i;
  654. release_sock(sk);
  655. smap_release_sock(psock, sk);
  656. return -EFAULT;
  657. }
  658. copied += copy;
  659. sg->offset += copy;
  660. sg->length -= copy;
  661. sk_mem_uncharge(sk, copy);
  662. if (!sg->length) {
  663. i++;
  664. if (i == MAX_SKB_FRAGS)
  665. i = 0;
  666. put_page(page);
  667. }
  668. if (copied == len)
  669. break;
  670. } while (i != md->sg_end);
  671. md->sg_start = i;
  672. if (!sg->length && md->sg_start == md->sg_end) {
  673. list_del(&md->list);
  674. kfree(md);
  675. }
  676. }
  677. release_sock(sk);
  678. smap_release_sock(psock, sk);
  679. return copied;
  680. out:
  681. rcu_read_unlock();
  682. return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
  683. }
  684. static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
  685. {
  686. int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
  687. struct sk_msg_buff md = {0};
  688. unsigned int sg_copy = 0;
  689. struct smap_psock *psock;
  690. int copied = 0, err = 0;
  691. struct scatterlist *sg;
  692. long timeo;
  693. /* Its possible a sock event or user removed the psock _but_ the ops
  694. * have not been reprogrammed yet so we get here. In this case fallback
  695. * to tcp_sendmsg. Note this only works because we _only_ ever allow
  696. * a single ULP there is no hierarchy here.
  697. */
  698. rcu_read_lock();
  699. psock = smap_psock_sk(sk);
  700. if (unlikely(!psock)) {
  701. rcu_read_unlock();
  702. return tcp_sendmsg(sk, msg, size);
  703. }
  704. /* Increment the psock refcnt to ensure its not released while sending a
  705. * message. Required because sk lookup and bpf programs are used in
  706. * separate rcu critical sections. Its OK if we lose the map entry
  707. * but we can't lose the sock reference.
  708. */
  709. if (!refcount_inc_not_zero(&psock->refcnt)) {
  710. rcu_read_unlock();
  711. return tcp_sendmsg(sk, msg, size);
  712. }
  713. sg = md.sg_data;
  714. sg_init_table(sg, MAX_SKB_FRAGS);
  715. rcu_read_unlock();
  716. lock_sock(sk);
  717. timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  718. while (msg_data_left(msg)) {
  719. struct sk_msg_buff *m;
  720. bool enospc = false;
  721. int copy;
  722. if (sk->sk_err) {
  723. err = sk->sk_err;
  724. goto out_err;
  725. }
  726. copy = msg_data_left(msg);
  727. if (!sk_stream_memory_free(sk))
  728. goto wait_for_sndbuf;
  729. m = psock->cork_bytes ? psock->cork : &md;
  730. m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
  731. err = sk_alloc_sg(sk, copy, m->sg_data,
  732. m->sg_start, &m->sg_end, &sg_copy,
  733. m->sg_end - 1);
  734. if (err) {
  735. if (err != -ENOSPC)
  736. goto wait_for_memory;
  737. enospc = true;
  738. copy = sg_copy;
  739. }
  740. err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
  741. if (err < 0) {
  742. free_curr_sg(sk, m);
  743. goto out_err;
  744. }
  745. psock->sg_size += copy;
  746. copied += copy;
  747. sg_copy = 0;
  748. /* When bytes are being corked skip running BPF program and
  749. * applying verdict unless there is no more buffer space. In
  750. * the ENOSPC case simply run BPF prorgram with currently
  751. * accumulated data. We don't have much choice at this point
  752. * we could try extending the page frags or chaining complex
  753. * frags but even in these cases _eventually_ we will hit an
  754. * OOM scenario. More complex recovery schemes may be
  755. * implemented in the future, but BPF programs must handle
  756. * the case where apply_cork requests are not honored. The
  757. * canonical method to verify this is to check data length.
