cls_flower.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414
  1. /*
  2. * net/sched/cls_flower.c Flower classifier
  3. *
  4. * Copyright (c) 2015 Jiri Pirko <jiri@resnulli.us>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/rhashtable.h>
  15. #include <linux/workqueue.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/in6.h>
  18. #include <linux/ip.h>
  19. #include <linux/mpls.h>
  20. #include <net/sch_generic.h>
  21. #include <net/pkt_cls.h>
  22. #include <net/ip.h>
  23. #include <net/flow_dissector.h>
  24. #include <net/dst.h>
  25. #include <net/dst_metadata.h>
  26. struct fl_flow_key {
  27. int indev_ifindex;
  28. struct flow_dissector_key_control control;
  29. struct flow_dissector_key_control enc_control;
  30. struct flow_dissector_key_basic basic;
  31. struct flow_dissector_key_eth_addrs eth;
  32. struct flow_dissector_key_vlan vlan;
  33. union {
  34. struct flow_dissector_key_ipv4_addrs ipv4;
  35. struct flow_dissector_key_ipv6_addrs ipv6;
  36. };
  37. struct flow_dissector_key_ports tp;
  38. struct flow_dissector_key_icmp icmp;
  39. struct flow_dissector_key_arp arp;
  40. struct flow_dissector_key_keyid enc_key_id;
  41. union {
  42. struct flow_dissector_key_ipv4_addrs enc_ipv4;
  43. struct flow_dissector_key_ipv6_addrs enc_ipv6;
  44. };
  45. struct flow_dissector_key_ports enc_tp;
  46. struct flow_dissector_key_mpls mpls;
  47. struct flow_dissector_key_tcp tcp;
  48. struct flow_dissector_key_ip ip;
  49. } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */
  50. struct fl_flow_mask_range {
  51. unsigned short int start;
  52. unsigned short int end;
  53. };
  54. struct fl_flow_mask {
  55. struct fl_flow_key key;
  56. struct fl_flow_mask_range range;
  57. struct rcu_head rcu;
  58. };
  59. struct cls_fl_head {
  60. struct rhashtable ht;
  61. struct fl_flow_mask mask;
  62. struct flow_dissector dissector;
  63. u32 hgen;
  64. bool mask_assigned;
  65. struct list_head filters;
  66. struct rhashtable_params ht_params;
  67. union {
  68. struct work_struct work;
  69. struct rcu_head rcu;
  70. };
  71. };
  72. struct cls_fl_filter {
  73. struct rhash_head ht_node;
  74. struct fl_flow_key mkey;
  75. struct tcf_exts exts;
  76. struct tcf_result res;
  77. struct fl_flow_key key;
  78. struct list_head list;
  79. u32 handle;
  80. u32 flags;
  81. struct rcu_head rcu;
  82. struct tc_to_netdev tc;
  83. struct net_device *hw_dev;
  84. };
  85. static unsigned short int fl_mask_range(const struct fl_flow_mask *mask)
  86. {
  87. return mask->range.end - mask->range.start;
  88. }
  89. static void fl_mask_update_range(struct fl_flow_mask *mask)
  90. {
  91. const u8 *bytes = (const u8 *) &mask->key;
  92. size_t size = sizeof(mask->key);
  93. size_t i, first = 0, last = size - 1;
  94. for (i = 0; i < sizeof(mask->key); i++) {
  95. if (bytes[i]) {
  96. if (!first && i)
  97. first = i;
  98. last = i;
  99. }
  100. }
  101. mask->range.start = rounddown(first, sizeof(long));
  102. mask->range.end = roundup(last + 1, sizeof(long));
  103. }
  104. static void *fl_key_get_start(struct fl_flow_key *key,
  105. const struct fl_flow_mask *mask)
  106. {
  107. return (u8 *) key + mask->range.start;
  108. }
  109. static void fl_set_masked_key(struct fl_flow_key *mkey, struct fl_flow_key *key,
  110. struct fl_flow_mask *mask)
  111. {
  112. const long *lkey = fl_key_get_start(key, mask);
  113. const long *lmask = fl_key_get_start(&mask->key, mask);
  114. long *lmkey = fl_key_get_start(mkey, mask);
  115. int i;
  116. for (i = 0; i < fl_mask_range(mask); i += sizeof(long))
  117. *lmkey++ = *lkey++ & *lmask++;
  118. }
  119. static void fl_clear_masked_range(struct fl_flow_key *key,
  120. struct fl_flow_mask *mask)
  121. {
  122. memset(fl_key_get_start(key, mask), 0, fl_mask_range(mask));
  123. }
  124. static struct cls_fl_filter *fl_lookup(struct cls_fl_head *head,
  125. struct fl_flow_key *mkey)
  126. {
  127. return rhashtable_lookup_fast(&head->ht,
  128. fl_key_get_start(mkey, &head->mask),
  129. head->ht_params);
  130. }
  131. static int fl_classify(struct sk_buff *skb, const struct tcf_proto *tp,
  132. struct tcf_result *res)
  133. {
  134. struct cls_fl_head *head = rcu_dereference_bh(tp->root);
  135. struct cls_fl_filter *f;
  136. struct fl_flow_key skb_key;
  137. struct fl_flow_key skb_mkey;
  138. struct ip_tunnel_info *info;
  139. if (!atomic_read(&head->ht.nelems))
  140. return -1;
  141. fl_clear_masked_range(&skb_key, &head->mask);
  142. info = skb_tunnel_info(skb);
  143. if (info) {
  144. struct ip_tunnel_key *key = &info->key;
  145. switch (ip_tunnel_info_af(info)) {
  146. case AF_INET:
  147. skb_key.enc_control.addr_type =
  148. FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  149. skb_key.enc_ipv4.src = key->u.ipv4.src;
  150. skb_key.enc_ipv4.dst = key->u.ipv4.dst;
  151. break;
  152. case AF_INET6:
  153. skb_key.enc_control.addr_type =
  154. FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  155. skb_key.enc_ipv6.src = key->u.ipv6.src;
  156. skb_key.enc_ipv6.dst = key->u.ipv6.dst;
  157. break;
  158. }
  159. skb_key.enc_key_id.keyid = tunnel_id_to_key32(key->tun_id);
  160. skb_key.enc_tp.src = key->tp_src;
  161. skb_key.enc_tp.dst = key->tp_dst;
  162. }
  163. skb_key.indev_ifindex = skb->skb_iif;
  164. /* skb_flow_dissect() does not set n_proto in case an unknown protocol,
  165. * so do it rather here.
