md.c 232 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #include "md-cluster.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. struct md_cluster_operations *md_cluster_ops;
  59. EXPORT_SYMBOL(md_cluster_ops);
  60. struct module *md_cluster_mod;
  61. EXPORT_SYMBOL(md_cluster_mod);
  62. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  63. static struct workqueue_struct *md_wq;
  64. static struct workqueue_struct *md_misc_wq;
  65. static int remove_and_add_spares(struct mddev *mddev,
  66. struct md_rdev *this);
  67. static void mddev_detach(struct mddev *mddev);
  68. /*
  69. * Default number of read corrections we'll attempt on an rdev
  70. * before ejecting it from the array. We divide the read error
  71. * count by 2 for every hour elapsed between read errors.
  72. */
  73. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  74. /*
  75. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  76. * is 1000 KB/sec, so the extra system load does not show up that much.
  77. * Increase it if you want to have more _guaranteed_ speed. Note that
  78. * the RAID driver will use the maximum available bandwidth if the IO
  79. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  80. * speed limit - in case reconstruction slows down your system despite
  81. * idle IO detection.
  82. *
  83. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  84. * or /sys/block/mdX/md/sync_speed_{min,max}
  85. */
  86. static int sysctl_speed_limit_min = 1000;
  87. static int sysctl_speed_limit_max = 200000;
  88. static inline int speed_min(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_min ?
  91. mddev->sync_speed_min : sysctl_speed_limit_min;
  92. }
  93. static inline int speed_max(struct mddev *mddev)
  94. {
  95. return mddev->sync_speed_max ?
  96. mddev->sync_speed_max : sysctl_speed_limit_max;
  97. }
  98. static struct ctl_table_header *raid_table_header;
  99. static struct ctl_table raid_table[] = {
  100. {
  101. .procname = "speed_limit_min",
  102. .data = &sysctl_speed_limit_min,
  103. .maxlen = sizeof(int),
  104. .mode = S_IRUGO|S_IWUSR,
  105. .proc_handler = proc_dointvec,
  106. },
  107. {
  108. .procname = "speed_limit_max",
  109. .data = &sysctl_speed_limit_max,
  110. .maxlen = sizeof(int),
  111. .mode = S_IRUGO|S_IWUSR,
  112. .proc_handler = proc_dointvec,
  113. },
  114. { }
  115. };
  116. static struct ctl_table raid_dir_table[] = {
  117. {
  118. .procname = "raid",
  119. .maxlen = 0,
  120. .mode = S_IRUGO|S_IXUGO,
  121. .child = raid_table,
  122. },
  123. { }
  124. };
  125. static struct ctl_table raid_root_table[] = {
  126. {
  127. .procname = "dev",
  128. .maxlen = 0,
  129. .mode = 0555,
  130. .child = raid_dir_table,
  131. },
  132. { }
  133. };
  134. static const struct block_device_operations md_fops;
  135. static int start_readonly;
  136. /* bio_clone_mddev
  137. * like bio_clone, but with a local bio set
  138. */
  139. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  140. struct mddev *mddev)
  141. {
  142. struct bio *b;
  143. if (!mddev || !mddev->bio_set)
  144. return bio_alloc(gfp_mask, nr_iovecs);
  145. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. return b;
  149. }
  150. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  151. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  152. struct mddev *mddev)
  153. {
  154. if (!mddev || !mddev->bio_set)
  155. return bio_clone(bio, gfp_mask);
  156. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  157. }
  158. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  159. /*
  160. * We have a system wide 'event count' that is incremented
  161. * on any 'interesting' event, and readers of /proc/mdstat
  162. * can use 'poll' or 'select' to find out when the event
  163. * count increases.
  164. *
  165. * Events are:
  166. * start array, stop array, error, add device, remove device,
  167. * start build, activate spare
  168. */
  169. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  170. static atomic_t md_event_count;
  171. void md_new_event(struct mddev *mddev)
  172. {
  173. atomic_inc(&md_event_count);
  174. wake_up(&md_event_waiters);
  175. }
  176. EXPORT_SYMBOL_GPL(md_new_event);
  177. /* Alternate version that can be called from interrupts
  178. * when calling sysfs_notify isn't needed.
  179. */
  180. static void md_new_event_inintr(struct mddev *mddev)
  181. {
  182. atomic_inc(&md_event_count);
  183. wake_up(&md_event_waiters);
  184. }
  185. /*
  186. * Enables to iterate over all existing md arrays
  187. * all_mddevs_lock protects this list.
  188. */
  189. static LIST_HEAD(all_mddevs);
  190. static DEFINE_SPINLOCK(all_mddevs_lock);
  191. /*
  192. * iterates through all used mddevs in the system.
  193. * We take care to grab the all_mddevs_lock whenever navigating
  194. * the list, and to always hold a refcount when unlocked.
  195. * Any code which breaks out of this loop while own
  196. * a reference to the current mddev and must mddev_put it.
  197. */
  198. #define for_each_mddev(_mddev,_tmp) \
  199. \
  200. for (({ spin_lock(&all_mddevs_lock); \
  201. _tmp = all_mddevs.next; \
  202. _mddev = NULL;}); \
  203. ({ if (_tmp != &all_mddevs) \
  204. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  205. spin_unlock(&all_mddevs_lock); \
  206. if (_mddev) mddev_put(_mddev); \
  207. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  208. _tmp != &all_mddevs;}); \
  209. ({ spin_lock(&all_mddevs_lock); \
  210. _tmp = _tmp->next;}) \
  211. )
  212. /* Rather than calling directly into the personality make_request function,
  213. * IO requests come here first so that we can check if the device is
  214. * being suspended pending a reconfiguration.
  215. * We hold a refcount over the call to ->make_request. By the time that
  216. * call has finished, the bio has been linked into some internal structure
  217. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  218. */
  219. static void md_make_request(struct request_queue *q, struct bio *bio)
  220. {
  221. const int rw = bio_data_dir(bio);
  222. struct mddev *mddev = q->queuedata;
  223. unsigned int sectors;
  224. if (mddev == NULL || mddev->pers == NULL
  225. || !mddev->ready) {
  226. bio_io_error(bio);
  227. return;
  228. }
  229. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  230. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  231. return;
  232. }
  233. smp_rmb(); /* Ensure implications of 'active' are visible */
  234. rcu_read_lock();
  235. if (mddev->suspended) {
  236. DEFINE_WAIT(__wait);
  237. for (;;) {
  238. prepare_to_wait(&mddev->sb_wait, &__wait,
  239. TASK_UNINTERRUPTIBLE);
  240. if (!mddev->suspended)
  241. break;
  242. rcu_read_unlock();
  243. schedule();
  244. rcu_read_lock();
  245. }
  246. finish_wait(&mddev->sb_wait, &__wait);
  247. }
  248. atomic_inc(&mddev->active_io);
  249. rcu_read_unlock();
  250. /*
  251. * save the sectors now since our bio can
  252. * go away inside make_request
  253. */
  254. sectors = bio_sectors(bio);
  255. mddev->pers->make_request(mddev, bio);
  256. generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
  257. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  258. wake_up(&mddev->sb_wait);
  259. }
  260. /* mddev_suspend makes sure no new requests are submitted
  261. * to the device, and that any requests that have been submitted
  262. * are completely handled.
  263. * Once mddev_detach() is called and completes, the module will be
  264. * completely unused.
  265. */
  266. void mddev_suspend(struct mddev *mddev)
  267. {
  268. BUG_ON(mddev->suspended);
  269. mddev->suspended = 1;
  270. synchronize_rcu();
  271. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  272. mddev->pers->quiesce(mddev, 1);
  273. del_timer_sync(&mddev->safemode_timer);
  274. }
  275. EXPORT_SYMBOL_GPL(mddev_suspend);
  276. void mddev_resume(struct mddev *mddev)
  277. {
  278. mddev->suspended = 0;
  279. wake_up(&mddev->sb_wait);
  280. mddev->pers->quiesce(mddev, 0);
  281. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  282. md_wakeup_thread(mddev->thread);
  283. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  284. }
  285. EXPORT_SYMBOL_GPL(mddev_resume);
  286. int mddev_congested(struct mddev *mddev, int bits)
  287. {
  288. struct md_personality *pers = mddev->pers;
  289. int ret = 0;
  290. rcu_read_lock();
  291. if (mddev->suspended)
  292. ret = 1;
  293. else if (pers && pers->congested)
  294. ret = pers->congested(mddev, bits);
  295. rcu_read_unlock();
  296. return ret;
  297. }
  298. EXPORT_SYMBOL_GPL(mddev_congested);
  299. static int md_congested(void *data, int bits)
  300. {
  301. struct mddev *mddev = data;
  302. return mddev_congested(mddev, bits);
  303. }
  304. static int md_mergeable_bvec(struct request_queue *q,
  305. struct bvec_merge_data *bvm,
  306. struct bio_vec *biovec)
  307. {
  308. struct mddev *mddev = q->queuedata;
  309. int ret;
  310. rcu_read_lock();
  311. if (mddev->suspended) {
  312. /* Must always allow one vec */
  313. if (bvm->bi_size == 0)
  314. ret = biovec->bv_len;
  315. else
  316. ret = 0;
  317. } else {
  318. struct md_personality *pers = mddev->pers;
  319. if (pers && pers->mergeable_bvec)
  320. ret = pers->mergeable_bvec(mddev, bvm, biovec);
  321. else
  322. ret = biovec->bv_len;
  323. }
  324. rcu_read_unlock();
  325. return ret;
  326. }
  327. /*
  328. * Generic flush handling for md
  329. */
  330. static void md_end_flush(struct bio *bio, int err)
  331. {
  332. struct md_rdev *rdev = bio->bi_private;
  333. struct mddev *mddev = rdev->mddev;
  334. rdev_dec_pending(rdev, mddev);
  335. if (atomic_dec_and_test(&mddev->flush_pending)) {
  336. /* The pre-request flush has finished */
  337. queue_work(md_wq, &mddev->flush_work);
  338. }
  339. bio_put(bio);
  340. }
  341. static void md_submit_flush_data(struct work_struct *ws);
  342. static void submit_flushes(struct work_struct *ws)
  343. {
  344. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  345. struct md_rdev *rdev;
  346. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  347. atomic_set(&mddev->flush_pending, 1);
  348. rcu_read_lock();
  349. rdev_for_each_rcu(rdev, mddev)
  350. if (rdev->raid_disk >= 0 &&
  351. !test_bit(Faulty, &rdev->flags)) {
  352. /* Take two references, one is dropped
  353. * when request finishes, one after
  354. * we reclaim rcu_read_lock
  355. */
  356. struct bio *bi;
  357. atomic_inc(&rdev->nr_pending);
  358. atomic_inc(&rdev->nr_pending);
  359. rcu_read_unlock();
  360. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  361. bi->bi_end_io = md_end_flush;
  362. bi->bi_private = rdev;
  363. bi->bi_bdev = rdev->bdev;
  364. atomic_inc(&mddev->flush_pending);
  365. submit_bio(WRITE_FLUSH, bi);
  366. rcu_read_lock();
  367. rdev_dec_pending(rdev, mddev);
  368. }
  369. rcu_read_unlock();
  370. if (atomic_dec_and_test(&mddev->flush_pending))
  371. queue_work(md_wq, &mddev->flush_work);
  372. }
  373. static void md_submit_flush_data(struct work_struct *ws)
  374. {
  375. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  376. struct bio *bio = mddev->flush_bio;
  377. if (bio->bi_iter.bi_size == 0)
  378. /* an empty barrier - all done */
  379. bio_endio(bio, 0);
  380. else {
  381. bio->bi_rw &= ~REQ_FLUSH;
  382. mddev->pers->make_request(mddev, bio);
  383. }
  384. mddev->flush_bio = NULL;
  385. wake_up(&mddev->sb_wait);
  386. }
  387. void md_flush_request(struct mddev *mddev, struct bio *bio)
  388. {
  389. spin_lock_irq(&mddev->lock);
  390. wait_event_lock_irq(mddev->sb_wait,
  391. !mddev->flush_bio,
  392. mddev->lock);
  393. mddev->flush_bio = bio;
  394. spin_unlock_irq(&mddev->lock);
  395. INIT_WORK(&mddev->flush_work, submit_flushes);
  396. queue_work(md_wq, &mddev->flush_work);
  397. }
  398. EXPORT_SYMBOL(md_flush_request);
  399. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  400. {
  401. struct mddev *mddev = cb->data;
  402. md_wakeup_thread(mddev->thread);
  403. kfree(cb);
  404. }
  405. EXPORT_SYMBOL(md_unplug);
  406. static inline struct mddev *mddev_get(struct mddev *mddev)
  407. {
  408. atomic_inc(&mddev->active);
  409. return mddev;
  410. }
  411. static void mddev_delayed_delete(struct work_struct *ws);
  412. static void mddev_put(struct mddev *mddev)
  413. {
  414. struct bio_set *bs = NULL;
  415. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  416. return;
  417. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  418. mddev->ctime == 0 && !mddev->hold_active) {
  419. /* Array is not configured at all, and not held active,
  420. * so destroy it */
  421. list_del_init(&mddev->all_mddevs);
  422. bs = mddev->bio_set;
  423. mddev->bio_set = NULL;
  424. if (mddev->gendisk) {
  425. /* We did a probe so need to clean up. Call
  426. * queue_work inside the spinlock so that
  427. * flush_workqueue() after mddev_find will
  428. * succeed in waiting for the work to be done.
  429. */
  430. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  431. queue_work(md_misc_wq, &mddev->del_work);
  432. } else
  433. kfree(mddev);
  434. }
  435. spin_unlock(&all_mddevs_lock);
  436. if (bs)
  437. bioset_free(bs);
  438. }
  439. void mddev_init(struct mddev *mddev)
  440. {
  441. mutex_init(&mddev->open_mutex);
  442. mutex_init(&mddev->reconfig_mutex);
  443. mutex_init(&mddev->bitmap_info.mutex);
  444. INIT_LIST_HEAD(&mddev->disks);
  445. INIT_LIST_HEAD(&mddev->all_mddevs);
  446. init_timer(&mddev->safemode_timer);
  447. atomic_set(&mddev->active, 1);
  448. atomic_set(&mddev->openers, 0);
  449. atomic_set(&mddev->active_io, 0);
  450. spin_lock_init(&mddev->lock);
  451. atomic_set(&mddev->flush_pending, 0);
  452. init_waitqueue_head(&mddev->sb_wait);
  453. init_waitqueue_head(&mddev->recovery_wait);
  454. mddev->reshape_position = MaxSector;
  455. mddev->reshape_backwards = 0;
  456. mddev->last_sync_action = "none";
  457. mddev->resync_min = 0;
  458. mddev->resync_max = MaxSector;
  459. mddev->level = LEVEL_NONE;
  460. }
  461. EXPORT_SYMBOL_GPL(mddev_init);
  462. static struct mddev *mddev_find(dev_t unit)
  463. {
  464. struct mddev *mddev, *new = NULL;
  465. if (unit && MAJOR(unit) != MD_MAJOR)
  466. unit &= ~((1<<MdpMinorShift)-1);
  467. retry:
  468. spin_lock(&all_mddevs_lock);
  469. if (unit) {
  470. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  471. if (mddev->unit == unit) {
  472. mddev_get(mddev);
  473. spin_unlock(&all_mddevs_lock);
  474. kfree(new);
  475. return mddev;
  476. }
  477. if (new) {
  478. list_add(&new->all_mddevs, &all_mddevs);
  479. spin_unlock(&all_mddevs_lock);
  480. new->hold_active = UNTIL_IOCTL;
  481. return new;
  482. }
  483. } else if (new) {
  484. /* find an unused unit number */
  485. static int next_minor = 512;
  486. int start = next_minor;
  487. int is_free = 0;
  488. int dev = 0;
  489. while (!is_free) {
  490. dev = MKDEV(MD_MAJOR, next_minor);
  491. next_minor++;
  492. if (next_minor > MINORMASK)
  493. next_minor = 0;
  494. if (next_minor == start) {
  495. /* Oh dear, all in use. */
  496. spin_unlock(&all_mddevs_lock);
  497. kfree(new);
  498. return NULL;
  499. }
  500. is_free = 1;
  501. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  502. if (mddev->unit == dev) {
  503. is_free = 0;
  504. break;
  505. }
  506. }
  507. new->unit = dev;
  508. new->md_minor = MINOR(dev);
  509. new->hold_active = UNTIL_STOP;
  510. list_add(&new->all_mddevs, &all_mddevs);
  511. spin_unlock(&all_mddevs_lock);
  512. return new;
  513. }
  514. spin_unlock(&all_mddevs_lock);
  515. new = kzalloc(sizeof(*new), GFP_KERNEL);
  516. if (!new)
  517. return NULL;
  518. new->unit = unit;
  519. if (MAJOR(unit) == MD_MAJOR)
  520. new->md_minor = MINOR(unit);
  521. else
  522. new->md_minor = MINOR(unit) >> MdpMinorShift;
  523. mddev_init(new);
  524. goto retry;
  525. }
  526. static struct attribute_group md_redundancy_group;
  527. void mddev_unlock(struct mddev *mddev)
  528. {
  529. if (mddev->to_remove) {
  530. /* These cannot be removed under reconfig_mutex as
  531. * an access to the files will try to take reconfig_mutex
  532. * while holding the file unremovable, which leads to
  533. * a deadlock.
  534. * So hold set sysfs_active while the remove in happeing,
  535. * and anything else which might set ->to_remove or my
  536. * otherwise change the sysfs namespace will fail with
  537. * -EBUSY if sysfs_active is still set.
  538. * We set sysfs_active under reconfig_mutex and elsewhere
  539. * test it under the same mutex to ensure its correct value
  540. * is seen.
  541. */
  542. struct attribute_group *to_remove = mddev->to_remove;
  543. mddev->to_remove = NULL;
  544. mddev->sysfs_active = 1;
  545. mutex_unlock(&mddev->reconfig_mutex);
  546. if (mddev->kobj.sd) {
  547. if (to_remove != &md_redundancy_group)
  548. sysfs_remove_group(&mddev->kobj, to_remove);
  549. if (mddev->pers == NULL ||
  550. mddev->pers->sync_request == NULL) {
  551. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  552. if (mddev->sysfs_action)
  553. sysfs_put(mddev->sysfs_action);
  554. mddev->sysfs_action = NULL;
  555. }
  556. }
  557. mddev->sysfs_active = 0;
  558. } else
  559. mutex_unlock(&mddev->reconfig_mutex);
  560. /* As we've dropped the mutex we need a spinlock to
  561. * make sure the thread doesn't disappear
  562. */
  563. spin_lock(&pers_lock);
  564. md_wakeup_thread(mddev->thread);
  565. spin_unlock(&pers_lock);
  566. }
  567. EXPORT_SYMBOL_GPL(mddev_unlock);
  568. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  569. {
  570. struct md_rdev *rdev;
  571. rdev_for_each_rcu(rdev, mddev)
  572. if (rdev->desc_nr == nr)
  573. return rdev;
  574. return NULL;
  575. }
  576. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  577. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  578. {
  579. struct md_rdev *rdev;
  580. rdev_for_each(rdev, mddev)
  581. if (rdev->bdev->bd_dev == dev)
  582. return rdev;
  583. return NULL;
  584. }
  585. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  586. {
  587. struct md_rdev *rdev;
  588. rdev_for_each_rcu(rdev, mddev)
  589. if (rdev->bdev->bd_dev == dev)
  590. return rdev;
  591. return NULL;
  592. }
  593. static struct md_personality *find_pers(int level, char *clevel)
  594. {
  595. struct md_personality *pers;
  596. list_for_each_entry(pers, &pers_list, list) {
  597. if (level != LEVEL_NONE && pers->level == level)
  598. return pers;
  599. if (strcmp(pers->name, clevel)==0)
  600. return pers;
  601. }
  602. return NULL;
  603. }
  604. /* return the offset of the super block in 512byte sectors */
  605. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  606. {
  607. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  608. return MD_NEW_SIZE_SECTORS(num_sectors);
  609. }
  610. static int alloc_disk_sb(struct md_rdev *rdev)
  611. {
  612. rdev->sb_page = alloc_page(GFP_KERNEL);
  613. if (!rdev->sb_page) {
  614. printk(KERN_ALERT "md: out of memory.\n");
  615. return -ENOMEM;
  616. }
  617. return 0;
  618. }
  619. void md_rdev_clear(struct md_rdev *rdev)
  620. {
  621. if (rdev->sb_page) {
  622. put_page(rdev->sb_page);
  623. rdev->sb_loaded = 0;
  624. rdev->sb_page = NULL;
  625. rdev->sb_start = 0;
  626. rdev->sectors = 0;
  627. }
  628. if (rdev->bb_page) {
  629. put_page(rdev->bb_page);
  630. rdev->bb_page = NULL;
  631. }
  632. kfree(rdev->badblocks.page);
  633. rdev->badblocks.page = NULL;
  634. }
  635. EXPORT_SYMBOL_GPL(md_rdev_clear);
  636. static void super_written(struct bio *bio, int error)
  637. {
  638. struct md_rdev *rdev = bio->bi_private;
  639. struct mddev *mddev = rdev->mddev;
  640. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  641. printk("md: super_written gets error=%d, uptodate=%d\n",
  642. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  643. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  644. md_error(mddev, rdev);
  645. }
  646. if (atomic_dec_and_test(&mddev->pending_writes))
  647. wake_up(&mddev->sb_wait);
  648. bio_put(bio);
  649. }
  650. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  651. sector_t sector, int size, struct page *page)
  652. {
  653. /* write first size bytes of page to sector of rdev
  654. * Increment mddev->pending_writes before returning
  655. * and decrement it on completion, waking up sb_wait
  656. * if zero is reached.
  657. * If an error occurred, call md_error
  658. */
  659. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  660. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  661. bio->bi_iter.bi_sector = sector;
  662. bio_add_page(bio, page, size, 0);
  663. bio->bi_private = rdev;
  664. bio->bi_end_io = super_written;
  665. atomic_inc(&mddev->pending_writes);
  666. submit_bio(WRITE_FLUSH_FUA, bio);
  667. }
  668. void md_super_wait(struct mddev *mddev)
  669. {
  670. /* wait for all superblock writes that were scheduled to complete */
  671. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  672. }
  673. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  674. struct page *page, int rw, bool metadata_op)
  675. {
  676. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  677. int ret;
  678. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  679. rdev->meta_bdev : rdev->bdev;
  680. if (metadata_op)
  681. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  682. else if (rdev->mddev->reshape_position != MaxSector &&
  683. (rdev->mddev->reshape_backwards ==
  684. (sector >= rdev->mddev->reshape_position)))
  685. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  686. else
  687. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  688. bio_add_page(bio, page, size, 0);
  689. submit_bio_wait(rw, bio);
  690. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  691. bio_put(bio);
  692. return ret;
  693. }
  694. EXPORT_SYMBOL_GPL(sync_page_io);
  695. static int read_disk_sb(struct md_rdev *rdev, int size)
  696. {
  697. char b[BDEVNAME_SIZE];
  698. if (rdev->sb_loaded)
  699. return 0;
  700. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  701. goto fail;
  702. rdev->sb_loaded = 1;
  703. return 0;
  704. fail:
  705. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  706. bdevname(rdev->bdev,b));
  707. return -EINVAL;
  708. }
  709. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  710. {
  711. return sb1->set_uuid0 == sb2->set_uuid0 &&
  712. sb1->set_uuid1 == sb2->set_uuid1 &&
  713. sb1->set_uuid2 == sb2->set_uuid2 &&
  714. sb1->set_uuid3 == sb2->set_uuid3;
  715. }
  716. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  717. {
  718. int ret;
  719. mdp_super_t *tmp1, *tmp2;
  720. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  721. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  722. if (!tmp1 || !tmp2) {
  723. ret = 0;
  724. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  725. goto abort;
  726. }
  727. *tmp1 = *sb1;
  728. *tmp2 = *sb2;
  729. /*
  730. * nr_disks is not constant
  731. */
  732. tmp1->nr_disks = 0;
  733. tmp2->nr_disks = 0;
  734. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  735. abort:
  736. kfree(tmp1);
  737. kfree(tmp2);
  738. return ret;
  739. }
  740. static u32 md_csum_fold(u32 csum)
  741. {
  742. csum = (csum & 0xffff) + (csum >> 16);
  743. return (csum & 0xffff) + (csum >> 16);
  744. }
  745. static unsigned int calc_sb_csum(mdp_super_t *sb)
  746. {
  747. u64 newcsum = 0;
  748. u32 *sb32 = (u32*)sb;
  749. int i;
  750. unsigned int disk_csum, csum;
  751. disk_csum = sb->sb_csum;
  752. sb->sb_csum = 0;
  753. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  754. newcsum += sb32[i];
  755. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  756. #ifdef CONFIG_ALPHA
  757. /* This used to use csum_partial, which was wrong for several
  758. * reasons including that different results are returned on
  759. * different architectures. It isn't critical that we get exactly
  760. * the same return value as before (we always csum_fold before
  761. * testing, and that removes any differences). However as we
  762. * know that csum_partial always returned a 16bit value on
  763. * alphas, do a fold to maximise conformity to previous behaviour.
  764. */
  765. sb->sb_csum = md_csum_fold(disk_csum);
  766. #else
  767. sb->sb_csum = disk_csum;
  768. #endif
  769. return csum;
  770. }
  771. /*
  772. * Handle superblock details.
  773. * We want to be able to handle multiple superblock formats
  774. * so we have a common interface to them all, and an array of
  775. * different handlers.
  776. * We rely on user-space to write the initial superblock, and support
  777. * reading and updating of superblocks.
  778. * Interface methods are:
  779. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  780. * loads and validates a superblock on dev.
  781. * if refdev != NULL, compare superblocks on both devices
  782. * Return:
  783. * 0 - dev has a superblock that is compatible with refdev
  784. * 1 - dev has a superblock that is compatible and newer than refdev
  785. * so dev should be used as the refdev in future
  786. * -EINVAL superblock incompatible or invalid
  787. * -othererror e.g. -EIO
  788. *
  789. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  790. * Verify that dev is acceptable into mddev.
  791. * The first time, mddev->raid_disks will be 0, and data from
  792. * dev should be merged in. Subsequent calls check that dev
  793. * is new enough. Return 0 or -EINVAL
  794. *
  795. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  796. * Update the superblock for rdev with data in mddev
  797. * This does not write to disc.
  798. *
  799. */
  800. struct super_type {
  801. char *name;
  802. struct module *owner;
  803. int (*load_super)(struct md_rdev *rdev,
  804. struct md_rdev *refdev,
  805. int minor_version);
  806. int (*validate_super)(struct mddev *mddev,
  807. struct md_rdev *rdev);
  808. void (*sync_super)(struct mddev *mddev,
  809. struct md_rdev *rdev);
  810. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  811. sector_t num_sectors);
  812. int (*allow_new_offset)(struct md_rdev *rdev,
  813. unsigned long long new_offset);
  814. };
  815. /*
  816. * Check that the given mddev has no bitmap.
  817. *
  818. * This function is called from the run method of all personalities that do not
  819. * support bitmaps. It prints an error message and returns non-zero if mddev
  820. * has a bitmap. Otherwise, it returns 0.
  821. *
  822. */
  823. int md_check_no_bitmap(struct mddev *mddev)
  824. {
  825. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  826. return 0;
  827. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  828. mdname(mddev), mddev->pers->name);
  829. return 1;
  830. }
  831. EXPORT_SYMBOL(md_check_no_bitmap);
  832. /*
  833. * load_super for 0.90.0
  834. */
  835. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  836. {
  837. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  838. mdp_super_t *sb;
  839. int ret;
  840. /*
  841. * Calculate the position of the superblock (512byte sectors),
  842. * it's at the end of the disk.
  843. *
  844. * It also happens to be a multiple of 4Kb.
  845. */
  846. rdev->sb_start = calc_dev_sboffset(rdev);
  847. ret = read_disk_sb(rdev, MD_SB_BYTES);
  848. if (ret) return ret;
  849. ret = -EINVAL;
  850. bdevname(rdev->bdev, b);
  851. sb = page_address(rdev->sb_page);
  852. if (sb->md_magic != MD_SB_MAGIC) {
  853. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  854. b);
  855. goto abort;
  856. }
  857. if (sb->major_version != 0 ||
  858. sb->minor_version < 90 ||
  859. sb->minor_version > 91) {
  860. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  861. sb->major_version, sb->minor_version,
  862. b);
  863. goto abort;
  864. }
  865. if (sb->raid_disks <= 0)
  866. goto abort;
  867. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  868. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  869. b);
  870. goto abort;
  871. }
  872. rdev->preferred_minor = sb->md_minor;
  873. rdev->data_offset = 0;
  874. rdev->new_data_offset = 0;
  875. rdev->sb_size = MD_SB_BYTES;
  876. rdev->badblocks.shift = -1;
  877. if (sb->level == LEVEL_MULTIPATH)
  878. rdev->desc_nr = -1;
  879. else
  880. rdev->desc_nr = sb->this_disk.number;
  881. if (!refdev) {
  882. ret = 1;
  883. } else {
  884. __u64 ev1, ev2;
  885. mdp_super_t *refsb = page_address(refdev->sb_page);
  886. if (!uuid_equal(refsb, sb)) {
  887. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  888. b, bdevname(refdev->bdev,b2));
  889. goto abort;
  890. }
  891. if (!sb_equal(refsb, sb)) {
  892. printk(KERN_WARNING "md: %s has same UUID"
  893. " but different superblock to %s\n",
  894. b, bdevname(refdev->bdev, b2));
  895. goto abort;
  896. }
  897. ev1 = md_event(sb);
  898. ev2 = md_event(refsb);
  899. if (ev1 > ev2)
  900. ret = 1;
  901. else
  902. ret = 0;
  903. }
  904. rdev->sectors = rdev->sb_start;
  905. /* Limit to 4TB as metadata cannot record more than that.
  906. * (not needed for Linear and RAID0 as metadata doesn't
  907. * record this size)
  908. */
  909. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  910. rdev->sectors = (2ULL << 32) - 2;
  911. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  912. /* "this cannot possibly happen" ... */
  913. ret = -EINVAL;
  914. abort:
  915. return ret;
  916. }
  917. /*
  918. * validate_super for 0.90.0
  919. */
  920. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  921. {
  922. mdp_disk_t *desc;
  923. mdp_super_t *sb = page_address(rdev->sb_page);
  924. __u64 ev1 = md_event(sb);
  925. rdev->raid_disk = -1;
  926. clear_bit(Faulty, &rdev->flags);
  927. clear_bit(In_sync, &rdev->flags);
  928. clear_bit(Bitmap_sync, &rdev->flags);
  929. clear_bit(WriteMostly, &rdev->flags);
  930. if (mddev->raid_disks == 0) {
  931. mddev->major_version = 0;
  932. mddev->minor_version = sb->minor_version;
  933. mddev->patch_version = sb->patch_version;
  934. mddev->external = 0;
  935. mddev->chunk_sectors = sb->chunk_size >> 9;
  936. mddev->ctime = sb->ctime;
  937. mddev->utime = sb->utime;
  938. mddev->level = sb->level;
  939. mddev->clevel[0] = 0;
  940. mddev->layout = sb->layout;
  941. mddev->raid_disks = sb->raid_disks;
  942. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  943. mddev->events = ev1;
  944. mddev->bitmap_info.offset = 0;
  945. mddev->bitmap_info.space = 0;
  946. /* bitmap can use 60 K after the 4K superblocks */
  947. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  948. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  949. mddev->reshape_backwards = 0;
  950. if (mddev->minor_version >= 91) {
  951. mddev->reshape_position = sb->reshape_position;
  952. mddev->delta_disks = sb->delta_disks;
  953. mddev->new_level = sb->new_level;
  954. mddev->new_layout = sb->new_layout;
  955. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  956. if (mddev->delta_disks < 0)
  957. mddev->reshape_backwards = 1;
  958. } else {
  959. mddev->reshape_position = MaxSector;
  960. mddev->delta_disks = 0;
  961. mddev->new_level = mddev->level;
  962. mddev->new_layout = mddev->layout;
  963. mddev->new_chunk_sectors = mddev->chunk_sectors;
  964. }
  965. if (sb->state & (1<<MD_SB_CLEAN))
  966. mddev->recovery_cp = MaxSector;
  967. else {
  968. if (sb->events_hi == sb->cp_events_hi &&
  969. sb->events_lo == sb->cp_events_lo) {
  970. mddev->recovery_cp = sb->recovery_cp;
  971. } else
  972. mddev->recovery_cp = 0;
  973. }
  974. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  975. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  976. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  977. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  978. mddev->max_disks = MD_SB_DISKS;
  979. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  980. mddev->bitmap_info.file == NULL) {
  981. mddev->bitmap_info.offset =
  982. mddev->bitmap_info.default_offset;
  983. mddev->bitmap_info.space =
  984. mddev->bitmap_info.default_space;
  985. }
  986. } else if (mddev->pers == NULL) {
  987. /* Insist on good event counter while assembling, except
  988. * for spares (which don't need an event count) */
  989. ++ev1;
  990. if (sb->disks[rdev->desc_nr].state & (
  991. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  992. if (ev1 < mddev->events)
  993. return -EINVAL;
  994. } else if (mddev->bitmap) {
  995. /* if adding to array with a bitmap, then we can accept an
  996. * older device ... but not too old.
  997. */
  998. if (ev1 < mddev->bitmap->events_cleared)
  999. return 0;
  1000. if (ev1 < mddev->events)
  1001. set_bit(Bitmap_sync, &rdev->flags);
  1002. } else {
  1003. if (ev1 < mddev->events)
  1004. /* just a hot-add of a new device, leave raid_disk at -1 */
  1005. return 0;
  1006. }
  1007. if (mddev->level != LEVEL_MULTIPATH) {
  1008. desc = sb->disks + rdev->desc_nr;
  1009. if (desc->state & (1<<MD_DISK_FAULTY))
  1010. set_bit(Faulty, &rdev->flags);
  1011. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1012. desc->raid_disk < mddev->raid_disks */) {
  1013. set_bit(In_sync, &rdev->flags);
  1014. rdev->raid_disk = desc->raid_disk;
  1015. rdev->saved_raid_disk = desc->raid_disk;
  1016. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1017. /* active but not in sync implies recovery up to
  1018. * reshape position. We don't know exactly where
  1019. * that is, so set to zero for now */
  1020. if (mddev->minor_version >= 91) {
  1021. rdev->recovery_offset = 0;
  1022. rdev->raid_disk = desc->raid_disk;
  1023. }
  1024. }
  1025. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1026. set_bit(WriteMostly, &rdev->flags);
  1027. } else /* MULTIPATH are always insync */
  1028. set_bit(In_sync, &rdev->flags);
  1029. return 0;
  1030. }
  1031. /*
  1032. * sync_super for 0.90.0
  1033. */
  1034. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1035. {
  1036. mdp_super_t *sb;
  1037. struct md_rdev *rdev2;
  1038. int next_spare = mddev->raid_disks;
  1039. /* make rdev->sb match mddev data..
  1040. *
  1041. * 1/ zero out disks
  1042. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1043. * 3/ any empty disks < next_spare become removed
  1044. *
  1045. * disks[0] gets initialised to REMOVED because
  1046. * we cannot be sure from other fields if it has
  1047. * been initialised or not.