  758. */
  759. if (psock->cork_bytes) {
  760. if (copy > psock->cork_bytes)
  761. psock->cork_bytes = 0;
  762. else
  763. psock->cork_bytes -= copy;
  764. if (psock->cork_bytes && !enospc)
  765. goto out_cork;
  766. /* All cork bytes accounted for re-run filter */
  767. psock->eval = __SK_NONE;
  768. psock->cork_bytes = 0;
  769. }
  770. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  771. if (unlikely(err < 0))
  772. goto out_err;
  773. continue;
  774. wait_for_sndbuf:
  775. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  776. wait_for_memory:
  777. err = sk_stream_wait_memory(sk, &timeo);
  778. if (err)
  779. goto out_err;
  780. }
  781. out_err:
  782. if (err < 0)
  783. err = sk_stream_error(sk, msg->msg_flags, err);
  784. out_cork:
  785. release_sock(sk);
  786. smap_release_sock(psock, sk);
  787. return copied ? copied : err;
  788. }
  789. static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
  790. int offset, size_t size, int flags)
  791. {
  792. struct sk_msg_buff md = {0}, *m = NULL;
  793. int err = 0, copied = 0;
  794. struct smap_psock *psock;
  795. struct scatterlist *sg;
  796. bool enospc = false;
  797. rcu_read_lock();
  798. psock = smap_psock_sk(sk);
  799. if (unlikely(!psock))
  800. goto accept;
  801. if (!refcount_inc_not_zero(&psock->refcnt))
  802. goto accept;
  803. rcu_read_unlock();
  804. lock_sock(sk);
  805. if (psock->cork_bytes)
  806. m = psock->cork;
  807. else
  808. m = &md;
  809. /* Catch case where ring is full and sendpage is stalled. */
  810. if (unlikely(m->sg_end == m->sg_start &&
  811. m->sg_data[m->sg_end].length))
  812. goto out_err;
  813. psock->sg_size += size;
  814. sg = &m->sg_data[m->sg_end];
  815. sg_set_page(sg, page, size, offset);
  816. get_page(page);
  817. m->sg_copy[m->sg_end] = true;
  818. sk_mem_charge(sk, size);
  819. m->sg_end++;
  820. copied = size;
  821. if (m->sg_end == MAX_SKB_FRAGS)
  822. m->sg_end = 0;
  823. if (m->sg_end == m->sg_start)
  824. enospc = true;
  825. if (psock->cork_bytes) {
  826. if (size > psock->cork_bytes)
  827. psock->cork_bytes = 0;
  828. else
  829. psock->cork_bytes -= size;
  830. if (psock->cork_bytes && !enospc)
  831. goto out_err;
  832. /* All cork bytes accounted for re-run filter */
  833. psock->eval = __SK_NONE;
  834. psock->cork_bytes = 0;
  835. }
  836. err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
  837. out_err:
  838. release_sock(sk);
  839. smap_release_sock(psock, sk);
  840. return copied ? copied : err;
  841. accept:
  842. rcu_read_unlock();
  843. return tcp_sendpage(sk, page, offset, size, flags);
  844. }
  845. static void bpf_tcp_msg_add(struct smap_psock *psock,
  846. struct sock *sk,
  847. struct bpf_prog *tx_msg)
  848. {
  849. struct bpf_prog *orig_tx_msg;
  850. orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
  851. if (orig_tx_msg)
  852. bpf_prog_put(orig_tx_msg);
  853. }
  854. static int bpf_tcp_ulp_register(void)
  855. {
  856. tcp_bpf_proto = tcp_prot;
  857. tcp_bpf_proto.close = bpf_tcp_close;
  858. /* Once BPF TX ULP is registered it is never unregistered. It
  859. * will be in the ULP list for the lifetime of the system. Doing
  860. * duplicate registers is not a problem.
  861. */
  862. return tcp_register_ulp(&bpf_tcp_ulp_ops);
  863. }
  864. static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
  865. {
  866. struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
  867. int rc;
  868. if (unlikely(!prog))
  869. return __SK_DROP;
  870. skb_orphan(skb);
  871. /* We need to ensure that BPF metadata for maps is also cleared
  872. * when we orphan the skb so that we don't have the possibility
  873. * to reference a stale map.
  874. */
  875. TCP_SKB_CB(skb)->bpf.map = NULL;
  876. skb->sk = psock->sock;
  877. bpf_compute_data_pointers(skb);
  878. preempt_disable();
  879. rc = (*prog->bpf_func)(skb, prog->insnsi);
  880. preempt_enable();
  881. skb->sk = NULL;
  882. /* Moving return codes from UAPI namespace into internal namespace */
  883. return rc == SK_PASS ?