  166. */
  167. skb_key.basic.n_proto = skb->protocol;
  168. skb_flow_dissect(skb, &head->dissector, &skb_key, 0);
  169. fl_set_masked_key(&skb_mkey, &skb_key, &head->mask);
  170. f = fl_lookup(head, &skb_mkey);
  171. if (f && !tc_skip_sw(f->flags)) {
  172. *res = f->res;
  173. return tcf_exts_exec(skb, &f->exts, res);
  174. }
  175. return -1;
  176. }
  177. static int fl_init(struct tcf_proto *tp)
  178. {
  179. struct cls_fl_head *head;
  180. head = kzalloc(sizeof(*head), GFP_KERNEL);
  181. if (!head)
  182. return -ENOBUFS;
  183. INIT_LIST_HEAD_RCU(&head->filters);
  184. rcu_assign_pointer(tp->root, head);
  185. return 0;
  186. }
  187. static void fl_destroy_filter(struct rcu_head *head)
  188. {
  189. struct cls_fl_filter *f = container_of(head, struct cls_fl_filter, rcu);
  190. tcf_exts_destroy(&f->exts);
  191. kfree(f);
  192. }
  193. static void fl_hw_destroy_filter(struct tcf_proto *tp, struct cls_fl_filter *f)
  194. {
  195. struct tc_cls_flower_offload offload = {0};
  196. struct net_device *dev = f->hw_dev;
  197. struct tc_to_netdev *tc = &f->tc;
  198. if (!tc_can_offload(dev, tp))
  199. return;
  200. offload.command = TC_CLSFLOWER_DESTROY;
  201. offload.prio = tp->prio;
  202. offload.cookie = (unsigned long)f;
  203. tc->type = TC_SETUP_CLSFLOWER;
  204. tc->cls_flower = &offload;
  205. dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle, tp->chain->index,
  206. tp->protocol, tc);
  207. }
  208. static int fl_hw_replace_filter(struct tcf_proto *tp,
  209. struct flow_dissector *dissector,
  210. struct fl_flow_key *mask,
  211. struct cls_fl_filter *f)
  212. {
  213. struct net_device *dev = tp->q->dev_queue->dev;
  214. struct tc_cls_flower_offload offload = {0};
  215. struct tc_to_netdev *tc = &f->tc;
  216. int err;
  217. if (!tc_can_offload(dev, tp)) {
  218. if (tcf_exts_get_dev(dev, &f->exts, &f->hw_dev) ||
  219. (f->hw_dev && !tc_can_offload(f->hw_dev, tp))) {
  220. f->hw_dev = dev;
  221. return tc_skip_sw(f->flags) ? -EINVAL : 0;
  222. }
  223. dev = f->hw_dev;
  224. tc->egress_dev = true;
  225. } else {
  226. f->hw_dev = dev;
  227. }
  228. offload.command = TC_CLSFLOWER_REPLACE;
  229. offload.prio = tp->prio;
  230. offload.cookie = (unsigned long)f;
  231. offload.dissector = dissector;
  232. offload.mask = mask;
  233. offload.key = &f->mkey;
  234. offload.exts = &f->exts;
  235. tc->type = TC_SETUP_CLSFLOWER;
  236. tc->cls_flower = &offload;
  237. err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
  238. tp->chain->index, tp->protocol, tc);
  239. if (!err)
  240. f->flags |= TCA_CLS_FLAGS_IN_HW;
  241. if (tc_skip_sw(f->flags))
  242. return err;
  243. return 0;
  244. }
  245. static void fl_hw_update_stats(struct tcf_proto *tp, struct cls_fl_filter *f)
  246. {
  247. struct tc_cls_flower_offload offload = {0};
  248. struct net_device *dev = f->hw_dev;
  249. struct tc_to_netdev *tc = &f->tc;
  250. if (!tc_can_offload(dev, tp))
  251. return;
  252. offload.command = TC_CLSFLOWER_STATS;
  253. offload.prio = tp->prio;
  254. offload.cookie = (unsigned long)f;
  255. offload.exts = &f->exts;
  256. tc->type = TC_SETUP_CLSFLOWER;
  257. tc->cls_flower = &offload;
  258. dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
  259. tp->chain->index, tp->protocol, tc);
  260. }
  261. static void __fl_delete(struct tcf_proto *tp, struct cls_fl_filter *f)
  262. {
  263. list_del_rcu(&f->list);
  264. if (!tc_skip_hw(f->flags))
  265. fl_hw_destroy_filter(tp, f);
  266. tcf_unbind_filter(tp, &f->res);
  267. call_rcu(&f->rcu, fl_destroy_filter);
  268. }
  269. static void fl_destroy_sleepable(struct work_struct *work)
  270. {
  271. struct cls_fl_head *head = container_of(work, struct cls_fl_head,
  272. work);
  273. if (head->mask_assigned)
  274. rhashtable_destroy(&head->ht);
  275. kfree(head);
  276. module_put(THIS_MODULE);
  277. }
  278. static void fl_destroy_rcu(struct rcu_head *rcu)
  279. {
  280. struct cls_fl_head *head = container_of(rcu, struct cls_fl_head, rcu);
  281. INIT_WORK(&head->work, fl_destroy_sleepable);
  282. schedule_work(&head->work);
  283. }
  284. static void fl_destroy(struct tcf_proto *tp)
  285. {
  286. struct cls_fl_head *head = rtnl_dereference(tp->root);
  287. struct cls_fl_filter *f, *next;
  288. list_for_each_entry_safe(f, next, &head->filters, list)
  289. __fl_delete(tp, f);
  290. __module_get(THIS_MODULE);
  291. call_rcu(&head->rcu, fl_destroy_rcu);
  292. }
  293. static unsigned long fl_get(struct tcf_proto *tp, u32 handle)
  294. {
  295. struct cls_fl_head *head = rtnl_dereference(tp->root);
  296. struct cls_fl_filter *f;
  297. list_for_each_entry(f, &head->filters, list)
  298. if (f->handle == handle)
  299. return (unsigned long) f;
  300. return 0;
  301. }
  302. static const struct nla_policy fl_policy[TCA_FLOWER_MAX + 1] = {
  303. [TCA_FLOWER_UNSPEC] = { .type = NLA_UNSPEC },
  304. [TCA_FLOWER_CLASSID] = { .type = NLA_U32 },