  1048. */
  1049. int i;
  1050. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1051. rdev->sb_size = MD_SB_BYTES;
  1052. sb = page_address(rdev->sb_page);
  1053. memset(sb, 0, sizeof(*sb));
  1054. sb->md_magic = MD_SB_MAGIC;
  1055. sb->major_version = mddev->major_version;
  1056. sb->patch_version = mddev->patch_version;
  1057. sb->gvalid_words = 0; /* ignored */
  1058. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1059. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1060. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1061. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1062. sb->ctime = mddev->ctime;
  1063. sb->level = mddev->level;
  1064. sb->size = mddev->dev_sectors / 2;
  1065. sb->raid_disks = mddev->raid_disks;
  1066. sb->md_minor = mddev->md_minor;
  1067. sb->not_persistent = 0;
  1068. sb->utime = mddev->utime;
  1069. sb->state = 0;
  1070. sb->events_hi = (mddev->events>>32);
  1071. sb->events_lo = (u32)mddev->events;
  1072. if (mddev->reshape_position == MaxSector)
  1073. sb->minor_version = 90;
  1074. else {
  1075. sb->minor_version = 91;
  1076. sb->reshape_position = mddev->reshape_position;
  1077. sb->new_level = mddev->new_level;
  1078. sb->delta_disks = mddev->delta_disks;
  1079. sb->new_layout = mddev->new_layout;
  1080. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1081. }
  1082. mddev->minor_version = sb->minor_version;
  1083. if (mddev->in_sync)
  1084. {
  1085. sb->recovery_cp = mddev->recovery_cp;
  1086. sb->cp_events_hi = (mddev->events>>32);
  1087. sb->cp_events_lo = (u32)mddev->events;
  1088. if (mddev->recovery_cp == MaxSector)
  1089. sb->state = (1<< MD_SB_CLEAN);
  1090. } else
  1091. sb->recovery_cp = 0;
  1092. sb->layout = mddev->layout;
  1093. sb->chunk_size = mddev->chunk_sectors << 9;
  1094. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1095. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1096. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1097. rdev_for_each(rdev2, mddev) {
  1098. mdp_disk_t *d;
  1099. int desc_nr;
  1100. int is_active = test_bit(In_sync, &rdev2->flags);
  1101. if (rdev2->raid_disk >= 0 &&
  1102. sb->minor_version >= 91)
  1103. /* we have nowhere to store the recovery_offset,
  1104. * but if it is not below the reshape_position,
  1105. * we can piggy-back on that.
  1106. */
  1107. is_active = 1;
  1108. if (rdev2->raid_disk < 0 ||
  1109. test_bit(Faulty, &rdev2->flags))
  1110. is_active = 0;
  1111. if (is_active)
  1112. desc_nr = rdev2->raid_disk;
  1113. else
  1114. desc_nr = next_spare++;
  1115. rdev2->desc_nr = desc_nr;
  1116. d = &sb->disks[rdev2->desc_nr];
  1117. nr_disks++;
  1118. d->number = rdev2->desc_nr;
  1119. d->major = MAJOR(rdev2->bdev->bd_dev);
  1120. d->minor = MINOR(rdev2->bdev->bd_dev);
  1121. if (is_active)
  1122. d->raid_disk = rdev2->raid_disk;
  1123. else
  1124. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1125. if (test_bit(Faulty, &rdev2->flags))
  1126. d->state = (1<<MD_DISK_FAULTY);
  1127. else if (is_active) {
  1128. d->state = (1<<MD_DISK_ACTIVE);
  1129. if (test_bit(In_sync, &rdev2->flags))
  1130. d->state |= (1<<MD_DISK_SYNC);
  1131. active++;
  1132. working++;
  1133. } else {
  1134. d->state = 0;
  1135. spare++;
  1136. working++;
  1137. }
  1138. if (test_bit(WriteMostly, &rdev2->flags))
  1139. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1140. }
  1141. /* now set the "removed" and "faulty" bits on any missing devices */
  1142. for (i=0 ; i < mddev->raid_disks ; i++) {
  1143. mdp_disk_t *d = &sb->disks[i];
  1144. if (d->state == 0 && d->number == 0) {
  1145. d->number = i;
  1146. d->raid_disk = i;
  1147. d->state = (1<<MD_DISK_REMOVED);
  1148. d->state |= (1<<MD_DISK_FAULTY);
  1149. failed++;
  1150. }
  1151. }
  1152. sb->nr_disks = nr_disks;
  1153. sb->active_disks = active;
  1154. sb->working_disks = working;
  1155. sb->failed_disks = failed;
  1156. sb->spare_disks = spare;
  1157. sb->this_disk = sb->disks[rdev->desc_nr];
  1158. sb->sb_csum = calc_sb_csum(sb);
  1159. }
  1160. /*
  1161. * rdev_size_change for 0.90.0
  1162. */
  1163. static unsigned long long
  1164. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1165. {
  1166. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1167. return 0; /* component must fit device */
  1168. if (rdev->mddev->bitmap_info.offset)
  1169. return 0; /* can't move bitmap */
  1170. rdev->sb_start = calc_dev_sboffset(rdev);
  1171. if (!num_sectors || num_sectors > rdev->sb_start)
  1172. num_sectors = rdev->sb_start;
  1173. /* Limit to 4TB as metadata cannot record more than that.
  1174. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1175. */
  1176. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1177. num_sectors = (2ULL << 32) - 2;
  1178. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1179. rdev->sb_page);
  1180. md_super_wait(rdev->mddev);
  1181. return num_sectors;
  1182. }
  1183. static int
  1184. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1185. {
  1186. /* non-zero offset changes not possible with v0.90 */
  1187. return new_offset == 0;
  1188. }
  1189. /*
  1190. * version 1 superblock
  1191. */
  1192. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1193. {
  1194. __le32 disk_csum;
  1195. u32 csum;
  1196. unsigned long long newcsum;
  1197. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1198. __le32 *isuper = (__le32*)sb;
  1199. disk_csum = sb->sb_csum;
  1200. sb->sb_csum = 0;
  1201. newcsum = 0;
  1202. for (; size >= 4; size -= 4)
  1203. newcsum += le32_to_cpu(*isuper++);
  1204. if (size == 2)
  1205. newcsum += le16_to_cpu(*(__le16*) isuper);
  1206. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1207. sb->sb_csum = disk_csum;
  1208. return cpu_to_le32(csum);
  1209. }
  1210. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1211. int acknowledged);
  1212. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1213. {
  1214. struct mdp_superblock_1 *sb;
  1215. int ret;
  1216. sector_t sb_start;
  1217. sector_t sectors;
  1218. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1219. int bmask;
  1220. /*
  1221. * Calculate the position of the superblock in 512byte sectors.
  1222. * It is always aligned to a 4K boundary and
  1223. * depeding on minor_version, it can be:
  1224. * 0: At least 8K, but less than 12K, from end of device
  1225. * 1: At start of device
  1226. * 2: 4K from start of device.
  1227. */
  1228. switch(minor_version) {
  1229. case 0:
  1230. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1231. sb_start -= 8*2;
  1232. sb_start &= ~(sector_t)(4*2-1);
  1233. break;
  1234. case 1:
  1235. sb_start = 0;
  1236. break;
  1237. case 2:
  1238. sb_start = 8;
  1239. break;
  1240. default:
  1241. return -EINVAL;
  1242. }
  1243. rdev->sb_start = sb_start;
  1244. /* superblock is rarely larger than 1K, but it can be larger,
  1245. * and it is safe to read 4k, so we do that
  1246. */
  1247. ret = read_disk_sb(rdev, 4096);
  1248. if (ret) return ret;
  1249. sb = page_address(rdev->sb_page);
  1250. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1251. sb->major_version != cpu_to_le32(1) ||
  1252. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1253. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1254. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1255. return -EINVAL;
  1256. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1257. printk("md: invalid superblock checksum on %s\n",
  1258. bdevname(rdev->bdev,b));
  1259. return -EINVAL;
  1260. }
  1261. if (le64_to_cpu(sb->data_size) < 10) {
  1262. printk("md: data_size too small on %s\n",
  1263. bdevname(rdev->bdev,b));
  1264. return -EINVAL;
  1265. }
  1266. if (sb->pad0 ||
  1267. sb->pad3[0] ||
  1268. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1269. /* Some padding is non-zero, might be a new feature */
  1270. return -EINVAL;
  1271. rdev->preferred_minor = 0xffff;
  1272. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1273. rdev->new_data_offset = rdev->data_offset;
  1274. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1275. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1276. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1277. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1278. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1279. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1280. if (rdev->sb_size & bmask)
  1281. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1282. if (minor_version
  1283. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1284. return -EINVAL;
  1285. if (minor_version
  1286. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1287. return -EINVAL;
  1288. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1289. rdev->desc_nr = -1;
  1290. else
  1291. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1292. if (!rdev->bb_page) {
  1293. rdev->bb_page = alloc_page(GFP_KERNEL);
  1294. if (!rdev->bb_page)
  1295. return -ENOMEM;
  1296. }
  1297. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1298. rdev->badblocks.count == 0) {
  1299. /* need to load the bad block list.
  1300. * Currently we limit it to one page.
  1301. */
  1302. s32 offset;
  1303. sector_t bb_sector;
  1304. u64 *bbp;
  1305. int i;
  1306. int sectors = le16_to_cpu(sb->bblog_size);
  1307. if (sectors > (PAGE_SIZE / 512))
  1308. return -EINVAL;
  1309. offset = le32_to_cpu(sb->bblog_offset);
  1310. if (offset == 0)
  1311. return -EINVAL;
  1312. bb_sector = (long long)offset;
  1313. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1314. rdev->bb_page, READ, true))
  1315. return -EIO;
  1316. bbp = (u64 *)page_address(rdev->bb_page);
  1317. rdev->badblocks.shift = sb->bblog_shift;
  1318. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1319. u64 bb = le64_to_cpu(*bbp);
  1320. int count = bb & (0x3ff);
  1321. u64 sector = bb >> 10;
  1322. sector <<= sb->bblog_shift;
  1323. count <<= sb->bblog_shift;
  1324. if (bb + 1 == 0)
  1325. break;
  1326. if (md_set_badblocks(&rdev->badblocks,
  1327. sector, count, 1) == 0)
  1328. return -EINVAL;
  1329. }
  1330. } else if (sb->bblog_offset != 0)
  1331. rdev->badblocks.shift = 0;
  1332. if (!refdev) {
  1333. ret = 1;
  1334. } else {
  1335. __u64 ev1, ev2;
  1336. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1337. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1338. sb->level != refsb->level ||
  1339. sb->layout != refsb->layout ||
  1340. sb->chunksize != refsb->chunksize) {
  1341. printk(KERN_WARNING "md: %s has strangely different"
  1342. " superblock to %s\n",
  1343. bdevname(rdev->bdev,b),
  1344. bdevname(refdev->bdev,b2));
  1345. return -EINVAL;
  1346. }
  1347. ev1 = le64_to_cpu(sb->events);
  1348. ev2 = le64_to_cpu(refsb->events);
  1349. if (ev1 > ev2)
  1350. ret = 1;
  1351. else
  1352. ret = 0;
  1353. }
  1354. if (minor_version) {
  1355. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1356. sectors -= rdev->data_offset;
  1357. } else
  1358. sectors = rdev->sb_start;
  1359. if (sectors < le64_to_cpu(sb->data_size))
  1360. return -EINVAL;
  1361. rdev->sectors = le64_to_cpu(sb->data_size);
  1362. return ret;
  1363. }
  1364. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1365. {
  1366. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1367. __u64 ev1 = le64_to_cpu(sb->events);
  1368. rdev->raid_disk = -1;
  1369. clear_bit(Faulty, &rdev->flags);
  1370. clear_bit(In_sync, &rdev->flags);
  1371. clear_bit(Bitmap_sync, &rdev->flags);
  1372. clear_bit(WriteMostly, &rdev->flags);
  1373. if (mddev->raid_disks == 0) {
  1374. mddev->major_version = 1;
  1375. mddev->patch_version = 0;
  1376. mddev->external = 0;
  1377. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1378. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1379. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1380. mddev->level = le32_to_cpu(sb->level);
  1381. mddev->clevel[0] = 0;
  1382. mddev->layout = le32_to_cpu(sb->layout);
  1383. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1384. mddev->dev_sectors = le64_to_cpu(sb->size);
  1385. mddev->events = ev1;
  1386. mddev->bitmap_info.offset = 0;
  1387. mddev->bitmap_info.space = 0;
  1388. /* Default location for bitmap is 1K after superblock
  1389. * using 3K - total of 4K
  1390. */
  1391. mddev->bitmap_info.default_offset = 1024 >> 9;
  1392. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1393. mddev->reshape_backwards = 0;
  1394. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1395. memcpy(mddev->uuid, sb->set_uuid, 16);
  1396. mddev->max_disks = (4096-256)/2;
  1397. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1398. mddev->bitmap_info.file == NULL) {
  1399. mddev->bitmap_info.offset =
  1400. (__s32)le32_to_cpu(sb->bitmap_offset);
  1401. /* Metadata doesn't record how much space is available.
  1402. * For 1.0, we assume we can use up to the superblock
  1403. * if before, else to 4K beyond superblock.
  1404. * For others, assume no change is possible.
  1405. */
  1406. if (mddev->minor_version > 0)
  1407. mddev->bitmap_info.space = 0;
  1408. else if (mddev->bitmap_info.offset > 0)
  1409. mddev->bitmap_info.space =
  1410. 8 - mddev->bitmap_info.offset;
  1411. else
  1412. mddev->bitmap_info.space =
  1413. -mddev->bitmap_info.offset;
  1414. }
  1415. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1416. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1417. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1418. mddev->new_level = le32_to_cpu(sb->new_level);
  1419. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1420. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1421. if (mddev->delta_disks < 0 ||
  1422. (mddev->delta_disks == 0 &&
  1423. (le32_to_cpu(sb->feature_map)
  1424. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1425. mddev->reshape_backwards = 1;
  1426. } else {
  1427. mddev->reshape_position = MaxSector;
  1428. mddev->delta_disks = 0;
  1429. mddev->new_level = mddev->level;
  1430. mddev->new_layout = mddev->layout;
  1431. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1432. }
  1433. } else if (mddev->pers == NULL) {
  1434. /* Insist of good event counter while assembling, except for
  1435. * spares (which don't need an event count) */
  1436. ++ev1;
  1437. if (rdev->desc_nr >= 0 &&
  1438. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1439. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1440. if (ev1 < mddev->events)
  1441. return -EINVAL;
  1442. } else if (mddev->bitmap) {
  1443. /* If adding to array with a bitmap, then we can accept an
  1444. * older device, but not too old.
  1445. */
  1446. if (ev1 < mddev->bitmap->events_cleared)
  1447. return 0;
  1448. if (ev1 < mddev->events)
  1449. set_bit(Bitmap_sync, &rdev->flags);
  1450. } else {
  1451. if (ev1 < mddev->events)
  1452. /* just a hot-add of a new device, leave raid_disk at -1 */
  1453. return 0;
  1454. }
  1455. if (mddev->level != LEVEL_MULTIPATH) {
  1456. int role;
  1457. if (rdev->desc_nr < 0 ||
  1458. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1459. role = 0xffff;
  1460. rdev->desc_nr = -1;
  1461. } else
  1462. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1463. switch(role) {
  1464. case 0xffff: /* spare */
  1465. break;
  1466. case 0xfffe: /* faulty */
  1467. set_bit(Faulty, &rdev->flags);
  1468. break;
  1469. default:
  1470. rdev->saved_raid_disk = role;
  1471. if ((le32_to_cpu(sb->feature_map) &
  1472. MD_FEATURE_RECOVERY_OFFSET)) {
  1473. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1474. if (!(le32_to_cpu(sb->feature_map) &
  1475. MD_FEATURE_RECOVERY_BITMAP))
  1476. rdev->saved_raid_disk = -1;
  1477. } else
  1478. set_bit(In_sync, &rdev->flags);
  1479. rdev->raid_disk = role;
  1480. break;
  1481. }
  1482. if (sb->devflags & WriteMostly1)
  1483. set_bit(WriteMostly, &rdev->flags);
  1484. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1485. set_bit(Replacement, &rdev->flags);
  1486. } else /* MULTIPATH are always insync */
  1487. set_bit(In_sync, &rdev->flags);
  1488. return 0;
  1489. }
  1490. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1491. {
  1492. struct mdp_superblock_1 *sb;
  1493. struct md_rdev *rdev2;
  1494. int max_dev, i;
  1495. /* make rdev->sb match mddev and rdev data. */
  1496. sb = page_address(rdev->sb_page);
  1497. sb->feature_map = 0;
  1498. sb->pad0 = 0;
  1499. sb->recovery_offset = cpu_to_le64(0);
  1500. memset(sb->pad3, 0, sizeof(sb->pad3));
  1501. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1502. sb->events = cpu_to_le64(mddev->events);
  1503. if (mddev->in_sync)
  1504. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1505. else
  1506. sb->resync_offset = cpu_to_le64(0);
  1507. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1508. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1509. sb->size = cpu_to_le64(mddev->dev_sectors);
  1510. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1511. sb->level = cpu_to_le32(mddev->level);
  1512. sb->layout = cpu_to_le32(mddev->layout);
  1513. if (test_bit(WriteMostly, &rdev->flags))
  1514. sb->devflags |= WriteMostly1;
  1515. else
  1516. sb->devflags &= ~WriteMostly1;
  1517. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1518. sb->data_size = cpu_to_le64(rdev->sectors);
  1519. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1520. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1521. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1522. }
  1523. if (rdev->raid_disk >= 0 &&
  1524. !test_bit(In_sync, &rdev->flags)) {
  1525. sb->feature_map |=
  1526. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1527. sb->recovery_offset =
  1528. cpu_to_le64(rdev->recovery_offset);
  1529. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1530. sb->feature_map |=
  1531. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1532. }
  1533. if (test_bit(Replacement, &rdev->flags))
  1534. sb->feature_map |=
  1535. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1536. if (mddev->reshape_position != MaxSector) {
  1537. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1538. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1539. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1540. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1541. sb->new_level = cpu_to_le32(mddev->new_level);
  1542. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1543. if (mddev->delta_disks == 0 &&
  1544. mddev->reshape_backwards)
  1545. sb->feature_map
  1546. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1547. if (rdev->new_data_offset != rdev->data_offset) {
  1548. sb->feature_map
  1549. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1550. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1551. - rdev->data_offset));
  1552. }
  1553. }
  1554. if (rdev->badblocks.count == 0)
  1555. /* Nothing to do for bad blocks*/ ;
  1556. else if (sb->bblog_offset == 0)
  1557. /* Cannot record bad blocks on this device */
  1558. md_error(mddev, rdev);
  1559. else {
  1560. struct badblocks *bb = &rdev->badblocks;
  1561. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1562. u64 *p = bb->page;
  1563. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1564. if (bb->changed) {
  1565. unsigned seq;
  1566. retry:
  1567. seq = read_seqbegin(&bb->lock);
  1568. memset(bbp, 0xff, PAGE_SIZE);
  1569. for (i = 0 ; i < bb->count ; i++) {
  1570. u64 internal_bb = p[i];
  1571. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1572. | BB_LEN(internal_bb));
  1573. bbp[i] = cpu_to_le64(store_bb);
  1574. }
  1575. bb->changed = 0;
  1576. if (read_seqretry(&bb->lock, seq))
  1577. goto retry;
  1578. bb->sector = (rdev->sb_start +
  1579. (int)le32_to_cpu(sb->bblog_offset));
  1580. bb->size = le16_to_cpu(sb->bblog_size);
  1581. }
  1582. }
  1583. max_dev = 0;
  1584. rdev_for_each(rdev2, mddev)
  1585. if (rdev2->desc_nr+1 > max_dev)
  1586. max_dev = rdev2->desc_nr+1;
  1587. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1588. int bmask;
  1589. sb->max_dev = cpu_to_le32(max_dev);
  1590. rdev->sb_size = max_dev * 2 + 256;
  1591. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1592. if (rdev->sb_size & bmask)
  1593. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1594. } else
  1595. max_dev = le32_to_cpu(sb->max_dev);
  1596. for (i=0; i<max_dev;i++)
  1597. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1598. rdev_for_each(rdev2, mddev) {
  1599. i = rdev2->desc_nr;
  1600. if (test_bit(Faulty, &rdev2->flags))
  1601. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1602. else if (test_bit(In_sync, &rdev2->flags))
  1603. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1604. else if (rdev2->raid_disk >= 0)
  1605. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1606. else
  1607. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1608. }
  1609. sb->sb_csum = calc_sb_1_csum(sb);
  1610. }
  1611. static unsigned long long
  1612. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1613. {
  1614. struct mdp_superblock_1 *sb;
  1615. sector_t max_sectors;
  1616. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1617. return 0; /* component must fit device */
  1618. if (rdev->data_offset != rdev->new_data_offset)
  1619. return 0; /* too confusing */
  1620. if (rdev->sb_start < rdev->data_offset) {
  1621. /* minor versions 1 and 2; superblock before data */
  1622. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1623. max_sectors -= rdev->data_offset;
  1624. if (!num_sectors || num_sectors > max_sectors)
  1625. num_sectors = max_sectors;
  1626. } else if (rdev->mddev->bitmap_info.offset) {
  1627. /* minor version 0 with bitmap we can't move */
  1628. return 0;
  1629. } else {
  1630. /* minor version 0; superblock after data */
  1631. sector_t sb_start;
  1632. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1633. sb_start &= ~(sector_t)(4*2 - 1);
  1634. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1635. if (!num_sectors || num_sectors > max_sectors)
  1636. num_sectors = max_sectors;
  1637. rdev->sb_start = sb_start;
  1638. }
  1639. sb = page_address(rdev->sb_page);
  1640. sb->data_size = cpu_to_le64(num_sectors);
  1641. sb->super_offset = rdev->sb_start;
  1642. sb->sb_csum = calc_sb_1_csum(sb);
  1643. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1644. rdev->sb_page);
  1645. md_super_wait(rdev->mddev);
  1646. return num_sectors;
  1647. }
  1648. static int
  1649. super_1_allow_new_offset(struct md_rdev *rdev,
  1650. unsigned long long new_offset)
  1651. {
  1652. /* All necessary checks on new >= old have been done */
  1653. struct bitmap *bitmap;
  1654. if (new_offset >= rdev->data_offset)
  1655. return 1;
  1656. /* with 1.0 metadata, there is no metadata to tread on
  1657. * so we can always move back */
  1658. if (rdev->mddev->minor_version == 0)
  1659. return 1;
  1660. /* otherwise we must be sure not to step on
  1661. * any metadata, so stay:
  1662. * 36K beyond start of superblock
  1663. * beyond end of badblocks
  1664. * beyond write-intent bitmap
  1665. */
  1666. if (rdev->sb_start + (32+4)*2 > new_offset)
  1667. return 0;
  1668. bitmap = rdev->mddev->bitmap;
  1669. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1670. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1671. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1672. return 0;
  1673. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1674. return 0;
  1675. return 1;
  1676. }
  1677. static struct super_type super_types[] = {
  1678. [0] = {
  1679. .name = "0.90.0",
  1680. .owner = THIS_MODULE,
  1681. .load_super = super_90_load,
  1682. .validate_super = super_90_validate,
  1683. .sync_super = super_90_sync,
  1684. .rdev_size_change = super_90_rdev_size_change,
  1685. .allow_new_offset = super_90_allow_new_offset,
  1686. },
  1687. [1] = {
  1688. .name = "md-1",
  1689. .owner = THIS_MODULE,
  1690. .load_super = super_1_load,
  1691. .validate_super = super_1_validate,
  1692. .sync_super = super_1_sync,
  1693. .rdev_size_change = super_1_rdev_size_change,
  1694. .allow_new_offset = super_1_allow_new_offset,
  1695. },
  1696. };
  1697. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1698. {
  1699. if (mddev->sync_super) {
  1700. mddev->sync_super(mddev, rdev);
  1701. return;
  1702. }
  1703. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1704. super_types[mddev->major_version].sync_super(mddev, rdev);
  1705. }
  1706. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1707. {
  1708. struct md_rdev *rdev, *rdev2;
  1709. rcu_read_lock();
  1710. rdev_for_each_rcu(rdev, mddev1)
  1711. rdev_for_each_rcu(rdev2, mddev2)
  1712. if (rdev->bdev->bd_contains ==
  1713. rdev2->bdev->bd_contains) {
  1714. rcu_read_unlock();
  1715. return 1;
  1716. }
  1717. rcu_read_unlock();
  1718. return 0;
  1719. }
  1720. static LIST_HEAD(pending_raid_disks);
  1721. /*
  1722. * Try to register data integrity profile for an mddev
  1723. *
  1724. * This is called when an array is started and after a disk has been kicked
  1725. * from the array. It only succeeds if all working and active component devices
  1726. * are integrity capable with matching profiles.
  1727. */
  1728. int md_integrity_register(struct mddev *mddev)
  1729. {
  1730. struct md_rdev *rdev, *reference = NULL;
  1731. if (list_empty(&mddev->disks))
  1732. return 0; /* nothing to do */
  1733. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1734. return 0; /* shouldn't register, or already is */
  1735. rdev_for_each(rdev, mddev) {
  1736. /* skip spares and non-functional disks */
  1737. if (test_bit(Faulty, &rdev->flags))
  1738. continue;
  1739. if (rdev->raid_disk < 0)
  1740. continue;
  1741. if (!reference) {
  1742. /* Use the first rdev as the reference */
  1743. reference = rdev;
  1744. continue;
  1745. }
  1746. /* does this rdev's profile match the reference profile? */
  1747. if (blk_integrity_compare(reference->bdev->bd_disk,
  1748. rdev->bdev->bd_disk) < 0)
  1749. return -EINVAL;
  1750. }
  1751. if (!reference || !bdev_get_integrity(reference->bdev))
  1752. return 0;
  1753. /*
  1754. * All component devices are integrity capable and have matching
  1755. * profiles, register the common profile for the md device.
  1756. */
  1757. if (blk_integrity_register(mddev->gendisk,
  1758. bdev_get_integrity(reference->bdev)) != 0) {
  1759. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1760. mdname(mddev));
  1761. return -EINVAL;
  1762. }
  1763. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1764. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1765. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1766. mdname(mddev));
  1767. return -EINVAL;
  1768. }
  1769. return 0;
  1770. }
  1771. EXPORT_SYMBOL(md_integrity_register);
  1772. /* Disable data integrity if non-capable/non-matching disk is being added */
  1773. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1774. {
  1775. struct blk_integrity *bi_rdev;
  1776. struct blk_integrity *bi_mddev;
  1777. if (!mddev->gendisk)
  1778. return;
  1779. bi_rdev = bdev_get_integrity(rdev->bdev);
  1780. bi_mddev = blk_get_integrity(mddev->gendisk);
  1781. if (!bi_mddev) /* nothing to do */
  1782. return;
  1783. if (rdev->raid_disk < 0) /* skip spares */
  1784. return;
  1785. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1786. rdev->bdev->bd_disk) >= 0)
  1787. return;
  1788. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1789. blk_integrity_unregister(mddev->gendisk);
  1790. }
  1791. EXPORT_SYMBOL(md_integrity_add_rdev);
  1792. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1793. {
  1794. char b[BDEVNAME_SIZE];
  1795. struct kobject *ko;
  1796. char *s;
  1797. int err;
  1798. /* prevent duplicates */
  1799. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1800. return -EEXIST;
  1801. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1802. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1803. rdev->sectors < mddev->dev_sectors)) {
  1804. if (mddev->pers) {
  1805. /* Cannot change size, so fail
  1806. * If mddev->level <= 0, then we don't care
  1807. * about aligning sizes (e.g. linear)
  1808. */
  1809. if (mddev->level > 0)
  1810. return -ENOSPC;
  1811. } else
  1812. mddev->dev_sectors = rdev->sectors;
  1813. }
  1814. /* Verify rdev->desc_nr is unique.
  1815. * If it is -1, assign a free number, else
  1816. * check number is not in use
  1817. */
  1818. rcu_read_lock();
  1819. if (rdev->desc_nr < 0) {
  1820. int choice = 0;
  1821. if (mddev->pers)
  1822. choice = mddev->raid_disks;
  1823. while (md_find_rdev_nr_rcu(mddev, choice))
  1824. choice++;
  1825. rdev->desc_nr = choice;
  1826. } else {
  1827. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1828. rcu_read_unlock();
  1829. return -EBUSY;
  1830. }
  1831. }
  1832. rcu_read_unlock();
  1833. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1834. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1835. mdname(mddev), mddev->max_disks);
  1836. return -EBUSY;
  1837. }
  1838. bdevname(rdev->bdev,b);
  1839. while ( (s=strchr(b, '/')) != NULL)
  1840. *s = '!';
  1841. rdev->mddev = mddev;
  1842. printk(KERN_INFO "md: bind<%s>\n", b);
  1843. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1844. goto fail;
  1845. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1846. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1847. /* failure here is OK */;
  1848. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1849. list_add_rcu(&rdev->same_set, &mddev->disks);
  1850. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1851. /* May as well allow recovery to be retried once */
  1852. mddev->recovery_disabled++;
  1853. return 0;
  1854. fail:
  1855. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1856. b, mdname(mddev));
  1857. return err;
  1858. }
  1859. static void md_delayed_delete(struct work_struct *ws)
  1860. {
  1861. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1862. kobject_del(&rdev->kobj);
  1863. kobject_put(&rdev->kobj);
  1864. }
  1865. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1866. {
  1867. char b[BDEVNAME_SIZE];
  1868. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1869. list_del_rcu(&rdev->same_set);
  1870. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1871. rdev->mddev = NULL;
  1872. sysfs_remove_link(&rdev->kobj, "block");
  1873. sysfs_put(rdev->sysfs_state);
  1874. rdev->sysfs_state = NULL;
  1875. rdev->badblocks.count = 0;
  1876. /* We need to delay this, otherwise we can deadlock when
  1877. * writing to 'remove' to "dev/state". We also need
  1878. * to delay it due to rcu usage.
  1879. */
  1880. synchronize_rcu();
  1881. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1882. kobject_get(&rdev->kobj);
  1883. queue_work(md_misc_wq, &rdev->del_work);
  1884. }
  1885. /*
  1886. * prevent the device from being mounted, repartitioned or
  1887. * otherwise reused by a RAID array (or any other kernel
  1888. * subsystem), by bd_claiming the device.
  1889. */
  1890. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1891. {
  1892. int err = 0;
  1893. struct block_device *bdev;
  1894. char b[BDEVNAME_SIZE];
  1895. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1896. shared ? (struct md_rdev *)lock_rdev : rdev);
  1897. if (IS_ERR(bdev)) {
  1898. printk(KERN_ERR "md: could not open %s.\n",
  1899. __bdevname(dev, b));
  1900. return PTR_ERR(bdev);
  1901. }
  1902. rdev->bdev = bdev;
  1903. return err;
  1904. }
  1905. static void unlock_rdev(struct md_rdev *rdev)
  1906. {
  1907. struct block_device *bdev = rdev->bdev;
  1908. rdev->bdev = NULL;
  1909. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1910. }
  1911. void md_autodetect_dev(dev_t dev);
  1912. static void export_rdev(struct md_rdev *rdev)
  1913. {
  1914. char b[BDEVNAME_SIZE];
  1915. printk(KERN_INFO "md: export_rdev(%s)\n",
  1916. bdevname(rdev->bdev,b));
  1917. md_rdev_clear(rdev);
  1918. #ifndef MODULE
  1919. if (test_bit(AutoDetected, &rdev->flags))
  1920. md_autodetect_dev(rdev->bdev->bd_dev);
  1921. #endif
  1922. unlock_rdev(rdev);
  1923. kobject_put(&rdev->kobj);
  1924. }
  1925. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1926. {
  1927. unbind_rdev_from_array(rdev);
  1928. export_rdev(rdev);
  1929. }
  1930. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1931. static void export_array(struct mddev *mddev)
  1932. {
  1933. struct md_rdev *rdev;
  1934. while (!list_empty(&mddev->disks)) {
  1935. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1936. same_set);
  1937. md_kick_rdev_from_array(rdev);
  1938. }
  1939. mddev->raid_disks = 0;
  1940. mddev->major_version = 0;
  1941. }
  1942. static void sync_sbs(struct mddev *mddev, int nospares)
  1943. {
  1944. /* Update each superblock (in-memory image), but
  1945. * if we are allowed to, skip spares which already
  1946. * have the right event counter, or have one earlier
  1947. * (which would mean they aren't being marked as dirty
  1948. * with the rest of the array)
  1949. */
  1950. struct md_rdev *rdev;
  1951. rdev_for_each(rdev, mddev) {
  1952. if (rdev->sb_events == mddev->events ||
  1953. (nospares &&
  1954. rdev->raid_disk < 0 &&
  1955. rdev->sb_events+1 == mddev->events)) {
  1956. /* Don't update this superblock */
  1957. rdev->sb_loaded = 2;
  1958. } else {
  1959. sync_super(mddev, rdev);
  1960. rdev->sb_loaded = 1;
  1961. }
  1962. }
  1963. }
  1964. void md_update_sb(struct mddev *mddev, int force_change)
  1965. {
  1966. struct md_rdev *rdev;
  1967. int sync_req;
  1968. int nospares = 0;
  1969. int any_badblocks_changed = 0;
  1970. if (mddev->ro) {
  1971. if (force_change)
  1972. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1973. return;
  1974. }
  1975. repeat:
  1976. /* First make sure individual recovery_offsets are correct */
  1977. rdev_for_each(rdev, mddev) {
  1978. if (rdev->raid_disk >= 0 &&
  1979. mddev->delta_disks >= 0 &&
  1980. !test_bit(In_sync, &rdev->flags) &&
  1981. mddev->curr_resync_completed > rdev->recovery_offset)
  1982. rdev->recovery_offset = mddev->curr_resync_completed;
  1983. }
  1984. if (!mddev->persistent) {
  1985. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1986. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1987. if (!mddev->external) {
  1988. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1989. rdev_for_each(rdev, mddev) {
  1990. if (rdev->badblocks.changed) {
  1991. rdev->badblocks.changed = 0;
  1992. md_ack_all_badblocks(&rdev->badblocks);
  1993. md_error(mddev, rdev);
  1994. }
  1995. clear_bit(Blocked, &rdev->flags);
  1996. clear_bit(BlockedBadBlocks, &rdev->flags);
  1997. wake_up(&rdev->blocked_wait);
  1998. }
  1999. }
  2000. wake_up(&mddev->sb_wait);
  2001. return;
  2002. }
  2003. spin_lock(&mddev->lock);
  2004. mddev->utime = get_seconds();
  2005. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2006. force_change = 1;
  2007. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2008. /* just a clean<-> dirty transition, possibly leave spares alone,
  2009. * though if events isn't the right even/odd, we will have to do
  2010. * spares after all
  2011. */
  2012. nospares = 1;
  2013. if (force_change)
  2014. nospares = 0;
  2015. if (mddev->degraded)
  2016. /* If the array is degraded, then skipping spares is both
  2017. * dangerous and fairly pointless.
  2018. * Dangerous because a device that was removed from the array
  2019. * might have a event_count that still looks up-to-date,
  2020. * so it can be re-added without a resync.
  2021. * Pointless because if there are any spares to skip,
  2022. * then a recovery will happen and soon that array won't
  2023. * be degraded any more and the spare can go back to sleep then.
  2024. */
  2025. nospares = 0;
  2026. sync_req = mddev->in_sync;
  2027. /* If this is just a dirty<->clean transition, and the array is clean
  2028. * and 'events' is odd, we can roll back to the previous clean state */
  2029. if (nospares
  2030. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2031. && mddev->can_decrease_events
  2032. && mddev->events != 1) {
  2033. mddev->events--;
  2034. mddev->can_decrease_events = 0;
  2035. } else {
  2036. /* otherwise we have to go forward and ... */
  2037. mddev->events ++;
  2038. mddev->can_decrease_events = nospares;
  2039. }
  2040. /*
  2041. * This 64-bit counter should never wrap.