  884. (TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) :
  885. __SK_DROP;
  886. }
  887. static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
  888. {
  889. struct sock *sk;
  890. int rc;
  891. rc = smap_verdict_func(psock, skb);
  892. switch (rc) {
  893. case __SK_REDIRECT:
  894. sk = do_sk_redirect_map(skb);
  895. if (likely(sk)) {
  896. struct smap_psock *peer = smap_psock_sk(sk);
  897. if (likely(peer &&
  898. test_bit(SMAP_TX_RUNNING, &peer->state) &&
  899. !sock_flag(sk, SOCK_DEAD) &&
  900. sock_writeable(sk))) {
  901. skb_set_owner_w(skb, sk);
  902. skb_queue_tail(&peer->rxqueue, skb);
  903. schedule_work(&peer->tx_work);
  904. break;
  905. }
  906. }
  907. /* Fall through and free skb otherwise */
  908. case __SK_DROP:
  909. default:
  910. kfree_skb(skb);
  911. }
  912. }
  913. static void smap_report_sk_error(struct smap_psock *psock, int err)
  914. {
  915. struct sock *sk = psock->sock;
  916. sk->sk_err = err;
  917. sk->sk_error_report(sk);
  918. }
  919. static void smap_read_sock_strparser(struct strparser *strp,
  920. struct sk_buff *skb)
  921. {
  922. struct smap_psock *psock;
  923. rcu_read_lock();
  924. psock = container_of(strp, struct smap_psock, strp);
  925. smap_do_verdict(psock, skb);
  926. rcu_read_unlock();
  927. }
  928. /* Called with lock held on socket */
  929. static void smap_data_ready(struct sock *sk)
  930. {
  931. struct smap_psock *psock;
  932. rcu_read_lock();
  933. psock = smap_psock_sk(sk);
  934. if (likely(psock)) {
  935. write_lock_bh(&sk->sk_callback_lock);
  936. strp_data_ready(&psock->strp);
  937. write_unlock_bh(&sk->sk_callback_lock);
  938. }
  939. rcu_read_unlock();
  940. }
  941. static void smap_tx_work(struct work_struct *w)
  942. {
  943. struct smap_psock *psock;
  944. struct sk_buff *skb;
  945. int rem, off, n;
  946. psock = container_of(w, struct smap_psock, tx_work);
  947. /* lock sock to avoid losing sk_socket at some point during loop */
  948. lock_sock(psock->sock);
  949. if (psock->save_skb) {
  950. skb = psock->save_skb;
  951. rem = psock->save_rem;
  952. off = psock->save_off;
  953. psock->save_skb = NULL;
  954. goto start;
  955. }
  956. while ((skb = skb_dequeue(&psock->rxqueue))) {
  957. rem = skb->len;
  958. off = 0;
  959. start:
  960. do {
  961. if (likely(psock->sock->sk_socket))
  962. n = skb_send_sock_locked(psock->sock,
  963. skb, off, rem);
  964. else
  965. n = -EINVAL;
  966. if (n <= 0) {
  967. if (n == -EAGAIN) {
  968. /* Retry when space is available */
  969. psock->save_skb = skb;
  970. psock->save_rem = rem;
  971. psock->save_off = off;
  972. goto out;
  973. }
  974. /* Hard errors break pipe and stop xmit */
  975. smap_report_sk_error(psock, n ? -n : EPIPE);
  976. clear_bit(SMAP_TX_RUNNING, &psock->state);
  977. kfree_skb(skb);
  978. goto out;
  979. }
  980. rem -= n;
  981. off += n;
  982. } while (rem);
  983. kfree_skb(skb);
  984. }
  985. out:
  986. release_sock(psock->sock);
  987. }
  988. static void smap_write_space(struct sock *sk)
  989. {
  990. struct smap_psock *psock;
  991. rcu_read_lock();
  992. psock = smap_psock_sk(sk);
  993. if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
  994. schedule_work(&psock->tx_work);
  995. rcu_read_unlock();
  996. }
  997. static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
  998. {
  999. if (!psock->strp_enabled)
  1000. return;
  1001. sk->sk_data_ready = psock->save_data_ready;
  1002. sk->sk_write_space = psock->save_write_space;
  1003. psock->save_data_ready = NULL;
  1004. psock->save_write_space = NULL;
  1005. strp_stop(&psock->strp);
  1006. psock->strp_enabled = false;
  1007. }
  1008. static void smap_destroy_psock(struct rcu_head *rcu)
  1009. {
  1010. struct smap_psock *psock = container_of(rcu,