  305. [TCA_FLOWER_INDEV] = { .type = NLA_STRING,
  306. .len = IFNAMSIZ },
  307. [TCA_FLOWER_KEY_ETH_DST] = { .len = ETH_ALEN },
  308. [TCA_FLOWER_KEY_ETH_DST_MASK] = { .len = ETH_ALEN },
  309. [TCA_FLOWER_KEY_ETH_SRC] = { .len = ETH_ALEN },
  310. [TCA_FLOWER_KEY_ETH_SRC_MASK] = { .len = ETH_ALEN },
  311. [TCA_FLOWER_KEY_ETH_TYPE] = { .type = NLA_U16 },
  312. [TCA_FLOWER_KEY_IP_PROTO] = { .type = NLA_U8 },
  313. [TCA_FLOWER_KEY_IPV4_SRC] = { .type = NLA_U32 },
  314. [TCA_FLOWER_KEY_IPV4_SRC_MASK] = { .type = NLA_U32 },
  315. [TCA_FLOWER_KEY_IPV4_DST] = { .type = NLA_U32 },
  316. [TCA_FLOWER_KEY_IPV4_DST_MASK] = { .type = NLA_U32 },
  317. [TCA_FLOWER_KEY_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  318. [TCA_FLOWER_KEY_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  319. [TCA_FLOWER_KEY_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  320. [TCA_FLOWER_KEY_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  321. [TCA_FLOWER_KEY_TCP_SRC] = { .type = NLA_U16 },
  322. [TCA_FLOWER_KEY_TCP_DST] = { .type = NLA_U16 },
  323. [TCA_FLOWER_KEY_UDP_SRC] = { .type = NLA_U16 },
  324. [TCA_FLOWER_KEY_UDP_DST] = { .type = NLA_U16 },
  325. [TCA_FLOWER_KEY_VLAN_ID] = { .type = NLA_U16 },
  326. [TCA_FLOWER_KEY_VLAN_PRIO] = { .type = NLA_U8 },
  327. [TCA_FLOWER_KEY_VLAN_ETH_TYPE] = { .type = NLA_U16 },
  328. [TCA_FLOWER_KEY_ENC_KEY_ID] = { .type = NLA_U32 },
  329. [TCA_FLOWER_KEY_ENC_IPV4_SRC] = { .type = NLA_U32 },
  330. [TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK] = { .type = NLA_U32 },
  331. [TCA_FLOWER_KEY_ENC_IPV4_DST] = { .type = NLA_U32 },
  332. [TCA_FLOWER_KEY_ENC_IPV4_DST_MASK] = { .type = NLA_U32 },
  333. [TCA_FLOWER_KEY_ENC_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
  334. [TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK] = { .len = sizeof(struct in6_addr) },
  335. [TCA_FLOWER_KEY_ENC_IPV6_DST] = { .len = sizeof(struct in6_addr) },
  336. [TCA_FLOWER_KEY_ENC_IPV6_DST_MASK] = { .len = sizeof(struct in6_addr) },
  337. [TCA_FLOWER_KEY_TCP_SRC_MASK] = { .type = NLA_U16 },
  338. [TCA_FLOWER_KEY_TCP_DST_MASK] = { .type = NLA_U16 },
  339. [TCA_FLOWER_KEY_UDP_SRC_MASK] = { .type = NLA_U16 },
  340. [TCA_FLOWER_KEY_UDP_DST_MASK] = { .type = NLA_U16 },
  341. [TCA_FLOWER_KEY_SCTP_SRC_MASK] = { .type = NLA_U16 },
  342. [TCA_FLOWER_KEY_SCTP_DST_MASK] = { .type = NLA_U16 },
  343. [TCA_FLOWER_KEY_SCTP_SRC] = { .type = NLA_U16 },
  344. [TCA_FLOWER_KEY_SCTP_DST] = { .type = NLA_U16 },
  345. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT] = { .type = NLA_U16 },
  346. [TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK] = { .type = NLA_U16 },
  347. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT] = { .type = NLA_U16 },
  348. [TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK] = { .type = NLA_U16 },
  349. [TCA_FLOWER_KEY_FLAGS] = { .type = NLA_U32 },
  350. [TCA_FLOWER_KEY_FLAGS_MASK] = { .type = NLA_U32 },
  351. [TCA_FLOWER_KEY_ICMPV4_TYPE] = { .type = NLA_U8 },
  352. [TCA_FLOWER_KEY_ICMPV4_TYPE_MASK] = { .type = NLA_U8 },
  353. [TCA_FLOWER_KEY_ICMPV4_CODE] = { .type = NLA_U8 },
  354. [TCA_FLOWER_KEY_ICMPV4_CODE_MASK] = { .type = NLA_U8 },
  355. [TCA_FLOWER_KEY_ICMPV6_TYPE] = { .type = NLA_U8 },
  356. [TCA_FLOWER_KEY_ICMPV6_TYPE_MASK] = { .type = NLA_U8 },
  357. [TCA_FLOWER_KEY_ICMPV6_CODE] = { .type = NLA_U8 },
  358. [TCA_FLOWER_KEY_ICMPV6_CODE_MASK] = { .type = NLA_U8 },
  359. [TCA_FLOWER_KEY_ARP_SIP] = { .type = NLA_U32 },
  360. [TCA_FLOWER_KEY_ARP_SIP_MASK] = { .type = NLA_U32 },
  361. [TCA_FLOWER_KEY_ARP_TIP] = { .type = NLA_U32 },
  362. [TCA_FLOWER_KEY_ARP_TIP_MASK] = { .type = NLA_U32 },
  363. [TCA_FLOWER_KEY_ARP_OP] = { .type = NLA_U8 },
  364. [TCA_FLOWER_KEY_ARP_OP_MASK] = { .type = NLA_U8 },
  365. [TCA_FLOWER_KEY_ARP_SHA] = { .len = ETH_ALEN },
  366. [TCA_FLOWER_KEY_ARP_SHA_MASK] = { .len = ETH_ALEN },
  367. [TCA_FLOWER_KEY_ARP_THA] = { .len = ETH_ALEN },
  368. [TCA_FLOWER_KEY_ARP_THA_MASK] = { .len = ETH_ALEN },
  369. [TCA_FLOWER_KEY_MPLS_TTL] = { .type = NLA_U8 },
  370. [TCA_FLOWER_KEY_MPLS_BOS] = { .type = NLA_U8 },
  371. [TCA_FLOWER_KEY_MPLS_TC] = { .type = NLA_U8 },
  372. [TCA_FLOWER_KEY_MPLS_LABEL] = { .type = NLA_U32 },
  373. [TCA_FLOWER_KEY_TCP_FLAGS] = { .type = NLA_U16 },
  374. [TCA_FLOWER_KEY_TCP_FLAGS_MASK] = { .type = NLA_U16 },
  375. [TCA_FLOWER_KEY_IP_TOS] = { .type = NLA_U8 },
  376. [TCA_FLOWER_KEY_IP_TOS_MASK] = { .type = NLA_U8 },
  377. [TCA_FLOWER_KEY_IP_TTL] = { .type = NLA_U8 },
  378. [TCA_FLOWER_KEY_IP_TTL_MASK] = { .type = NLA_U8 },
  379. };
  380. static void fl_set_key_val(struct nlattr **tb,
  381. void *val, int val_type,
  382. void *mask, int mask_type, int len)
  383. {
  384. if (!tb[val_type])
  385. return;
  386. memcpy(val, nla_data(tb[val_type]), len);
  387. if (mask_type == TCA_FLOWER_UNSPEC || !tb[mask_type])
  388. memset(mask, 0xff, len);
  389. else
  390. memcpy(mask, nla_data(tb[mask_type]), len);
  391. }
  392. static int fl_set_key_mpls(struct nlattr **tb,