  2042. * Either we are in around ~1 trillion A.C., assuming
  2043. * 1 reboot per second, or we have a bug...
  2044. */
  2045. WARN_ON(mddev->events == 0);
  2046. rdev_for_each(rdev, mddev) {
  2047. if (rdev->badblocks.changed)
  2048. any_badblocks_changed++;
  2049. if (test_bit(Faulty, &rdev->flags))
  2050. set_bit(FaultRecorded, &rdev->flags);
  2051. }
  2052. sync_sbs(mddev, nospares);
  2053. spin_unlock(&mddev->lock);
  2054. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2055. mdname(mddev), mddev->in_sync);
  2056. bitmap_update_sb(mddev->bitmap);
  2057. rdev_for_each(rdev, mddev) {
  2058. char b[BDEVNAME_SIZE];
  2059. if (rdev->sb_loaded != 1)
  2060. continue; /* no noise on spare devices */
  2061. if (!test_bit(Faulty, &rdev->flags)) {
  2062. md_super_write(mddev,rdev,
  2063. rdev->sb_start, rdev->sb_size,
  2064. rdev->sb_page);
  2065. pr_debug("md: (write) %s's sb offset: %llu\n",
  2066. bdevname(rdev->bdev, b),
  2067. (unsigned long long)rdev->sb_start);
  2068. rdev->sb_events = mddev->events;
  2069. if (rdev->badblocks.size) {
  2070. md_super_write(mddev, rdev,
  2071. rdev->badblocks.sector,
  2072. rdev->badblocks.size << 9,
  2073. rdev->bb_page);
  2074. rdev->badblocks.size = 0;
  2075. }
  2076. } else
  2077. pr_debug("md: %s (skipping faulty)\n",
  2078. bdevname(rdev->bdev, b));
  2079. if (mddev->level == LEVEL_MULTIPATH)
  2080. /* only need to write one superblock... */
  2081. break;
  2082. }
  2083. md_super_wait(mddev);
  2084. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2085. spin_lock(&mddev->lock);
  2086. if (mddev->in_sync != sync_req ||
  2087. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2088. /* have to write it out again */
  2089. spin_unlock(&mddev->lock);
  2090. goto repeat;
  2091. }
  2092. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2093. spin_unlock(&mddev->lock);
  2094. wake_up(&mddev->sb_wait);
  2095. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2096. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2097. rdev_for_each(rdev, mddev) {
  2098. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2099. clear_bit(Blocked, &rdev->flags);
  2100. if (any_badblocks_changed)
  2101. md_ack_all_badblocks(&rdev->badblocks);
  2102. clear_bit(BlockedBadBlocks, &rdev->flags);
  2103. wake_up(&rdev->blocked_wait);
  2104. }
  2105. }
  2106. EXPORT_SYMBOL(md_update_sb);
  2107. /* words written to sysfs files may, or may not, be \n terminated.
  2108. * We want to accept with case. For this we use cmd_match.
  2109. */
  2110. static int cmd_match(const char *cmd, const char *str)
  2111. {
  2112. /* See if cmd, written into a sysfs file, matches
  2113. * str. They must either be the same, or cmd can
  2114. * have a trailing newline
  2115. */
  2116. while (*cmd && *str && *cmd == *str) {
  2117. cmd++;
  2118. str++;
  2119. }
  2120. if (*cmd == '\n')
  2121. cmd++;
  2122. if (*str || *cmd)
  2123. return 0;
  2124. return 1;
  2125. }
  2126. struct rdev_sysfs_entry {
  2127. struct attribute attr;
  2128. ssize_t (*show)(struct md_rdev *, char *);
  2129. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2130. };
  2131. static ssize_t
  2132. state_show(struct md_rdev *rdev, char *page)
  2133. {
  2134. char *sep = "";
  2135. size_t len = 0;
  2136. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2137. if (test_bit(Faulty, &flags) ||
  2138. rdev->badblocks.unacked_exist) {
  2139. len+= sprintf(page+len, "%sfaulty",sep);
  2140. sep = ",";
  2141. }
  2142. if (test_bit(In_sync, &flags)) {
  2143. len += sprintf(page+len, "%sin_sync",sep);
  2144. sep = ",";
  2145. }
  2146. if (test_bit(WriteMostly, &flags)) {
  2147. len += sprintf(page+len, "%swrite_mostly",sep);
  2148. sep = ",";
  2149. }
  2150. if (test_bit(Blocked, &flags) ||
  2151. (rdev->badblocks.unacked_exist
  2152. && !test_bit(Faulty, &flags))) {
  2153. len += sprintf(page+len, "%sblocked", sep);
  2154. sep = ",";
  2155. }
  2156. if (!test_bit(Faulty, &flags) &&
  2157. !test_bit(In_sync, &flags)) {
  2158. len += sprintf(page+len, "%sspare", sep);
  2159. sep = ",";
  2160. }
  2161. if (test_bit(WriteErrorSeen, &flags)) {
  2162. len += sprintf(page+len, "%swrite_error", sep);
  2163. sep = ",";
  2164. }
  2165. if (test_bit(WantReplacement, &flags)) {
  2166. len += sprintf(page+len, "%swant_replacement", sep);
  2167. sep = ",";
  2168. }
  2169. if (test_bit(Replacement, &flags)) {
  2170. len += sprintf(page+len, "%sreplacement", sep);
  2171. sep = ",";
  2172. }
  2173. return len+sprintf(page+len, "\n");
  2174. }
  2175. static ssize_t
  2176. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2177. {
  2178. /* can write
  2179. * faulty - simulates an error
  2180. * remove - disconnects the device
  2181. * writemostly - sets write_mostly
  2182. * -writemostly - clears write_mostly
  2183. * blocked - sets the Blocked flags
  2184. * -blocked - clears the Blocked and possibly simulates an error
  2185. * insync - sets Insync providing device isn't active
  2186. * -insync - clear Insync for a device with a slot assigned,
  2187. * so that it gets rebuilt based on bitmap
  2188. * write_error - sets WriteErrorSeen
  2189. * -write_error - clears WriteErrorSeen
  2190. */
  2191. int err = -EINVAL;
  2192. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2193. md_error(rdev->mddev, rdev);
  2194. if (test_bit(Faulty, &rdev->flags))
  2195. err = 0;
  2196. else
  2197. err = -EBUSY;
  2198. } else if (cmd_match(buf, "remove")) {
  2199. if (rdev->raid_disk >= 0)
  2200. err = -EBUSY;
  2201. else {
  2202. struct mddev *mddev = rdev->mddev;
  2203. if (mddev_is_clustered(mddev))
  2204. md_cluster_ops->remove_disk(mddev, rdev);
  2205. md_kick_rdev_from_array(rdev);
  2206. if (mddev_is_clustered(mddev))
  2207. md_cluster_ops->metadata_update_start(mddev);
  2208. if (mddev->pers)
  2209. md_update_sb(mddev, 1);
  2210. md_new_event(mddev);
  2211. if (mddev_is_clustered(mddev))
  2212. md_cluster_ops->metadata_update_finish(mddev);
  2213. err = 0;
  2214. }
  2215. } else if (cmd_match(buf, "writemostly")) {
  2216. set_bit(WriteMostly, &rdev->flags);
  2217. err = 0;
  2218. } else if (cmd_match(buf, "-writemostly")) {
  2219. clear_bit(WriteMostly, &rdev->flags);
  2220. err = 0;
  2221. } else if (cmd_match(buf, "blocked")) {
  2222. set_bit(Blocked, &rdev->flags);
  2223. err = 0;
  2224. } else if (cmd_match(buf, "-blocked")) {
  2225. if (!test_bit(Faulty, &rdev->flags) &&
  2226. rdev->badblocks.unacked_exist) {
  2227. /* metadata handler doesn't understand badblocks,
  2228. * so we need to fail the device
  2229. */
  2230. md_error(rdev->mddev, rdev);
  2231. }
  2232. clear_bit(Blocked, &rdev->flags);
  2233. clear_bit(BlockedBadBlocks, &rdev->flags);
  2234. wake_up(&rdev->blocked_wait);
  2235. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2236. md_wakeup_thread(rdev->mddev->thread);
  2237. err = 0;
  2238. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2239. set_bit(In_sync, &rdev->flags);
  2240. err = 0;
  2241. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2242. if (rdev->mddev->pers == NULL) {
  2243. clear_bit(In_sync, &rdev->flags);
  2244. rdev->saved_raid_disk = rdev->raid_disk;
  2245. rdev->raid_disk = -1;
  2246. err = 0;
  2247. }
  2248. } else if (cmd_match(buf, "write_error")) {
  2249. set_bit(WriteErrorSeen, &rdev->flags);
  2250. err = 0;
  2251. } else if (cmd_match(buf, "-write_error")) {
  2252. clear_bit(WriteErrorSeen, &rdev->flags);
  2253. err = 0;
  2254. } else if (cmd_match(buf, "want_replacement")) {
  2255. /* Any non-spare device that is not a replacement can
  2256. * become want_replacement at any time, but we then need to
  2257. * check if recovery is needed.
  2258. */
  2259. if (rdev->raid_disk >= 0 &&
  2260. !test_bit(Replacement, &rdev->flags))
  2261. set_bit(WantReplacement, &rdev->flags);
  2262. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2263. md_wakeup_thread(rdev->mddev->thread);
  2264. err = 0;
  2265. } else if (cmd_match(buf, "-want_replacement")) {
  2266. /* Clearing 'want_replacement' is always allowed.
  2267. * Once replacements starts it is too late though.
  2268. */
  2269. err = 0;
  2270. clear_bit(WantReplacement, &rdev->flags);
  2271. } else if (cmd_match(buf, "replacement")) {
  2272. /* Can only set a device as a replacement when array has not
  2273. * yet been started. Once running, replacement is automatic
  2274. * from spares, or by assigning 'slot'.
  2275. */
  2276. if (rdev->mddev->pers)
  2277. err = -EBUSY;
  2278. else {
  2279. set_bit(Replacement, &rdev->flags);
  2280. err = 0;
  2281. }
  2282. } else if (cmd_match(buf, "-replacement")) {
  2283. /* Similarly, can only clear Replacement before start */
  2284. if (rdev->mddev->pers)
  2285. err = -EBUSY;
  2286. else {
  2287. clear_bit(Replacement, &rdev->flags);
  2288. err = 0;
  2289. }
  2290. }
  2291. if (!err)
  2292. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2293. return err ? err : len;
  2294. }
  2295. static struct rdev_sysfs_entry rdev_state =
  2296. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2297. static ssize_t
  2298. errors_show(struct md_rdev *rdev, char *page)
  2299. {
  2300. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2301. }
  2302. static ssize_t
  2303. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2304. {
  2305. char *e;
  2306. unsigned long n = simple_strtoul(buf, &e, 10);
  2307. if (*buf && (*e == 0 || *e == '\n')) {
  2308. atomic_set(&rdev->corrected_errors, n);
  2309. return len;
  2310. }
  2311. return -EINVAL;
  2312. }
  2313. static struct rdev_sysfs_entry rdev_errors =
  2314. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2315. static ssize_t
  2316. slot_show(struct md_rdev *rdev, char *page)
  2317. {
  2318. if (rdev->raid_disk < 0)
  2319. return sprintf(page, "none\n");
  2320. else
  2321. return sprintf(page, "%d\n", rdev->raid_disk);
  2322. }
  2323. static ssize_t
  2324. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2325. {
  2326. char *e;
  2327. int err;
  2328. int slot = simple_strtoul(buf, &e, 10);
  2329. if (strncmp(buf, "none", 4)==0)
  2330. slot = -1;
  2331. else if (e==buf || (*e && *e!= '\n'))
  2332. return -EINVAL;
  2333. if (rdev->mddev->pers && slot == -1) {
  2334. /* Setting 'slot' on an active array requires also
  2335. * updating the 'rd%d' link, and communicating
  2336. * with the personality with ->hot_*_disk.
  2337. * For now we only support removing
  2338. * failed/spare devices. This normally happens automatically,
  2339. * but not when the metadata is externally managed.
  2340. */
  2341. if (rdev->raid_disk == -1)
  2342. return -EEXIST;
  2343. /* personality does all needed checks */
  2344. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2345. return -EINVAL;
  2346. clear_bit(Blocked, &rdev->flags);
  2347. remove_and_add_spares(rdev->mddev, rdev);
  2348. if (rdev->raid_disk >= 0)
  2349. return -EBUSY;
  2350. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2351. md_wakeup_thread(rdev->mddev->thread);
  2352. } else if (rdev->mddev->pers) {
  2353. /* Activating a spare .. or possibly reactivating
  2354. * if we ever get bitmaps working here.
  2355. */
  2356. if (rdev->raid_disk != -1)
  2357. return -EBUSY;
  2358. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2359. return -EBUSY;
  2360. if (rdev->mddev->pers->hot_add_disk == NULL)
  2361. return -EINVAL;
  2362. if (slot >= rdev->mddev->raid_disks &&
  2363. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2364. return -ENOSPC;
  2365. rdev->raid_disk = slot;
  2366. if (test_bit(In_sync, &rdev->flags))
  2367. rdev->saved_raid_disk = slot;
  2368. else
  2369. rdev->saved_raid_disk = -1;
  2370. clear_bit(In_sync, &rdev->flags);
  2371. clear_bit(Bitmap_sync, &rdev->flags);
  2372. err = rdev->mddev->pers->
  2373. hot_add_disk(rdev->mddev, rdev);
  2374. if (err) {
  2375. rdev->raid_disk = -1;
  2376. return err;
  2377. } else
  2378. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2379. if (sysfs_link_rdev(rdev->mddev, rdev))
  2380. /* failure here is OK */;
  2381. /* don't wakeup anyone, leave that to userspace. */
  2382. } else {
  2383. if (slot >= rdev->mddev->raid_disks &&
  2384. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2385. return -ENOSPC;
  2386. rdev->raid_disk = slot;
  2387. /* assume it is working */
  2388. clear_bit(Faulty, &rdev->flags);
  2389. clear_bit(WriteMostly, &rdev->flags);
  2390. set_bit(In_sync, &rdev->flags);
  2391. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2392. }
  2393. return len;
  2394. }
  2395. static struct rdev_sysfs_entry rdev_slot =
  2396. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2397. static ssize_t
  2398. offset_show(struct md_rdev *rdev, char *page)
  2399. {
  2400. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2401. }
  2402. static ssize_t
  2403. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2404. {
  2405. unsigned long long offset;
  2406. if (kstrtoull(buf, 10, &offset) < 0)
  2407. return -EINVAL;
  2408. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2409. return -EBUSY;
  2410. if (rdev->sectors && rdev->mddev->external)
  2411. /* Must set offset before size, so overlap checks
  2412. * can be sane */
  2413. return -EBUSY;
  2414. rdev->data_offset = offset;
  2415. rdev->new_data_offset = offset;
  2416. return len;
  2417. }
  2418. static struct rdev_sysfs_entry rdev_offset =
  2419. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2420. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2421. {
  2422. return sprintf(page, "%llu\n",
  2423. (unsigned long long)rdev->new_data_offset);
  2424. }
  2425. static ssize_t new_offset_store(struct md_rdev *rdev,
  2426. const char *buf, size_t len)
  2427. {
  2428. unsigned long long new_offset;
  2429. struct mddev *mddev = rdev->mddev;
  2430. if (kstrtoull(buf, 10, &new_offset) < 0)
  2431. return -EINVAL;
  2432. if (mddev->sync_thread ||
  2433. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2434. return -EBUSY;
  2435. if (new_offset == rdev->data_offset)
  2436. /* reset is always permitted */
  2437. ;
  2438. else if (new_offset > rdev->data_offset) {
  2439. /* must not push array size beyond rdev_sectors */
  2440. if (new_offset - rdev->data_offset
  2441. + mddev->dev_sectors > rdev->sectors)
  2442. return -E2BIG;
  2443. }
  2444. /* Metadata worries about other space details. */
  2445. /* decreasing the offset is inconsistent with a backwards
  2446. * reshape.
  2447. */
  2448. if (new_offset < rdev->data_offset &&
  2449. mddev->reshape_backwards)
  2450. return -EINVAL;
  2451. /* Increasing offset is inconsistent with forwards
  2452. * reshape. reshape_direction should be set to
  2453. * 'backwards' first.
  2454. */
  2455. if (new_offset > rdev->data_offset &&
  2456. !mddev->reshape_backwards)
  2457. return -EINVAL;
  2458. if (mddev->pers && mddev->persistent &&
  2459. !super_types[mddev->major_version]
  2460. .allow_new_offset(rdev, new_offset))
  2461. return -E2BIG;
  2462. rdev->new_data_offset = new_offset;
  2463. if (new_offset > rdev->data_offset)
  2464. mddev->reshape_backwards = 1;
  2465. else if (new_offset < rdev->data_offset)
  2466. mddev->reshape_backwards = 0;
  2467. return len;
  2468. }
  2469. static struct rdev_sysfs_entry rdev_new_offset =
  2470. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2471. static ssize_t
  2472. rdev_size_show(struct md_rdev *rdev, char *page)
  2473. {
  2474. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2475. }
  2476. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2477. {
  2478. /* check if two start/length pairs overlap */
  2479. if (s1+l1 <= s2)
  2480. return 0;
  2481. if (s2+l2 <= s1)
  2482. return 0;
  2483. return 1;
  2484. }
  2485. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2486. {
  2487. unsigned long long blocks;
  2488. sector_t new;
  2489. if (kstrtoull(buf, 10, &blocks) < 0)
  2490. return -EINVAL;
  2491. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2492. return -EINVAL; /* sector conversion overflow */
  2493. new = blocks * 2;
  2494. if (new != blocks * 2)
  2495. return -EINVAL; /* unsigned long long to sector_t overflow */
  2496. *sectors = new;
  2497. return 0;
  2498. }
  2499. static ssize_t
  2500. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2501. {
  2502. struct mddev *my_mddev = rdev->mddev;
  2503. sector_t oldsectors = rdev->sectors;
  2504. sector_t sectors;
  2505. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2506. return -EINVAL;
  2507. if (rdev->data_offset != rdev->new_data_offset)
  2508. return -EINVAL; /* too confusing */
  2509. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2510. if (my_mddev->persistent) {
  2511. sectors = super_types[my_mddev->major_version].
  2512. rdev_size_change(rdev, sectors);
  2513. if (!sectors)
  2514. return -EBUSY;
  2515. } else if (!sectors)
  2516. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2517. rdev->data_offset;
  2518. if (!my_mddev->pers->resize)
  2519. /* Cannot change size for RAID0 or Linear etc */
  2520. return -EINVAL;
  2521. }
  2522. if (sectors < my_mddev->dev_sectors)
  2523. return -EINVAL; /* component must fit device */
  2524. rdev->sectors = sectors;
  2525. if (sectors > oldsectors && my_mddev->external) {
  2526. /* Need to check that all other rdevs with the same
  2527. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2528. * the rdev lists safely.
  2529. * This check does not provide a hard guarantee, it
  2530. * just helps avoid dangerous mistakes.
  2531. */
  2532. struct mddev *mddev;
  2533. int overlap = 0;
  2534. struct list_head *tmp;
  2535. rcu_read_lock();
  2536. for_each_mddev(mddev, tmp) {
  2537. struct md_rdev *rdev2;
  2538. rdev_for_each(rdev2, mddev)
  2539. if (rdev->bdev == rdev2->bdev &&
  2540. rdev != rdev2 &&
  2541. overlaps(rdev->data_offset, rdev->sectors,
  2542. rdev2->data_offset,
  2543. rdev2->sectors)) {
  2544. overlap = 1;
  2545. break;
  2546. }
  2547. if (overlap) {
  2548. mddev_put(mddev);
  2549. break;
  2550. }
  2551. }
  2552. rcu_read_unlock();
  2553. if (overlap) {
  2554. /* Someone else could have slipped in a size
  2555. * change here, but doing so is just silly.
  2556. * We put oldsectors back because we *know* it is
  2557. * safe, and trust userspace not to race with
  2558. * itself
  2559. */
  2560. rdev->sectors = oldsectors;
  2561. return -EBUSY;
  2562. }
  2563. }
  2564. return len;
  2565. }
  2566. static struct rdev_sysfs_entry rdev_size =
  2567. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2568. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2569. {
  2570. unsigned long long recovery_start = rdev->recovery_offset;
  2571. if (test_bit(In_sync, &rdev->flags) ||
  2572. recovery_start == MaxSector)
  2573. return sprintf(page, "none\n");
  2574. return sprintf(page, "%llu\n", recovery_start);
  2575. }
  2576. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2577. {
  2578. unsigned long long recovery_start;
  2579. if (cmd_match(buf, "none"))
  2580. recovery_start = MaxSector;
  2581. else if (kstrtoull(buf, 10, &recovery_start))
  2582. return -EINVAL;
  2583. if (rdev->mddev->pers &&
  2584. rdev->raid_disk >= 0)
  2585. return -EBUSY;
  2586. rdev->recovery_offset = recovery_start;
  2587. if (recovery_start == MaxSector)
  2588. set_bit(In_sync, &rdev->flags);
  2589. else
  2590. clear_bit(In_sync, &rdev->flags);
  2591. return len;
  2592. }
  2593. static struct rdev_sysfs_entry rdev_recovery_start =
  2594. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2595. static ssize_t
  2596. badblocks_show(struct badblocks *bb, char *page, int unack);
  2597. static ssize_t
  2598. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2599. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2600. {
  2601. return badblocks_show(&rdev->badblocks, page, 0);
  2602. }
  2603. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2604. {
  2605. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2606. /* Maybe that ack was all we needed */
  2607. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2608. wake_up(&rdev->blocked_wait);
  2609. return rv;
  2610. }
  2611. static struct rdev_sysfs_entry rdev_bad_blocks =
  2612. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2613. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2614. {
  2615. return badblocks_show(&rdev->badblocks, page, 1);
  2616. }
  2617. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2618. {
  2619. return badblocks_store(&rdev->badblocks, page, len, 1);
  2620. }
  2621. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2622. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2623. static struct attribute *rdev_default_attrs[] = {
  2624. &rdev_state.attr,
  2625. &rdev_errors.attr,
  2626. &rdev_slot.attr,
  2627. &rdev_offset.attr,
  2628. &rdev_new_offset.attr,
  2629. &rdev_size.attr,
  2630. &rdev_recovery_start.attr,
  2631. &rdev_bad_blocks.attr,
  2632. &rdev_unack_bad_blocks.attr,
  2633. NULL,
  2634. };
  2635. static ssize_t
  2636. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2637. {
  2638. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2639. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2640. if (!entry->show)
  2641. return -EIO;
  2642. if (!rdev->mddev)
  2643. return -EBUSY;
  2644. return entry->show(rdev, page);
  2645. }
  2646. static ssize_t
  2647. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2648. const char *page, size_t length)
  2649. {
  2650. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2651. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2652. ssize_t rv;
  2653. struct mddev *mddev = rdev->mddev;
  2654. if (!entry->store)
  2655. return -EIO;
  2656. if (!capable(CAP_SYS_ADMIN))
  2657. return -EACCES;
  2658. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2659. if (!rv) {
  2660. if (rdev->mddev == NULL)
  2661. rv = -EBUSY;
  2662. else
  2663. rv = entry->store(rdev, page, length);
  2664. mddev_unlock(mddev);
  2665. }
  2666. return rv;
  2667. }
  2668. static void rdev_free(struct kobject *ko)
  2669. {
  2670. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2671. kfree(rdev);
  2672. }
  2673. static const struct sysfs_ops rdev_sysfs_ops = {
  2674. .show = rdev_attr_show,
  2675. .store = rdev_attr_store,
  2676. };
  2677. static struct kobj_type rdev_ktype = {
  2678. .release = rdev_free,
  2679. .sysfs_ops = &rdev_sysfs_ops,
  2680. .default_attrs = rdev_default_attrs,
  2681. };
  2682. int md_rdev_init(struct md_rdev *rdev)
  2683. {
  2684. rdev->desc_nr = -1;
  2685. rdev->saved_raid_disk = -1;
  2686. rdev->raid_disk = -1;
  2687. rdev->flags = 0;
  2688. rdev->data_offset = 0;
  2689. rdev->new_data_offset = 0;
  2690. rdev->sb_events = 0;
  2691. rdev->last_read_error.tv_sec = 0;
  2692. rdev->last_read_error.tv_nsec = 0;
  2693. rdev->sb_loaded = 0;
  2694. rdev->bb_page = NULL;
  2695. atomic_set(&rdev->nr_pending, 0);
  2696. atomic_set(&rdev->read_errors, 0);
  2697. atomic_set(&rdev->corrected_errors, 0);
  2698. INIT_LIST_HEAD(&rdev->same_set);
  2699. init_waitqueue_head(&rdev->blocked_wait);
  2700. /* Add space to store bad block list.
  2701. * This reserves the space even on arrays where it cannot
  2702. * be used - I wonder if that matters
  2703. */
  2704. rdev->badblocks.count = 0;
  2705. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2706. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2707. seqlock_init(&rdev->badblocks.lock);
  2708. if (rdev->badblocks.page == NULL)
  2709. return -ENOMEM;
  2710. return 0;
  2711. }
  2712. EXPORT_SYMBOL_GPL(md_rdev_init);
  2713. /*
  2714. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2715. *
  2716. * mark the device faulty if:
  2717. *
  2718. * - the device is nonexistent (zero size)
  2719. * - the device has no valid superblock
  2720. *
  2721. * a faulty rdev _never_ has rdev->sb set.
  2722. */
  2723. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2724. {
  2725. char b[BDEVNAME_SIZE];
  2726. int err;
  2727. struct md_rdev *rdev;
  2728. sector_t size;
  2729. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2730. if (!rdev) {
  2731. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2732. return ERR_PTR(-ENOMEM);
  2733. }
  2734. err = md_rdev_init(rdev);
  2735. if (err)
  2736. goto abort_free;
  2737. err = alloc_disk_sb(rdev);
  2738. if (err)
  2739. goto abort_free;
  2740. err = lock_rdev(rdev, newdev, super_format == -2);
  2741. if (err)
  2742. goto abort_free;
  2743. kobject_init(&rdev->kobj, &rdev_ktype);
  2744. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2745. if (!size) {
  2746. printk(KERN_WARNING
  2747. "md: %s has zero or unknown size, marking faulty!\n",
  2748. bdevname(rdev->bdev,b));
  2749. err = -EINVAL;
  2750. goto abort_free;
  2751. }
  2752. if (super_format >= 0) {
  2753. err = super_types[super_format].
  2754. load_super(rdev, NULL, super_minor);
  2755. if (err == -EINVAL) {
  2756. printk(KERN_WARNING
  2757. "md: %s does not have a valid v%d.%d "
  2758. "superblock, not importing!\n",
  2759. bdevname(rdev->bdev,b),
  2760. super_format, super_minor);
  2761. goto abort_free;
  2762. }
  2763. if (err < 0) {
  2764. printk(KERN_WARNING
  2765. "md: could not read %s's sb, not importing!\n",
  2766. bdevname(rdev->bdev,b));
  2767. goto abort_free;
  2768. }
  2769. }
  2770. return rdev;
  2771. abort_free:
  2772. if (rdev->bdev)
  2773. unlock_rdev(rdev);
  2774. md_rdev_clear(rdev);
  2775. kfree(rdev);
  2776. return ERR_PTR(err);
  2777. }
  2778. /*
  2779. * Check a full RAID array for plausibility
  2780. */
  2781. static void analyze_sbs(struct mddev *mddev)
  2782. {
  2783. int i;
  2784. struct md_rdev *rdev, *freshest, *tmp;
  2785. char b[BDEVNAME_SIZE];
  2786. freshest = NULL;
  2787. rdev_for_each_safe(rdev, tmp, mddev)
  2788. switch (super_types[mddev->major_version].
  2789. load_super(rdev, freshest, mddev->minor_version)) {
  2790. case 1:
  2791. freshest = rdev;
  2792. break;
  2793. case 0:
  2794. break;
  2795. default:
  2796. printk( KERN_ERR \
  2797. "md: fatal superblock inconsistency in %s"
  2798. " -- removing from array\n",
  2799. bdevname(rdev->bdev,b));
  2800. md_kick_rdev_from_array(rdev);
  2801. }
  2802. super_types[mddev->major_version].
  2803. validate_super(mddev, freshest);
  2804. i = 0;
  2805. rdev_for_each_safe(rdev, tmp, mddev) {
  2806. if (mddev->max_disks &&
  2807. (rdev->desc_nr >= mddev->max_disks ||
  2808. i > mddev->max_disks)) {
  2809. printk(KERN_WARNING
  2810. "md: %s: %s: only %d devices permitted\n",
  2811. mdname(mddev), bdevname(rdev->bdev, b),
  2812. mddev->max_disks);
  2813. md_kick_rdev_from_array(rdev);
  2814. continue;
  2815. }
  2816. if (rdev != freshest) {
  2817. if (super_types[mddev->major_version].
  2818. validate_super(mddev, rdev)) {
  2819. printk(KERN_WARNING "md: kicking non-fresh %s"
  2820. " from array!\n",
  2821. bdevname(rdev->bdev,b));
  2822. md_kick_rdev_from_array(rdev);
  2823. continue;
  2824. }
  2825. /* No device should have a Candidate flag
  2826. * when reading devices
  2827. */
  2828. if (test_bit(Candidate, &rdev->flags)) {
  2829. pr_info("md: kicking Cluster Candidate %s from array!\n",
  2830. bdevname(rdev->bdev, b));
  2831. md_kick_rdev_from_array(rdev);
  2832. }
  2833. }
  2834. if (mddev->level == LEVEL_MULTIPATH) {
  2835. rdev->desc_nr = i++;
  2836. rdev->raid_disk = rdev->desc_nr;
  2837. set_bit(In_sync, &rdev->flags);
  2838. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2839. rdev->raid_disk = -1;
  2840. clear_bit(In_sync, &rdev->flags);
  2841. }
  2842. }
  2843. }
  2844. /* Read a fixed-point number.
  2845. * Numbers in sysfs attributes should be in "standard" units where
  2846. * possible, so time should be in seconds.
  2847. * However we internally use a a much smaller unit such as
  2848. * milliseconds or jiffies.
  2849. * This function takes a decimal number with a possible fractional
  2850. * component, and produces an integer which is the result of
  2851. * multiplying that number by 10^'scale'.
  2852. * all without any floating-point arithmetic.
  2853. */
  2854. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2855. {
  2856. unsigned long result = 0;
  2857. long decimals = -1;
  2858. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2859. if (*cp == '.')
  2860. decimals = 0;
  2861. else if (decimals < scale) {
  2862. unsigned int value;
  2863. value = *cp - '0';
  2864. result = result * 10 + value;
  2865. if (decimals >= 0)
  2866. decimals++;
  2867. }
  2868. cp++;
  2869. }
  2870. if (*cp == '\n')
  2871. cp++;
  2872. if (*cp)
  2873. return -EINVAL;
  2874. if (decimals < 0)
  2875. decimals = 0;
  2876. while (decimals < scale) {
  2877. result *= 10;
  2878. decimals ++;
  2879. }
  2880. *res = result;
  2881. return 0;
  2882. }
  2883. static void md_safemode_timeout(unsigned long data);
  2884. static ssize_t
  2885. safe_delay_show(struct mddev *mddev, char *page)
  2886. {
  2887. int msec = (mddev->safemode_delay*1000)/HZ;
  2888. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2889. }
  2890. static ssize_t
  2891. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2892. {
  2893. unsigned long msec;
  2894. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2895. return -EINVAL;
  2896. if (msec == 0)
  2897. mddev->safemode_delay = 0;
  2898. else {
  2899. unsigned long old_delay = mddev->safemode_delay;
  2900. unsigned long new_delay = (msec*HZ)/1000;
  2901. if (new_delay == 0)
  2902. new_delay = 1;
  2903. mddev->safemode_delay = new_delay;
  2904. if (new_delay < old_delay || old_delay == 0)
  2905. mod_timer(&mddev->safemode_timer, jiffies+1);
  2906. }
  2907. return len;
  2908. }
  2909. static struct md_sysfs_entry md_safe_delay =
  2910. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2911. static ssize_t
  2912. level_show(struct mddev *mddev, char *page)
  2913. {
  2914. struct md_personality *p;
  2915. int ret;
  2916. spin_lock(&mddev->lock);
  2917. p = mddev->pers;
  2918. if (p)
  2919. ret = sprintf(page, "%s\n", p->name);
  2920. else if (mddev->clevel[0])
  2921. ret = sprintf(page, "%s\n", mddev->clevel);
  2922. else if (mddev->level != LEVEL_NONE)
  2923. ret = sprintf(page, "%d\n", mddev->level);
  2924. else
  2925. ret = 0;
  2926. spin_unlock(&mddev->lock);
  2927. return ret;
  2928. }
  2929. static ssize_t
  2930. level_store(struct mddev *mddev, const char *buf, size_t len)
  2931. {
  2932. char clevel[16];
  2933. ssize_t rv;
  2934. size_t slen = len;
  2935. struct md_personality *pers, *oldpers;
  2936. long level;
  2937. void *priv, *oldpriv;
  2938. struct md_rdev *rdev;
  2939. if (slen == 0 || slen >= sizeof(clevel))
  2940. return -EINVAL;
  2941. rv = mddev_lock(mddev);
  2942. if (rv)
  2943. return rv;
  2944. if (mddev->pers == NULL) {
  2945. strncpy(mddev->clevel, buf, slen);
  2946. if (mddev->clevel[slen-1] == '\n')
  2947. slen--;
  2948. mddev->clevel[slen] = 0;
  2949. mddev->level = LEVEL_NONE;
  2950. rv = len;
  2951. goto out_unlock;
  2952. }
  2953. rv = -EROFS;
  2954. if (mddev->ro)
  2955. goto out_unlock;
  2956. /* request to change the personality. Need to ensure:
  2957. * - array is not engaged in resync/recovery/reshape
  2958. * - old personality can be suspended
  2959. * - new personality will access other array.
  2960. */
  2961. rv = -EBUSY;
  2962. if (mddev->sync_thread ||
  2963. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2964. mddev->reshape_position != MaxSector ||
  2965. mddev->sysfs_active)
  2966. goto out_unlock;
  2967. rv = -EINVAL;
  2968. if (!mddev->pers->quiesce) {
  2969. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2970. mdname(mddev), mddev->pers->name);
  2971. goto out_unlock;
  2972. }
  2973. /* Now find the new personality */
  2974. strncpy(clevel, buf, slen);
  2975. if (clevel[slen-1] == '\n')
  2976. slen--;
  2977. clevel[slen] = 0;
  2978. if (kstrtol(clevel, 10, &level))
  2979. level = LEVEL_NONE;
  2980. if (request_module("md-%s", clevel) != 0)
  2981. request_module("md-level-%s", clevel);
  2982. spin_lock(&pers_lock);
  2983. pers = find_pers(level, clevel);
  2984. if (!pers || !try_module_get(pers->owner)) {
  2985. spin_unlock(&pers_lock);
  2986. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2987. rv = -EINVAL;
  2988. goto out_unlock;
  2989. }
  2990. spin_unlock(&pers_lock);
  2991. if (pers == mddev->pers) {
  2992. /* Nothing to do! */
  2993. module_put(pers->owner);
  2994. rv = len;
  2995. goto out_unlock;
  2996. }
  2997. if (!pers->takeover) {
  2998. module_put(pers->owner);
  2999. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3000. mdname(mddev), clevel);
  3001. rv = -EINVAL;
  3002. goto out_unlock;
  3003. }
  3004. rdev_for_each(rdev, mddev)
  3005. rdev->new_raid_disk = rdev->raid_disk;
  3006. /* ->takeover must set new_* and/or delta_disks
  3007. * if it succeeds, and may set them when it fails.