  1011. struct smap_psock, rcu);
  1012. /* Now that a grace period has passed there is no longer
  1013. * any reference to this sock in the sockmap so we can
  1014. * destroy the psock, strparser, and bpf programs. But,
  1015. * because we use workqueue sync operations we can not
  1016. * do it in rcu context
  1017. */
  1018. schedule_work(&psock->gc_work);
  1019. }
  1020. static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
  1021. {
  1022. if (refcount_dec_and_test(&psock->refcnt)) {
  1023. tcp_cleanup_ulp(sock);
  1024. smap_stop_sock(psock, sock);
  1025. clear_bit(SMAP_TX_RUNNING, &psock->state);
  1026. rcu_assign_sk_user_data(sock, NULL);
  1027. call_rcu_sched(&psock->rcu, smap_destroy_psock);
  1028. }
  1029. }
  1030. static int smap_parse_func_strparser(struct strparser *strp,
  1031. struct sk_buff *skb)
  1032. {
  1033. struct smap_psock *psock;
  1034. struct bpf_prog *prog;
  1035. int rc;
  1036. rcu_read_lock();
  1037. psock = container_of(strp, struct smap_psock, strp);
  1038. prog = READ_ONCE(psock->bpf_parse);
  1039. if (unlikely(!prog)) {
  1040. rcu_read_unlock();
  1041. return skb->len;
  1042. }
  1043. /* Attach socket for bpf program to use if needed we can do this
  1044. * because strparser clones the skb before handing it to a upper
  1045. * layer, meaning skb_orphan has been called. We NULL sk on the
  1046. * way out to ensure we don't trigger a BUG_ON in skb/sk operations
  1047. * later and because we are not charging the memory of this skb to
  1048. * any socket yet.
  1049. */
  1050. skb->sk = psock->sock;
  1051. bpf_compute_data_pointers(skb);
  1052. rc = (*prog->bpf_func)(skb, prog->insnsi);
  1053. skb->sk = NULL;
  1054. rcu_read_unlock();
  1055. return rc;
  1056. }
  1057. static int smap_read_sock_done(struct strparser *strp, int err)
  1058. {
  1059. return err;
  1060. }
  1061. static int smap_init_sock(struct smap_psock *psock,
  1062. struct sock *sk)
  1063. {
  1064. static const struct strp_callbacks cb = {
  1065. .rcv_msg = smap_read_sock_strparser,
  1066. .parse_msg = smap_parse_func_strparser,
  1067. .read_sock_done = smap_read_sock_done,
  1068. };
  1069. return strp_init(&psock->strp, sk, &cb);
  1070. }
  1071. static void smap_init_progs(struct smap_psock *psock,
  1072. struct bpf_stab *stab,
  1073. struct bpf_prog *verdict,
  1074. struct bpf_prog *parse)
  1075. {
  1076. struct bpf_prog *orig_parse, *orig_verdict;
  1077. orig_parse = xchg(&psock->bpf_parse, parse);
  1078. orig_verdict = xchg(&psock->bpf_verdict, verdict);
  1079. if (orig_verdict)
  1080. bpf_prog_put(orig_verdict);
  1081. if (orig_parse)
  1082. bpf_prog_put(orig_parse);
  1083. }
  1084. static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
  1085. {
  1086. if (sk->sk_data_ready == smap_data_ready)
  1087. return;
  1088. psock->save_data_ready = sk->sk_data_ready;
  1089. psock->save_write_space = sk->sk_write_space;
  1090. sk->sk_data_ready = smap_data_ready;
  1091. sk->sk_write_space = smap_write_space;
  1092. psock->strp_enabled = true;
  1093. }
  1094. static void sock_map_remove_complete(struct bpf_stab *stab)
  1095. {
  1096. bpf_map_area_free(stab->sock_map);
  1097. kfree(stab);
  1098. }
  1099. static void smap_gc_work(struct work_struct *w)
  1100. {
  1101. struct smap_psock_map_entry *e, *tmp;
  1102. struct sk_msg_buff *md, *mtmp;
  1103. struct smap_psock *psock;
  1104. psock = container_of(w, struct smap_psock, gc_work);
  1105. /* no callback lock needed because we already detached sockmap ops */
  1106. if (psock->strp_enabled)
  1107. strp_done(&psock->strp);
  1108. cancel_work_sync(&psock->tx_work);
  1109. __skb_queue_purge(&psock->rxqueue);
  1110. /* At this point all strparser and xmit work must be complete */
  1111. if (psock->bpf_parse)
  1112. bpf_prog_put(psock->bpf_parse);