  393. struct flow_dissector_key_mpls *key_val,
  394. struct flow_dissector_key_mpls *key_mask)
  395. {
  396. if (tb[TCA_FLOWER_KEY_MPLS_TTL]) {
  397. key_val->mpls_ttl = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TTL]);
  398. key_mask->mpls_ttl = MPLS_TTL_MASK;
  399. }
  400. if (tb[TCA_FLOWER_KEY_MPLS_BOS]) {
  401. u8 bos = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_BOS]);
  402. if (bos & ~MPLS_BOS_MASK)
  403. return -EINVAL;
  404. key_val->mpls_bos = bos;
  405. key_mask->mpls_bos = MPLS_BOS_MASK;
  406. }
  407. if (tb[TCA_FLOWER_KEY_MPLS_TC]) {
  408. u8 tc = nla_get_u8(tb[TCA_FLOWER_KEY_MPLS_TC]);
  409. if (tc & ~MPLS_TC_MASK)
  410. return -EINVAL;
  411. key_val->mpls_tc = tc;
  412. key_mask->mpls_tc = MPLS_TC_MASK;
  413. }
  414. if (tb[TCA_FLOWER_KEY_MPLS_LABEL]) {
  415. u32 label = nla_get_u32(tb[TCA_FLOWER_KEY_MPLS_LABEL]);
  416. if (label & ~MPLS_LABEL_MASK)
  417. return -EINVAL;
  418. key_val->mpls_label = label;
  419. key_mask->mpls_label = MPLS_LABEL_MASK;
  420. }
  421. return 0;
  422. }
  423. static void fl_set_key_vlan(struct nlattr **tb,
  424. struct flow_dissector_key_vlan *key_val,
  425. struct flow_dissector_key_vlan *key_mask)
  426. {
  427. #define VLAN_PRIORITY_MASK 0x7
  428. if (tb[TCA_FLOWER_KEY_VLAN_ID]) {
  429. key_val->vlan_id =
  430. nla_get_u16(tb[TCA_FLOWER_KEY_VLAN_ID]) & VLAN_VID_MASK;
  431. key_mask->vlan_id = VLAN_VID_MASK;
  432. }
  433. if (tb[TCA_FLOWER_KEY_VLAN_PRIO]) {
  434. key_val->vlan_priority =
  435. nla_get_u8(tb[TCA_FLOWER_KEY_VLAN_PRIO]) &
  436. VLAN_PRIORITY_MASK;
  437. key_mask->vlan_priority = VLAN_PRIORITY_MASK;
  438. }
  439. }
  440. static void fl_set_key_flag(u32 flower_key, u32 flower_mask,
  441. u32 *dissector_key, u32 *dissector_mask,
  442. u32 flower_flag_bit, u32 dissector_flag_bit)
  443. {
  444. if (flower_mask & flower_flag_bit) {
  445. *dissector_mask |= dissector_flag_bit;
  446. if (flower_key & flower_flag_bit)
  447. *dissector_key |= dissector_flag_bit;
  448. }
  449. }
  450. static int fl_set_key_flags(struct nlattr **tb,
  451. u32 *flags_key, u32 *flags_mask)
  452. {
  453. u32 key, mask;
  454. /* mask is mandatory for flags */
  455. if (!tb[TCA_FLOWER_KEY_FLAGS_MASK])
  456. return -EINVAL;
  457. key = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS]));
  458. mask = be32_to_cpu(nla_get_u32(tb[TCA_FLOWER_KEY_FLAGS_MASK]));
  459. *flags_key = 0;
  460. *flags_mask = 0;
  461. fl_set_key_flag(key, mask, flags_key, flags_mask,
  462. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  463. return 0;
  464. }
  465. static void fl_set_key_ip(struct nlattr **tb,
  466. struct flow_dissector_key_ip *key,
  467. struct flow_dissector_key_ip *mask)
  468. {
  469. fl_set_key_val(tb, &key->tos, TCA_FLOWER_KEY_IP_TOS,
  470. &mask->tos, TCA_FLOWER_KEY_IP_TOS_MASK,
  471. sizeof(key->tos));
  472. fl_set_key_val(tb, &key->ttl, TCA_FLOWER_KEY_IP_TTL,
  473. &mask->ttl, TCA_FLOWER_KEY_IP_TTL_MASK,
  474. sizeof(key->ttl));
  475. }
  476. static int fl_set_key(struct net *net, struct nlattr **tb,
  477. struct fl_flow_key *key, struct fl_flow_key *mask)
  478. {
  479. __be16 ethertype;
  480. int ret = 0;
  481. #ifdef CONFIG_NET_CLS_IND
  482. if (tb[TCA_FLOWER_INDEV]) {
  483. int err = tcf_change_indev(net, tb[TCA_FLOWER_INDEV]);
  484. if (err < 0)
  485. return err;
  486. key->indev_ifindex = err;
  487. mask->indev_ifindex = 0xffffffff;
  488. }
  489. #endif
  490. fl_set_key_val(tb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  491. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  492. sizeof(key->eth.dst));
  493. fl_set_key_val(tb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  494. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  495. sizeof(key->eth.src));
  496. if (tb[TCA_FLOWER_KEY_ETH_TYPE]) {
  497. ethertype = nla_get_be16(tb[TCA_FLOWER_KEY_ETH_TYPE]);
  498. if (ethertype == htons(ETH_P_8021Q)) {
  499. fl_set_key_vlan(tb, &key->vlan, &mask->vlan);
  500. fl_set_key_val(tb, &key->basic.n_proto,
  501. TCA_FLOWER_KEY_VLAN_ETH_TYPE,
  502. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  503. sizeof(key->basic.n_proto));
  504. } else {
  505. key->basic.n_proto = ethertype;
  506. mask->basic.n_proto = cpu_to_be16(~0);
  507. }
  508. }
  509. if (key->basic.n_proto == htons(ETH_P_IP) ||
  510. key->basic.n_proto == htons(ETH_P_IPV6)) {
  511. fl_set_key_val(tb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  512. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  513. sizeof(key->basic.ip_proto));
  514. fl_set_key_ip(tb, &key->ip, &mask->ip);
  515. }
  516. if (tb[TCA_FLOWER_KEY_IPV4_SRC] || tb[TCA_FLOWER_KEY_IPV4_DST]) {
  517. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  518. mask->control.addr_type = ~0;
  519. fl_set_key_val(tb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  520. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  521. sizeof(key->ipv4.src));