  3008. */
  3009. priv = pers->takeover(mddev);
  3010. if (IS_ERR(priv)) {
  3011. mddev->new_level = mddev->level;
  3012. mddev->new_layout = mddev->layout;
  3013. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3014. mddev->raid_disks -= mddev->delta_disks;
  3015. mddev->delta_disks = 0;
  3016. mddev->reshape_backwards = 0;
  3017. module_put(pers->owner);
  3018. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3019. mdname(mddev), clevel);
  3020. rv = PTR_ERR(priv);
  3021. goto out_unlock;
  3022. }
  3023. /* Looks like we have a winner */
  3024. mddev_suspend(mddev);
  3025. mddev_detach(mddev);
  3026. spin_lock(&mddev->lock);
  3027. oldpers = mddev->pers;
  3028. oldpriv = mddev->private;
  3029. mddev->pers = pers;
  3030. mddev->private = priv;
  3031. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3032. mddev->level = mddev->new_level;
  3033. mddev->layout = mddev->new_layout;
  3034. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3035. mddev->delta_disks = 0;
  3036. mddev->reshape_backwards = 0;
  3037. mddev->degraded = 0;
  3038. spin_unlock(&mddev->lock);
  3039. if (oldpers->sync_request == NULL &&
  3040. mddev->external) {
  3041. /* We are converting from a no-redundancy array
  3042. * to a redundancy array and metadata is managed
  3043. * externally so we need to be sure that writes
  3044. * won't block due to a need to transition
  3045. * clean->dirty
  3046. * until external management is started.
  3047. */
  3048. mddev->in_sync = 0;
  3049. mddev->safemode_delay = 0;
  3050. mddev->safemode = 0;
  3051. }
  3052. oldpers->free(mddev, oldpriv);
  3053. if (oldpers->sync_request == NULL &&
  3054. pers->sync_request != NULL) {
  3055. /* need to add the md_redundancy_group */
  3056. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3057. printk(KERN_WARNING
  3058. "md: cannot register extra attributes for %s\n",
  3059. mdname(mddev));
  3060. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3061. }
  3062. if (oldpers->sync_request != NULL &&
  3063. pers->sync_request == NULL) {
  3064. /* need to remove the md_redundancy_group */
  3065. if (mddev->to_remove == NULL)
  3066. mddev->to_remove = &md_redundancy_group;
  3067. }
  3068. rdev_for_each(rdev, mddev) {
  3069. if (rdev->raid_disk < 0)
  3070. continue;
  3071. if (rdev->new_raid_disk >= mddev->raid_disks)
  3072. rdev->new_raid_disk = -1;
  3073. if (rdev->new_raid_disk == rdev->raid_disk)
  3074. continue;
  3075. sysfs_unlink_rdev(mddev, rdev);
  3076. }
  3077. rdev_for_each(rdev, mddev) {
  3078. if (rdev->raid_disk < 0)
  3079. continue;
  3080. if (rdev->new_raid_disk == rdev->raid_disk)
  3081. continue;
  3082. rdev->raid_disk = rdev->new_raid_disk;
  3083. if (rdev->raid_disk < 0)
  3084. clear_bit(In_sync, &rdev->flags);
  3085. else {
  3086. if (sysfs_link_rdev(mddev, rdev))
  3087. printk(KERN_WARNING "md: cannot register rd%d"
  3088. " for %s after level change\n",
  3089. rdev->raid_disk, mdname(mddev));
  3090. }
  3091. }
  3092. if (pers->sync_request == NULL) {
  3093. /* this is now an array without redundancy, so
  3094. * it must always be in_sync
  3095. */
  3096. mddev->in_sync = 1;
  3097. del_timer_sync(&mddev->safemode_timer);
  3098. }
  3099. blk_set_stacking_limits(&mddev->queue->limits);
  3100. pers->run(mddev);
  3101. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3102. mddev_resume(mddev);
  3103. if (!mddev->thread)
  3104. md_update_sb(mddev, 1);
  3105. sysfs_notify(&mddev->kobj, NULL, "level");
  3106. md_new_event(mddev);
  3107. rv = len;
  3108. out_unlock:
  3109. mddev_unlock(mddev);
  3110. return rv;
  3111. }
  3112. static struct md_sysfs_entry md_level =
  3113. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3114. static ssize_t
  3115. layout_show(struct mddev *mddev, char *page)
  3116. {
  3117. /* just a number, not meaningful for all levels */
  3118. if (mddev->reshape_position != MaxSector &&
  3119. mddev->layout != mddev->new_layout)
  3120. return sprintf(page, "%d (%d)\n",
  3121. mddev->new_layout, mddev->layout);
  3122. return sprintf(page, "%d\n", mddev->layout);
  3123. }
  3124. static ssize_t
  3125. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3126. {
  3127. char *e;
  3128. unsigned long n = simple_strtoul(buf, &e, 10);
  3129. int err;
  3130. if (!*buf || (*e && *e != '\n'))
  3131. return -EINVAL;
  3132. err = mddev_lock(mddev);
  3133. if (err)
  3134. return err;
  3135. if (mddev->pers) {
  3136. if (mddev->pers->check_reshape == NULL)
  3137. err = -EBUSY;
  3138. else if (mddev->ro)
  3139. err = -EROFS;
  3140. else {
  3141. mddev->new_layout = n;
  3142. err = mddev->pers->check_reshape(mddev);
  3143. if (err)
  3144. mddev->new_layout = mddev->layout;
  3145. }
  3146. } else {
  3147. mddev->new_layout = n;
  3148. if (mddev->reshape_position == MaxSector)
  3149. mddev->layout = n;
  3150. }
  3151. mddev_unlock(mddev);
  3152. return err ?: len;
  3153. }
  3154. static struct md_sysfs_entry md_layout =
  3155. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3156. static ssize_t
  3157. raid_disks_show(struct mddev *mddev, char *page)
  3158. {
  3159. if (mddev->raid_disks == 0)
  3160. return 0;
  3161. if (mddev->reshape_position != MaxSector &&
  3162. mddev->delta_disks != 0)
  3163. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3164. mddev->raid_disks - mddev->delta_disks);
  3165. return sprintf(page, "%d\n", mddev->raid_disks);
  3166. }
  3167. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3168. static ssize_t
  3169. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3170. {
  3171. char *e;
  3172. int err;
  3173. unsigned long n = simple_strtoul(buf, &e, 10);
  3174. if (!*buf || (*e && *e != '\n'))
  3175. return -EINVAL;
  3176. err = mddev_lock(mddev);
  3177. if (err)
  3178. return err;
  3179. if (mddev->pers)
  3180. err = update_raid_disks(mddev, n);
  3181. else if (mddev->reshape_position != MaxSector) {
  3182. struct md_rdev *rdev;
  3183. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3184. err = -EINVAL;
  3185. rdev_for_each(rdev, mddev) {
  3186. if (olddisks < n &&
  3187. rdev->data_offset < rdev->new_data_offset)
  3188. goto out_unlock;
  3189. if (olddisks > n &&
  3190. rdev->data_offset > rdev->new_data_offset)
  3191. goto out_unlock;
  3192. }
  3193. err = 0;
  3194. mddev->delta_disks = n - olddisks;
  3195. mddev->raid_disks = n;
  3196. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3197. } else
  3198. mddev->raid_disks = n;
  3199. out_unlock:
  3200. mddev_unlock(mddev);
  3201. return err ? err : len;
  3202. }
  3203. static struct md_sysfs_entry md_raid_disks =
  3204. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3205. static ssize_t
  3206. chunk_size_show(struct mddev *mddev, char *page)
  3207. {
  3208. if (mddev->reshape_position != MaxSector &&
  3209. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3210. return sprintf(page, "%d (%d)\n",
  3211. mddev->new_chunk_sectors << 9,
  3212. mddev->chunk_sectors << 9);
  3213. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3214. }
  3215. static ssize_t
  3216. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3217. {
  3218. int err;
  3219. char *e;
  3220. unsigned long n = simple_strtoul(buf, &e, 10);
  3221. if (!*buf || (*e && *e != '\n'))
  3222. return -EINVAL;
  3223. err = mddev_lock(mddev);
  3224. if (err)
  3225. return err;
  3226. if (mddev->pers) {
  3227. if (mddev->pers->check_reshape == NULL)
  3228. err = -EBUSY;
  3229. else if (mddev->ro)
  3230. err = -EROFS;
  3231. else {
  3232. mddev->new_chunk_sectors = n >> 9;
  3233. err = mddev->pers->check_reshape(mddev);
  3234. if (err)
  3235. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3236. }
  3237. } else {
  3238. mddev->new_chunk_sectors = n >> 9;
  3239. if (mddev->reshape_position == MaxSector)
  3240. mddev->chunk_sectors = n >> 9;
  3241. }
  3242. mddev_unlock(mddev);
  3243. return err ?: len;
  3244. }
  3245. static struct md_sysfs_entry md_chunk_size =
  3246. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3247. static ssize_t
  3248. resync_start_show(struct mddev *mddev, char *page)
  3249. {
  3250. if (mddev->recovery_cp == MaxSector)
  3251. return sprintf(page, "none\n");
  3252. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3253. }
  3254. static ssize_t
  3255. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3256. {
  3257. int err;
  3258. char *e;
  3259. unsigned long long n = simple_strtoull(buf, &e, 10);
  3260. err = mddev_lock(mddev);
  3261. if (err)
  3262. return err;
  3263. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3264. err = -EBUSY;
  3265. else if (cmd_match(buf, "none"))
  3266. n = MaxSector;
  3267. else if (!*buf || (*e && *e != '\n'))
  3268. err = -EINVAL;
  3269. if (!err) {
  3270. mddev->recovery_cp = n;
  3271. if (mddev->pers)
  3272. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3273. }
  3274. mddev_unlock(mddev);
  3275. return err ?: len;
  3276. }
  3277. static struct md_sysfs_entry md_resync_start =
  3278. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3279. /*
  3280. * The array state can be:
  3281. *
  3282. * clear
  3283. * No devices, no size, no level
  3284. * Equivalent to STOP_ARRAY ioctl
  3285. * inactive
  3286. * May have some settings, but array is not active
  3287. * all IO results in error
  3288. * When written, doesn't tear down array, but just stops it
  3289. * suspended (not supported yet)
  3290. * All IO requests will block. The array can be reconfigured.
  3291. * Writing this, if accepted, will block until array is quiescent
  3292. * readonly
  3293. * no resync can happen. no superblocks get written.
  3294. * write requests fail
  3295. * read-auto
  3296. * like readonly, but behaves like 'clean' on a write request.
  3297. *
  3298. * clean - no pending writes, but otherwise active.
  3299. * When written to inactive array, starts without resync
  3300. * If a write request arrives then
  3301. * if metadata is known, mark 'dirty' and switch to 'active'.
  3302. * if not known, block and switch to write-pending
  3303. * If written to an active array that has pending writes, then fails.
  3304. * active
  3305. * fully active: IO and resync can be happening.
  3306. * When written to inactive array, starts with resync
  3307. *
  3308. * write-pending
  3309. * clean, but writes are blocked waiting for 'active' to be written.
  3310. *
  3311. * active-idle
  3312. * like active, but no writes have been seen for a while (100msec).
  3313. *
  3314. */
  3315. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3316. write_pending, active_idle, bad_word};
  3317. static char *array_states[] = {
  3318. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3319. "write-pending", "active-idle", NULL };
  3320. static int match_word(const char *word, char **list)
  3321. {
  3322. int n;
  3323. for (n=0; list[n]; n++)
  3324. if (cmd_match(word, list[n]))
  3325. break;
  3326. return n;
  3327. }
  3328. static ssize_t
  3329. array_state_show(struct mddev *mddev, char *page)
  3330. {
  3331. enum array_state st = inactive;
  3332. if (mddev->pers)
  3333. switch(mddev->ro) {
  3334. case 1:
  3335. st = readonly;
  3336. break;
  3337. case 2:
  3338. st = read_auto;
  3339. break;
  3340. case 0:
  3341. if (mddev->in_sync)
  3342. st = clean;
  3343. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3344. st = write_pending;
  3345. else if (mddev->safemode)
  3346. st = active_idle;
  3347. else
  3348. st = active;
  3349. }
  3350. else {
  3351. if (list_empty(&mddev->disks) &&
  3352. mddev->raid_disks == 0 &&
  3353. mddev->dev_sectors == 0)
  3354. st = clear;
  3355. else
  3356. st = inactive;
  3357. }
  3358. return sprintf(page, "%s\n", array_states[st]);
  3359. }
  3360. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3361. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3362. static int do_md_run(struct mddev *mddev);
  3363. static int restart_array(struct mddev *mddev);
  3364. static ssize_t
  3365. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3366. {
  3367. int err;
  3368. enum array_state st = match_word(buf, array_states);
  3369. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3370. /* don't take reconfig_mutex when toggling between
  3371. * clean and active
  3372. */
  3373. spin_lock(&mddev->lock);
  3374. if (st == active) {
  3375. restart_array(mddev);
  3376. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3377. wake_up(&mddev->sb_wait);
  3378. err = 0;
  3379. } else /* st == clean */ {
  3380. restart_array(mddev);
  3381. if (atomic_read(&mddev->writes_pending) == 0) {
  3382. if (mddev->in_sync == 0) {
  3383. mddev->in_sync = 1;
  3384. if (mddev->safemode == 1)
  3385. mddev->safemode = 0;
  3386. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3387. }
  3388. err = 0;
  3389. } else
  3390. err = -EBUSY;
  3391. }
  3392. spin_unlock(&mddev->lock);
  3393. return err;
  3394. }
  3395. err = mddev_lock(mddev);
  3396. if (err)
  3397. return err;
  3398. err = -EINVAL;
  3399. switch(st) {
  3400. case bad_word:
  3401. break;
  3402. case clear:
  3403. /* stopping an active array */
  3404. err = do_md_stop(mddev, 0, NULL);
  3405. break;
  3406. case inactive:
  3407. /* stopping an active array */
  3408. if (mddev->pers)
  3409. err = do_md_stop(mddev, 2, NULL);
  3410. else
  3411. err = 0; /* already inactive */
  3412. break;
  3413. case suspended:
  3414. break; /* not supported yet */
  3415. case readonly:
  3416. if (mddev->pers)
  3417. err = md_set_readonly(mddev, NULL);
  3418. else {
  3419. mddev->ro = 1;
  3420. set_disk_ro(mddev->gendisk, 1);
  3421. err = do_md_run(mddev);
  3422. }
  3423. break;
  3424. case read_auto:
  3425. if (mddev->pers) {
  3426. if (mddev->ro == 0)
  3427. err = md_set_readonly(mddev, NULL);
  3428. else if (mddev->ro == 1)
  3429. err = restart_array(mddev);
  3430. if (err == 0) {
  3431. mddev->ro = 2;
  3432. set_disk_ro(mddev->gendisk, 0);
  3433. }
  3434. } else {
  3435. mddev->ro = 2;
  3436. err = do_md_run(mddev);
  3437. }
  3438. break;
  3439. case clean:
  3440. if (mddev->pers) {
  3441. restart_array(mddev);
  3442. spin_lock(&mddev->lock);
  3443. if (atomic_read(&mddev->writes_pending) == 0) {
  3444. if (mddev->in_sync == 0) {
  3445. mddev->in_sync = 1;
  3446. if (mddev->safemode == 1)
  3447. mddev->safemode = 0;
  3448. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3449. }
  3450. err = 0;
  3451. } else
  3452. err = -EBUSY;
  3453. spin_unlock(&mddev->lock);
  3454. } else
  3455. err = -EINVAL;
  3456. break;
  3457. case active:
  3458. if (mddev->pers) {
  3459. restart_array(mddev);
  3460. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3461. wake_up(&mddev->sb_wait);
  3462. err = 0;
  3463. } else {
  3464. mddev->ro = 0;
  3465. set_disk_ro(mddev->gendisk, 0);
  3466. err = do_md_run(mddev);
  3467. }
  3468. break;
  3469. case write_pending:
  3470. case active_idle:
  3471. /* these cannot be set */
  3472. break;
  3473. }
  3474. if (!err) {
  3475. if (mddev->hold_active == UNTIL_IOCTL)
  3476. mddev->hold_active = 0;
  3477. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3478. }
  3479. mddev_unlock(mddev);
  3480. return err ?: len;
  3481. }
  3482. static struct md_sysfs_entry md_array_state =
  3483. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3484. static ssize_t
  3485. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3486. return sprintf(page, "%d\n",
  3487. atomic_read(&mddev->max_corr_read_errors));
  3488. }
  3489. static ssize_t
  3490. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3491. {
  3492. char *e;
  3493. unsigned long n = simple_strtoul(buf, &e, 10);
  3494. if (*buf && (*e == 0 || *e == '\n')) {
  3495. atomic_set(&mddev->max_corr_read_errors, n);
  3496. return len;
  3497. }
  3498. return -EINVAL;
  3499. }
  3500. static struct md_sysfs_entry max_corr_read_errors =
  3501. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3502. max_corrected_read_errors_store);
  3503. static ssize_t
  3504. null_show(struct mddev *mddev, char *page)
  3505. {
  3506. return -EINVAL;
  3507. }
  3508. static ssize_t
  3509. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3510. {
  3511. /* buf must be %d:%d\n? giving major and minor numbers */
  3512. /* The new device is added to the array.
  3513. * If the array has a persistent superblock, we read the
  3514. * superblock to initialise info and check validity.
  3515. * Otherwise, only checking done is that in bind_rdev_to_array,
  3516. * which mainly checks size.
  3517. */
  3518. char *e;
  3519. int major = simple_strtoul(buf, &e, 10);
  3520. int minor;
  3521. dev_t dev;
  3522. struct md_rdev *rdev;
  3523. int err;
  3524. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3525. return -EINVAL;
  3526. minor = simple_strtoul(e+1, &e, 10);
  3527. if (*e && *e != '\n')
  3528. return -EINVAL;
  3529. dev = MKDEV(major, minor);
  3530. if (major != MAJOR(dev) ||
  3531. minor != MINOR(dev))
  3532. return -EOVERFLOW;
  3533. flush_workqueue(md_misc_wq);
  3534. err = mddev_lock(mddev);
  3535. if (err)
  3536. return err;
  3537. if (mddev->persistent) {
  3538. rdev = md_import_device(dev, mddev->major_version,
  3539. mddev->minor_version);
  3540. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3541. struct md_rdev *rdev0
  3542. = list_entry(mddev->disks.next,
  3543. struct md_rdev, same_set);
  3544. err = super_types[mddev->major_version]
  3545. .load_super(rdev, rdev0, mddev->minor_version);
  3546. if (err < 0)
  3547. goto out;
  3548. }
  3549. } else if (mddev->external)
  3550. rdev = md_import_device(dev, -2, -1);
  3551. else
  3552. rdev = md_import_device(dev, -1, -1);
  3553. if (IS_ERR(rdev))
  3554. return PTR_ERR(rdev);
  3555. err = bind_rdev_to_array(rdev, mddev);
  3556. out:
  3557. if (err)
  3558. export_rdev(rdev);
  3559. mddev_unlock(mddev);
  3560. return err ? err : len;
  3561. }
  3562. static struct md_sysfs_entry md_new_device =
  3563. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3564. static ssize_t
  3565. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3566. {
  3567. char *end;
  3568. unsigned long chunk, end_chunk;
  3569. int err;
  3570. err = mddev_lock(mddev);
  3571. if (err)
  3572. return err;
  3573. if (!mddev->bitmap)
  3574. goto out;
  3575. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3576. while (*buf) {
  3577. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3578. if (buf == end) break;
  3579. if (*end == '-') { /* range */
  3580. buf = end + 1;
  3581. end_chunk = simple_strtoul(buf, &end, 0);
  3582. if (buf == end) break;
  3583. }
  3584. if (*end && !isspace(*end)) break;
  3585. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3586. buf = skip_spaces(end);
  3587. }
  3588. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3589. out:
  3590. mddev_unlock(mddev);
  3591. return len;
  3592. }
  3593. static struct md_sysfs_entry md_bitmap =
  3594. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3595. static ssize_t
  3596. size_show(struct mddev *mddev, char *page)
  3597. {
  3598. return sprintf(page, "%llu\n",
  3599. (unsigned long long)mddev->dev_sectors / 2);
  3600. }
  3601. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3602. static ssize_t
  3603. size_store(struct mddev *mddev, const char *buf, size_t len)
  3604. {
  3605. /* If array is inactive, we can reduce the component size, but
  3606. * not increase it (except from 0).
  3607. * If array is active, we can try an on-line resize
  3608. */
  3609. sector_t sectors;
  3610. int err = strict_blocks_to_sectors(buf, &sectors);
  3611. if (err < 0)
  3612. return err;
  3613. err = mddev_lock(mddev);
  3614. if (err)
  3615. return err;
  3616. if (mddev->pers) {
  3617. if (mddev_is_clustered(mddev))
  3618. md_cluster_ops->metadata_update_start(mddev);
  3619. err = update_size(mddev, sectors);
  3620. md_update_sb(mddev, 1);
  3621. if (mddev_is_clustered(mddev))
  3622. md_cluster_ops->metadata_update_finish(mddev);
  3623. } else {
  3624. if (mddev->dev_sectors == 0 ||
  3625. mddev->dev_sectors > sectors)
  3626. mddev->dev_sectors = sectors;
  3627. else
  3628. err = -ENOSPC;
  3629. }
  3630. mddev_unlock(mddev);
  3631. return err ? err : len;
  3632. }
  3633. static struct md_sysfs_entry md_size =
  3634. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3635. /* Metadata version.
  3636. * This is one of
  3637. * 'none' for arrays with no metadata (good luck...)
  3638. * 'external' for arrays with externally managed metadata,
  3639. * or N.M for internally known formats
  3640. */
  3641. static ssize_t
  3642. metadata_show(struct mddev *mddev, char *page)
  3643. {
  3644. if (mddev->persistent)
  3645. return sprintf(page, "%d.%d\n",
  3646. mddev->major_version, mddev->minor_version);
  3647. else if (mddev->external)
  3648. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3649. else
  3650. return sprintf(page, "none\n");
  3651. }
  3652. static ssize_t
  3653. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3654. {
  3655. int major, minor;
  3656. char *e;
  3657. int err;
  3658. /* Changing the details of 'external' metadata is
  3659. * always permitted. Otherwise there must be
  3660. * no devices attached to the array.
  3661. */
  3662. err = mddev_lock(mddev);
  3663. if (err)
  3664. return err;
  3665. err = -EBUSY;
  3666. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3667. ;
  3668. else if (!list_empty(&mddev->disks))
  3669. goto out_unlock;
  3670. err = 0;
  3671. if (cmd_match(buf, "none")) {
  3672. mddev->persistent = 0;
  3673. mddev->external = 0;
  3674. mddev->major_version = 0;
  3675. mddev->minor_version = 90;
  3676. goto out_unlock;
  3677. }
  3678. if (strncmp(buf, "external:", 9) == 0) {
  3679. size_t namelen = len-9;
  3680. if (namelen >= sizeof(mddev->metadata_type))
  3681. namelen = sizeof(mddev->metadata_type)-1;
  3682. strncpy(mddev->metadata_type, buf+9, namelen);
  3683. mddev->metadata_type[namelen] = 0;
  3684. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3685. mddev->metadata_type[--namelen] = 0;
  3686. mddev->persistent = 0;
  3687. mddev->external = 1;
  3688. mddev->major_version = 0;
  3689. mddev->minor_version = 90;
  3690. goto out_unlock;
  3691. }
  3692. major = simple_strtoul(buf, &e, 10);
  3693. err = -EINVAL;
  3694. if (e==buf || *e != '.')
  3695. goto out_unlock;
  3696. buf = e+1;
  3697. minor = simple_strtoul(buf, &e, 10);
  3698. if (e==buf || (*e && *e != '\n') )
  3699. goto out_unlock;
  3700. err = -ENOENT;
  3701. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3702. goto out_unlock;
  3703. mddev->major_version = major;
  3704. mddev->minor_version = minor;
  3705. mddev->persistent = 1;
  3706. mddev->external = 0;
  3707. err = 0;
  3708. out_unlock:
  3709. mddev_unlock(mddev);
  3710. return err ?: len;
  3711. }
  3712. static struct md_sysfs_entry md_metadata =
  3713. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3714. static ssize_t
  3715. action_show(struct mddev *mddev, char *page)
  3716. {
  3717. char *type = "idle";
  3718. unsigned long recovery = mddev->recovery;
  3719. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3720. type = "frozen";
  3721. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3722. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3723. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3724. type = "reshape";
  3725. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3726. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3727. type = "resync";
  3728. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3729. type = "check";
  3730. else
  3731. type = "repair";
  3732. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3733. type = "recover";
  3734. }
  3735. return sprintf(page, "%s\n", type);
  3736. }
  3737. static ssize_t
  3738. action_store(struct mddev *mddev, const char *page, size_t len)
  3739. {
  3740. if (!mddev->pers || !mddev->pers->sync_request)
  3741. return -EINVAL;
  3742. if (cmd_match(page, "frozen"))
  3743. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3744. else
  3745. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3746. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3747. flush_workqueue(md_misc_wq);
  3748. if (mddev->sync_thread) {
  3749. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3750. if (mddev_lock(mddev) == 0) {
  3751. md_reap_sync_thread(mddev);
  3752. mddev_unlock(mddev);
  3753. }
  3754. }
  3755. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3756. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3757. return -EBUSY;
  3758. else if (cmd_match(page, "resync"))
  3759. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3760. else if (cmd_match(page, "recover")) {
  3761. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3762. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3763. } else if (cmd_match(page, "reshape")) {
  3764. int err;
  3765. if (mddev->pers->start_reshape == NULL)
  3766. return -EINVAL;
  3767. err = mddev_lock(mddev);
  3768. if (!err) {
  3769. err = mddev->pers->start_reshape(mddev);
  3770. mddev_unlock(mddev);
  3771. }
  3772. if (err)
  3773. return err;
  3774. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3775. } else {
  3776. if (cmd_match(page, "check"))
  3777. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3778. else if (!cmd_match(page, "repair"))
  3779. return -EINVAL;
  3780. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3781. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3782. }
  3783. if (mddev->ro == 2) {
  3784. /* A write to sync_action is enough to justify
  3785. * canceling read-auto mode
  3786. */
  3787. mddev->ro = 0;
  3788. md_wakeup_thread(mddev->sync_thread);
  3789. }
  3790. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3791. md_wakeup_thread(mddev->thread);
  3792. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3793. return len;
  3794. }
  3795. static struct md_sysfs_entry md_scan_mode =
  3796. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3797. static ssize_t
  3798. last_sync_action_show(struct mddev *mddev, char *page)
  3799. {
  3800. return sprintf(page, "%s\n", mddev->last_sync_action);
  3801. }
  3802. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3803. static ssize_t
  3804. mismatch_cnt_show(struct mddev *mddev, char *page)
  3805. {
  3806. return sprintf(page, "%llu\n",
  3807. (unsigned long long)
  3808. atomic64_read(&mddev->resync_mismatches));
  3809. }
  3810. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3811. static ssize_t
  3812. sync_min_show(struct mddev *mddev, char *page)
  3813. {
  3814. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3815. mddev->sync_speed_min ? "local": "system");
  3816. }
  3817. static ssize_t
  3818. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3819. {
  3820. int min;
  3821. char *e;
  3822. if (strncmp(buf, "system", 6)==0) {
  3823. mddev->sync_speed_min = 0;
  3824. return len;
  3825. }
  3826. min = simple_strtoul(buf, &e, 10);
  3827. if (buf == e || (*e && *e != '\n') || min <= 0)
  3828. return -EINVAL;
  3829. mddev->sync_speed_min = min;
  3830. return len;
  3831. }
  3832. static struct md_sysfs_entry md_sync_min =
  3833. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3834. static ssize_t
  3835. sync_max_show(struct mddev *mddev, char *page)
  3836. {
  3837. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3838. mddev->sync_speed_max ? "local": "system");
  3839. }
  3840. static ssize_t
  3841. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3842. {
  3843. int max;
  3844. char *e;
  3845. if (strncmp(buf, "system", 6)==0) {
  3846. mddev->sync_speed_max = 0;
  3847. return len;
  3848. }
  3849. max = simple_strtoul(buf, &e, 10);
  3850. if (buf == e || (*e && *e != '\n') || max <= 0)
  3851. return -EINVAL;
  3852. mddev->sync_speed_max = max;
  3853. return len;
  3854. }
  3855. static struct md_sysfs_entry md_sync_max =
  3856. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3857. static ssize_t
  3858. degraded_show(struct mddev *mddev, char *page)
  3859. {
  3860. return sprintf(page, "%d\n", mddev->degraded);
  3861. }
  3862. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3863. static ssize_t
  3864. sync_force_parallel_show(struct mddev *mddev, char *page)
  3865. {
  3866. return sprintf(page, "%d\n", mddev->parallel_resync);
  3867. }
  3868. static ssize_t
  3869. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3870. {
  3871. long n;
  3872. if (kstrtol(buf, 10, &n))
  3873. return -EINVAL;
  3874. if (n != 0 && n != 1)
  3875. return -EINVAL;
  3876. mddev->parallel_resync = n;
  3877. if (mddev->sync_thread)
  3878. wake_up(&resync_wait);
  3879. return len;
  3880. }
  3881. /* force parallel resync, even with shared block devices */
  3882. static struct md_sysfs_entry md_sync_force_parallel =
  3883. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3884. sync_force_parallel_show, sync_force_parallel_store);
  3885. static ssize_t
  3886. sync_speed_show(struct mddev *mddev, char *page)
  3887. {
  3888. unsigned long resync, dt, db;
  3889. if (mddev->curr_resync == 0)
  3890. return sprintf(page, "none\n");
  3891. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3892. dt = (jiffies - mddev->resync_mark) / HZ;
  3893. if (!dt) dt++;
  3894. db = resync - mddev->resync_mark_cnt;
  3895. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3896. }
  3897. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3898. static ssize_t
  3899. sync_completed_show(struct mddev *mddev, char *page)
  3900. {
  3901. unsigned long long max_sectors, resync;
  3902. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3903. return sprintf(page, "none\n");
  3904. if (mddev->curr_resync == 1 ||
  3905. mddev->curr_resync == 2)
  3906. return sprintf(page, "delayed\n");
  3907. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3908. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3909. max_sectors = mddev->resync_max_sectors;
  3910. else
  3911. max_sectors = mddev->dev_sectors;
  3912. resync = mddev->curr_resync_completed;
  3913. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3914. }
  3915. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3916. static ssize_t
  3917. min_sync_show(struct mddev *mddev, char *page)
  3918. {
  3919. return sprintf(page, "%llu\n",
  3920. (unsigned long long)mddev->resync_min);
  3921. }
  3922. static ssize_t
  3923. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3924. {
  3925. unsigned long long min;
  3926. int err;
  3927. int chunk;
  3928. if (kstrtoull(buf, 10, &min))
  3929. return -EINVAL;
  3930. spin_lock(&mddev->lock);
  3931. err = -EINVAL;
  3932. if (min > mddev->resync_max)
  3933. goto out_unlock;
  3934. err = -EBUSY;
  3935. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3936. goto out_unlock;
  3937. /* Must be a multiple of chunk_size */
  3938. chunk = mddev->chunk_sectors;
  3939. if (chunk) {
  3940. sector_t temp = min;
  3941. err = -EINVAL;
  3942. if (sector_div(temp, chunk))
  3943. goto out_unlock;
  3944. }
  3945. mddev->resync_min = min;
  3946. err = 0;
  3947. out_unlock:
  3948. spin_unlock(&mddev->lock);
  3949. return err ?: len;
  3950. }
  3951. static struct md_sysfs_entry md_min_sync =
  3952. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3953. static ssize_t
  3954. max_sync_show(struct mddev *mddev, char *page)
  3955. {
  3956. if (mddev->resync_max == MaxSector)
  3957. return sprintf(page, "max\n");
  3958. else
  3959. return sprintf(page, "%llu\n",
  3960. (unsigned long long)mddev->resync_max);
  3961. }
  3962. static ssize_t
  3963. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3964. {
  3965. int err;
  3966. spin_lock(&mddev->lock);
  3967. if (strncmp(buf, "max", 3) == 0)
  3968. mddev->resync_max = MaxSector;
  3969. else {
  3970. unsigned long long max;
  3971. int chunk;
  3972. err = -EINVAL;
  3973. if (kstrtoull(buf, 10, &max))
  3974. goto out_unlock;
  3975. if (max < mddev->resync_min)
  3976. goto out_unlock;
  3977. err = -EBUSY;
  3978. if (max < mddev->resync_max &&
  3979. mddev->ro == 0 &&
  3980. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3981. goto out_unlock;
  3982. /* Must be a multiple of chunk_size */
  3983. chunk = mddev->chunk_sectors;
  3984. if (chunk) {
  3985. sector_t temp = max;
  3986. err = -EINVAL;
  3987. if (sector_div(temp, chunk))
  3988. goto out_unlock;
  3989. }
  3990. mddev->resync_max = max;
  3991. }
  3992. wake_up(&mddev->recovery_wait);
  3993. err = 0;
  3994. out_unlock:
  3995. spin_unlock(&mddev->lock);
  3996. return err ?: len;
  3997. }
  3998. static struct md_sysfs_entry md_max_sync =
  3999. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4000. static ssize_t
  4001. suspend_lo_show(struct mddev *mddev, char *page)
  4002. {
  4003. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4004. }
  4005. static ssize_t
  4006. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4007. {
  4008. char *e;
  4009. unsigned long long new = simple_strtoull(buf, &e, 10);
  4010. unsigned long long old;
  4011. int err;
  4012. if (buf == e || (*e && *e != '\n'))
  4013. return -EINVAL;
  4014. err = mddev_lock(mddev);
  4015. if (err)
  4016. return err;
  4017. err = -EINVAL;
  4018. if (mddev->pers == NULL ||
  4019. mddev->pers->quiesce == NULL)
  4020. goto unlock;
  4021. old = mddev->suspend_lo;
  4022. mddev->suspend_lo = new;
  4023. if (new >= old)
  4024. /* Shrinking suspended region */
  4025. mddev->pers->quiesce(mddev, 2);
  4026. else {
  4027. /* Expanding suspended region - need to wait */
  4028. mddev->pers->quiesce(mddev, 1);
  4029. mddev->pers->quiesce(mddev, 0);
  4030. }
  4031. err = 0;
  4032. unlock:
  4033. mddev_unlock(mddev);
  4034. return err ?: len;
  4035. }
  4036. static struct md_sysfs_entry md_suspend_lo =
  4037. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4038. static ssize_t
  4039. suspend_hi_show(struct mddev *mddev, char *page)
  4040. {
  4041. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4042. }
  4043. static ssize_t
  4044. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4045. {
  4046. char *e;
  4047. unsigned long long new = simple_strtoull(buf, &e, 10);
  4048. unsigned long long old;
  4049. int err;
  4050. if (buf == e || (*e && *e != '\n'))
  4051. return -EINVAL;
  4052. err = mddev_lock(mddev);
  4053. if (err)
  4054. return err;
  4055. err = -EINVAL;
  4056. if (mddev->pers == NULL ||
  4057. mddev->pers->quiesce == NULL)
  4058. goto unlock;
  4059. old = mddev->suspend_hi;
  4060. mddev->suspend_hi = new;
  4061. if (new <= old)
  4062. /* Shrinking suspended region */
  4063. mddev->pers->quiesce(mddev, 2);
  4064. else {
  4065. /* Expanding suspended region - need to wait */
  4066. mddev->pers->quiesce(mddev, 1);
  4067. mddev->pers->quiesce(mddev, 0);
  4068. }
  4069. err = 0;
  4070. unlock:
  4071. mddev_unlock(mddev);
  4072. return err ?: len;
  4073. }
  4074. static struct md_sysfs_entry md_suspend_hi =
  4075. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4076. static ssize_t
  4077. reshape_position_show(struct mddev *mddev, char *page)
  4078. {
  4079. if (mddev->reshape_position != MaxSector)
  4080. return sprintf(page, "%llu\n",
  4081. (unsigned long long)mddev->reshape_position);
  4082. strcpy(page, "none\n");
  4083. return 5;
  4084. }
  4085. static ssize_t
  4086. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4087. {
  4088. struct md_rdev *rdev;
  4089. char *e;
  4090. int err;
  4091. unsigned long long new = simple_strtoull(buf, &e, 10);
  4092. if (buf == e || (*e && *e != '\n'))
  4093. return -EINVAL;
  4094. err = mddev_lock(mddev);
  4095. if (err)
  4096. return err;
  4097. err = -EBUSY;
  4098. if (mddev->pers)
  4099. goto unlock;
  4100. mddev->reshape_position = new;
  4101. mddev->delta_disks = 0;
  4102. mddev->reshape_backwards = 0;
  4103. mddev->new_level = mddev->level;
  4104. mddev->new_layout = mddev->layout;
  4105. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4106. rdev_for_each(rdev, mddev)
  4107. rdev->new_data_offset = rdev->data_offset;
  4108. err = 0;
  4109. unlock:
  4110. mddev_unlock(mddev);
  4111. return err ?: len;
  4112. }
  4113. static struct md_sysfs_entry md_reshape_position =
  4114. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4115. reshape_position_store);
  4116. static ssize_t
  4117. reshape_direction_show(struct mddev *mddev, char *page)
  4118. {
  4119. return sprintf(page, "%s\n",
  4120. mddev->reshape_backwards ? "backwards" : "forwards");
  4121. }
  4122. static ssize_t
  4123. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4124. {
  4125. int backwards = 0;
  4126. int err;
  4127. if (cmd_match(buf, "forwards"))
  4128. backwards = 0;
  4129. else if (cmd_match(buf, "backwards"))
  4130. backwards = 1;
  4131. else
  4132. return -EINVAL;
  4133. if (mddev->reshape_backwards == backwards)
  4134. return len;
  4135. err = mddev_lock(mddev);
  4136. if (err)
  4137. return err;
  4138. /* check if we are allowed to change */
  4139. if (mddev->delta_disks)
  4140. err = -EBUSY;
  4141. else if (mddev->persistent &&
  4142. mddev->major_version == 0)
  4143. err = -EINVAL;
  4144. else
  4145. mddev->reshape_backwards = backwards;
  4146. mddev_unlock(mddev);
  4147. return err ?: len;
  4148. }
  4149. static struct md_sysfs_entry md_reshape_direction =
  4150. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4151. reshape_direction_store);
  4152. static ssize_t
  4153. array_size_show(struct mddev *mddev, char *page)
  4154. {
  4155. if (mddev->external_size)
  4156. return sprintf(page, "%llu\n",
  4157. (unsigned long long)mddev->array_sectors/2);
  4158. else
  4159. return sprintf(page, "default\n");
  4160. }
  4161. static ssize_t
  4162. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4163. {
  4164. sector_t sectors;
  4165. int err;
  4166. err = mddev_lock(mddev);
  4167. if (err)
  4168. return err;
  4169. if (strncmp(buf, "default", 7) == 0) {
  4170. if (mddev->pers)
  4171. sectors = mddev->pers->size(mddev, 0, 0);
  4172. else
  4173. sectors = mddev->array_sectors;
  4174. mddev->external_size = 0;
  4175. } else {
  4176. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4177. err = -EINVAL;
  4178. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4179. err = -E2BIG;
  4180. else
  4181. mddev->external_size = 1;
  4182. }
  4183. if (!err) {
  4184. mddev->array_sectors = sectors;
  4185. if (mddev->pers) {
  4186. set_capacity(mddev->gendisk, mddev->array_sectors);
  4187. revalidate_disk(mddev->gendisk);
  4188. }
  4189. }
  4190. mddev_unlock(mddev);
  4191. return err ?: len;
  4192. }
  4193. static struct md_sysfs_entry md_array_size =
  4194. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4195. array_size_store);
  4196. static struct attribute *md_default_attrs[] = {
  4197. &md_level.attr,
  4198. &md_layout.attr,
  4199. &md_raid_disks.attr,
  4200. &md_chunk_size.attr,
  4201. &md_size.attr,
  4202. &md_resync_start.attr,
  4203. &md_metadata.attr,
  4204. &md_new_device.attr,
  4205. &md_safe_delay.attr,
  4206. &md_array_state.attr,
  4207. &md_reshape_position.attr,
  4208. &md_reshape_direction.attr,
  4209. &md_array_size.attr,
  4210. &max_corr_read_errors.attr,
  4211. NULL,
  4212. };
  4213. static struct attribute *md_redundancy_attrs[] = {
  4214. &md_scan_mode.attr,
  4215. &md_last_scan_mode.attr,
  4216. &md_mismatches.attr,
  4217. &md_sync_min.attr,
  4218. &md_sync_max.attr,
  4219. &md_sync_speed.attr,
  4220. &md_sync_force_parallel.attr,
  4221. &md_sync_completed.attr,
  4222. &md_min_sync.attr,
  4223. &md_max_sync.attr,
  4224. &md_suspend_lo.attr,
  4225. &md_suspend_hi.attr,
  4226. &md_bitmap.attr,
  4227. &md_degraded.attr,
  4228. NULL,
  4229. };
  4230. static struct attribute_group md_redundancy_group = {
  4231. .name = NULL,
  4232. .attrs = md_redundancy_attrs,
  4233. };
  4234. static ssize_t
  4235. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4236. {
  4237. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4238. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4239. ssize_t rv;
  4240. if (!entry->show)
  4241. return -EIO;
  4242. spin_lock(&all_mddevs_lock);
  4243. if (list_empty(&mddev->all_mddevs)) {
  4244. spin_unlock(&all_mddevs_lock);
  4245. return -EBUSY;
  4246. }
  4247. mddev_get(mddev);
  4248. spin_unlock(&all_mddevs_lock);
  4249. rv = entry->show(mddev, page);
  4250. mddev_put(mddev);
  4251. return rv;
  4252. }
  4253. static ssize_t
  4254. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4255. const char *page, size_t length)
  4256. {
  4257. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4258. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4259. ssize_t rv;
  4260. if (!entry->store)
  4261. return -EIO;
  4262. if (!capable(CAP_SYS_ADMIN))
  4263. return -EACCES;
  4264. spin_lock(&all_mddevs_lock);
  4265. if (list_empty(&mddev->all_mddevs)) {
  4266. spin_unlock(&all_mddevs_lock);
  4267. return -EBUSY;
  4268. }
  4269. mddev_get(mddev);
  4270. spin_unlock(&all_mddevs_lock);
  4271. rv = entry->store(mddev, page, length);
  4272. mddev_put(mddev);
  4273. return rv;
  4274. }
  4275. static void md_free(struct kobject *ko)
  4276. {
  4277. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4278. if (mddev->sysfs_state)
  4279. sysfs_put(mddev->sysfs_state);
  4280. if (mddev->gendisk) {
  4281. del_gendisk(mddev->gendisk);
  4282. put_disk(mddev->gendisk);
  4283. }
  4284. if (mddev->queue)
  4285. blk_cleanup_queue(mddev->queue);
  4286. kfree(mddev);
  4287. }
  4288. static const struct sysfs_ops md_sysfs_ops = {
  4289. .show = md_attr_show,
  4290. .store = md_attr_store,
  4291. };
  4292. static struct kobj_type md_ktype = {
  4293. .release = md_free,
  4294. .sysfs_ops = &md_sysfs_ops,
  4295. .default_attrs = md_default_attrs,
  4296. };
  4297. int mdp_major = 0;
  4298. static void mddev_delayed_delete(struct work_struct *ws)
  4299. {
  4300. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4301. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4302. kobject_del(&mddev->kobj);
  4303. kobject_put(&mddev->kobj);
  4304. }
  4305. static int md_alloc(dev_t dev, char *name)
  4306. {
  4307. static DEFINE_MUTEX(disks_mutex);
  4308. struct mddev *mddev = mddev_find(dev);
  4309. struct gendisk *disk;
  4310. int partitioned;
  4311. int shift;
  4312. int unit;
  4313. int error;
  4314. if (!mddev)
  4315. return -ENODEV;
  4316. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4317. shift = partitioned ? MdpMinorShift : 0;
  4318. unit = MINOR(mddev->unit) >> shift;
  4319. /* wait for any previous instance of this device to be
  4320. * completely removed (mddev_delayed_delete).