  1113. if (psock->bpf_verdict)
  1114. bpf_prog_put(psock->bpf_verdict);
  1115. if (psock->bpf_tx_msg)
  1116. bpf_prog_put(psock->bpf_tx_msg);
  1117. if (psock->cork) {
  1118. free_start_sg(psock->sock, psock->cork);
  1119. kfree(psock->cork);
  1120. }
  1121. list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
  1122. list_del(&md->list);
  1123. free_start_sg(psock->sock, md);
  1124. kfree(md);
  1125. }
  1126. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1127. list_del(&e->list);
  1128. kfree(e);
  1129. }
  1130. if (psock->sk_redir)
  1131. sock_put(psock->sk_redir);
  1132. sock_put(psock->sock);
  1133. kfree(psock);
  1134. }
  1135. static struct smap_psock *smap_init_psock(struct sock *sock,
  1136. struct bpf_stab *stab)
  1137. {
  1138. struct smap_psock *psock;
  1139. psock = kzalloc_node(sizeof(struct smap_psock),
  1140. GFP_ATOMIC | __GFP_NOWARN,
  1141. stab->map.numa_node);
  1142. if (!psock)
  1143. return ERR_PTR(-ENOMEM);
  1144. psock->eval = __SK_NONE;
  1145. psock->sock = sock;
  1146. skb_queue_head_init(&psock->rxqueue);
  1147. INIT_WORK(&psock->tx_work, smap_tx_work);
  1148. INIT_WORK(&psock->gc_work, smap_gc_work);
  1149. INIT_LIST_HEAD(&psock->maps);
  1150. INIT_LIST_HEAD(&psock->ingress);
  1151. refcount_set(&psock->refcnt, 1);
  1152. rcu_assign_sk_user_data(sock, psock);
  1153. sock_hold(sock);
  1154. return psock;
  1155. }
  1156. static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
  1157. {
  1158. struct bpf_stab *stab;
  1159. u64 cost;
  1160. int err;
  1161. if (!capable(CAP_NET_ADMIN))
  1162. return ERR_PTR(-EPERM);
  1163. /* check sanity of attributes */
  1164. if (attr->max_entries == 0 || attr->key_size != 4 ||
  1165. attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
  1166. return ERR_PTR(-EINVAL);
  1167. if (attr->value_size > KMALLOC_MAX_SIZE)
  1168. return ERR_PTR(-E2BIG);
  1169. err = bpf_tcp_ulp_register();
  1170. if (err && err != -EEXIST)
  1171. return ERR_PTR(err);
  1172. stab = kzalloc(sizeof(*stab), GFP_USER);
  1173. if (!stab)
  1174. return ERR_PTR(-ENOMEM);
  1175. bpf_map_init_from_attr(&stab->map, attr);
  1176. /* make sure page count doesn't overflow */
  1177. cost = (u64) stab->map.max_entries * sizeof(struct sock *);
  1178. err = -EINVAL;
  1179. if (cost >= U32_MAX - PAGE_SIZE)
  1180. goto free_stab;
  1181. stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
  1182. /* if map size is larger than memlock limit, reject it early */
  1183. err = bpf_map_precharge_memlock(stab->map.pages);
  1184. if (err)
  1185. goto free_stab;
  1186. err = -ENOMEM;
  1187. stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
  1188. sizeof(struct sock *),
  1189. stab->map.numa_node);
  1190. if (!stab->sock_map)
  1191. goto free_stab;
  1192. return &stab->map;
  1193. free_stab:
  1194. kfree(stab);
  1195. return ERR_PTR(err);
  1196. }
  1197. static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
  1198. {
  1199. struct smap_psock_map_entry *e, *tmp;
  1200. list_for_each_entry_safe(e, tmp, &psock->maps, list) {
  1201. if (e->entry == entry) {
  1202. list_del(&e->list);
  1203. break;
  1204. }
  1205. }
  1206. }
  1207. static void sock_map_free(struct bpf_map *map)
  1208. {
  1209. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1210. int i;
  1211. synchronize_rcu();
  1212. /* At this point no update, lookup or delete operations can happen.
  1213. * However, be aware we can still get a socket state event updates,
  1214. * and data ready callabacks that reference the psock from sk_user_data
  1215. * Also psock worker threads are still in-flight. So smap_release_sock
  1216. * will only free the psock after cancel_sync on the worker threads
  1217. * and a grace period expire to ensure psock is really safe to remove.