  522. fl_set_key_val(tb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  523. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  524. sizeof(key->ipv4.dst));
  525. } else if (tb[TCA_FLOWER_KEY_IPV6_SRC] || tb[TCA_FLOWER_KEY_IPV6_DST]) {
  526. key->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  527. mask->control.addr_type = ~0;
  528. fl_set_key_val(tb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  529. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  530. sizeof(key->ipv6.src));
  531. fl_set_key_val(tb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  532. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  533. sizeof(key->ipv6.dst));
  534. }
  535. if (key->basic.ip_proto == IPPROTO_TCP) {
  536. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  537. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  538. sizeof(key->tp.src));
  539. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  540. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  541. sizeof(key->tp.dst));
  542. fl_set_key_val(tb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  543. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  544. sizeof(key->tcp.flags));
  545. } else if (key->basic.ip_proto == IPPROTO_UDP) {
  546. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  547. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  548. sizeof(key->tp.src));
  549. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  550. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  551. sizeof(key->tp.dst));
  552. } else if (key->basic.ip_proto == IPPROTO_SCTP) {
  553. fl_set_key_val(tb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  554. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  555. sizeof(key->tp.src));
  556. fl_set_key_val(tb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  557. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  558. sizeof(key->tp.dst));
  559. } else if (key->basic.n_proto == htons(ETH_P_IP) &&
  560. key->basic.ip_proto == IPPROTO_ICMP) {
  561. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV4_TYPE,
  562. &mask->icmp.type,
  563. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  564. sizeof(key->icmp.type));
  565. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV4_CODE,
  566. &mask->icmp.code,
  567. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  568. sizeof(key->icmp.code));
  569. } else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  570. key->basic.ip_proto == IPPROTO_ICMPV6) {
  571. fl_set_key_val(tb, &key->icmp.type, TCA_FLOWER_KEY_ICMPV6_TYPE,
  572. &mask->icmp.type,
  573. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  574. sizeof(key->icmp.type));
  575. fl_set_key_val(tb, &key->icmp.code, TCA_FLOWER_KEY_ICMPV6_CODE,
  576. &mask->icmp.code,
  577. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  578. sizeof(key->icmp.code));
  579. } else if (key->basic.n_proto == htons(ETH_P_MPLS_UC) ||
  580. key->basic.n_proto == htons(ETH_P_MPLS_MC)) {
  581. ret = fl_set_key_mpls(tb, &key->mpls, &mask->mpls);
  582. if (ret)
  583. return ret;
  584. } else if (key->basic.n_proto == htons(ETH_P_ARP) ||
  585. key->basic.n_proto == htons(ETH_P_RARP)) {
  586. fl_set_key_val(tb, &key->arp.sip, TCA_FLOWER_KEY_ARP_SIP,
  587. &mask->arp.sip, TCA_FLOWER_KEY_ARP_SIP_MASK,
  588. sizeof(key->arp.sip));
  589. fl_set_key_val(tb, &key->arp.tip, TCA_FLOWER_KEY_ARP_TIP,
  590. &mask->arp.tip, TCA_FLOWER_KEY_ARP_TIP_MASK,
  591. sizeof(key->arp.tip));
  592. fl_set_key_val(tb, &key->arp.op, TCA_FLOWER_KEY_ARP_OP,
  593. &mask->arp.op, TCA_FLOWER_KEY_ARP_OP_MASK,
  594. sizeof(key->arp.op));
  595. fl_set_key_val(tb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  596. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  597. sizeof(key->arp.sha));
  598. fl_set_key_val(tb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  599. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  600. sizeof(key->arp.tha));
  601. }
  602. if (tb[TCA_FLOWER_KEY_ENC_IPV4_SRC] ||
  603. tb[TCA_FLOWER_KEY_ENC_IPV4_DST]) {
  604. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  605. mask->enc_control.addr_type = ~0;
  606. fl_set_key_val(tb, &key->enc_ipv4.src,
  607. TCA_FLOWER_KEY_ENC_IPV4_SRC,
  608. &mask->enc_ipv4.src,
  609. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  610. sizeof(key->enc_ipv4.src));
  611. fl_set_key_val(tb, &key->enc_ipv4.dst,
  612. TCA_FLOWER_KEY_ENC_IPV4_DST,
  613. &mask->enc_ipv4.dst,
  614. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  615. sizeof(key->enc_ipv4.dst));
  616. }
  617. if (tb[TCA_FLOWER_KEY_ENC_IPV6_SRC] ||
  618. tb[TCA_FLOWER_KEY_ENC_IPV6_DST]) {
  619. key->enc_control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  620. mask->enc_control.addr_type = ~0;
  621. fl_set_key_val(tb, &key->enc_ipv6.src,
  622. TCA_FLOWER_KEY_ENC_IPV6_SRC,
  623. &mask->enc_ipv6.src,
  624. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  625. sizeof(key->enc_ipv6.src));