  4321. */
  4322. flush_workqueue(md_misc_wq);
  4323. mutex_lock(&disks_mutex);
  4324. error = -EEXIST;
  4325. if (mddev->gendisk)
  4326. goto abort;
  4327. if (name) {
  4328. /* Need to ensure that 'name' is not a duplicate.
  4329. */
  4330. struct mddev *mddev2;
  4331. spin_lock(&all_mddevs_lock);
  4332. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4333. if (mddev2->gendisk &&
  4334. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4335. spin_unlock(&all_mddevs_lock);
  4336. goto abort;
  4337. }
  4338. spin_unlock(&all_mddevs_lock);
  4339. }
  4340. error = -ENOMEM;
  4341. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4342. if (!mddev->queue)
  4343. goto abort;
  4344. mddev->queue->queuedata = mddev;
  4345. blk_queue_make_request(mddev->queue, md_make_request);
  4346. blk_set_stacking_limits(&mddev->queue->limits);
  4347. disk = alloc_disk(1 << shift);
  4348. if (!disk) {
  4349. blk_cleanup_queue(mddev->queue);
  4350. mddev->queue = NULL;
  4351. goto abort;
  4352. }
  4353. disk->major = MAJOR(mddev->unit);
  4354. disk->first_minor = unit << shift;
  4355. if (name)
  4356. strcpy(disk->disk_name, name);
  4357. else if (partitioned)
  4358. sprintf(disk->disk_name, "md_d%d", unit);
  4359. else
  4360. sprintf(disk->disk_name, "md%d", unit);
  4361. disk->fops = &md_fops;
  4362. disk->private_data = mddev;
  4363. disk->queue = mddev->queue;
  4364. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4365. /* Allow extended partitions. This makes the
  4366. * 'mdp' device redundant, but we can't really
  4367. * remove it now.
  4368. */
  4369. disk->flags |= GENHD_FL_EXT_DEVT;
  4370. mddev->gendisk = disk;
  4371. /* As soon as we call add_disk(), another thread could get
  4372. * through to md_open, so make sure it doesn't get too far
  4373. */
  4374. mutex_lock(&mddev->open_mutex);
  4375. add_disk(disk);
  4376. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4377. &disk_to_dev(disk)->kobj, "%s", "md");
  4378. if (error) {
  4379. /* This isn't possible, but as kobject_init_and_add is marked
  4380. * __must_check, we must do something with the result
  4381. */
  4382. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4383. disk->disk_name);
  4384. error = 0;
  4385. }
  4386. if (mddev->kobj.sd &&
  4387. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4388. printk(KERN_DEBUG "pointless warning\n");
  4389. mutex_unlock(&mddev->open_mutex);
  4390. abort:
  4391. mutex_unlock(&disks_mutex);
  4392. if (!error && mddev->kobj.sd) {
  4393. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4394. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4395. }
  4396. mddev_put(mddev);
  4397. return error;
  4398. }
  4399. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4400. {
  4401. md_alloc(dev, NULL);
  4402. return NULL;
  4403. }
  4404. static int add_named_array(const char *val, struct kernel_param *kp)
  4405. {
  4406. /* val must be "md_*" where * is not all digits.
  4407. * We allocate an array with a large free minor number, and
  4408. * set the name to val. val must not already be an active name.
  4409. */
  4410. int len = strlen(val);
  4411. char buf[DISK_NAME_LEN];
  4412. while (len && val[len-1] == '\n')
  4413. len--;
  4414. if (len >= DISK_NAME_LEN)
  4415. return -E2BIG;
  4416. strlcpy(buf, val, len+1);
  4417. if (strncmp(buf, "md_", 3) != 0)
  4418. return -EINVAL;
  4419. return md_alloc(0, buf);
  4420. }
  4421. static void md_safemode_timeout(unsigned long data)
  4422. {
  4423. struct mddev *mddev = (struct mddev *) data;
  4424. if (!atomic_read(&mddev->writes_pending)) {
  4425. mddev->safemode = 1;
  4426. if (mddev->external)
  4427. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4428. }
  4429. md_wakeup_thread(mddev->thread);
  4430. }
  4431. static int start_dirty_degraded;
  4432. int md_run(struct mddev *mddev)
  4433. {
  4434. int err;
  4435. struct md_rdev *rdev;
  4436. struct md_personality *pers;
  4437. if (list_empty(&mddev->disks))
  4438. /* cannot run an array with no devices.. */
  4439. return -EINVAL;
  4440. if (mddev->pers)
  4441. return -EBUSY;
  4442. /* Cannot run until previous stop completes properly */
  4443. if (mddev->sysfs_active)
  4444. return -EBUSY;
  4445. /*
  4446. * Analyze all RAID superblock(s)
  4447. */
  4448. if (!mddev->raid_disks) {
  4449. if (!mddev->persistent)
  4450. return -EINVAL;
  4451. analyze_sbs(mddev);
  4452. }
  4453. if (mddev->level != LEVEL_NONE)
  4454. request_module("md-level-%d", mddev->level);
  4455. else if (mddev->clevel[0])
  4456. request_module("md-%s", mddev->clevel);
  4457. /*
  4458. * Drop all container device buffers, from now on
  4459. * the only valid external interface is through the md
  4460. * device.
  4461. */
  4462. rdev_for_each(rdev, mddev) {
  4463. if (test_bit(Faulty, &rdev->flags))
  4464. continue;
  4465. sync_blockdev(rdev->bdev);
  4466. invalidate_bdev(rdev->bdev);
  4467. /* perform some consistency tests on the device.
  4468. * We don't want the data to overlap the metadata,
  4469. * Internal Bitmap issues have been handled elsewhere.
  4470. */
  4471. if (rdev->meta_bdev) {
  4472. /* Nothing to check */;
  4473. } else if (rdev->data_offset < rdev->sb_start) {
  4474. if (mddev->dev_sectors &&
  4475. rdev->data_offset + mddev->dev_sectors
  4476. > rdev->sb_start) {
  4477. printk("md: %s: data overlaps metadata\n",
  4478. mdname(mddev));
  4479. return -EINVAL;
  4480. }
  4481. } else {
  4482. if (rdev->sb_start + rdev->sb_size/512
  4483. > rdev->data_offset) {
  4484. printk("md: %s: metadata overlaps data\n",
  4485. mdname(mddev));
  4486. return -EINVAL;
  4487. }
  4488. }
  4489. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4490. }
  4491. if (mddev->bio_set == NULL)
  4492. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4493. spin_lock(&pers_lock);
  4494. pers = find_pers(mddev->level, mddev->clevel);
  4495. if (!pers || !try_module_get(pers->owner)) {
  4496. spin_unlock(&pers_lock);
  4497. if (mddev->level != LEVEL_NONE)
  4498. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4499. mddev->level);
  4500. else
  4501. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4502. mddev->clevel);
  4503. return -EINVAL;
  4504. }
  4505. spin_unlock(&pers_lock);
  4506. if (mddev->level != pers->level) {
  4507. mddev->level = pers->level;
  4508. mddev->new_level = pers->level;
  4509. }
  4510. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4511. if (mddev->reshape_position != MaxSector &&
  4512. pers->start_reshape == NULL) {
  4513. /* This personality cannot handle reshaping... */
  4514. module_put(pers->owner);
  4515. return -EINVAL;
  4516. }
  4517. if (pers->sync_request) {
  4518. /* Warn if this is a potentially silly
  4519. * configuration.
  4520. */
  4521. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4522. struct md_rdev *rdev2;
  4523. int warned = 0;
  4524. rdev_for_each(rdev, mddev)
  4525. rdev_for_each(rdev2, mddev) {
  4526. if (rdev < rdev2 &&
  4527. rdev->bdev->bd_contains ==
  4528. rdev2->bdev->bd_contains) {
  4529. printk(KERN_WARNING
  4530. "%s: WARNING: %s appears to be"
  4531. " on the same physical disk as"
  4532. " %s.\n",
  4533. mdname(mddev),
  4534. bdevname(rdev->bdev,b),
  4535. bdevname(rdev2->bdev,b2));
  4536. warned = 1;
  4537. }
  4538. }
  4539. if (warned)
  4540. printk(KERN_WARNING
  4541. "True protection against single-disk"
  4542. " failure might be compromised.\n");
  4543. }
  4544. mddev->recovery = 0;
  4545. /* may be over-ridden by personality */
  4546. mddev->resync_max_sectors = mddev->dev_sectors;
  4547. mddev->ok_start_degraded = start_dirty_degraded;
  4548. if (start_readonly && mddev->ro == 0)
  4549. mddev->ro = 2; /* read-only, but switch on first write */
  4550. err = pers->run(mddev);
  4551. if (err)
  4552. printk(KERN_ERR "md: pers->run() failed ...\n");
  4553. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4554. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4555. " but 'external_size' not in effect?\n", __func__);
  4556. printk(KERN_ERR
  4557. "md: invalid array_size %llu > default size %llu\n",
  4558. (unsigned long long)mddev->array_sectors / 2,
  4559. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4560. err = -EINVAL;
  4561. }
  4562. if (err == 0 && pers->sync_request &&
  4563. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4564. struct bitmap *bitmap;
  4565. bitmap = bitmap_create(mddev, -1);
  4566. if (IS_ERR(bitmap)) {
  4567. err = PTR_ERR(bitmap);
  4568. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4569. mdname(mddev), err);
  4570. } else
  4571. mddev->bitmap = bitmap;
  4572. }
  4573. if (err) {
  4574. mddev_detach(mddev);
  4575. pers->free(mddev, mddev->private);
  4576. module_put(pers->owner);
  4577. bitmap_destroy(mddev);
  4578. return err;
  4579. }
  4580. if (mddev->queue) {
  4581. mddev->queue->backing_dev_info.congested_data = mddev;
  4582. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4583. blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
  4584. }
  4585. if (pers->sync_request) {
  4586. if (mddev->kobj.sd &&
  4587. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4588. printk(KERN_WARNING
  4589. "md: cannot register extra attributes for %s\n",
  4590. mdname(mddev));
  4591. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4592. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4593. mddev->ro = 0;
  4594. atomic_set(&mddev->writes_pending,0);
  4595. atomic_set(&mddev->max_corr_read_errors,
  4596. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4597. mddev->safemode = 0;
  4598. mddev->safemode_timer.function = md_safemode_timeout;
  4599. mddev->safemode_timer.data = (unsigned long) mddev;
  4600. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4601. mddev->in_sync = 1;
  4602. smp_wmb();
  4603. spin_lock(&mddev->lock);
  4604. mddev->pers = pers;
  4605. mddev->ready = 1;
  4606. spin_unlock(&mddev->lock);
  4607. rdev_for_each(rdev, mddev)
  4608. if (rdev->raid_disk >= 0)
  4609. if (sysfs_link_rdev(mddev, rdev))
  4610. /* failure here is OK */;
  4611. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4612. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4613. md_update_sb(mddev, 0);
  4614. md_new_event(mddev);
  4615. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4616. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4617. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4618. return 0;
  4619. }
  4620. EXPORT_SYMBOL_GPL(md_run);
  4621. static int do_md_run(struct mddev *mddev)
  4622. {
  4623. int err;
  4624. err = md_run(mddev);
  4625. if (err)
  4626. goto out;
  4627. err = bitmap_load(mddev);
  4628. if (err) {
  4629. bitmap_destroy(mddev);
  4630. goto out;
  4631. }
  4632. md_wakeup_thread(mddev->thread);
  4633. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4634. set_capacity(mddev->gendisk, mddev->array_sectors);
  4635. revalidate_disk(mddev->gendisk);
  4636. mddev->changed = 1;
  4637. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4638. out:
  4639. return err;
  4640. }
  4641. static int restart_array(struct mddev *mddev)
  4642. {
  4643. struct gendisk *disk = mddev->gendisk;
  4644. /* Complain if it has no devices */
  4645. if (list_empty(&mddev->disks))
  4646. return -ENXIO;
  4647. if (!mddev->pers)
  4648. return -EINVAL;
  4649. if (!mddev->ro)
  4650. return -EBUSY;
  4651. mddev->safemode = 0;
  4652. mddev->ro = 0;
  4653. set_disk_ro(disk, 0);
  4654. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4655. mdname(mddev));
  4656. /* Kick recovery or resync if necessary */
  4657. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4658. md_wakeup_thread(mddev->thread);
  4659. md_wakeup_thread(mddev->sync_thread);
  4660. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4661. return 0;
  4662. }
  4663. static void md_clean(struct mddev *mddev)
  4664. {
  4665. mddev->array_sectors = 0;
  4666. mddev->external_size = 0;
  4667. mddev->dev_sectors = 0;
  4668. mddev->raid_disks = 0;
  4669. mddev->recovery_cp = 0;
  4670. mddev->resync_min = 0;
  4671. mddev->resync_max = MaxSector;
  4672. mddev->reshape_position = MaxSector;
  4673. mddev->external = 0;
  4674. mddev->persistent = 0;
  4675. mddev->level = LEVEL_NONE;
  4676. mddev->clevel[0] = 0;
  4677. mddev->flags = 0;
  4678. mddev->ro = 0;
  4679. mddev->metadata_type[0] = 0;
  4680. mddev->chunk_sectors = 0;
  4681. mddev->ctime = mddev->utime = 0;
  4682. mddev->layout = 0;
  4683. mddev->max_disks = 0;
  4684. mddev->events = 0;
  4685. mddev->can_decrease_events = 0;
  4686. mddev->delta_disks = 0;
  4687. mddev->reshape_backwards = 0;
  4688. mddev->new_level = LEVEL_NONE;
  4689. mddev->new_layout = 0;
  4690. mddev->new_chunk_sectors = 0;
  4691. mddev->curr_resync = 0;
  4692. atomic64_set(&mddev->resync_mismatches, 0);
  4693. mddev->suspend_lo = mddev->suspend_hi = 0;
  4694. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4695. mddev->recovery = 0;
  4696. mddev->in_sync = 0;
  4697. mddev->changed = 0;
  4698. mddev->degraded = 0;
  4699. mddev->safemode = 0;
  4700. mddev->merge_check_needed = 0;
  4701. mddev->bitmap_info.offset = 0;
  4702. mddev->bitmap_info.default_offset = 0;
  4703. mddev->bitmap_info.default_space = 0;
  4704. mddev->bitmap_info.chunksize = 0;
  4705. mddev->bitmap_info.daemon_sleep = 0;
  4706. mddev->bitmap_info.max_write_behind = 0;
  4707. }
  4708. static void __md_stop_writes(struct mddev *mddev)
  4709. {
  4710. if (mddev_is_clustered(mddev))
  4711. md_cluster_ops->metadata_update_start(mddev);
  4712. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4713. flush_workqueue(md_misc_wq);
  4714. if (mddev->sync_thread) {
  4715. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4716. md_reap_sync_thread(mddev);
  4717. }
  4718. del_timer_sync(&mddev->safemode_timer);
  4719. bitmap_flush(mddev);
  4720. md_super_wait(mddev);
  4721. if (mddev->ro == 0 &&
  4722. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4723. /* mark array as shutdown cleanly */
  4724. mddev->in_sync = 1;
  4725. md_update_sb(mddev, 1);
  4726. }
  4727. if (mddev_is_clustered(mddev))
  4728. md_cluster_ops->metadata_update_finish(mddev);
  4729. }
  4730. void md_stop_writes(struct mddev *mddev)
  4731. {
  4732. mddev_lock_nointr(mddev);
  4733. __md_stop_writes(mddev);
  4734. mddev_unlock(mddev);
  4735. }
  4736. EXPORT_SYMBOL_GPL(md_stop_writes);
  4737. static void mddev_detach(struct mddev *mddev)
  4738. {
  4739. struct bitmap *bitmap = mddev->bitmap;
  4740. /* wait for behind writes to complete */
  4741. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4742. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4743. mdname(mddev));
  4744. /* need to kick something here to make sure I/O goes? */
  4745. wait_event(bitmap->behind_wait,
  4746. atomic_read(&bitmap->behind_writes) == 0);
  4747. }
  4748. if (mddev->pers && mddev->pers->quiesce) {
  4749. mddev->pers->quiesce(mddev, 1);
  4750. mddev->pers->quiesce(mddev, 0);
  4751. }
  4752. md_unregister_thread(&mddev->thread);
  4753. if (mddev->queue)
  4754. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4755. }
  4756. static void __md_stop(struct mddev *mddev)
  4757. {
  4758. struct md_personality *pers = mddev->pers;
  4759. mddev_detach(mddev);
  4760. spin_lock(&mddev->lock);
  4761. mddev->ready = 0;
  4762. mddev->pers = NULL;
  4763. spin_unlock(&mddev->lock);
  4764. pers->free(mddev, mddev->private);
  4765. if (pers->sync_request && mddev->to_remove == NULL)
  4766. mddev->to_remove = &md_redundancy_group;
  4767. module_put(pers->owner);
  4768. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4769. }
  4770. void md_stop(struct mddev *mddev)
  4771. {
  4772. /* stop the array and free an attached data structures.
  4773. * This is called from dm-raid
  4774. */
  4775. __md_stop(mddev);
  4776. bitmap_destroy(mddev);
  4777. if (mddev->bio_set)
  4778. bioset_free(mddev->bio_set);
  4779. }
  4780. EXPORT_SYMBOL_GPL(md_stop);
  4781. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4782. {
  4783. int err = 0;
  4784. int did_freeze = 0;
  4785. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4786. did_freeze = 1;
  4787. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4788. md_wakeup_thread(mddev->thread);
  4789. }
  4790. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4791. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4792. if (mddev->sync_thread)
  4793. /* Thread might be blocked waiting for metadata update
  4794. * which will now never happen */
  4795. wake_up_process(mddev->sync_thread->tsk);
  4796. mddev_unlock(mddev);
  4797. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4798. &mddev->recovery));
  4799. mddev_lock_nointr(mddev);
  4800. mutex_lock(&mddev->open_mutex);
  4801. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4802. mddev->sync_thread ||
  4803. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4804. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4805. printk("md: %s still in use.\n",mdname(mddev));
  4806. if (did_freeze) {
  4807. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4808. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4809. md_wakeup_thread(mddev->thread);
  4810. }
  4811. err = -EBUSY;
  4812. goto out;
  4813. }
  4814. if (mddev->pers) {
  4815. __md_stop_writes(mddev);
  4816. err = -ENXIO;
  4817. if (mddev->ro==1)
  4818. goto out;
  4819. mddev->ro = 1;
  4820. set_disk_ro(mddev->gendisk, 1);
  4821. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4822. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4823. md_wakeup_thread(mddev->thread);
  4824. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4825. err = 0;
  4826. }
  4827. out:
  4828. mutex_unlock(&mddev->open_mutex);
  4829. return err;
  4830. }
  4831. /* mode:
  4832. * 0 - completely stop and dis-assemble array
  4833. * 2 - stop but do not disassemble array
  4834. */
  4835. static int do_md_stop(struct mddev *mddev, int mode,
  4836. struct block_device *bdev)
  4837. {
  4838. struct gendisk *disk = mddev->gendisk;
  4839. struct md_rdev *rdev;
  4840. int did_freeze = 0;
  4841. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4842. did_freeze = 1;
  4843. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4844. md_wakeup_thread(mddev->thread);
  4845. }
  4846. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4847. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4848. if (mddev->sync_thread)
  4849. /* Thread might be blocked waiting for metadata update
  4850. * which will now never happen */
  4851. wake_up_process(mddev->sync_thread->tsk);
  4852. mddev_unlock(mddev);
  4853. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4854. !test_bit(MD_RECOVERY_RUNNING,
  4855. &mddev->recovery)));
  4856. mddev_lock_nointr(mddev);
  4857. mutex_lock(&mddev->open_mutex);
  4858. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4859. mddev->sysfs_active ||
  4860. mddev->sync_thread ||
  4861. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4862. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4863. printk("md: %s still in use.\n",mdname(mddev));
  4864. mutex_unlock(&mddev->open_mutex);
  4865. if (did_freeze) {
  4866. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4867. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4868. md_wakeup_thread(mddev->thread);
  4869. }
  4870. return -EBUSY;
  4871. }
  4872. if (mddev->pers) {
  4873. if (mddev->ro)
  4874. set_disk_ro(disk, 0);
  4875. __md_stop_writes(mddev);
  4876. __md_stop(mddev);
  4877. mddev->queue->merge_bvec_fn = NULL;
  4878. mddev->queue->backing_dev_info.congested_fn = NULL;
  4879. /* tell userspace to handle 'inactive' */
  4880. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4881. rdev_for_each(rdev, mddev)
  4882. if (rdev->raid_disk >= 0)
  4883. sysfs_unlink_rdev(mddev, rdev);
  4884. set_capacity(disk, 0);
  4885. mutex_unlock(&mddev->open_mutex);
  4886. mddev->changed = 1;
  4887. revalidate_disk(disk);
  4888. if (mddev->ro)
  4889. mddev->ro = 0;
  4890. } else
  4891. mutex_unlock(&mddev->open_mutex);
  4892. /*
  4893. * Free resources if final stop
  4894. */
  4895. if (mode == 0) {
  4896. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4897. bitmap_destroy(mddev);
  4898. if (mddev->bitmap_info.file) {
  4899. struct file *f = mddev->bitmap_info.file;
  4900. spin_lock(&mddev->lock);
  4901. mddev->bitmap_info.file = NULL;
  4902. spin_unlock(&mddev->lock);
  4903. fput(f);
  4904. }
  4905. mddev->bitmap_info.offset = 0;
  4906. export_array(mddev);
  4907. md_clean(mddev);
  4908. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4909. if (mddev->hold_active == UNTIL_STOP)
  4910. mddev->hold_active = 0;
  4911. }
  4912. blk_integrity_unregister(disk);
  4913. md_new_event(mddev);
  4914. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4915. return 0;
  4916. }
  4917. #ifndef MODULE
  4918. static void autorun_array(struct mddev *mddev)
  4919. {
  4920. struct md_rdev *rdev;
  4921. int err;
  4922. if (list_empty(&mddev->disks))
  4923. return;
  4924. printk(KERN_INFO "md: running: ");
  4925. rdev_for_each(rdev, mddev) {
  4926. char b[BDEVNAME_SIZE];
  4927. printk("<%s>", bdevname(rdev->bdev,b));
  4928. }
  4929. printk("\n");
  4930. err = do_md_run(mddev);
  4931. if (err) {
  4932. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4933. do_md_stop(mddev, 0, NULL);
  4934. }
  4935. }
  4936. /*
  4937. * lets try to run arrays based on all disks that have arrived
  4938. * until now. (those are in pending_raid_disks)
  4939. *
  4940. * the method: pick the first pending disk, collect all disks with
  4941. * the same UUID, remove all from the pending list and put them into
  4942. * the 'same_array' list. Then order this list based on superblock
  4943. * update time (freshest comes first), kick out 'old' disks and
  4944. * compare superblocks. If everything's fine then run it.
  4945. *
  4946. * If "unit" is allocated, then bump its reference count
  4947. */
  4948. static void autorun_devices(int part)
  4949. {
  4950. struct md_rdev *rdev0, *rdev, *tmp;
  4951. struct mddev *mddev;
  4952. char b[BDEVNAME_SIZE];
  4953. printk(KERN_INFO "md: autorun ...\n");
  4954. while (!list_empty(&pending_raid_disks)) {
  4955. int unit;
  4956. dev_t dev;
  4957. LIST_HEAD(candidates);
  4958. rdev0 = list_entry(pending_raid_disks.next,
  4959. struct md_rdev, same_set);
  4960. printk(KERN_INFO "md: considering %s ...\n",
  4961. bdevname(rdev0->bdev,b));
  4962. INIT_LIST_HEAD(&candidates);
  4963. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4964. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4965. printk(KERN_INFO "md: adding %s ...\n",
  4966. bdevname(rdev->bdev,b));
  4967. list_move(&rdev->same_set, &candidates);
  4968. }
  4969. /*
  4970. * now we have a set of devices, with all of them having
  4971. * mostly sane superblocks. It's time to allocate the
  4972. * mddev.
  4973. */
  4974. if (part) {
  4975. dev = MKDEV(mdp_major,
  4976. rdev0->preferred_minor << MdpMinorShift);
  4977. unit = MINOR(dev) >> MdpMinorShift;
  4978. } else {
  4979. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4980. unit = MINOR(dev);
  4981. }
  4982. if (rdev0->preferred_minor != unit) {
  4983. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4984. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4985. break;
  4986. }
  4987. md_probe(dev, NULL, NULL);
  4988. mddev = mddev_find(dev);
  4989. if (!mddev || !mddev->gendisk) {
  4990. if (mddev)
  4991. mddev_put(mddev);
  4992. printk(KERN_ERR
  4993. "md: cannot allocate memory for md drive.\n");
  4994. break;
  4995. }
  4996. if (mddev_lock(mddev))
  4997. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4998. mdname(mddev));
  4999. else if (mddev->raid_disks || mddev->major_version
  5000. || !list_empty(&mddev->disks)) {
  5001. printk(KERN_WARNING
  5002. "md: %s already running, cannot run %s\n",
  5003. mdname(mddev), bdevname(rdev0->bdev,b));
  5004. mddev_unlock(mddev);
  5005. } else {
  5006. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5007. mddev->persistent = 1;
  5008. rdev_for_each_list(rdev, tmp, &candidates) {
  5009. list_del_init(&rdev->same_set);
  5010. if (bind_rdev_to_array(rdev, mddev))
  5011. export_rdev(rdev);
  5012. }
  5013. autorun_array(mddev);
  5014. mddev_unlock(mddev);
  5015. }
  5016. /* on success, candidates will be empty, on error
  5017. * it won't...