  1218. */
  1219. rcu_read_lock();
  1220. for (i = 0; i < stab->map.max_entries; i++) {
  1221. struct smap_psock *psock;
  1222. struct sock *sock;
  1223. sock = xchg(&stab->sock_map[i], NULL);
  1224. if (!sock)
  1225. continue;
  1226. write_lock_bh(&sock->sk_callback_lock);
  1227. psock = smap_psock_sk(sock);
  1228. /* This check handles a racing sock event that can get the
  1229. * sk_callback_lock before this case but after xchg happens
  1230. * causing the refcnt to hit zero and sock user data (psock)
  1231. * to be null and queued for garbage collection.
  1232. */
  1233. if (likely(psock)) {
  1234. smap_list_remove(psock, &stab->sock_map[i]);
  1235. smap_release_sock(psock, sock);
  1236. }
  1237. write_unlock_bh(&sock->sk_callback_lock);
  1238. }
  1239. rcu_read_unlock();
  1240. sock_map_remove_complete(stab);
  1241. }
  1242. static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
  1243. {
  1244. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1245. u32 i = key ? *(u32 *)key : U32_MAX;
  1246. u32 *next = (u32 *)next_key;
  1247. if (i >= stab->map.max_entries) {
  1248. *next = 0;
  1249. return 0;
  1250. }
  1251. if (i == stab->map.max_entries - 1)
  1252. return -ENOENT;
  1253. *next = i + 1;
  1254. return 0;
  1255. }
  1256. struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
  1257. {
  1258. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1259. if (key >= map->max_entries)
  1260. return NULL;
  1261. return READ_ONCE(stab->sock_map[key]);
  1262. }
  1263. static int sock_map_delete_elem(struct bpf_map *map, void *key)
  1264. {
  1265. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1266. struct smap_psock *psock;
  1267. int k = *(u32 *)key;
  1268. struct sock *sock;
  1269. if (k >= map->max_entries)
  1270. return -EINVAL;
  1271. sock = xchg(&stab->sock_map[k], NULL);
  1272. if (!sock)
  1273. return -EINVAL;
  1274. write_lock_bh(&sock->sk_callback_lock);
  1275. psock = smap_psock_sk(sock);
  1276. if (!psock)
  1277. goto out;
  1278. if (psock->bpf_parse)
  1279. smap_stop_sock(psock, sock);
  1280. smap_list_remove(psock, &stab->sock_map[k]);
  1281. smap_release_sock(psock, sock);
  1282. out:
  1283. write_unlock_bh(&sock->sk_callback_lock);
  1284. return 0;
  1285. }
  1286. /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
  1287. * done inside rcu critical sections. This ensures on updates that the psock
  1288. * will not be released via smap_release_sock() until concurrent updates/deletes
  1289. * complete. All operations operate on sock_map using cmpxchg and xchg
  1290. * operations to ensure we do not get stale references. Any reads into the
  1291. * map must be done with READ_ONCE() because of this.
  1292. *
  1293. * A psock is destroyed via call_rcu and after any worker threads are cancelled
  1294. * and syncd so we are certain all references from the update/lookup/delete
  1295. * operations as well as references in the data path are no longer in use.
  1296. *
  1297. * Psocks may exist in multiple maps, but only a single set of parse/verdict
  1298. * programs may be inherited from the maps it belongs to. A reference count
  1299. * is kept with the total number of references to the psock from all maps. The
  1300. * psock will not be released until this reaches zero. The psock and sock
  1301. * user data data use the sk_callback_lock to protect critical data structures
  1302. * from concurrent access. This allows us to avoid two updates from modifying
  1303. * the user data in sock and the lock is required anyways for modifying
  1304. * callbacks, we simply increase its scope slightly.
  1305. *
  1306. * Rules to follow,
  1307. * - psock must always be read inside RCU critical section
  1308. * - sk_user_data must only be modified inside sk_callback_lock and read
  1309. * inside RCU critical section.
  1310. * - psock->maps list must only be read & modified inside sk_callback_lock
  1311. * - sock_map must use READ_ONCE and (cmp)xchg operations
  1312. * - BPF verdict/parse programs must use READ_ONCE and xchg operations
  1313. */
  1314. static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
  1315. struct bpf_map *map,
  1316. void *key, u64 flags)
  1317. {
  1318. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1319. struct smap_psock_map_entry *e = NULL;
  1320. struct bpf_prog *verdict, *parse, *tx_msg;
  1321. struct sock *osock, *sock;
  1322. struct smap_psock *psock;
  1323. u32 i = *(u32 *)key;
  1324. bool new = false;
  1325. int err;
  1326. if (unlikely(flags > BPF_EXIST))
  1327. return -EINVAL;
  1328. if (unlikely(i >= stab->map.max_entries))
  1329. return -E2BIG;
  1330. sock = READ_ONCE(stab->sock_map[i]);
  1331. if (flags == BPF_EXIST && !sock)
  1332. return -ENOENT;
  1333. else if (flags == BPF_NOEXIST && sock)
  1334. return -EEXIST;
  1335. sock = skops->sk;
  1336. /* 1. If sock map has BPF programs those will be inherited by the
  1337. * sock being added. If the sock is already attached to BPF programs
  1338. * this results in an error.