  626. fl_set_key_val(tb, &key->enc_ipv6.dst,
  627. TCA_FLOWER_KEY_ENC_IPV6_DST,
  628. &mask->enc_ipv6.dst,
  629. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  630. sizeof(key->enc_ipv6.dst));
  631. }
  632. fl_set_key_val(tb, &key->enc_key_id.keyid, TCA_FLOWER_KEY_ENC_KEY_ID,
  633. &mask->enc_key_id.keyid, TCA_FLOWER_UNSPEC,
  634. sizeof(key->enc_key_id.keyid));
  635. fl_set_key_val(tb, &key->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  636. &mask->enc_tp.src, TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  637. sizeof(key->enc_tp.src));
  638. fl_set_key_val(tb, &key->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  639. &mask->enc_tp.dst, TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  640. sizeof(key->enc_tp.dst));
  641. if (tb[TCA_FLOWER_KEY_FLAGS])
  642. ret = fl_set_key_flags(tb, &key->control.flags, &mask->control.flags);
  643. return ret;
  644. }
  645. static bool fl_mask_eq(struct fl_flow_mask *mask1,
  646. struct fl_flow_mask *mask2)
  647. {
  648. const long *lmask1 = fl_key_get_start(&mask1->key, mask1);
  649. const long *lmask2 = fl_key_get_start(&mask2->key, mask2);
  650. return !memcmp(&mask1->range, &mask2->range, sizeof(mask1->range)) &&
  651. !memcmp(lmask1, lmask2, fl_mask_range(mask1));
  652. }
  653. static const struct rhashtable_params fl_ht_params = {
  654. .key_offset = offsetof(struct cls_fl_filter, mkey), /* base offset */
  655. .head_offset = offsetof(struct cls_fl_filter, ht_node),
  656. .automatic_shrinking = true,
  657. };
  658. static int fl_init_hashtable(struct cls_fl_head *head,
  659. struct fl_flow_mask *mask)
  660. {
  661. head->ht_params = fl_ht_params;
  662. head->ht_params.key_len = fl_mask_range(mask);
  663. head->ht_params.key_offset += mask->range.start;
  664. return rhashtable_init(&head->ht, &head->ht_params);
  665. }
  666. #define FL_KEY_MEMBER_OFFSET(member) offsetof(struct fl_flow_key, member)
  667. #define FL_KEY_MEMBER_SIZE(member) (sizeof(((struct fl_flow_key *) 0)->member))
  668. #define FL_KEY_IS_MASKED(mask, member) \
  669. memchr_inv(((char *)mask) + FL_KEY_MEMBER_OFFSET(member), \
  670. 0, FL_KEY_MEMBER_SIZE(member)) \
  671. #define FL_KEY_SET(keys, cnt, id, member) \
  672. do { \
  673. keys[cnt].key_id = id; \
  674. keys[cnt].offset = FL_KEY_MEMBER_OFFSET(member); \
  675. cnt++; \
  676. } while(0);
  677. #define FL_KEY_SET_IF_MASKED(mask, keys, cnt, id, member) \
  678. do { \
  679. if (FL_KEY_IS_MASKED(mask, member)) \
  680. FL_KEY_SET(keys, cnt, id, member); \
  681. } while(0);
  682. static void fl_init_dissector(struct cls_fl_head *head,
  683. struct fl_flow_mask *mask)
  684. {
  685. struct flow_dissector_key keys[FLOW_DISSECTOR_KEY_MAX];
  686. size_t cnt = 0;
  687. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_CONTROL, control);
  688. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_BASIC, basic);
  689. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  690. FLOW_DISSECTOR_KEY_ETH_ADDRS, eth);
  691. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  692. FLOW_DISSECTOR_KEY_IPV4_ADDRS, ipv4);
  693. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  694. FLOW_DISSECTOR_KEY_IPV6_ADDRS, ipv6);
  695. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  696. FLOW_DISSECTOR_KEY_PORTS, tp);
  697. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  698. FLOW_DISSECTOR_KEY_IP, ip);
  699. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  700. FLOW_DISSECTOR_KEY_TCP, tcp);
  701. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  702. FLOW_DISSECTOR_KEY_ICMP, icmp);
  703. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  704. FLOW_DISSECTOR_KEY_ARP, arp);
  705. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  706. FLOW_DISSECTOR_KEY_MPLS, mpls);
  707. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  708. FLOW_DISSECTOR_KEY_VLAN, vlan);
  709. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  710. FLOW_DISSECTOR_KEY_ENC_KEYID, enc_key_id);
  711. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  712. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS, enc_ipv4);
  713. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  714. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS, enc_ipv6);
  715. if (FL_KEY_IS_MASKED(&mask->key, enc_ipv4) ||
  716. FL_KEY_IS_MASKED(&mask->key, enc_ipv6))
  717. FL_KEY_SET(keys, cnt, FLOW_DISSECTOR_KEY_ENC_CONTROL,
  718. enc_control);
  719. FL_KEY_SET_IF_MASKED(&mask->key, keys, cnt,
  720. FLOW_DISSECTOR_KEY_ENC_PORTS, enc_tp);
  721. skb_flow_dissector_init(&head->dissector, keys, cnt);
  722. }
  723. static int fl_check_assign_mask(struct cls_fl_head *head,
  724. struct fl_flow_mask *mask)
  725. {
  726. int err;
  727. if (head->mask_assigned) {
  728. if (!fl_mask_eq(&head->mask, mask))
  729. return -EINVAL;
  730. else
  731. return 0;
  732. }
  733. /* Mask is not assigned yet. So assign it and init hashtable
  734. * according to that.