  5018. */
  5019. rdev_for_each_list(rdev, tmp, &candidates) {
  5020. list_del_init(&rdev->same_set);
  5021. export_rdev(rdev);
  5022. }
  5023. mddev_put(mddev);
  5024. }
  5025. printk(KERN_INFO "md: ... autorun DONE.\n");
  5026. }
  5027. #endif /* !MODULE */
  5028. static int get_version(void __user *arg)
  5029. {
  5030. mdu_version_t ver;
  5031. ver.major = MD_MAJOR_VERSION;
  5032. ver.minor = MD_MINOR_VERSION;
  5033. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5034. if (copy_to_user(arg, &ver, sizeof(ver)))
  5035. return -EFAULT;
  5036. return 0;
  5037. }
  5038. static int get_array_info(struct mddev *mddev, void __user *arg)
  5039. {
  5040. mdu_array_info_t info;
  5041. int nr,working,insync,failed,spare;
  5042. struct md_rdev *rdev;
  5043. nr = working = insync = failed = spare = 0;
  5044. rcu_read_lock();
  5045. rdev_for_each_rcu(rdev, mddev) {
  5046. nr++;
  5047. if (test_bit(Faulty, &rdev->flags))
  5048. failed++;
  5049. else {
  5050. working++;
  5051. if (test_bit(In_sync, &rdev->flags))
  5052. insync++;
  5053. else
  5054. spare++;
  5055. }
  5056. }
  5057. rcu_read_unlock();
  5058. info.major_version = mddev->major_version;
  5059. info.minor_version = mddev->minor_version;
  5060. info.patch_version = MD_PATCHLEVEL_VERSION;
  5061. info.ctime = mddev->ctime;
  5062. info.level = mddev->level;
  5063. info.size = mddev->dev_sectors / 2;
  5064. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5065. info.size = -1;
  5066. info.nr_disks = nr;
  5067. info.raid_disks = mddev->raid_disks;
  5068. info.md_minor = mddev->md_minor;
  5069. info.not_persistent= !mddev->persistent;
  5070. info.utime = mddev->utime;
  5071. info.state = 0;
  5072. if (mddev->in_sync)
  5073. info.state = (1<<MD_SB_CLEAN);
  5074. if (mddev->bitmap && mddev->bitmap_info.offset)
  5075. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5076. if (mddev_is_clustered(mddev))
  5077. info.state |= (1<<MD_SB_CLUSTERED);
  5078. info.active_disks = insync;
  5079. info.working_disks = working;
  5080. info.failed_disks = failed;
  5081. info.spare_disks = spare;
  5082. info.layout = mddev->layout;
  5083. info.chunk_size = mddev->chunk_sectors << 9;
  5084. if (copy_to_user(arg, &info, sizeof(info)))
  5085. return -EFAULT;
  5086. return 0;
  5087. }
  5088. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5089. {
  5090. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5091. char *ptr;
  5092. int err;
  5093. file = kmalloc(sizeof(*file), GFP_NOIO);
  5094. if (!file)
  5095. return -ENOMEM;
  5096. err = 0;
  5097. spin_lock(&mddev->lock);
  5098. /* bitmap disabled, zero the first byte and copy out */
  5099. if (!mddev->bitmap_info.file)
  5100. file->pathname[0] = '\0';
  5101. else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
  5102. file->pathname, sizeof(file->pathname))),
  5103. IS_ERR(ptr))
  5104. err = PTR_ERR(ptr);
  5105. else
  5106. memmove(file->pathname, ptr,
  5107. sizeof(file->pathname)-(ptr-file->pathname));
  5108. spin_unlock(&mddev->lock);
  5109. if (err == 0 &&
  5110. copy_to_user(arg, file, sizeof(*file)))
  5111. err = -EFAULT;
  5112. kfree(file);
  5113. return err;
  5114. }
  5115. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5116. {
  5117. mdu_disk_info_t info;
  5118. struct md_rdev *rdev;
  5119. if (copy_from_user(&info, arg, sizeof(info)))
  5120. return -EFAULT;
  5121. rcu_read_lock();
  5122. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5123. if (rdev) {
  5124. info.major = MAJOR(rdev->bdev->bd_dev);
  5125. info.minor = MINOR(rdev->bdev->bd_dev);
  5126. info.raid_disk = rdev->raid_disk;
  5127. info.state = 0;
  5128. if (test_bit(Faulty, &rdev->flags))
  5129. info.state |= (1<<MD_DISK_FAULTY);
  5130. else if (test_bit(In_sync, &rdev->flags)) {
  5131. info.state |= (1<<MD_DISK_ACTIVE);
  5132. info.state |= (1<<MD_DISK_SYNC);
  5133. }
  5134. if (test_bit(WriteMostly, &rdev->flags))
  5135. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5136. } else {
  5137. info.major = info.minor = 0;
  5138. info.raid_disk = -1;
  5139. info.state = (1<<MD_DISK_REMOVED);
  5140. }
  5141. rcu_read_unlock();
  5142. if (copy_to_user(arg, &info, sizeof(info)))
  5143. return -EFAULT;
  5144. return 0;
  5145. }
  5146. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5147. {
  5148. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5149. struct md_rdev *rdev;
  5150. dev_t dev = MKDEV(info->major,info->minor);
  5151. if (mddev_is_clustered(mddev) &&
  5152. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5153. pr_err("%s: Cannot add to clustered mddev.\n",
  5154. mdname(mddev));
  5155. return -EINVAL;
  5156. }
  5157. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5158. return -EOVERFLOW;
  5159. if (!mddev->raid_disks) {
  5160. int err;
  5161. /* expecting a device which has a superblock */
  5162. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5163. if (IS_ERR(rdev)) {
  5164. printk(KERN_WARNING
  5165. "md: md_import_device returned %ld\n",
  5166. PTR_ERR(rdev));
  5167. return PTR_ERR(rdev);
  5168. }
  5169. if (!list_empty(&mddev->disks)) {
  5170. struct md_rdev *rdev0
  5171. = list_entry(mddev->disks.next,
  5172. struct md_rdev, same_set);
  5173. err = super_types[mddev->major_version]
  5174. .load_super(rdev, rdev0, mddev->minor_version);
  5175. if (err < 0) {
  5176. printk(KERN_WARNING
  5177. "md: %s has different UUID to %s\n",
  5178. bdevname(rdev->bdev,b),
  5179. bdevname(rdev0->bdev,b2));
  5180. export_rdev(rdev);
  5181. return -EINVAL;
  5182. }
  5183. }
  5184. err = bind_rdev_to_array(rdev, mddev);
  5185. if (err)
  5186. export_rdev(rdev);
  5187. return err;
  5188. }
  5189. /*
  5190. * add_new_disk can be used once the array is assembled
  5191. * to add "hot spares". They must already have a superblock
  5192. * written
  5193. */
  5194. if (mddev->pers) {
  5195. int err;
  5196. if (!mddev->pers->hot_add_disk) {
  5197. printk(KERN_WARNING
  5198. "%s: personality does not support diskops!\n",
  5199. mdname(mddev));
  5200. return -EINVAL;
  5201. }
  5202. if (mddev->persistent)
  5203. rdev = md_import_device(dev, mddev->major_version,
  5204. mddev->minor_version);
  5205. else
  5206. rdev = md_import_device(dev, -1, -1);
  5207. if (IS_ERR(rdev)) {
  5208. printk(KERN_WARNING
  5209. "md: md_import_device returned %ld\n",
  5210. PTR_ERR(rdev));
  5211. return PTR_ERR(rdev);
  5212. }
  5213. /* set saved_raid_disk if appropriate */
  5214. if (!mddev->persistent) {
  5215. if (info->state & (1<<MD_DISK_SYNC) &&
  5216. info->raid_disk < mddev->raid_disks) {
  5217. rdev->raid_disk = info->raid_disk;
  5218. set_bit(In_sync, &rdev->flags);
  5219. clear_bit(Bitmap_sync, &rdev->flags);
  5220. } else
  5221. rdev->raid_disk = -1;
  5222. rdev->saved_raid_disk = rdev->raid_disk;
  5223. } else
  5224. super_types[mddev->major_version].
  5225. validate_super(mddev, rdev);
  5226. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5227. rdev->raid_disk != info->raid_disk) {
  5228. /* This was a hot-add request, but events doesn't
  5229. * match, so reject it.
  5230. */
  5231. export_rdev(rdev);
  5232. return -EINVAL;
  5233. }
  5234. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5235. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5236. set_bit(WriteMostly, &rdev->flags);
  5237. else
  5238. clear_bit(WriteMostly, &rdev->flags);
  5239. /*
  5240. * check whether the device shows up in other nodes
  5241. */
  5242. if (mddev_is_clustered(mddev)) {
  5243. if (info->state & (1 << MD_DISK_CANDIDATE)) {
  5244. /* Through --cluster-confirm */
  5245. set_bit(Candidate, &rdev->flags);
  5246. err = md_cluster_ops->new_disk_ack(mddev, true);
  5247. if (err) {
  5248. export_rdev(rdev);
  5249. return err;
  5250. }
  5251. } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5252. /* --add initiated by this node */
  5253. err = md_cluster_ops->add_new_disk_start(mddev, rdev);
  5254. if (err) {
  5255. md_cluster_ops->add_new_disk_finish(mddev);
  5256. export_rdev(rdev);
  5257. return err;
  5258. }
  5259. }
  5260. }
  5261. rdev->raid_disk = -1;
  5262. err = bind_rdev_to_array(rdev, mddev);
  5263. if (!err && !mddev->pers->hot_remove_disk) {
  5264. /* If there is hot_add_disk but no hot_remove_disk
  5265. * then added disks for geometry changes,
  5266. * and should be added immediately.
  5267. */
  5268. super_types[mddev->major_version].
  5269. validate_super(mddev, rdev);
  5270. err = mddev->pers->hot_add_disk(mddev, rdev);
  5271. if (err)
  5272. unbind_rdev_from_array(rdev);
  5273. }
  5274. if (err)
  5275. export_rdev(rdev);
  5276. else
  5277. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5278. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5279. if (mddev->degraded)
  5280. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5281. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5282. if (!err)
  5283. md_new_event(mddev);
  5284. md_wakeup_thread(mddev->thread);
  5285. if (mddev_is_clustered(mddev) &&
  5286. (info->state & (1 << MD_DISK_CLUSTER_ADD)))
  5287. md_cluster_ops->add_new_disk_finish(mddev);
  5288. return err;
  5289. }
  5290. /* otherwise, add_new_disk is only allowed
  5291. * for major_version==0 superblocks
  5292. */
  5293. if (mddev->major_version != 0) {
  5294. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5295. mdname(mddev));
  5296. return -EINVAL;
  5297. }
  5298. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5299. int err;
  5300. rdev = md_import_device(dev, -1, 0);
  5301. if (IS_ERR(rdev)) {
  5302. printk(KERN_WARNING
  5303. "md: error, md_import_device() returned %ld\n",
  5304. PTR_ERR(rdev));
  5305. return PTR_ERR(rdev);
  5306. }
  5307. rdev->desc_nr = info->number;
  5308. if (info->raid_disk < mddev->raid_disks)
  5309. rdev->raid_disk = info->raid_disk;
  5310. else
  5311. rdev->raid_disk = -1;
  5312. if (rdev->raid_disk < mddev->raid_disks)
  5313. if (info->state & (1<<MD_DISK_SYNC))
  5314. set_bit(In_sync, &rdev->flags);
  5315. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5316. set_bit(WriteMostly, &rdev->flags);
  5317. if (!mddev->persistent) {
  5318. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5319. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5320. } else
  5321. rdev->sb_start = calc_dev_sboffset(rdev);
  5322. rdev->sectors = rdev->sb_start;
  5323. err = bind_rdev_to_array(rdev, mddev);
  5324. if (err) {
  5325. export_rdev(rdev);
  5326. return err;
  5327. }
  5328. }
  5329. return 0;
  5330. }
  5331. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5332. {
  5333. char b[BDEVNAME_SIZE];
  5334. struct md_rdev *rdev;
  5335. rdev = find_rdev(mddev, dev);
  5336. if (!rdev)
  5337. return -ENXIO;
  5338. if (mddev_is_clustered(mddev))
  5339. md_cluster_ops->metadata_update_start(mddev);
  5340. clear_bit(Blocked, &rdev->flags);
  5341. remove_and_add_spares(mddev, rdev);
  5342. if (rdev->raid_disk >= 0)
  5343. goto busy;
  5344. if (mddev_is_clustered(mddev))
  5345. md_cluster_ops->remove_disk(mddev, rdev);
  5346. md_kick_rdev_from_array(rdev);
  5347. md_update_sb(mddev, 1);
  5348. md_new_event(mddev);
  5349. if (mddev_is_clustered(mddev))
  5350. md_cluster_ops->metadata_update_finish(mddev);
  5351. return 0;
  5352. busy:
  5353. if (mddev_is_clustered(mddev))
  5354. md_cluster_ops->metadata_update_cancel(mddev);
  5355. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5356. bdevname(rdev->bdev,b), mdname(mddev));
  5357. return -EBUSY;
  5358. }
  5359. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5360. {
  5361. char b[BDEVNAME_SIZE];
  5362. int err;
  5363. struct md_rdev *rdev;
  5364. if (!mddev->pers)
  5365. return -ENODEV;
  5366. if (mddev->major_version != 0) {
  5367. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5368. " version-0 superblocks.\n",
  5369. mdname(mddev));
  5370. return -EINVAL;
  5371. }
  5372. if (!mddev->pers->hot_add_disk) {
  5373. printk(KERN_WARNING
  5374. "%s: personality does not support diskops!\n",
  5375. mdname(mddev));
  5376. return -EINVAL;
  5377. }
  5378. rdev = md_import_device(dev, -1, 0);
  5379. if (IS_ERR(rdev)) {
  5380. printk(KERN_WARNING
  5381. "md: error, md_import_device() returned %ld\n",
  5382. PTR_ERR(rdev));
  5383. return -EINVAL;
  5384. }
  5385. if (mddev->persistent)
  5386. rdev->sb_start = calc_dev_sboffset(rdev);
  5387. else
  5388. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5389. rdev->sectors = rdev->sb_start;
  5390. if (test_bit(Faulty, &rdev->flags)) {
  5391. printk(KERN_WARNING
  5392. "md: can not hot-add faulty %s disk to %s!\n",
  5393. bdevname(rdev->bdev,b), mdname(mddev));
  5394. err = -EINVAL;
  5395. goto abort_export;
  5396. }
  5397. if (mddev_is_clustered(mddev))
  5398. md_cluster_ops->metadata_update_start(mddev);
  5399. clear_bit(In_sync, &rdev->flags);
  5400. rdev->desc_nr = -1;
  5401. rdev->saved_raid_disk = -1;
  5402. err = bind_rdev_to_array(rdev, mddev);
  5403. if (err)
  5404. goto abort_clustered;
  5405. /*
  5406. * The rest should better be atomic, we can have disk failures
  5407. * noticed in interrupt contexts ...
  5408. */
  5409. rdev->raid_disk = -1;
  5410. md_update_sb(mddev, 1);
  5411. if (mddev_is_clustered(mddev))
  5412. md_cluster_ops->metadata_update_finish(mddev);
  5413. /*
  5414. * Kick recovery, maybe this spare has to be added to the
  5415. * array immediately.
  5416. */
  5417. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5418. md_wakeup_thread(mddev->thread);
  5419. md_new_event(mddev);
  5420. return 0;
  5421. abort_clustered:
  5422. if (mddev_is_clustered(mddev))
  5423. md_cluster_ops->metadata_update_cancel(mddev);
  5424. abort_export:
  5425. export_rdev(rdev);
  5426. return err;
  5427. }
  5428. static int set_bitmap_file(struct mddev *mddev, int fd)
  5429. {
  5430. int err = 0;
  5431. if (mddev->pers) {
  5432. if (!mddev->pers->quiesce || !mddev->thread)
  5433. return -EBUSY;
  5434. if (mddev->recovery || mddev->sync_thread)
  5435. return -EBUSY;
  5436. /* we should be able to change the bitmap.. */
  5437. }
  5438. if (fd >= 0) {
  5439. struct inode *inode;
  5440. struct file *f;
  5441. if (mddev->bitmap || mddev->bitmap_info.file)
  5442. return -EEXIST; /* cannot add when bitmap is present */
  5443. f = fget(fd);
  5444. if (f == NULL) {
  5445. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5446. mdname(mddev));
  5447. return -EBADF;
  5448. }
  5449. inode = f->f_mapping->host;
  5450. if (!S_ISREG(inode->i_mode)) {
  5451. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5452. mdname(mddev));
  5453. err = -EBADF;
  5454. } else if (!(f->f_mode & FMODE_WRITE)) {
  5455. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5456. mdname(mddev));
  5457. err = -EBADF;
  5458. } else if (atomic_read(&inode->i_writecount) != 1) {
  5459. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5460. mdname(mddev));
  5461. err = -EBUSY;
  5462. }
  5463. if (err) {
  5464. fput(f);
  5465. return err;
  5466. }
  5467. mddev->bitmap_info.file = f;
  5468. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5469. } else if (mddev->bitmap == NULL)
  5470. return -ENOENT; /* cannot remove what isn't there */
  5471. err = 0;
  5472. if (mddev->pers) {
  5473. mddev->pers->quiesce(mddev, 1);
  5474. if (fd >= 0) {
  5475. struct bitmap *bitmap;
  5476. bitmap = bitmap_create(mddev, -1);
  5477. if (!IS_ERR(bitmap)) {
  5478. mddev->bitmap = bitmap;
  5479. err = bitmap_load(mddev);
  5480. } else
  5481. err = PTR_ERR(bitmap);
  5482. }
  5483. if (fd < 0 || err) {
  5484. bitmap_destroy(mddev);
  5485. fd = -1; /* make sure to put the file */
  5486. }
  5487. mddev->pers->quiesce(mddev, 0);
  5488. }
  5489. if (fd < 0) {
  5490. struct file *f = mddev->bitmap_info.file;
  5491. if (f) {
  5492. spin_lock(&mddev->lock);
  5493. mddev->bitmap_info.file = NULL;
  5494. spin_unlock(&mddev->lock);
  5495. fput(f);
  5496. }
  5497. }
  5498. return err;
  5499. }
  5500. /*
  5501. * set_array_info is used two different ways
  5502. * The original usage is when creating a new array.
  5503. * In this usage, raid_disks is > 0 and it together with
  5504. * level, size, not_persistent,layout,chunksize determine the
  5505. * shape of the array.
  5506. * This will always create an array with a type-0.90.0 superblock.
  5507. * The newer usage is when assembling an array.
  5508. * In this case raid_disks will be 0, and the major_version field is
  5509. * use to determine which style super-blocks are to be found on the devices.
  5510. * The minor and patch _version numbers are also kept incase the
  5511. * super_block handler wishes to interpret them.
  5512. */
  5513. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5514. {
  5515. if (info->raid_disks == 0) {
  5516. /* just setting version number for superblock loading */
  5517. if (info->major_version < 0 ||
  5518. info->major_version >= ARRAY_SIZE(super_types) ||
  5519. super_types[info->major_version].name == NULL) {
  5520. /* maybe try to auto-load a module? */
  5521. printk(KERN_INFO
  5522. "md: superblock version %d not known\n",
  5523. info->major_version);
  5524. return -EINVAL;
  5525. }
  5526. mddev->major_version = info->major_version;
  5527. mddev->minor_version = info->minor_version;
  5528. mddev->patch_version = info->patch_version;
  5529. mddev->persistent = !info->not_persistent;
  5530. /* ensure mddev_put doesn't delete this now that there
  5531. * is some minimal configuration.
  5532. */
  5533. mddev->ctime = get_seconds();
  5534. return 0;
  5535. }
  5536. mddev->major_version = MD_MAJOR_VERSION;
  5537. mddev->minor_version = MD_MINOR_VERSION;
  5538. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5539. mddev->ctime = get_seconds();
  5540. mddev->level = info->level;
  5541. mddev->clevel[0] = 0;
  5542. mddev->dev_sectors = 2 * (sector_t)info->size;
  5543. mddev->raid_disks = info->raid_disks;
  5544. /* don't set md_minor, it is determined by which /dev/md* was
  5545. * openned
  5546. */
  5547. if (info->state & (1<<MD_SB_CLEAN))
  5548. mddev->recovery_cp = MaxSector;
  5549. else
  5550. mddev->recovery_cp = 0;
  5551. mddev->persistent = ! info->not_persistent;
  5552. mddev->external = 0;
  5553. mddev->layout = info->layout;
  5554. mddev->chunk_sectors = info->chunk_size >> 9;
  5555. mddev->max_disks = MD_SB_DISKS;
  5556. if (mddev->persistent)
  5557. mddev->flags = 0;
  5558. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5559. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5560. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5561. mddev->bitmap_info.offset = 0;
  5562. mddev->reshape_position = MaxSector;
  5563. /*
  5564. * Generate a 128 bit UUID
  5565. */
  5566. get_random_bytes(mddev->uuid, 16);
  5567. mddev->new_level = mddev->level;
  5568. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5569. mddev->new_layout = mddev->layout;
  5570. mddev->delta_disks = 0;
  5571. mddev->reshape_backwards = 0;
  5572. return 0;
  5573. }
  5574. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5575. {
  5576. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5577. if (mddev->external_size)
  5578. return;
  5579. mddev->array_sectors = array_sectors;
  5580. }
  5581. EXPORT_SYMBOL(md_set_array_sectors);
  5582. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5583. {
  5584. struct md_rdev *rdev;
  5585. int rv;
  5586. int fit = (num_sectors == 0);
  5587. if (mddev->pers->resize == NULL)
  5588. return -EINVAL;
  5589. /* The "num_sectors" is the number of sectors of each device that
  5590. * is used. This can only make sense for arrays with redundancy.
  5591. * linear and raid0 always use whatever space is available. We can only
  5592. * consider changing this number if no resync or reconstruction is
  5593. * happening, and if the new size is acceptable. It must fit before the
  5594. * sb_start or, if that is <data_offset, it must fit before the size
  5595. * of each device. If num_sectors is zero, we find the largest size
  5596. * that fits.
  5597. */
  5598. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5599. mddev->sync_thread)
  5600. return -EBUSY;
  5601. if (mddev->ro)
  5602. return -EROFS;
  5603. rdev_for_each(rdev, mddev) {
  5604. sector_t avail = rdev->sectors;
  5605. if (fit && (num_sectors == 0 || num_sectors > avail))
  5606. num_sectors = avail;
  5607. if (avail < num_sectors)
  5608. return -ENOSPC;
  5609. }
  5610. rv = mddev->pers->resize(mddev, num_sectors);
  5611. if (!rv)
  5612. revalidate_disk(mddev->gendisk);
  5613. return rv;
  5614. }
  5615. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5616. {
  5617. int rv;
  5618. struct md_rdev *rdev;
  5619. /* change the number of raid disks */
  5620. if (mddev->pers->check_reshape == NULL)
  5621. return -EINVAL;
  5622. if (mddev->ro)
  5623. return -EROFS;
  5624. if (raid_disks <= 0 ||
  5625. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5626. return -EINVAL;
  5627. if (mddev->sync_thread ||
  5628. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5629. mddev->reshape_position != MaxSector)
  5630. return -EBUSY;
  5631. rdev_for_each(rdev, mddev) {
  5632. if (mddev->raid_disks < raid_disks &&
  5633. rdev->data_offset < rdev->new_data_offset)
  5634. return -EINVAL;
  5635. if (mddev->raid_disks > raid_disks &&
  5636. rdev->data_offset > rdev->new_data_offset)
  5637. return -EINVAL;
  5638. }
  5639. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5640. if (mddev->delta_disks < 0)
  5641. mddev->reshape_backwards = 1;
  5642. else if (mddev->delta_disks > 0)
  5643. mddev->reshape_backwards = 0;
  5644. rv = mddev->pers->check_reshape(mddev);
  5645. if (rv < 0) {
  5646. mddev->delta_disks = 0;
  5647. mddev->reshape_backwards = 0;
  5648. }
  5649. return rv;
  5650. }
  5651. /*
  5652. * update_array_info is used to change the configuration of an
  5653. * on-line array.
  5654. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5655. * fields in the info are checked against the array.
  5656. * Any differences that cannot be handled will cause an error.
  5657. * Normally, only one change can be managed at a time.
  5658. */
  5659. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5660. {
  5661. int rv = 0;
  5662. int cnt = 0;
  5663. int state = 0;
  5664. /* calculate expected state,ignoring low bits */
  5665. if (mddev->bitmap && mddev->bitmap_info.offset)
  5666. state |= (1 << MD_SB_BITMAP_PRESENT);
  5667. if (mddev->major_version != info->major_version ||
  5668. mddev->minor_version != info->minor_version ||
  5669. /* mddev->patch_version != info->patch_version || */
  5670. mddev->ctime != info->ctime ||
  5671. mddev->level != info->level ||
  5672. /* mddev->layout != info->layout || */
  5673. !mddev->persistent != info->not_persistent||
  5674. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5675. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5676. ((state^info->state) & 0xfffffe00)
  5677. )
  5678. return -EINVAL;
  5679. /* Check there is only one change */
  5680. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5681. cnt++;
  5682. if (mddev->raid_disks != info->raid_disks)
  5683. cnt++;
  5684. if (mddev->layout != info->layout)
  5685. cnt++;
  5686. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5687. cnt++;
  5688. if (cnt == 0)
  5689. return 0;
  5690. if (cnt > 1)
  5691. return -EINVAL;
  5692. if (mddev->layout != info->layout) {
  5693. /* Change layout
  5694. * we don't need to do anything at the md level, the
  5695. * personality will take care of it all.
  5696. */
  5697. if (mddev->pers->check_reshape == NULL)
  5698. return -EINVAL;
  5699. else {
  5700. mddev->new_layout = info->layout;
  5701. rv = mddev->pers->check_reshape(mddev);
  5702. if (rv)
  5703. mddev->new_layout = mddev->layout;
  5704. return rv;
  5705. }
  5706. }
  5707. if (mddev_is_clustered(mddev))
  5708. md_cluster_ops->metadata_update_start(mddev);
  5709. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5710. rv = update_size(mddev, (sector_t)info->size * 2);
  5711. if (mddev->raid_disks != info->raid_disks)
  5712. rv = update_raid_disks(mddev, info->raid_disks);
  5713. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5714. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5715. rv = -EINVAL;
  5716. goto err;
  5717. }
  5718. if (mddev->recovery || mddev->sync_thread) {
  5719. rv = -EBUSY;
  5720. goto err;
  5721. }
  5722. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5723. struct bitmap *bitmap;
  5724. /* add the bitmap */
  5725. if (mddev->bitmap) {
  5726. rv = -EEXIST;
  5727. goto err;
  5728. }
  5729. if (mddev->bitmap_info.default_offset == 0) {
  5730. rv = -EINVAL;
  5731. goto err;
  5732. }
  5733. mddev->bitmap_info.offset =
  5734. mddev->bitmap_info.default_offset;
  5735. mddev->bitmap_info.space =
  5736. mddev->bitmap_info.default_space;
  5737. mddev->pers->quiesce(mddev, 1);
  5738. bitmap = bitmap_create(mddev, -1);
  5739. if (!IS_ERR(bitmap)) {
  5740. mddev->bitmap = bitmap;
  5741. rv = bitmap_load(mddev);
  5742. } else
  5743. rv = PTR_ERR(bitmap);
  5744. if (rv)
  5745. bitmap_destroy(mddev);
  5746. mddev->pers->quiesce(mddev, 0);
  5747. } else {
  5748. /* remove the bitmap */
  5749. if (!mddev->bitmap) {
  5750. rv = -ENOENT;
  5751. goto err;
  5752. }
  5753. if (mddev->bitmap->storage.file) {
  5754. rv = -EINVAL;
  5755. goto err;
  5756. }
  5757. mddev->pers->quiesce(mddev, 1);
  5758. bitmap_destroy(mddev);
  5759. mddev->pers->quiesce(mddev, 0);
  5760. mddev->bitmap_info.offset = 0;
  5761. }
  5762. }
  5763. md_update_sb(mddev, 1);
  5764. if (mddev_is_clustered(mddev))
  5765. md_cluster_ops->metadata_update_finish(mddev);
  5766. return rv;
  5767. err:
  5768. if (mddev_is_clustered(mddev))
  5769. md_cluster_ops->metadata_update_cancel(mddev);
  5770. return rv;
  5771. }
  5772. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5773. {
  5774. struct md_rdev *rdev;
  5775. int err = 0;
  5776. if (mddev->pers == NULL)
  5777. return -ENODEV;
  5778. rcu_read_lock();
  5779. rdev = find_rdev_rcu(mddev, dev);
  5780. if (!rdev)
  5781. err = -ENODEV;
  5782. else {
  5783. md_error(mddev, rdev);
  5784. if (!test_bit(Faulty, &rdev->flags))
  5785. err = -EBUSY;
  5786. }
  5787. rcu_read_unlock();
  5788. return err;
  5789. }
  5790. /*
  5791. * We have a problem here : there is no easy way to give a CHS
  5792. * virtual geometry. We currently pretend that we have a 2 heads
  5793. * 4 sectors (with a BIG number of cylinders...). This drives
  5794. * dosfs just mad... ;-)
  5795. */
  5796. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5797. {
  5798. struct mddev *mddev = bdev->bd_disk->private_data;
  5799. geo->heads = 2;
  5800. geo->sectors = 4;
  5801. geo->cylinders = mddev->array_sectors / 8;
  5802. return 0;
  5803. }
  5804. static inline bool md_ioctl_valid(unsigned int cmd)
  5805. {
  5806. switch (cmd) {
  5807. case ADD_NEW_DISK:
  5808. case BLKROSET:
  5809. case GET_ARRAY_INFO:
  5810. case GET_BITMAP_FILE:
  5811. case GET_DISK_INFO:
  5812. case HOT_ADD_DISK:
  5813. case HOT_REMOVE_DISK:
  5814. case RAID_AUTORUN:
  5815. case RAID_VERSION:
  5816. case RESTART_ARRAY_RW:
  5817. case RUN_ARRAY:
  5818. case SET_ARRAY_INFO:
  5819. case SET_BITMAP_FILE:
  5820. case SET_DISK_FAULTY:
  5821. case STOP_ARRAY:
  5822. case STOP_ARRAY_RO:
  5823. case CLUSTERED_DISK_NACK:
  5824. return true;
  5825. default:
  5826. return false;
  5827. }
  5828. }
  5829. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5830. unsigned int cmd, unsigned long arg)
  5831. {
  5832. int err = 0;
  5833. void __user *argp = (void __user *)arg;
  5834. struct mddev *mddev = NULL;
  5835. int ro;
  5836. if (!md_ioctl_valid(cmd))
  5837. return -ENOTTY;
  5838. switch (cmd) {
  5839. case RAID_VERSION:
  5840. case GET_ARRAY_INFO:
  5841. case GET_DISK_INFO:
  5842. break;
  5843. default:
  5844. if (!capable(CAP_SYS_ADMIN))
  5845. return -EACCES;
  5846. }
  5847. /*
  5848. * Commands dealing with the RAID driver but not any
  5849. * particular array:
  5850. */
  5851. switch (cmd) {
  5852. case RAID_VERSION:
  5853. err = get_version(argp);
  5854. goto out;
  5855. #ifndef MODULE
  5856. case RAID_AUTORUN:
  5857. err = 0;
  5858. autostart_arrays(arg);
  5859. goto out;
  5860. #endif
  5861. default:;
  5862. }
  5863. /*
  5864. * Commands creating/starting a new array:
  5865. */
  5866. mddev = bdev->bd_disk->private_data;
  5867. if (!mddev) {
  5868. BUG();
  5869. goto out;
  5870. }
  5871. /* Some actions do not requires the mutex */
  5872. switch (cmd) {
  5873. case GET_ARRAY_INFO:
  5874. if (!mddev->raid_disks && !mddev->external)
  5875. err = -ENODEV;
  5876. else
  5877. err = get_array_info(mddev, argp);
  5878. goto out;
  5879. case GET_DISK_INFO:
  5880. if (!mddev->raid_disks && !mddev->external)
  5881. err = -ENODEV;
  5882. else
  5883. err = get_disk_info(mddev, argp);
  5884. goto out;
  5885. case SET_DISK_FAULTY:
  5886. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5887. goto out;
  5888. case GET_BITMAP_FILE:
  5889. err = get_bitmap_file(mddev, argp);
  5890. goto out;
  5891. }
  5892. if (cmd == ADD_NEW_DISK)
  5893. /* need to ensure md_delayed_delete() has completed */
  5894. flush_workqueue(md_misc_wq);
  5895. if (cmd == HOT_REMOVE_DISK)
  5896. /* need to ensure recovery thread has run */
  5897. wait_event_interruptible_timeout(mddev->sb_wait,
  5898. !test_bit(MD_RECOVERY_NEEDED,
  5899. &mddev->flags),
  5900. msecs_to_jiffies(5000));
  5901. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5902. /* Need to flush page cache, and ensure no-one else opens
  5903. * and writes
  5904. */
  5905. mutex_lock(&mddev->open_mutex);
  5906. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5907. mutex_unlock(&mddev->open_mutex);
  5908. err = -EBUSY;
  5909. goto out;
  5910. }
  5911. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5912. mutex_unlock(&mddev->open_mutex);
  5913. sync_blockdev(bdev);
  5914. }
  5915. err = mddev_lock(mddev);
  5916. if (err) {
  5917. printk(KERN_INFO
  5918. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5919. err, cmd);
  5920. goto out;
  5921. }
  5922. if (cmd == SET_ARRAY_INFO) {
  5923. mdu_array_info_t info;
  5924. if (!arg)
  5925. memset(&info, 0, sizeof(info));
  5926. else if (copy_from_user(&info, argp, sizeof(info))) {
  5927. err = -EFAULT;
  5928. goto unlock;
  5929. }
  5930. if (mddev->pers) {
  5931. err = update_array_info(mddev, &info);
  5932. if (err) {
  5933. printk(KERN_WARNING "md: couldn't update"
  5934. " array info. %d\n", err);
  5935. goto unlock;
  5936. }
  5937. goto unlock;
  5938. }
  5939. if (!list_empty(&mddev->disks)) {
  5940. printk(KERN_WARNING
  5941. "md: array %s already has disks!\n",
  5942. mdname(mddev));
  5943. err = -EBUSY;
  5944. goto unlock;
  5945. }
  5946. if (mddev->raid_disks) {
  5947. printk(KERN_WARNING
  5948. "md: array %s already initialised!\n",
  5949. mdname(mddev));
  5950. err = -EBUSY;
  5951. goto unlock;
  5952. }
  5953. err = set_array_info(mddev, &info);
  5954. if (err) {
  5955. printk(KERN_WARNING "md: couldn't set"
  5956. " array info. %d\n", err);
  5957. goto unlock;
  5958. }
  5959. goto unlock;
  5960. }
  5961. /*
  5962. * Commands querying/configuring an existing array:
  5963. */
  5964. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5965. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5966. if ((!mddev->raid_disks && !mddev->external)
  5967. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5968. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5969. && cmd != GET_BITMAP_FILE) {
  5970. err = -ENODEV;
  5971. goto unlock;
  5972. }
  5973. /*
  5974. * Commands even a read-only array can execute:
  5975. */
  5976. switch (cmd) {
  5977. case RESTART_ARRAY_RW:
  5978. err = restart_array(mddev);
  5979. goto unlock;
  5980. case STOP_ARRAY:
  5981. err = do_md_stop(mddev, 0, bdev);
  5982. goto unlock;
  5983. case STOP_ARRAY_RO:
  5984. err = md_set_readonly(mddev, bdev);
  5985. goto unlock;
  5986. case HOT_REMOVE_DISK:
  5987. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5988. goto unlock;
  5989. case ADD_NEW_DISK:
  5990. /* We can support ADD_NEW_DISK on read-only arrays
  5991. * on if we are re-adding a preexisting device.
  5992. * So require mddev->pers and MD_DISK_SYNC.
  5993. */
  5994. if (mddev->pers) {
  5995. mdu_disk_info_t info;
  5996. if (copy_from_user(&info, argp, sizeof(info)))
  5997. err = -EFAULT;
  5998. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5999. /* Need to clear read-only for this */
  6000. break;
  6001. else
  6002. err = add_new_disk(mddev, &info);
  6003. goto unlock;
  6004. }
  6005. break;
  6006. case BLKROSET:
  6007. if (get_user(ro, (int __user *)(arg))) {
  6008. err = -EFAULT;
  6009. goto unlock;
  6010. }
  6011. err = -EINVAL;
  6012. /* if the bdev is going readonly the value of mddev->ro
  6013. * does not matter, no writes are coming
  6014. */
  6015. if (ro)
  6016. goto unlock;
  6017. /* are we are already prepared for writes? */
  6018. if (mddev->ro != 1)
  6019. goto unlock;
  6020. /* transitioning to readauto need only happen for
  6021. * arrays that call md_write_start
  6022. */
  6023. if (mddev->pers) {
  6024. err = restart_array(mddev);
  6025. if (err == 0) {
  6026. mddev->ro = 2;
  6027. set_disk_ro(mddev->gendisk, 0);
  6028. }
  6029. }
  6030. goto unlock;
  6031. }
  6032. /*
  6033. * The remaining ioctls are changing the state of the
  6034. * superblock, so we do not allow them on read-only arrays.