  1339. */
  1340. verdict = READ_ONCE(stab->bpf_verdict);
  1341. parse = READ_ONCE(stab->bpf_parse);
  1342. tx_msg = READ_ONCE(stab->bpf_tx_msg);
  1343. if (parse && verdict) {
  1344. /* bpf prog refcnt may be zero if a concurrent attach operation
  1345. * removes the program after the above READ_ONCE() but before
  1346. * we increment the refcnt. If this is the case abort with an
  1347. * error.
  1348. */
  1349. verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
  1350. if (IS_ERR(verdict))
  1351. return PTR_ERR(verdict);
  1352. parse = bpf_prog_inc_not_zero(stab->bpf_parse);
  1353. if (IS_ERR(parse)) {
  1354. bpf_prog_put(verdict);
  1355. return PTR_ERR(parse);
  1356. }
  1357. }
  1358. if (tx_msg) {
  1359. tx_msg = bpf_prog_inc_not_zero(stab->bpf_tx_msg);
  1360. if (IS_ERR(tx_msg)) {
  1361. if (verdict)
  1362. bpf_prog_put(verdict);
  1363. if (parse)
  1364. bpf_prog_put(parse);
  1365. return PTR_ERR(tx_msg);
  1366. }
  1367. }
  1368. write_lock_bh(&sock->sk_callback_lock);
  1369. psock = smap_psock_sk(sock);
  1370. /* 2. Do not allow inheriting programs if psock exists and has
  1371. * already inherited programs. This would create confusion on
  1372. * which parser/verdict program is running. If no psock exists
  1373. * create one. Inside sk_callback_lock to ensure concurrent create
  1374. * doesn't update user data.
  1375. */
  1376. if (psock) {
  1377. if (READ_ONCE(psock->bpf_parse) && parse) {
  1378. err = -EBUSY;
  1379. goto out_progs;
  1380. }
  1381. if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
  1382. err = -EBUSY;
  1383. goto out_progs;
  1384. }
  1385. if (!refcount_inc_not_zero(&psock->refcnt)) {
  1386. err = -EAGAIN;
  1387. goto out_progs;
  1388. }
  1389. } else {
  1390. psock = smap_init_psock(sock, stab);
  1391. if (IS_ERR(psock)) {
  1392. err = PTR_ERR(psock);
  1393. goto out_progs;
  1394. }
  1395. set_bit(SMAP_TX_RUNNING, &psock->state);
  1396. new = true;
  1397. }
  1398. e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
  1399. if (!e) {
  1400. err = -ENOMEM;
  1401. goto out_progs;
  1402. }
  1403. e->entry = &stab->sock_map[i];
  1404. /* 3. At this point we have a reference to a valid psock that is
  1405. * running. Attach any BPF programs needed.
  1406. */
  1407. if (tx_msg)
  1408. bpf_tcp_msg_add(psock, sock, tx_msg);
  1409. if (new) {
  1410. err = tcp_set_ulp_id(sock, TCP_ULP_BPF);
  1411. if (err)
  1412. goto out_free;
  1413. }
  1414. if (parse && verdict && !psock->strp_enabled) {
  1415. err = smap_init_sock(psock, sock);
  1416. if (err)
  1417. goto out_free;
  1418. smap_init_progs(psock, stab, verdict, parse);
  1419. smap_start_sock(psock, sock);
  1420. }
  1421. /* 4. Place psock in sockmap for use and stop any programs on
  1422. * the old sock assuming its not the same sock we are replacing
  1423. * it with. Because we can only have a single set of programs if
  1424. * old_sock has a strp we can stop it.