  735. */
  736. err = fl_init_hashtable(head, mask);
  737. if (err)
  738. return err;
  739. memcpy(&head->mask, mask, sizeof(head->mask));
  740. head->mask_assigned = true;
  741. fl_init_dissector(head, mask);
  742. return 0;
  743. }
  744. static int fl_set_parms(struct net *net, struct tcf_proto *tp,
  745. struct cls_fl_filter *f, struct fl_flow_mask *mask,
  746. unsigned long base, struct nlattr **tb,
  747. struct nlattr *est, bool ovr)
  748. {
  749. struct tcf_exts e;
  750. int err;
  751. err = tcf_exts_init(&e, TCA_FLOWER_ACT, 0);
  752. if (err < 0)
  753. return err;
  754. err = tcf_exts_validate(net, tp, tb, est, &e, ovr);
  755. if (err < 0)
  756. goto errout;
  757. if (tb[TCA_FLOWER_CLASSID]) {
  758. f->res.classid = nla_get_u32(tb[TCA_FLOWER_CLASSID]);
  759. tcf_bind_filter(tp, &f->res, base);
  760. }
  761. err = fl_set_key(net, tb, &f->key, &mask->key);
  762. if (err)
  763. goto errout;
  764. fl_mask_update_range(mask);
  765. fl_set_masked_key(&f->mkey, &f->key, mask);
  766. tcf_exts_change(tp, &f->exts, &e);
  767. return 0;
  768. errout:
  769. tcf_exts_destroy(&e);
  770. return err;
  771. }
  772. static u32 fl_grab_new_handle(struct tcf_proto *tp,
  773. struct cls_fl_head *head)
  774. {
  775. unsigned int i = 0x80000000;
  776. u32 handle;
  777. do {
  778. if (++head->hgen == 0x7FFFFFFF)
  779. head->hgen = 1;
  780. } while (--i > 0 && fl_get(tp, head->hgen));
  781. if (unlikely(i == 0)) {
  782. pr_err("Insufficient number of handles\n");
  783. handle = 0;
  784. } else {
  785. handle = head->hgen;
  786. }
  787. return handle;
  788. }
  789. static int fl_change(struct net *net, struct sk_buff *in_skb,
  790. struct tcf_proto *tp, unsigned long base,
  791. u32 handle, struct nlattr **tca,
  792. unsigned long *arg, bool ovr)
  793. {
  794. struct cls_fl_head *head = rtnl_dereference(tp->root);
  795. struct cls_fl_filter *fold = (struct cls_fl_filter *) *arg;
  796. struct cls_fl_filter *fnew;
  797. struct nlattr **tb;
  798. struct fl_flow_mask mask = {};
  799. int err;
  800. if (!tca[TCA_OPTIONS])
  801. return -EINVAL;
  802. tb = kcalloc(TCA_FLOWER_MAX + 1, sizeof(struct nlattr *), GFP_KERNEL);
  803. if (!tb)
  804. return -ENOBUFS;
  805. err = nla_parse_nested(tb, TCA_FLOWER_MAX, tca[TCA_OPTIONS],
  806. fl_policy, NULL);
  807. if (err < 0)
  808. goto errout_tb;
  809. if (fold && handle && fold->handle != handle) {
  810. err = -EINVAL;
  811. goto errout_tb;
  812. }
  813. fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
  814. if (!fnew) {
  815. err = -ENOBUFS;
  816. goto errout_tb;
  817. }
  818. err = tcf_exts_init(&fnew->exts, TCA_FLOWER_ACT, 0);
  819. if (err < 0)
  820. goto errout;
  821. if (!handle) {
  822. handle = fl_grab_new_handle(tp, head);
  823. if (!handle) {
  824. err = -EINVAL;
  825. goto errout;
  826. }
  827. }
  828. fnew->handle = handle;
  829. if (tb[TCA_FLOWER_FLAGS]) {
  830. fnew->flags = nla_get_u32(tb[TCA_FLOWER_FLAGS]);
  831. if (!tc_flags_valid(fnew->flags)) {
  832. err = -EINVAL;
  833. goto errout;
  834. }
  835. }
  836. err = fl_set_parms(net, tp, fnew, &mask, base, tb, tca[TCA_RATE], ovr);
  837. if (err)
  838. goto errout;
  839. err = fl_check_assign_mask(head, &mask);
  840. if (err)
  841. goto errout;
  842. if (!tc_skip_sw(fnew->flags)) {
  843. if (!fold && fl_lookup(head, &fnew->mkey)) {
  844. err = -EEXIST;
  845. goto errout;
  846. }
  847. err = rhashtable_insert_fast(&head->ht, &fnew->ht_node,
  848. head->ht_params);
  849. if (err)
  850. goto errout;
  851. }
  852. if (!tc_skip_hw(fnew->flags)) {
  853. err = fl_hw_replace_filter(tp,
  854. &head->dissector,
  855. &mask.key,
  856. fnew);
  857. if (err)
  858. goto errout;
  859. }
  860. if (!tc_in_hw(fnew->flags))
  861. fnew->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
  862. if (fold) {
  863. if (!tc_skip_sw(fold->flags))
  864. rhashtable_remove_fast(&head->ht, &fold->ht_node,
  865. head->ht_params);
  866. if (!tc_skip_hw(fold->flags))
  867. fl_hw_destroy_filter(tp, fold);
  868. }
  869. *arg = (unsigned long) fnew;
  870. if (fold) {
  871. list_replace_rcu(&fold->list, &fnew->list);
  872. tcf_unbind_filter(tp, &fold->res);
  873. call_rcu(&fold->rcu, fl_destroy_filter);
  874. } else {
  875. list_add_tail_rcu(&fnew->list, &head->filters);
  876. }
  877. kfree(tb);
  878. return 0;
  879. errout:
  880. tcf_exts_destroy(&fnew->exts);
  881. kfree(fnew);
  882. errout_tb:
  883. kfree(tb);
  884. return err;
  885. }
  886. static int fl_delete(struct tcf_proto *tp, unsigned long arg, bool *last)
  887. {
  888. struct cls_fl_head *head = rtnl_dereference(tp->root);
  889. struct cls_fl_filter *f = (struct cls_fl_filter *) arg;
  890. if (!tc_skip_sw(f->flags))
  891. rhashtable_remove_fast(&head->ht, &f->ht_node,
  892. head->ht_params);
  893. __fl_delete(tp, f);
  894. *last = list_empty(&head->filters);
  895. return 0;
  896. }
  897. static void fl_walk(struct tcf_proto *tp, struct tcf_walker *arg)
  898. {
  899. struct cls_fl_head *head = rtnl_dereference(tp->root);
  900. struct cls_fl_filter *f;
  901. list_for_each_entry_rcu(f, &head->filters, list) {
  902. if (arg->count < arg->skip)
  903. goto skip;