  6035. */
  6036. if (mddev->ro && mddev->pers) {
  6037. if (mddev->ro == 2) {
  6038. mddev->ro = 0;
  6039. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6040. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6041. /* mddev_unlock will wake thread */
  6042. /* If a device failed while we were read-only, we
  6043. * need to make sure the metadata is updated now.
  6044. */
  6045. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6046. mddev_unlock(mddev);
  6047. wait_event(mddev->sb_wait,
  6048. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6049. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6050. mddev_lock_nointr(mddev);
  6051. }
  6052. } else {
  6053. err = -EROFS;
  6054. goto unlock;
  6055. }
  6056. }
  6057. switch (cmd) {
  6058. case ADD_NEW_DISK:
  6059. {
  6060. mdu_disk_info_t info;
  6061. if (copy_from_user(&info, argp, sizeof(info)))
  6062. err = -EFAULT;
  6063. else
  6064. err = add_new_disk(mddev, &info);
  6065. goto unlock;
  6066. }
  6067. case CLUSTERED_DISK_NACK:
  6068. if (mddev_is_clustered(mddev))
  6069. md_cluster_ops->new_disk_ack(mddev, false);
  6070. else
  6071. err = -EINVAL;
  6072. goto unlock;
  6073. case HOT_ADD_DISK:
  6074. err = hot_add_disk(mddev, new_decode_dev(arg));
  6075. goto unlock;
  6076. case RUN_ARRAY:
  6077. err = do_md_run(mddev);
  6078. goto unlock;
  6079. case SET_BITMAP_FILE:
  6080. err = set_bitmap_file(mddev, (int)arg);
  6081. goto unlock;
  6082. default:
  6083. err = -EINVAL;
  6084. goto unlock;
  6085. }
  6086. unlock:
  6087. if (mddev->hold_active == UNTIL_IOCTL &&
  6088. err != -EINVAL)
  6089. mddev->hold_active = 0;
  6090. mddev_unlock(mddev);
  6091. out:
  6092. return err;
  6093. }
  6094. #ifdef CONFIG_COMPAT
  6095. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6096. unsigned int cmd, unsigned long arg)
  6097. {
  6098. switch (cmd) {
  6099. case HOT_REMOVE_DISK:
  6100. case HOT_ADD_DISK:
  6101. case SET_DISK_FAULTY:
  6102. case SET_BITMAP_FILE:
  6103. /* These take in integer arg, do not convert */
  6104. break;
  6105. default:
  6106. arg = (unsigned long)compat_ptr(arg);
  6107. break;
  6108. }
  6109. return md_ioctl(bdev, mode, cmd, arg);
  6110. }
  6111. #endif /* CONFIG_COMPAT */
  6112. static int md_open(struct block_device *bdev, fmode_t mode)
  6113. {
  6114. /*
  6115. * Succeed if we can lock the mddev, which confirms that
  6116. * it isn't being stopped right now.
  6117. */
  6118. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6119. int err;
  6120. if (!mddev)
  6121. return -ENODEV;
  6122. if (mddev->gendisk != bdev->bd_disk) {
  6123. /* we are racing with mddev_put which is discarding this
  6124. * bd_disk.
  6125. */
  6126. mddev_put(mddev);
  6127. /* Wait until bdev->bd_disk is definitely gone */
  6128. flush_workqueue(md_misc_wq);
  6129. /* Then retry the open from the top */
  6130. return -ERESTARTSYS;
  6131. }
  6132. BUG_ON(mddev != bdev->bd_disk->private_data);
  6133. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6134. goto out;
  6135. err = 0;
  6136. atomic_inc(&mddev->openers);
  6137. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6138. mutex_unlock(&mddev->open_mutex);
  6139. check_disk_change(bdev);
  6140. out:
  6141. return err;
  6142. }
  6143. static void md_release(struct gendisk *disk, fmode_t mode)
  6144. {
  6145. struct mddev *mddev = disk->private_data;
  6146. BUG_ON(!mddev);
  6147. atomic_dec(&mddev->openers);
  6148. mddev_put(mddev);
  6149. }
  6150. static int md_media_changed(struct gendisk *disk)
  6151. {
  6152. struct mddev *mddev = disk->private_data;
  6153. return mddev->changed;
  6154. }
  6155. static int md_revalidate(struct gendisk *disk)
  6156. {
  6157. struct mddev *mddev = disk->private_data;
  6158. mddev->changed = 0;
  6159. return 0;
  6160. }
  6161. static const struct block_device_operations md_fops =
  6162. {
  6163. .owner = THIS_MODULE,
  6164. .open = md_open,
  6165. .release = md_release,
  6166. .ioctl = md_ioctl,
  6167. #ifdef CONFIG_COMPAT
  6168. .compat_ioctl = md_compat_ioctl,
  6169. #endif
  6170. .getgeo = md_getgeo,
  6171. .media_changed = md_media_changed,
  6172. .revalidate_disk= md_revalidate,
  6173. };
  6174. static int md_thread(void *arg)
  6175. {
  6176. struct md_thread *thread = arg;
  6177. /*
  6178. * md_thread is a 'system-thread', it's priority should be very
  6179. * high. We avoid resource deadlocks individually in each
  6180. * raid personality. (RAID5 does preallocation) We also use RR and
  6181. * the very same RT priority as kswapd, thus we will never get
  6182. * into a priority inversion deadlock.
  6183. *
  6184. * we definitely have to have equal or higher priority than
  6185. * bdflush, otherwise bdflush will deadlock if there are too
  6186. * many dirty RAID5 blocks.
  6187. */
  6188. allow_signal(SIGKILL);
  6189. while (!kthread_should_stop()) {
  6190. /* We need to wait INTERRUPTIBLE so that
  6191. * we don't add to the load-average.
  6192. * That means we need to be sure no signals are
  6193. * pending
  6194. */
  6195. if (signal_pending(current))
  6196. flush_signals(current);
  6197. wait_event_interruptible_timeout
  6198. (thread->wqueue,
  6199. test_bit(THREAD_WAKEUP, &thread->flags)
  6200. || kthread_should_stop(),
  6201. thread->timeout);
  6202. clear_bit(THREAD_WAKEUP, &thread->flags);
  6203. if (!kthread_should_stop())
  6204. thread->run(thread);
  6205. }
  6206. return 0;
  6207. }
  6208. void md_wakeup_thread(struct md_thread *thread)
  6209. {
  6210. if (thread) {
  6211. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6212. set_bit(THREAD_WAKEUP, &thread->flags);
  6213. wake_up(&thread->wqueue);
  6214. }
  6215. }
  6216. EXPORT_SYMBOL(md_wakeup_thread);
  6217. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6218. struct mddev *mddev, const char *name)
  6219. {
  6220. struct md_thread *thread;
  6221. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6222. if (!thread)
  6223. return NULL;
  6224. init_waitqueue_head(&thread->wqueue);
  6225. thread->run = run;
  6226. thread->mddev = mddev;
  6227. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6228. thread->tsk = kthread_run(md_thread, thread,
  6229. "%s_%s",
  6230. mdname(thread->mddev),
  6231. name);
  6232. if (IS_ERR(thread->tsk)) {
  6233. kfree(thread);
  6234. return NULL;
  6235. }
  6236. return thread;
  6237. }
  6238. EXPORT_SYMBOL(md_register_thread);
  6239. void md_unregister_thread(struct md_thread **threadp)
  6240. {
  6241. struct md_thread *thread = *threadp;
  6242. if (!thread)
  6243. return;
  6244. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6245. /* Locking ensures that mddev_unlock does not wake_up a
  6246. * non-existent thread
  6247. */
  6248. spin_lock(&pers_lock);
  6249. *threadp = NULL;
  6250. spin_unlock(&pers_lock);
  6251. kthread_stop(thread->tsk);
  6252. kfree(thread);
  6253. }
  6254. EXPORT_SYMBOL(md_unregister_thread);
  6255. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6256. {
  6257. if (!rdev || test_bit(Faulty, &rdev->flags))
  6258. return;
  6259. if (!mddev->pers || !mddev->pers->error_handler)
  6260. return;
  6261. mddev->pers->error_handler(mddev,rdev);
  6262. if (mddev->degraded)
  6263. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6264. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6265. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6266. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6267. md_wakeup_thread(mddev->thread);
  6268. if (mddev->event_work.func)
  6269. queue_work(md_misc_wq, &mddev->event_work);
  6270. md_new_event_inintr(mddev);
  6271. }
  6272. EXPORT_SYMBOL(md_error);
  6273. /* seq_file implementation /proc/mdstat */
  6274. static void status_unused(struct seq_file *seq)
  6275. {
  6276. int i = 0;
  6277. struct md_rdev *rdev;
  6278. seq_printf(seq, "unused devices: ");
  6279. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6280. char b[BDEVNAME_SIZE];
  6281. i++;
  6282. seq_printf(seq, "%s ",
  6283. bdevname(rdev->bdev,b));
  6284. }
  6285. if (!i)
  6286. seq_printf(seq, "<none>");
  6287. seq_printf(seq, "\n");
  6288. }
  6289. static void status_resync(struct seq_file *seq, struct mddev *mddev)
  6290. {
  6291. sector_t max_sectors, resync, res;
  6292. unsigned long dt, db;
  6293. sector_t rt;
  6294. int scale;
  6295. unsigned int per_milli;
  6296. if (mddev->curr_resync <= 3)
  6297. resync = 0;
  6298. else
  6299. resync = mddev->curr_resync
  6300. - atomic_read(&mddev->recovery_active);
  6301. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6302. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6303. max_sectors = mddev->resync_max_sectors;
  6304. else
  6305. max_sectors = mddev->dev_sectors;
  6306. WARN_ON(max_sectors == 0);
  6307. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6308. * in a sector_t, and (max_sectors>>scale) will fit in a
  6309. * u32, as those are the requirements for sector_div.
  6310. * Thus 'scale' must be at least 10
  6311. */
  6312. scale = 10;
  6313. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6314. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6315. scale++;
  6316. }
  6317. res = (resync>>scale)*1000;
  6318. sector_div(res, (u32)((max_sectors>>scale)+1));
  6319. per_milli = res;
  6320. {
  6321. int i, x = per_milli/50, y = 20-x;
  6322. seq_printf(seq, "[");
  6323. for (i = 0; i < x; i++)
  6324. seq_printf(seq, "=");
  6325. seq_printf(seq, ">");
  6326. for (i = 0; i < y; i++)
  6327. seq_printf(seq, ".");
  6328. seq_printf(seq, "] ");
  6329. }
  6330. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6331. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6332. "reshape" :
  6333. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6334. "check" :
  6335. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6336. "resync" : "recovery"))),
  6337. per_milli/10, per_milli % 10,
  6338. (unsigned long long) resync/2,
  6339. (unsigned long long) max_sectors/2);
  6340. /*
  6341. * dt: time from mark until now
  6342. * db: blocks written from mark until now
  6343. * rt: remaining time
  6344. *
  6345. * rt is a sector_t, so could be 32bit or 64bit.
  6346. * So we divide before multiply in case it is 32bit and close
  6347. * to the limit.
  6348. * We scale the divisor (db) by 32 to avoid losing precision
  6349. * near the end of resync when the number of remaining sectors
  6350. * is close to 'db'.
  6351. * We then divide rt by 32 after multiplying by db to compensate.
  6352. * The '+1' avoids division by zero if db is very small.
  6353. */
  6354. dt = ((jiffies - mddev->resync_mark) / HZ);
  6355. if (!dt) dt++;
  6356. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6357. - mddev->resync_mark_cnt;
  6358. rt = max_sectors - resync; /* number of remaining sectors */
  6359. sector_div(rt, db/32+1);
  6360. rt *= dt;
  6361. rt >>= 5;
  6362. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6363. ((unsigned long)rt % 60)/6);
  6364. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6365. }
  6366. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6367. {
  6368. struct list_head *tmp;
  6369. loff_t l = *pos;
  6370. struct mddev *mddev;
  6371. if (l >= 0x10000)
  6372. return NULL;
  6373. if (!l--)
  6374. /* header */
  6375. return (void*)1;
  6376. spin_lock(&all_mddevs_lock);
  6377. list_for_each(tmp,&all_mddevs)
  6378. if (!l--) {
  6379. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6380. mddev_get(mddev);
  6381. spin_unlock(&all_mddevs_lock);
  6382. return mddev;
  6383. }
  6384. spin_unlock(&all_mddevs_lock);
  6385. if (!l--)
  6386. return (void*)2;/* tail */
  6387. return NULL;
  6388. }
  6389. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6390. {
  6391. struct list_head *tmp;
  6392. struct mddev *next_mddev, *mddev = v;
  6393. ++*pos;
  6394. if (v == (void*)2)
  6395. return NULL;
  6396. spin_lock(&all_mddevs_lock);
  6397. if (v == (void*)1)
  6398. tmp = all_mddevs.next;
  6399. else
  6400. tmp = mddev->all_mddevs.next;
  6401. if (tmp != &all_mddevs)
  6402. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6403. else {
  6404. next_mddev = (void*)2;
  6405. *pos = 0x10000;
  6406. }
  6407. spin_unlock(&all_mddevs_lock);
  6408. if (v != (void*)1)
  6409. mddev_put(mddev);
  6410. return next_mddev;
  6411. }
  6412. static void md_seq_stop(struct seq_file *seq, void *v)
  6413. {
  6414. struct mddev *mddev = v;
  6415. if (mddev && v != (void*)1 && v != (void*)2)
  6416. mddev_put(mddev);
  6417. }
  6418. static int md_seq_show(struct seq_file *seq, void *v)
  6419. {
  6420. struct mddev *mddev = v;
  6421. sector_t sectors;
  6422. struct md_rdev *rdev;
  6423. if (v == (void*)1) {
  6424. struct md_personality *pers;
  6425. seq_printf(seq, "Personalities : ");
  6426. spin_lock(&pers_lock);
  6427. list_for_each_entry(pers, &pers_list, list)
  6428. seq_printf(seq, "[%s] ", pers->name);
  6429. spin_unlock(&pers_lock);
  6430. seq_printf(seq, "\n");
  6431. seq->poll_event = atomic_read(&md_event_count);
  6432. return 0;
  6433. }
  6434. if (v == (void*)2) {
  6435. status_unused(seq);
  6436. return 0;
  6437. }
  6438. spin_lock(&mddev->lock);
  6439. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6440. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6441. mddev->pers ? "" : "in");
  6442. if (mddev->pers) {
  6443. if (mddev->ro==1)
  6444. seq_printf(seq, " (read-only)");
  6445. if (mddev->ro==2)
  6446. seq_printf(seq, " (auto-read-only)");
  6447. seq_printf(seq, " %s", mddev->pers->name);
  6448. }
  6449. sectors = 0;
  6450. rcu_read_lock();
  6451. rdev_for_each_rcu(rdev, mddev) {
  6452. char b[BDEVNAME_SIZE];
  6453. seq_printf(seq, " %s[%d]",
  6454. bdevname(rdev->bdev,b), rdev->desc_nr);
  6455. if (test_bit(WriteMostly, &rdev->flags))
  6456. seq_printf(seq, "(W)");
  6457. if (test_bit(Faulty, &rdev->flags)) {
  6458. seq_printf(seq, "(F)");
  6459. continue;
  6460. }
  6461. if (rdev->raid_disk < 0)
  6462. seq_printf(seq, "(S)"); /* spare */
  6463. if (test_bit(Replacement, &rdev->flags))
  6464. seq_printf(seq, "(R)");
  6465. sectors += rdev->sectors;
  6466. }
  6467. rcu_read_unlock();
  6468. if (!list_empty(&mddev->disks)) {
  6469. if (mddev->pers)
  6470. seq_printf(seq, "\n %llu blocks",
  6471. (unsigned long long)
  6472. mddev->array_sectors / 2);
  6473. else
  6474. seq_printf(seq, "\n %llu blocks",
  6475. (unsigned long long)sectors / 2);
  6476. }
  6477. if (mddev->persistent) {
  6478. if (mddev->major_version != 0 ||
  6479. mddev->minor_version != 90) {
  6480. seq_printf(seq," super %d.%d",
  6481. mddev->major_version,
  6482. mddev->minor_version);
  6483. }
  6484. } else if (mddev->external)
  6485. seq_printf(seq, " super external:%s",
  6486. mddev->metadata_type);
  6487. else
  6488. seq_printf(seq, " super non-persistent");
  6489. if (mddev->pers) {
  6490. mddev->pers->status(seq, mddev);
  6491. seq_printf(seq, "\n ");
  6492. if (mddev->pers->sync_request) {
  6493. if (mddev->curr_resync > 2) {
  6494. status_resync(seq, mddev);
  6495. seq_printf(seq, "\n ");
  6496. } else if (mddev->curr_resync >= 1)
  6497. seq_printf(seq, "\tresync=DELAYED\n ");
  6498. else if (mddev->recovery_cp < MaxSector)
  6499. seq_printf(seq, "\tresync=PENDING\n ");
  6500. }
  6501. } else
  6502. seq_printf(seq, "\n ");
  6503. bitmap_status(seq, mddev->bitmap);
  6504. seq_printf(seq, "\n");
  6505. }
  6506. spin_unlock(&mddev->lock);
  6507. return 0;
  6508. }
  6509. static const struct seq_operations md_seq_ops = {
  6510. .start = md_seq_start,
  6511. .next = md_seq_next,
  6512. .stop = md_seq_stop,
  6513. .show = md_seq_show,
  6514. };
  6515. static int md_seq_open(struct inode *inode, struct file *file)
  6516. {
  6517. struct seq_file *seq;
  6518. int error;
  6519. error = seq_open(file, &md_seq_ops);
  6520. if (error)
  6521. return error;
  6522. seq = file->private_data;
  6523. seq->poll_event = atomic_read(&md_event_count);
  6524. return error;
  6525. }
  6526. static int md_unloading;
  6527. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6528. {
  6529. struct seq_file *seq = filp->private_data;
  6530. int mask;
  6531. if (md_unloading)
  6532. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6533. poll_wait(filp, &md_event_waiters, wait);
  6534. /* always allow read */
  6535. mask = POLLIN | POLLRDNORM;
  6536. if (seq->poll_event != atomic_read(&md_event_count))
  6537. mask |= POLLERR | POLLPRI;
  6538. return mask;
  6539. }
  6540. static const struct file_operations md_seq_fops = {
  6541. .owner = THIS_MODULE,
  6542. .open = md_seq_open,
  6543. .read = seq_read,
  6544. .llseek = seq_lseek,
  6545. .release = seq_release_private,
  6546. .poll = mdstat_poll,
  6547. };
  6548. int register_md_personality(struct md_personality *p)
  6549. {
  6550. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6551. p->name, p->level);
  6552. spin_lock(&pers_lock);
  6553. list_add_tail(&p->list, &pers_list);
  6554. spin_unlock(&pers_lock);
  6555. return 0;
  6556. }
  6557. EXPORT_SYMBOL(register_md_personality);
  6558. int unregister_md_personality(struct md_personality *p)
  6559. {
  6560. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6561. spin_lock(&pers_lock);
  6562. list_del_init(&p->list);
  6563. spin_unlock(&pers_lock);
  6564. return 0;
  6565. }
  6566. EXPORT_SYMBOL(unregister_md_personality);
  6567. int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
  6568. {
  6569. if (md_cluster_ops != NULL)
  6570. return -EALREADY;
  6571. spin_lock(&pers_lock);
  6572. md_cluster_ops = ops;
  6573. md_cluster_mod = module;
  6574. spin_unlock(&pers_lock);
  6575. return 0;
  6576. }
  6577. EXPORT_SYMBOL(register_md_cluster_operations);
  6578. int unregister_md_cluster_operations(void)
  6579. {
  6580. spin_lock(&pers_lock);
  6581. md_cluster_ops = NULL;
  6582. spin_unlock(&pers_lock);
  6583. return 0;
  6584. }
  6585. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6586. int md_setup_cluster(struct mddev *mddev, int nodes)
  6587. {
  6588. int err;
  6589. err = request_module("md-cluster");
  6590. if (err) {
  6591. pr_err("md-cluster module not found.\n");
  6592. return err;
  6593. }
  6594. spin_lock(&pers_lock);
  6595. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6596. spin_unlock(&pers_lock);
  6597. return -ENOENT;
  6598. }
  6599. spin_unlock(&pers_lock);
  6600. return md_cluster_ops->join(mddev, nodes);
  6601. }
  6602. void md_cluster_stop(struct mddev *mddev)
  6603. {
  6604. if (!md_cluster_ops)
  6605. return;
  6606. md_cluster_ops->leave(mddev);
  6607. module_put(md_cluster_mod);
  6608. }
  6609. static int is_mddev_idle(struct mddev *mddev, int init)
  6610. {
  6611. struct md_rdev *rdev;
  6612. int idle;
  6613. int curr_events;
  6614. idle = 1;
  6615. rcu_read_lock();
  6616. rdev_for_each_rcu(rdev, mddev) {
  6617. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6618. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6619. (int)part_stat_read(&disk->part0, sectors[1]) -
  6620. atomic_read(&disk->sync_io);
  6621. /* sync IO will cause sync_io to increase before the disk_stats
  6622. * as sync_io is counted when a request starts, and
  6623. * disk_stats is counted when it completes.
  6624. * So resync activity will cause curr_events to be smaller than
  6625. * when there was no such activity.
  6626. * non-sync IO will cause disk_stat to increase without
  6627. * increasing sync_io so curr_events will (eventually)
  6628. * be larger than it was before. Once it becomes
  6629. * substantially larger, the test below will cause
  6630. * the array to appear non-idle, and resync will slow
  6631. * down.
  6632. * If there is a lot of outstanding resync activity when
  6633. * we set last_event to curr_events, then all that activity
  6634. * completing might cause the array to appear non-idle
  6635. * and resync will be slowed down even though there might
  6636. * not have been non-resync activity. This will only
  6637. * happen once though. 'last_events' will soon reflect
  6638. * the state where there is little or no outstanding
  6639. * resync requests, and further resync activity will
  6640. * always make curr_events less than last_events.
  6641. *
  6642. */
  6643. if (init || curr_events - rdev->last_events > 64) {
  6644. rdev->last_events = curr_events;
  6645. idle = 0;
  6646. }
  6647. }
  6648. rcu_read_unlock();
  6649. return idle;
  6650. }
  6651. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6652. {
  6653. /* another "blocks" (512byte) blocks have been synced */
  6654. atomic_sub(blocks, &mddev->recovery_active);
  6655. wake_up(&mddev->recovery_wait);
  6656. if (!ok) {
  6657. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6658. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6659. md_wakeup_thread(mddev->thread);
  6660. // stop recovery, signal do_sync ....
  6661. }
  6662. }
  6663. EXPORT_SYMBOL(md_done_sync);
  6664. /* md_write_start(mddev, bi)
  6665. * If we need to update some array metadata (e.g. 'active' flag
  6666. * in superblock) before writing, schedule a superblock update
  6667. * and wait for it to complete.
  6668. */
  6669. void md_write_start(struct mddev *mddev, struct bio *bi)
  6670. {
  6671. int did_change = 0;
  6672. if (bio_data_dir(bi) != WRITE)
  6673. return;
  6674. BUG_ON(mddev->ro == 1);
  6675. if (mddev->ro == 2) {
  6676. /* need to switch to read/write */
  6677. mddev->ro = 0;
  6678. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6679. md_wakeup_thread(mddev->thread);
  6680. md_wakeup_thread(mddev->sync_thread);
  6681. did_change = 1;
  6682. }
  6683. atomic_inc(&mddev->writes_pending);
  6684. if (mddev->safemode == 1)
  6685. mddev->safemode = 0;
  6686. if (mddev->in_sync) {
  6687. spin_lock(&mddev->lock);
  6688. if (mddev->in_sync) {
  6689. mddev->in_sync = 0;
  6690. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6691. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6692. md_wakeup_thread(mddev->thread);
  6693. did_change = 1;
  6694. }
  6695. spin_unlock(&mddev->lock);
  6696. }
  6697. if (did_change)
  6698. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6699. wait_event(mddev->sb_wait,
  6700. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6701. }
  6702. EXPORT_SYMBOL(md_write_start);
  6703. void md_write_end(struct mddev *mddev)
  6704. {
  6705. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6706. if (mddev->safemode == 2)
  6707. md_wakeup_thread(mddev->thread);
  6708. else if (mddev->safemode_delay)
  6709. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6710. }
  6711. }
  6712. EXPORT_SYMBOL(md_write_end);
  6713. /* md_allow_write(mddev)
  6714. * Calling this ensures that the array is marked 'active' so that writes
  6715. * may proceed without blocking. It is important to call this before
  6716. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6717. * Must be called with mddev_lock held.
  6718. *
  6719. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6720. * is dropped, so return -EAGAIN after notifying userspace.
  6721. */
  6722. int md_allow_write(struct mddev *mddev)
  6723. {
  6724. if (!mddev->pers)
  6725. return 0;
  6726. if (mddev->ro)
  6727. return 0;
  6728. if (!mddev->pers->sync_request)
  6729. return 0;
  6730. spin_lock(&mddev->lock);
  6731. if (mddev->in_sync) {
  6732. mddev->in_sync = 0;
  6733. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6734. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6735. if (mddev->safemode_delay &&
  6736. mddev->safemode == 0)
  6737. mddev->safemode = 1;
  6738. spin_unlock(&mddev->lock);
  6739. if (mddev_is_clustered(mddev))
  6740. md_cluster_ops->metadata_update_start(mddev);
  6741. md_update_sb(mddev, 0);
  6742. if (mddev_is_clustered(mddev))
  6743. md_cluster_ops->metadata_update_finish(mddev);
  6744. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6745. } else
  6746. spin_unlock(&mddev->lock);
  6747. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6748. return -EAGAIN;
  6749. else
  6750. return 0;
  6751. }
  6752. EXPORT_SYMBOL_GPL(md_allow_write);
  6753. #define SYNC_MARKS 10
  6754. #define SYNC_MARK_STEP (3*HZ)
  6755. #define UPDATE_FREQUENCY (5*60*HZ)
  6756. void md_do_sync(struct md_thread *thread)
  6757. {
  6758. struct mddev *mddev = thread->mddev;
  6759. struct mddev *mddev2;
  6760. unsigned int currspeed = 0,
  6761. window;
  6762. sector_t max_sectors,j, io_sectors, recovery_done;
  6763. unsigned long mark[SYNC_MARKS];
  6764. unsigned long update_time;
  6765. sector_t mark_cnt[SYNC_MARKS];
  6766. int last_mark,m;
  6767. struct list_head *tmp;
  6768. sector_t last_check;
  6769. int skipped = 0;
  6770. struct md_rdev *rdev;
  6771. char *desc, *action = NULL;
  6772. struct blk_plug plug;
  6773. /* just incase thread restarts... */
  6774. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6775. return;
  6776. if (mddev->ro) {/* never try to sync a read-only array */
  6777. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6778. return;
  6779. }
  6780. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6781. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6782. desc = "data-check";
  6783. action = "check";
  6784. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6785. desc = "requested-resync";
  6786. action = "repair";
  6787. } else
  6788. desc = "resync";
  6789. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6790. desc = "reshape";
  6791. else
  6792. desc = "recovery";
  6793. mddev->last_sync_action = action ?: desc;
  6794. /* we overload curr_resync somewhat here.
  6795. * 0 == not engaged in resync at all
  6796. * 2 == checking that there is no conflict with another sync
  6797. * 1 == like 2, but have yielded to allow conflicting resync to
  6798. * commense
  6799. * other == active in resync - this many blocks
  6800. *
  6801. * Before starting a resync we must have set curr_resync to
  6802. * 2, and then checked that every "conflicting" array has curr_resync
  6803. * less than ours. When we find one that is the same or higher
  6804. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6805. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6806. * This will mean we have to start checking from the beginning again.
  6807. *
  6808. */
  6809. do {
  6810. mddev->curr_resync = 2;
  6811. try_again:
  6812. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6813. goto skip;
  6814. for_each_mddev(mddev2, tmp) {
  6815. if (mddev2 == mddev)
  6816. continue;
  6817. if (!mddev->parallel_resync
  6818. && mddev2->curr_resync
  6819. && match_mddev_units(mddev, mddev2)) {
  6820. DEFINE_WAIT(wq);
  6821. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6822. /* arbitrarily yield */
  6823. mddev->curr_resync = 1;
  6824. wake_up(&resync_wait);
  6825. }
  6826. if (mddev > mddev2 && mddev->curr_resync == 1)
  6827. /* no need to wait here, we can wait the next
  6828. * time 'round when curr_resync == 2
  6829. */
  6830. continue;
  6831. /* We need to wait 'interruptible' so as not to
  6832. * contribute to the load average, and not to
  6833. * be caught by 'softlockup'
  6834. */
  6835. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6836. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6837. mddev2->curr_resync >= mddev->curr_resync) {
  6838. printk(KERN_INFO "md: delaying %s of %s"
  6839. " until %s has finished (they"
  6840. " share one or more physical units)\n",
  6841. desc, mdname(mddev), mdname(mddev2));
  6842. mddev_put(mddev2);
  6843. if (signal_pending(current))
  6844. flush_signals(current);
  6845. schedule();
  6846. finish_wait(&resync_wait, &wq);
  6847. goto try_again;
  6848. }
  6849. finish_wait(&resync_wait, &wq);
  6850. }
  6851. }
  6852. } while (mddev->curr_resync < 2);
  6853. j = 0;
  6854. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6855. /* resync follows the size requested by the personality,
  6856. * which defaults to physical size, but can be virtual size
  6857. */
  6858. max_sectors = mddev->resync_max_sectors;
  6859. atomic64_set(&mddev->resync_mismatches, 0);
  6860. /* we don't use the checkpoint if there's a bitmap */
  6861. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6862. j = mddev->resync_min;
  6863. else if (!mddev->bitmap)
  6864. j = mddev->recovery_cp;
  6865. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6866. max_sectors = mddev->resync_max_sectors;
  6867. else {
  6868. /* recovery follows the physical size of devices */
  6869. max_sectors = mddev->dev_sectors;
  6870. j = MaxSector;
  6871. rcu_read_lock();
  6872. rdev_for_each_rcu(rdev, mddev)
  6873. if (rdev->raid_disk >= 0 &&
  6874. !test_bit(Faulty, &rdev->flags) &&
  6875. !test_bit(In_sync, &rdev->flags) &&
  6876. rdev->recovery_offset < j)
  6877. j = rdev->recovery_offset;
  6878. rcu_read_unlock();
  6879. /* If there is a bitmap, we need to make sure all
  6880. * writes that started before we added a spare
  6881. * complete before we start doing a recovery.
  6882. * Otherwise the write might complete and (via
  6883. * bitmap_endwrite) set a bit in the bitmap after the
  6884. * recovery has checked that bit and skipped that
  6885. * region.
  6886. */
  6887. if (mddev->bitmap) {
  6888. mddev->pers->quiesce(mddev, 1);
  6889. mddev->pers->quiesce(mddev, 0);
  6890. }
  6891. }
  6892. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6893. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6894. " %d KB/sec/disk.\n", speed_min(mddev));
  6895. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6896. "(but not more than %d KB/sec) for %s.\n",
  6897. speed_max(mddev), desc);
  6898. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6899. io_sectors = 0;
  6900. for (m = 0; m < SYNC_MARKS; m++) {
  6901. mark[m] = jiffies;
  6902. mark_cnt[m] = io_sectors;
  6903. }
  6904. last_mark = 0;
  6905. mddev->resync_mark = mark[last_mark];
  6906. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6907. /*
  6908. * Tune reconstruction:
  6909. */
  6910. window = 32*(PAGE_SIZE/512);
  6911. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6912. window/2, (unsigned long long)max_sectors/2);
  6913. atomic_set(&mddev->recovery_active, 0);
  6914. last_check = 0;
  6915. if (j>2) {
  6916. printk(KERN_INFO
  6917. "md: resuming %s of %s from checkpoint.\n",
  6918. desc, mdname(mddev));
  6919. mddev->curr_resync = j;
  6920. } else
  6921. mddev->curr_resync = 3; /* no longer delayed */
  6922. mddev->curr_resync_completed = j;
  6923. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6924. md_new_event(mddev);
  6925. update_time = jiffies;
  6926. if (mddev_is_clustered(mddev))
  6927. md_cluster_ops->resync_start(mddev, j, max_sectors);
  6928. blk_start_plug(&plug);
  6929. while (j < max_sectors) {
  6930. sector_t sectors;
  6931. skipped = 0;
  6932. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6933. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6934. (mddev->curr_resync - mddev->curr_resync_completed)
  6935. > (max_sectors >> 4)) ||
  6936. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6937. (j - mddev->curr_resync_completed)*2
  6938. >= mddev->resync_max - mddev->curr_resync_completed
  6939. )) {
  6940. /* time to update curr_resync_completed */
  6941. wait_event(mddev->recovery_wait,
  6942. atomic_read(&mddev->recovery_active) == 0);
  6943. mddev->curr_resync_completed = j;
  6944. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6945. j > mddev->recovery_cp)
  6946. mddev->recovery_cp = j;
  6947. update_time = jiffies;
  6948. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6949. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6950. }
  6951. while (j >= mddev->resync_max &&
  6952. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6953. /* As this condition is controlled by user-space,
  6954. * we can block indefinitely, so use '_interruptible'
  6955. * to avoid triggering warnings.
  6956. */
  6957. flush_signals(current); /* just in case */
  6958. wait_event_interruptible(mddev->recovery_wait,
  6959. mddev->resync_max > j
  6960. || test_bit(MD_RECOVERY_INTR,
  6961. &mddev->recovery));
  6962. }
  6963. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6964. break;
  6965. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6966. currspeed < speed_min(mddev));
  6967. if (sectors == 0) {
  6968. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6969. break;
  6970. }
  6971. if (!skipped) { /* actual IO requested */
  6972. io_sectors += sectors;
  6973. atomic_add(sectors, &mddev->recovery_active);
  6974. }
  6975. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6976. break;
  6977. j += sectors;
  6978. if (j > 2)
  6979. mddev->curr_resync = j;
  6980. if (mddev_is_clustered(mddev))
  6981. md_cluster_ops->resync_info_update(mddev, j, max_sectors);
  6982. mddev->curr_mark_cnt = io_sectors;
  6983. if (last_check == 0)
  6984. /* this is the earliest that rebuild will be
  6985. * visible in /proc/mdstat
  6986. */
  6987. md_new_event(mddev);
  6988. if (last_check + window > io_sectors || j == max_sectors)
  6989. continue;
  6990. last_check = io_sectors;
  6991. repeat:
  6992. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6993. /* step marks */
  6994. int next = (last_mark+1) % SYNC_MARKS;
  6995. mddev->resync_mark = mark[next];
  6996. mddev->resync_mark_cnt = mark_cnt[next];
  6997. mark[next] = jiffies;
  6998. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6999. last_mark = next;
  7000. }
  7001. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7002. break;
  7003. /*
  7004. * this loop exits only if either when we are slower than
  7005. * the 'hard' speed limit, or the system was IO-idle for
  7006. * a jiffy.