  1425. */
  1426. list_add_tail(&e->list, &psock->maps);
  1427. write_unlock_bh(&sock->sk_callback_lock);
  1428. osock = xchg(&stab->sock_map[i], sock);
  1429. if (osock) {
  1430. struct smap_psock *opsock = smap_psock_sk(osock);
  1431. write_lock_bh(&osock->sk_callback_lock);
  1432. smap_list_remove(opsock, &stab->sock_map[i]);
  1433. smap_release_sock(opsock, osock);
  1434. write_unlock_bh(&osock->sk_callback_lock);
  1435. }
  1436. return 0;
  1437. out_free:
  1438. smap_release_sock(psock, sock);
  1439. out_progs:
  1440. if (verdict)
  1441. bpf_prog_put(verdict);
  1442. if (parse)
  1443. bpf_prog_put(parse);
  1444. if (tx_msg)
  1445. bpf_prog_put(tx_msg);
  1446. write_unlock_bh(&sock->sk_callback_lock);
  1447. kfree(e);
  1448. return err;
  1449. }
  1450. int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
  1451. {
  1452. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1453. struct bpf_prog *orig;
  1454. if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
  1455. return -EINVAL;
  1456. switch (type) {
  1457. case BPF_SK_MSG_VERDICT:
  1458. orig = xchg(&stab->bpf_tx_msg, prog);
  1459. break;
  1460. case BPF_SK_SKB_STREAM_PARSER:
  1461. orig = xchg(&stab->bpf_parse, prog);
  1462. break;
  1463. case BPF_SK_SKB_STREAM_VERDICT:
  1464. orig = xchg(&stab->bpf_verdict, prog);
  1465. break;
  1466. default:
  1467. return -EOPNOTSUPP;
  1468. }
  1469. if (orig)
  1470. bpf_prog_put(orig);
  1471. return 0;
  1472. }
  1473. static void *sock_map_lookup(struct bpf_map *map, void *key)
  1474. {
  1475. return NULL;
  1476. }
  1477. static int sock_map_update_elem(struct bpf_map *map,
  1478. void *key, void *value, u64 flags)
  1479. {
  1480. struct bpf_sock_ops_kern skops;
  1481. u32 fd = *(u32 *)value;
  1482. struct socket *socket;
  1483. int err;
  1484. socket = sockfd_lookup(fd, &err);
  1485. if (!socket)
  1486. return err;
  1487. skops.sk = socket->sk;
  1488. if (!skops.sk) {
  1489. fput(socket->file);
  1490. return -EINVAL;
  1491. }
  1492. if (skops.sk->sk_type != SOCK_STREAM ||
  1493. skops.sk->sk_protocol != IPPROTO_TCP) {
  1494. fput(socket->file);
  1495. return -EOPNOTSUPP;
  1496. }
  1497. err = sock_map_ctx_update_elem(&skops, map, key, flags);
  1498. fput(socket->file);
  1499. return err;
  1500. }
  1501. static void sock_map_release(struct bpf_map *map, struct file *map_file)
  1502. {
  1503. struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
  1504. struct bpf_prog *orig;
  1505. orig = xchg(&stab->bpf_parse, NULL);
  1506. if (orig)
  1507. bpf_prog_put(orig);
  1508. orig = xchg(&stab->bpf_verdict, NULL);
  1509. if (orig)
  1510. bpf_prog_put(orig);
  1511. orig = xchg(&stab->bpf_tx_msg, NULL);
  1512. if (orig)
  1513. bpf_prog_put(orig);
  1514. }
  1515. const struct bpf_map_ops sock_map_ops = {
  1516. .map_alloc = sock_map_alloc,
  1517. .map_free = sock_map_free,
  1518. .map_lookup_elem = sock_map_lookup,
  1519. .map_get_next_key = sock_map_get_next_key,
  1520. .map_update_elem = sock_map_update_elem,
  1521. .map_delete_elem = sock_map_delete_elem,
  1522. .map_release = sock_map_release,
  1523. };
  1524. BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
  1525. struct bpf_map *, map, void *, key, u64, flags)
  1526. {
  1527. WARN_ON_ONCE(!rcu_read_lock_held());
  1528. return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
  1529. }
  1530. const struct bpf_func_proto bpf_sock_map_update_proto = {
  1531. .func = bpf_sock_map_update,
  1532. .gpl_only = false,
  1533. .pkt_access = true,
  1534. .ret_type = RET_INTEGER,
  1535. .arg1_type = ARG_PTR_TO_CTX,
  1536. .arg2_type = ARG_CONST_MAP_PTR,
  1537. .arg3_type = ARG_PTR_TO_MAP_KEY,
  1538. .arg4_type = ARG_ANYTHING,
  1539. };