  7007. * the system might be non-idle CPU-wise, but we only care
  7008. * about not overloading the IO subsystem. (things like an
  7009. * e2fsck being done on the RAID array should execute fast)
  7010. */
  7011. cond_resched();
  7012. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7013. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7014. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7015. if (currspeed > speed_min(mddev)) {
  7016. if ((currspeed > speed_max(mddev)) ||
  7017. !is_mddev_idle(mddev, 0)) {
  7018. msleep(500);
  7019. goto repeat;
  7020. }
  7021. }
  7022. }
  7023. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7024. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7025. ? "interrupted" : "done");
  7026. /*
  7027. * this also signals 'finished resyncing' to md_stop
  7028. */
  7029. blk_finish_plug(&plug);
  7030. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7031. /* tell personality that we are finished */
  7032. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  7033. if (mddev_is_clustered(mddev))
  7034. md_cluster_ops->resync_finish(mddev);
  7035. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7036. mddev->curr_resync > 2) {
  7037. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7038. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7039. if (mddev->curr_resync >= mddev->recovery_cp) {
  7040. printk(KERN_INFO
  7041. "md: checkpointing %s of %s.\n",
  7042. desc, mdname(mddev));
  7043. if (test_bit(MD_RECOVERY_ERROR,
  7044. &mddev->recovery))
  7045. mddev->recovery_cp =
  7046. mddev->curr_resync_completed;
  7047. else
  7048. mddev->recovery_cp =
  7049. mddev->curr_resync;
  7050. }
  7051. } else
  7052. mddev->recovery_cp = MaxSector;
  7053. } else {
  7054. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7055. mddev->curr_resync = MaxSector;
  7056. rcu_read_lock();
  7057. rdev_for_each_rcu(rdev, mddev)
  7058. if (rdev->raid_disk >= 0 &&
  7059. mddev->delta_disks >= 0 &&
  7060. !test_bit(Faulty, &rdev->flags) &&
  7061. !test_bit(In_sync, &rdev->flags) &&
  7062. rdev->recovery_offset < mddev->curr_resync)
  7063. rdev->recovery_offset = mddev->curr_resync;
  7064. rcu_read_unlock();
  7065. }
  7066. }
  7067. skip:
  7068. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7069. spin_lock(&mddev->lock);
  7070. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7071. /* We completed so min/max setting can be forgotten if used. */
  7072. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7073. mddev->resync_min = 0;
  7074. mddev->resync_max = MaxSector;
  7075. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7076. mddev->resync_min = mddev->curr_resync_completed;
  7077. mddev->curr_resync = 0;
  7078. spin_unlock(&mddev->lock);
  7079. wake_up(&resync_wait);
  7080. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7081. md_wakeup_thread(mddev->thread);
  7082. return;
  7083. }
  7084. EXPORT_SYMBOL_GPL(md_do_sync);
  7085. static int remove_and_add_spares(struct mddev *mddev,
  7086. struct md_rdev *this)
  7087. {
  7088. struct md_rdev *rdev;
  7089. int spares = 0;
  7090. int removed = 0;
  7091. rdev_for_each(rdev, mddev)
  7092. if ((this == NULL || rdev == this) &&
  7093. rdev->raid_disk >= 0 &&
  7094. !test_bit(Blocked, &rdev->flags) &&
  7095. (test_bit(Faulty, &rdev->flags) ||
  7096. ! test_bit(In_sync, &rdev->flags)) &&
  7097. atomic_read(&rdev->nr_pending)==0) {
  7098. if (mddev->pers->hot_remove_disk(
  7099. mddev, rdev) == 0) {
  7100. sysfs_unlink_rdev(mddev, rdev);
  7101. rdev->raid_disk = -1;
  7102. removed++;
  7103. }
  7104. }
  7105. if (removed && mddev->kobj.sd)
  7106. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7107. if (this)
  7108. goto no_add;
  7109. rdev_for_each(rdev, mddev) {
  7110. if (rdev->raid_disk >= 0 &&
  7111. !test_bit(In_sync, &rdev->flags) &&
  7112. !test_bit(Faulty, &rdev->flags))
  7113. spares++;
  7114. if (rdev->raid_disk >= 0)
  7115. continue;
  7116. if (test_bit(Faulty, &rdev->flags))
  7117. continue;
  7118. if (mddev->ro &&
  7119. ! (rdev->saved_raid_disk >= 0 &&
  7120. !test_bit(Bitmap_sync, &rdev->flags)))
  7121. continue;
  7122. if (rdev->saved_raid_disk < 0)
  7123. rdev->recovery_offset = 0;
  7124. if (mddev->pers->
  7125. hot_add_disk(mddev, rdev) == 0) {
  7126. if (sysfs_link_rdev(mddev, rdev))
  7127. /* failure here is OK */;
  7128. spares++;
  7129. md_new_event(mddev);
  7130. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7131. }
  7132. }
  7133. no_add:
  7134. if (removed)
  7135. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7136. return spares;
  7137. }
  7138. static void md_start_sync(struct work_struct *ws)
  7139. {
  7140. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7141. mddev->sync_thread = md_register_thread(md_do_sync,
  7142. mddev,
  7143. "resync");
  7144. if (!mddev->sync_thread) {
  7145. printk(KERN_ERR "%s: could not start resync"
  7146. " thread...\n",
  7147. mdname(mddev));
  7148. /* leave the spares where they are, it shouldn't hurt */
  7149. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7150. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7151. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7152. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7153. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7154. wake_up(&resync_wait);
  7155. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7156. &mddev->recovery))
  7157. if (mddev->sysfs_action)
  7158. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7159. } else
  7160. md_wakeup_thread(mddev->sync_thread);
  7161. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7162. md_new_event(mddev);
  7163. }
  7164. /*
  7165. * This routine is regularly called by all per-raid-array threads to
  7166. * deal with generic issues like resync and super-block update.
  7167. * Raid personalities that don't have a thread (linear/raid0) do not
  7168. * need this as they never do any recovery or update the superblock.
  7169. *
  7170. * It does not do any resync itself, but rather "forks" off other threads
  7171. * to do that as needed.
  7172. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7173. * "->recovery" and create a thread at ->sync_thread.
  7174. * When the thread finishes it sets MD_RECOVERY_DONE
  7175. * and wakeups up this thread which will reap the thread and finish up.
  7176. * This thread also removes any faulty devices (with nr_pending == 0).
  7177. *
  7178. * The overall approach is:
  7179. * 1/ if the superblock needs updating, update it.
  7180. * 2/ If a recovery thread is running, don't do anything else.
  7181. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7182. * 4/ If there are any faulty devices, remove them.
  7183. * 5/ If array is degraded, try to add spares devices
  7184. * 6/ If array has spares or is not in-sync, start a resync thread.
  7185. */
  7186. void md_check_recovery(struct mddev *mddev)
  7187. {
  7188. if (mddev->suspended)
  7189. return;
  7190. if (mddev->bitmap)
  7191. bitmap_daemon_work(mddev);
  7192. if (signal_pending(current)) {
  7193. if (mddev->pers->sync_request && !mddev->external) {
  7194. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7195. mdname(mddev));
  7196. mddev->safemode = 2;
  7197. }
  7198. flush_signals(current);
  7199. }
  7200. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7201. return;
  7202. if ( ! (
  7203. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7204. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7205. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7206. (mddev->external == 0 && mddev->safemode == 1) ||
  7207. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7208. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7209. ))
  7210. return;
  7211. if (mddev_trylock(mddev)) {
  7212. int spares = 0;
  7213. if (mddev->ro) {
  7214. /* On a read-only array we can:
  7215. * - remove failed devices
  7216. * - add already-in_sync devices if the array itself
  7217. * is in-sync.
  7218. * As we only add devices that are already in-sync,
  7219. * we can activate the spares immediately.
  7220. */
  7221. remove_and_add_spares(mddev, NULL);
  7222. /* There is no thread, but we need to call
  7223. * ->spare_active and clear saved_raid_disk
  7224. */
  7225. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7226. md_reap_sync_thread(mddev);
  7227. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7228. goto unlock;
  7229. }
  7230. if (!mddev->external) {
  7231. int did_change = 0;
  7232. spin_lock(&mddev->lock);
  7233. if (mddev->safemode &&
  7234. !atomic_read(&mddev->writes_pending) &&
  7235. !mddev->in_sync &&
  7236. mddev->recovery_cp == MaxSector) {
  7237. mddev->in_sync = 1;
  7238. did_change = 1;
  7239. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7240. }
  7241. if (mddev->safemode == 1)
  7242. mddev->safemode = 0;
  7243. spin_unlock(&mddev->lock);
  7244. if (did_change)
  7245. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7246. }
  7247. if (mddev->flags & MD_UPDATE_SB_FLAGS) {
  7248. if (mddev_is_clustered(mddev))
  7249. md_cluster_ops->metadata_update_start(mddev);
  7250. md_update_sb(mddev, 0);
  7251. if (mddev_is_clustered(mddev))
  7252. md_cluster_ops->metadata_update_finish(mddev);
  7253. }
  7254. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7255. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7256. /* resync/recovery still happening */
  7257. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7258. goto unlock;
  7259. }
  7260. if (mddev->sync_thread) {
  7261. md_reap_sync_thread(mddev);
  7262. goto unlock;
  7263. }
  7264. /* Set RUNNING before clearing NEEDED to avoid
  7265. * any transients in the value of "sync_action".
  7266. */
  7267. mddev->curr_resync_completed = 0;
  7268. spin_lock(&mddev->lock);
  7269. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7270. spin_unlock(&mddev->lock);
  7271. /* Clear some bits that don't mean anything, but
  7272. * might be left set
  7273. */
  7274. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7275. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7276. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7277. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7278. goto not_running;
  7279. /* no recovery is running.
  7280. * remove any failed drives, then
  7281. * add spares if possible.
  7282. * Spares are also removed and re-added, to allow
  7283. * the personality to fail the re-add.
  7284. */
  7285. if (mddev->reshape_position != MaxSector) {
  7286. if (mddev->pers->check_reshape == NULL ||
  7287. mddev->pers->check_reshape(mddev) != 0)
  7288. /* Cannot proceed */
  7289. goto not_running;
  7290. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7291. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7292. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7293. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7294. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7295. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7296. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7297. } else if (mddev->recovery_cp < MaxSector) {
  7298. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7299. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7300. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7301. /* nothing to be done ... */
  7302. goto not_running;
  7303. if (mddev->pers->sync_request) {
  7304. if (spares) {
  7305. /* We are adding a device or devices to an array
  7306. * which has the bitmap stored on all devices.
  7307. * So make sure all bitmap pages get written
  7308. */
  7309. bitmap_write_all(mddev->bitmap);
  7310. }
  7311. INIT_WORK(&mddev->del_work, md_start_sync);
  7312. queue_work(md_misc_wq, &mddev->del_work);
  7313. goto unlock;
  7314. }
  7315. not_running:
  7316. if (!mddev->sync_thread) {
  7317. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7318. wake_up(&resync_wait);
  7319. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7320. &mddev->recovery))
  7321. if (mddev->sysfs_action)
  7322. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7323. }
  7324. unlock:
  7325. wake_up(&mddev->sb_wait);
  7326. mddev_unlock(mddev);
  7327. }
  7328. }
  7329. EXPORT_SYMBOL(md_check_recovery);
  7330. void md_reap_sync_thread(struct mddev *mddev)
  7331. {
  7332. struct md_rdev *rdev;
  7333. /* resync has finished, collect result */
  7334. md_unregister_thread(&mddev->sync_thread);
  7335. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7336. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7337. /* success...*/
  7338. /* activate any spares */
  7339. if (mddev->pers->spare_active(mddev)) {
  7340. sysfs_notify(&mddev->kobj, NULL,
  7341. "degraded");
  7342. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7343. }
  7344. }
  7345. if (mddev_is_clustered(mddev))
  7346. md_cluster_ops->metadata_update_start(mddev);
  7347. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7348. mddev->pers->finish_reshape)
  7349. mddev->pers->finish_reshape(mddev);
  7350. /* If array is no-longer degraded, then any saved_raid_disk
  7351. * information must be scrapped.
  7352. */
  7353. if (!mddev->degraded)
  7354. rdev_for_each(rdev, mddev)
  7355. rdev->saved_raid_disk = -1;
  7356. md_update_sb(mddev, 1);
  7357. if (mddev_is_clustered(mddev))
  7358. md_cluster_ops->metadata_update_finish(mddev);
  7359. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7360. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7361. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7362. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7363. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7364. wake_up(&resync_wait);
  7365. /* flag recovery needed just to double check */
  7366. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7367. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7368. md_new_event(mddev);
  7369. if (mddev->event_work.func)
  7370. queue_work(md_misc_wq, &mddev->event_work);
  7371. }
  7372. EXPORT_SYMBOL(md_reap_sync_thread);
  7373. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7374. {
  7375. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7376. wait_event_timeout(rdev->blocked_wait,
  7377. !test_bit(Blocked, &rdev->flags) &&
  7378. !test_bit(BlockedBadBlocks, &rdev->flags),
  7379. msecs_to_jiffies(5000));
  7380. rdev_dec_pending(rdev, mddev);
  7381. }
  7382. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7383. void md_finish_reshape(struct mddev *mddev)
  7384. {
  7385. /* called be personality module when reshape completes. */
  7386. struct md_rdev *rdev;
  7387. rdev_for_each(rdev, mddev) {
  7388. if (rdev->data_offset > rdev->new_data_offset)
  7389. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7390. else
  7391. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7392. rdev->data_offset = rdev->new_data_offset;
  7393. }
  7394. }
  7395. EXPORT_SYMBOL(md_finish_reshape);
  7396. /* Bad block management.
  7397. * We can record which blocks on each device are 'bad' and so just
  7398. * fail those blocks, or that stripe, rather than the whole device.
  7399. * Entries in the bad-block table are 64bits wide. This comprises:
  7400. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7401. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7402. * A 'shift' can be set so that larger blocks are tracked and
  7403. * consequently larger devices can be covered.
  7404. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7405. *
  7406. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7407. * might need to retry if it is very unlucky.
  7408. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7409. * so we use the write_seqlock_irq variant.
  7410. *
  7411. * When looking for a bad block we specify a range and want to
  7412. * know if any block in the range is bad. So we binary-search
  7413. * to the last range that starts at-or-before the given endpoint,
  7414. * (or "before the sector after the target range")
  7415. * then see if it ends after the given start.
  7416. * We return
  7417. * 0 if there are no known bad blocks in the range
  7418. * 1 if there are known bad block which are all acknowledged
  7419. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7420. * plus the start/length of the first bad section we overlap.
  7421. */
  7422. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7423. sector_t *first_bad, int *bad_sectors)
  7424. {
  7425. int hi;
  7426. int lo;
  7427. u64 *p = bb->page;
  7428. int rv;
  7429. sector_t target = s + sectors;
  7430. unsigned seq;
  7431. if (bb->shift > 0) {
  7432. /* round the start down, and the end up */
  7433. s >>= bb->shift;
  7434. target += (1<<bb->shift) - 1;
  7435. target >>= bb->shift;
  7436. sectors = target - s;
  7437. }
  7438. /* 'target' is now the first block after the bad range */
  7439. retry:
  7440. seq = read_seqbegin(&bb->lock);
  7441. lo = 0;
  7442. rv = 0;
  7443. hi = bb->count;
  7444. /* Binary search between lo and hi for 'target'
  7445. * i.e. for the last range that starts before 'target'
  7446. */
  7447. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7448. * are known not to be the last range before target.
  7449. * VARIANT: hi-lo is the number of possible
  7450. * ranges, and decreases until it reaches 1
  7451. */
  7452. while (hi - lo > 1) {
  7453. int mid = (lo + hi) / 2;
  7454. sector_t a = BB_OFFSET(p[mid]);
  7455. if (a < target)
  7456. /* This could still be the one, earlier ranges
  7457. * could not. */
  7458. lo = mid;
  7459. else
  7460. /* This and later ranges are definitely out. */
  7461. hi = mid;
  7462. }
  7463. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7464. if (hi > lo) {
  7465. /* need to check all range that end after 's' to see if
  7466. * any are unacknowledged.
  7467. */
  7468. while (lo >= 0 &&
  7469. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7470. if (BB_OFFSET(p[lo]) < target) {
  7471. /* starts before the end, and finishes after
  7472. * the start, so they must overlap
  7473. */
  7474. if (rv != -1 && BB_ACK(p[lo]))
  7475. rv = 1;
  7476. else
  7477. rv = -1;
  7478. *first_bad = BB_OFFSET(p[lo]);
  7479. *bad_sectors = BB_LEN(p[lo]);
  7480. }
  7481. lo--;
  7482. }
  7483. }
  7484. if (read_seqretry(&bb->lock, seq))
  7485. goto retry;
  7486. return rv;
  7487. }
  7488. EXPORT_SYMBOL_GPL(md_is_badblock);
  7489. /*
  7490. * Add a range of bad blocks to the table.
  7491. * This might extend the table, or might contract it
  7492. * if two adjacent ranges can be merged.
  7493. * We binary-search to find the 'insertion' point, then
  7494. * decide how best to handle it.
  7495. */
  7496. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7497. int acknowledged)
  7498. {
  7499. u64 *p;
  7500. int lo, hi;
  7501. int rv = 1;
  7502. unsigned long flags;
  7503. if (bb->shift < 0)
  7504. /* badblocks are disabled */
  7505. return 0;
  7506. if (bb->shift) {
  7507. /* round the start down, and the end up */
  7508. sector_t next = s + sectors;
  7509. s >>= bb->shift;
  7510. next += (1<<bb->shift) - 1;
  7511. next >>= bb->shift;
  7512. sectors = next - s;
  7513. }
  7514. write_seqlock_irqsave(&bb->lock, flags);
  7515. p = bb->page;
  7516. lo = 0;
  7517. hi = bb->count;
  7518. /* Find the last range that starts at-or-before 's' */
  7519. while (hi - lo > 1) {
  7520. int mid = (lo + hi) / 2;
  7521. sector_t a = BB_OFFSET(p[mid]);
  7522. if (a <= s)
  7523. lo = mid;
  7524. else
  7525. hi = mid;
  7526. }
  7527. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7528. hi = lo;
  7529. if (hi > lo) {
  7530. /* we found a range that might merge with the start
  7531. * of our new range
  7532. */
  7533. sector_t a = BB_OFFSET(p[lo]);
  7534. sector_t e = a + BB_LEN(p[lo]);
  7535. int ack = BB_ACK(p[lo]);
  7536. if (e >= s) {
  7537. /* Yes, we can merge with a previous range */
  7538. if (s == a && s + sectors >= e)
  7539. /* new range covers old */
  7540. ack = acknowledged;
  7541. else
  7542. ack = ack && acknowledged;
  7543. if (e < s + sectors)
  7544. e = s + sectors;
  7545. if (e - a <= BB_MAX_LEN) {
  7546. p[lo] = BB_MAKE(a, e-a, ack);
  7547. s = e;
  7548. } else {
  7549. /* does not all fit in one range,
  7550. * make p[lo] maximal
  7551. */
  7552. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7553. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7554. s = a + BB_MAX_LEN;
  7555. }
  7556. sectors = e - s;
  7557. }
  7558. }
  7559. if (sectors && hi < bb->count) {
  7560. /* 'hi' points to the first range that starts after 's'.
  7561. * Maybe we can merge with the start of that range */
  7562. sector_t a = BB_OFFSET(p[hi]);
  7563. sector_t e = a + BB_LEN(p[hi]);
  7564. int ack = BB_ACK(p[hi]);
  7565. if (a <= s + sectors) {
  7566. /* merging is possible */
  7567. if (e <= s + sectors) {
  7568. /* full overlap */
  7569. e = s + sectors;
  7570. ack = acknowledged;
  7571. } else
  7572. ack = ack && acknowledged;
  7573. a = s;
  7574. if (e - a <= BB_MAX_LEN) {
  7575. p[hi] = BB_MAKE(a, e-a, ack);
  7576. s = e;
  7577. } else {
  7578. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7579. s = a + BB_MAX_LEN;
  7580. }
  7581. sectors = e - s;
  7582. lo = hi;
  7583. hi++;
  7584. }
  7585. }
  7586. if (sectors == 0 && hi < bb->count) {
  7587. /* we might be able to combine lo and hi */
  7588. /* Note: 's' is at the end of 'lo' */
  7589. sector_t a = BB_OFFSET(p[hi]);
  7590. int lolen = BB_LEN(p[lo]);
  7591. int hilen = BB_LEN(p[hi]);
  7592. int newlen = lolen + hilen - (s - a);
  7593. if (s >= a && newlen < BB_MAX_LEN) {
  7594. /* yes, we can combine them */
  7595. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7596. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7597. memmove(p + hi, p + hi + 1,
  7598. (bb->count - hi - 1) * 8);
  7599. bb->count--;
  7600. }
  7601. }
  7602. while (sectors) {
  7603. /* didn't merge (it all).
  7604. * Need to add a range just before 'hi' */
  7605. if (bb->count >= MD_MAX_BADBLOCKS) {
  7606. /* No room for more */
  7607. rv = 0;
  7608. break;
  7609. } else {
  7610. int this_sectors = sectors;
  7611. memmove(p + hi + 1, p + hi,
  7612. (bb->count - hi) * 8);
  7613. bb->count++;
  7614. if (this_sectors > BB_MAX_LEN)
  7615. this_sectors = BB_MAX_LEN;
  7616. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7617. sectors -= this_sectors;
  7618. s += this_sectors;
  7619. }
  7620. }
  7621. bb->changed = 1;
  7622. if (!acknowledged)
  7623. bb->unacked_exist = 1;
  7624. write_sequnlock_irqrestore(&bb->lock, flags);
  7625. return rv;
  7626. }
  7627. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7628. int is_new)
  7629. {
  7630. int rv;
  7631. if (is_new)
  7632. s += rdev->new_data_offset;
  7633. else
  7634. s += rdev->data_offset;
  7635. rv = md_set_badblocks(&rdev->badblocks,
  7636. s, sectors, 0);
  7637. if (rv) {
  7638. /* Make sure they get written out promptly */
  7639. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7640. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7641. md_wakeup_thread(rdev->mddev->thread);
  7642. }
  7643. return rv;
  7644. }
  7645. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7646. /*
  7647. * Remove a range of bad blocks from the table.
  7648. * This may involve extending the table if we spilt a region,
  7649. * but it must not fail. So if the table becomes full, we just
  7650. * drop the remove request.
  7651. */
  7652. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7653. {
  7654. u64 *p;
  7655. int lo, hi;
  7656. sector_t target = s + sectors;
  7657. int rv = 0;
  7658. if (bb->shift > 0) {
  7659. /* When clearing we round the start up and the end down.
  7660. * This should not matter as the shift should align with
  7661. * the block size and no rounding should ever be needed.
  7662. * However it is better the think a block is bad when it
  7663. * isn't than to think a block is not bad when it is.
  7664. */
  7665. s += (1<<bb->shift) - 1;
  7666. s >>= bb->shift;
  7667. target >>= bb->shift;
  7668. sectors = target - s;
  7669. }
  7670. write_seqlock_irq(&bb->lock);
  7671. p = bb->page;
  7672. lo = 0;
  7673. hi = bb->count;
  7674. /* Find the last range that starts before 'target' */
  7675. while (hi - lo > 1) {
  7676. int mid = (lo + hi) / 2;
  7677. sector_t a = BB_OFFSET(p[mid]);
  7678. if (a < target)
  7679. lo = mid;
  7680. else
  7681. hi = mid;
  7682. }
  7683. if (hi > lo) {
  7684. /* p[lo] is the last range that could overlap the
  7685. * current range. Earlier ranges could also overlap,
  7686. * but only this one can overlap the end of the range.
  7687. */
  7688. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7689. /* Partial overlap, leave the tail of this range */
  7690. int ack = BB_ACK(p[lo]);
  7691. sector_t a = BB_OFFSET(p[lo]);
  7692. sector_t end = a + BB_LEN(p[lo]);
  7693. if (a < s) {
  7694. /* we need to split this range */
  7695. if (bb->count >= MD_MAX_BADBLOCKS) {
  7696. rv = -ENOSPC;
  7697. goto out;
  7698. }
  7699. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7700. bb->count++;
  7701. p[lo] = BB_MAKE(a, s-a, ack);
  7702. lo++;
  7703. }
  7704. p[lo] = BB_MAKE(target, end - target, ack);
  7705. /* there is no longer an overlap */
  7706. hi = lo;
  7707. lo--;
  7708. }
  7709. while (lo >= 0 &&
  7710. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7711. /* This range does overlap */
  7712. if (BB_OFFSET(p[lo]) < s) {
  7713. /* Keep the early parts of this range. */
  7714. int ack = BB_ACK(p[lo]);
  7715. sector_t start = BB_OFFSET(p[lo]);
  7716. p[lo] = BB_MAKE(start, s - start, ack);
  7717. /* now low doesn't overlap, so.. */
  7718. break;
  7719. }
  7720. lo--;
  7721. }
  7722. /* 'lo' is strictly before, 'hi' is strictly after,
  7723. * anything between needs to be discarded
  7724. */
  7725. if (hi - lo > 1) {
  7726. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7727. bb->count -= (hi - lo - 1);
  7728. }
  7729. }
  7730. bb->changed = 1;
  7731. out:
  7732. write_sequnlock_irq(&bb->lock);
  7733. return rv;
  7734. }
  7735. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7736. int is_new)
  7737. {
  7738. if (is_new)
  7739. s += rdev->new_data_offset;
  7740. else
  7741. s += rdev->data_offset;
  7742. return md_clear_badblocks(&rdev->badblocks,
  7743. s, sectors);
  7744. }
  7745. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7746. /*
  7747. * Acknowledge all bad blocks in a list.
  7748. * This only succeeds if ->changed is clear. It is used by
  7749. * in-kernel metadata updates
  7750. */
  7751. void md_ack_all_badblocks(struct badblocks *bb)
  7752. {
  7753. if (bb->page == NULL || bb->changed)
  7754. /* no point even trying */
  7755. return;
  7756. write_seqlock_irq(&bb->lock);
  7757. if (bb->changed == 0 && bb->unacked_exist) {
  7758. u64 *p = bb->page;
  7759. int i;
  7760. for (i = 0; i < bb->count ; i++) {
  7761. if (!BB_ACK(p[i])) {
  7762. sector_t start = BB_OFFSET(p[i]);
  7763. int len = BB_LEN(p[i]);
  7764. p[i] = BB_MAKE(start, len, 1);
  7765. }
  7766. }
  7767. bb->unacked_exist = 0;
  7768. }
  7769. write_sequnlock_irq(&bb->lock);
  7770. }
  7771. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7772. /* sysfs access to bad-blocks list.
  7773. * We present two files.
  7774. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7775. * are recorded as bad. The list is truncated to fit within
  7776. * the one-page limit of sysfs.
  7777. * Writing "sector length" to this file adds an acknowledged
  7778. * bad block list.
  7779. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7780. * been acknowledged. Writing to this file adds bad blocks
  7781. * without acknowledging them. This is largely for testing.
  7782. */
  7783. static ssize_t
  7784. badblocks_show(struct badblocks *bb, char *page, int unack)
  7785. {
  7786. size_t len;
  7787. int i;
  7788. u64 *p = bb->page;
  7789. unsigned seq;
  7790. if (bb->shift < 0)
  7791. return 0;
  7792. retry:
  7793. seq = read_seqbegin(&bb->lock);
  7794. len = 0;
  7795. i = 0;
  7796. while (len < PAGE_SIZE && i < bb->count) {
  7797. sector_t s = BB_OFFSET(p[i]);
  7798. unsigned int length = BB_LEN(p[i]);
  7799. int ack = BB_ACK(p[i]);
  7800. i++;
  7801. if (unack && ack)
  7802. continue;
  7803. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7804. (unsigned long long)s << bb->shift,
  7805. length << bb->shift);
  7806. }
  7807. if (unack && len == 0)
  7808. bb->unacked_exist = 0;
  7809. if (read_seqretry(&bb->lock, seq))
  7810. goto retry;
  7811. return len;
  7812. }
  7813. #define DO_DEBUG 1
  7814. static ssize_t
  7815. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7816. {
  7817. unsigned long long sector;
  7818. int length;
  7819. char newline;
  7820. #ifdef DO_DEBUG
  7821. /* Allow clearing via sysfs *only* for testing/debugging.
  7822. * Normally only a successful write may clear a badblock
  7823. */
  7824. int clear = 0;
  7825. if (page[0] == '-') {
  7826. clear = 1;
  7827. page++;
  7828. }
  7829. #endif /* DO_DEBUG */
  7830. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7831. case 3:
  7832. if (newline != '\n')
  7833. return -EINVAL;
  7834. case 2:
  7835. if (length <= 0)
  7836. return -EINVAL;
  7837. break;
  7838. default:
  7839. return -EINVAL;
  7840. }
  7841. #ifdef DO_DEBUG
  7842. if (clear) {
  7843. md_clear_badblocks(bb, sector, length);
  7844. return len;
  7845. }
  7846. #endif /* DO_DEBUG */
  7847. if (md_set_badblocks(bb, sector, length, !unack))
  7848. return len;
  7849. else
  7850. return -ENOSPC;
  7851. }
  7852. static int md_notify_reboot(struct notifier_block *this,
  7853. unsigned long code, void *x)
  7854. {
  7855. struct list_head *tmp;
  7856. struct mddev *mddev;
  7857. int need_delay = 0;
  7858. for_each_mddev(mddev, tmp) {
  7859. if (mddev_trylock(mddev)) {
  7860. if (mddev->pers)
  7861. __md_stop_writes(mddev);
  7862. if (mddev->persistent)
  7863. mddev->safemode = 2;
  7864. mddev_unlock(mddev);
  7865. }
  7866. need_delay = 1;
  7867. }
  7868. /*
  7869. * certain more exotic SCSI devices are known to be
  7870. * volatile wrt too early system reboots. While the
  7871. * right place to handle this issue is the given
  7872. * driver, we do want to have a safe RAID driver ...
  7873. */
  7874. if (need_delay)
  7875. mdelay(1000*1);
  7876. return NOTIFY_DONE;
  7877. }
  7878. static struct notifier_block md_notifier = {
  7879. .notifier_call = md_notify_reboot,
  7880. .next = NULL,
  7881. .priority = INT_MAX, /* before any real devices */
  7882. };
  7883. static void md_geninit(void)
  7884. {
  7885. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7886. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7887. }
  7888. static int __init md_init(void)
  7889. {
  7890. int ret = -ENOMEM;
  7891. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7892. if (!md_wq)
  7893. goto err_wq;
  7894. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7895. if (!md_misc_wq)
  7896. goto err_misc_wq;
  7897. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7898. goto err_md;
  7899. if ((ret = register_blkdev(0, "mdp")) < 0)
  7900. goto err_mdp;
  7901. mdp_major = ret;
  7902. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7903. md_probe, NULL, NULL);
  7904. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7905. md_probe, NULL, NULL);
  7906. register_reboot_notifier(&md_notifier);
  7907. raid_table_header = register_sysctl_table(raid_root_table);
  7908. md_geninit();
  7909. return 0;
  7910. err_mdp:
  7911. unregister_blkdev(MD_MAJOR, "md");
  7912. err_md:
  7913. destroy_workqueue(md_misc_wq);
  7914. err_misc_wq:
  7915. destroy_workqueue(md_wq);
  7916. err_wq:
  7917. return ret;
  7918. }
  7919. void md_reload_sb(struct mddev *mddev)
  7920. {
  7921. struct md_rdev *rdev, *tmp;
  7922. rdev_for_each_safe(rdev, tmp, mddev) {
  7923. rdev->sb_loaded = 0;
  7924. ClearPageUptodate(rdev->sb_page);
  7925. }
  7926. mddev->raid_disks = 0;
  7927. analyze_sbs(mddev);
  7928. rdev_for_each_safe(rdev, tmp, mddev) {
  7929. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  7930. /* since we don't write to faulty devices, we figure out if the
  7931. * disk is faulty by comparing events
  7932. */
  7933. if (mddev->events > sb->events)
  7934. set_bit(Faulty, &rdev->flags);
  7935. }
  7936. }
  7937. EXPORT_SYMBOL(md_reload_sb);
  7938. #ifndef MODULE
  7939. /*
  7940. * Searches all registered partitions for autorun RAID arrays
  7941. * at boot time.
  7942. */
  7943. static LIST_HEAD(all_detected_devices);
  7944. struct detected_devices_node {
  7945. struct list_head list;
  7946. dev_t dev;
  7947. };
  7948. void md_autodetect_dev(dev_t dev)
  7949. {
  7950. struct detected_devices_node *node_detected_dev;
  7951. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7952. if (node_detected_dev) {
  7953. node_detected_dev->dev = dev;
  7954. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7955. } else {
  7956. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7957. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7958. }
  7959. }
  7960. static void autostart_arrays(int part)
  7961. {
  7962. struct md_rdev *rdev;
  7963. struct detected_devices_node *node_detected_dev;
  7964. dev_t dev;
  7965. int i_scanned, i_passed;
  7966. i_scanned = 0;
  7967. i_passed = 0;
  7968. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7969. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7970. i_scanned++;
  7971. node_detected_dev = list_entry(all_detected_devices.next,
  7972. struct detected_devices_node, list);
  7973. list_del(&node_detected_dev->list);
  7974. dev = node_detected_dev->dev;
  7975. kfree(node_detected_dev);
  7976. rdev = md_import_device(dev,0, 90);
  7977. if (IS_ERR(rdev))
  7978. continue;
  7979. if (test_bit(Faulty, &rdev->flags))
  7980. continue;
  7981. set_bit(AutoDetected, &rdev->flags);
  7982. list_add(&rdev->same_set, &pending_raid_disks);
  7983. i_passed++;
  7984. }
  7985. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7986. i_scanned, i_passed);
  7987. autorun_devices(part);
  7988. }
  7989. #endif /* !MODULE */
  7990. static __exit void md_exit(void)
  7991. {
  7992. struct mddev *mddev;
  7993. struct list_head *tmp;
  7994. int delay = 1;
  7995. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  7996. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7997. unregister_blkdev(MD_MAJOR,"md");
  7998. unregister_blkdev(mdp_major, "mdp");
  7999. unregister_reboot_notifier(&md_notifier);
  8000. unregister_sysctl_table(raid_table_header);
  8001. /* We cannot unload the modules while some process is
  8002. * waiting for us in select() or poll() - wake them up
  8003. */
  8004. md_unloading = 1;
  8005. while (waitqueue_active(&md_event_waiters)) {
  8006. /* not safe to leave yet */
  8007. wake_up(&md_event_waiters);
  8008. msleep(delay);
  8009. delay += delay;
  8010. }
  8011. remove_proc_entry("mdstat", NULL);
  8012. for_each_mddev(mddev, tmp) {
  8013. export_array(mddev);
  8014. mddev->hold_active = 0;
  8015. }
  8016. destroy_workqueue(md_misc_wq);
  8017. destroy_workqueue(md_wq);
  8018. }
  8019. subsys_initcall(md_init);
  8020. module_exit(md_exit)
  8021. static int get_ro(char *buffer, struct kernel_param *kp)
  8022. {
  8023. return sprintf(buffer, "%d", start_readonly);
  8024. }
  8025. static int set_ro(const char *val, struct kernel_param *kp)
  8026. {
  8027. char *e;
  8028. int num = simple_strtoul(val, &e, 10);
  8029. if (*val && (*e == '\0' || *e == '\n')) {
  8030. start_readonly = num;
  8031. return 0;
  8032. }
  8033. return -EINVAL;
  8034. }
  8035. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  8036. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  8037. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  8038. MODULE_LICENSE("GPL");
  8039. MODULE_DESCRIPTION("MD RAID framework");
  8040. MODULE_ALIAS("md");
  8041. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);