  904. if (arg->fn(tp, (unsigned long) f, arg) < 0) {
  905. arg->stop = 1;
  906. break;
  907. }
  908. skip:
  909. arg->count++;
  910. }
  911. }
  912. static int fl_dump_key_val(struct sk_buff *skb,
  913. void *val, int val_type,
  914. void *mask, int mask_type, int len)
  915. {
  916. int err;
  917. if (!memchr_inv(mask, 0, len))
  918. return 0;
  919. err = nla_put(skb, val_type, len, val);
  920. if (err)
  921. return err;
  922. if (mask_type != TCA_FLOWER_UNSPEC) {
  923. err = nla_put(skb, mask_type, len, mask);
  924. if (err)
  925. return err;
  926. }
  927. return 0;
  928. }
  929. static int fl_dump_key_mpls(struct sk_buff *skb,
  930. struct flow_dissector_key_mpls *mpls_key,
  931. struct flow_dissector_key_mpls *mpls_mask)
  932. {
  933. int err;
  934. if (!memchr_inv(mpls_mask, 0, sizeof(*mpls_mask)))
  935. return 0;
  936. if (mpls_mask->mpls_ttl) {
  937. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TTL,
  938. mpls_key->mpls_ttl);
  939. if (err)
  940. return err;
  941. }
  942. if (mpls_mask->mpls_tc) {
  943. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_TC,
  944. mpls_key->mpls_tc);
  945. if (err)
  946. return err;
  947. }
  948. if (mpls_mask->mpls_label) {
  949. err = nla_put_u32(skb, TCA_FLOWER_KEY_MPLS_LABEL,
  950. mpls_key->mpls_label);
  951. if (err)
  952. return err;
  953. }
  954. if (mpls_mask->mpls_bos) {
  955. err = nla_put_u8(skb, TCA_FLOWER_KEY_MPLS_BOS,
  956. mpls_key->mpls_bos);
  957. if (err)
  958. return err;
  959. }
  960. return 0;
  961. }
  962. static int fl_dump_key_ip(struct sk_buff *skb,
  963. struct flow_dissector_key_ip *key,
  964. struct flow_dissector_key_ip *mask)
  965. {
  966. if (fl_dump_key_val(skb, &key->tos, TCA_FLOWER_KEY_IP_TOS, &mask->tos,
  967. TCA_FLOWER_KEY_IP_TOS_MASK, sizeof(key->tos)) ||
  968. fl_dump_key_val(skb, &key->ttl, TCA_FLOWER_KEY_IP_TTL, &mask->ttl,
  969. TCA_FLOWER_KEY_IP_TTL_MASK, sizeof(key->ttl)))
  970. return -1;
  971. return 0;
  972. }
  973. static int fl_dump_key_vlan(struct sk_buff *skb,
  974. struct flow_dissector_key_vlan *vlan_key,
  975. struct flow_dissector_key_vlan *vlan_mask)
  976. {
  977. int err;
  978. if (!memchr_inv(vlan_mask, 0, sizeof(*vlan_mask)))
  979. return 0;
  980. if (vlan_mask->vlan_id) {
  981. err = nla_put_u16(skb, TCA_FLOWER_KEY_VLAN_ID,
  982. vlan_key->vlan_id);
  983. if (err)
  984. return err;
  985. }
  986. if (vlan_mask->vlan_priority) {
  987. err = nla_put_u8(skb, TCA_FLOWER_KEY_VLAN_PRIO,
  988. vlan_key->vlan_priority);
  989. if (err)
  990. return err;
  991. }
  992. return 0;
  993. }
  994. static void fl_get_key_flag(u32 dissector_key, u32 dissector_mask,
  995. u32 *flower_key, u32 *flower_mask,
  996. u32 flower_flag_bit, u32 dissector_flag_bit)
  997. {
  998. if (dissector_mask & dissector_flag_bit) {
  999. *flower_mask |= flower_flag_bit;
  1000. if (dissector_key & dissector_flag_bit)
  1001. *flower_key |= flower_flag_bit;
  1002. }
  1003. }
  1004. static int fl_dump_key_flags(struct sk_buff *skb, u32 flags_key, u32 flags_mask)
  1005. {
  1006. u32 key, mask;
  1007. __be32 _key, _mask;
  1008. int err;
  1009. if (!memchr_inv(&flags_mask, 0, sizeof(flags_mask)))
  1010. return 0;
  1011. key = 0;
  1012. mask = 0;
  1013. fl_get_key_flag(flags_key, flags_mask, &key, &mask,
  1014. TCA_FLOWER_KEY_FLAGS_IS_FRAGMENT, FLOW_DIS_IS_FRAGMENT);
  1015. _key = cpu_to_be32(key);
  1016. _mask = cpu_to_be32(mask);
  1017. err = nla_put(skb, TCA_FLOWER_KEY_FLAGS, 4, &_key);
  1018. if (err)
  1019. return err;
  1020. return nla_put(skb, TCA_FLOWER_KEY_FLAGS_MASK, 4, &_mask);
  1021. }
  1022. static int fl_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
  1023. struct sk_buff *skb, struct tcmsg *t)
  1024. {
  1025. struct cls_fl_head *head = rtnl_dereference(tp->root);
  1026. struct cls_fl_filter *f = (struct cls_fl_filter *) fh;
  1027. struct nlattr *nest;
  1028. struct fl_flow_key *key, *mask;
  1029. if (!f)
  1030. return skb->len;
  1031. t->tcm_handle = f->handle;
  1032. nest = nla_nest_start(skb, TCA_OPTIONS);
  1033. if (!nest)
  1034. goto nla_put_failure;
  1035. if (f->res.classid &&
  1036. nla_put_u32(skb, TCA_FLOWER_CLASSID, f->res.classid))
  1037. goto nla_put_failure;
  1038. key = &f->key;
  1039. mask = &head->mask.key;
  1040. if (mask->indev_ifindex) {
  1041. struct net_device *dev;
  1042. dev = __dev_get_by_index(net, key->indev_ifindex);
  1043. if (dev && nla_put_string(skb, TCA_FLOWER_INDEV, dev->name))
  1044. goto nla_put_failure;
  1045. }
  1046. if (!tc_skip_hw(f->flags))
  1047. fl_hw_update_stats(tp, f);
  1048. if (fl_dump_key_val(skb, key->eth.dst, TCA_FLOWER_KEY_ETH_DST,
  1049. mask->eth.dst, TCA_FLOWER_KEY_ETH_DST_MASK,
  1050. sizeof(key->eth.dst)) ||
  1051. fl_dump_key_val(skb, key->eth.src, TCA_FLOWER_KEY_ETH_SRC,
  1052. mask->eth.src, TCA_FLOWER_KEY_ETH_SRC_MASK,
  1053. sizeof(key->eth.src)) ||
  1054. fl_dump_key_val(skb, &key->basic.n_proto, TCA_FLOWER_KEY_ETH_TYPE,
  1055. &mask->basic.n_proto, TCA_FLOWER_UNSPEC,
  1056. sizeof(key->basic.n_proto)))
  1057. goto nla_put_failure;
  1058. if (fl_dump_key_mpls(skb, &key->mpls, &mask->mpls))
  1059. goto nla_put_failure;
  1060. if (fl_dump_key_vlan(skb, &key->vlan, &mask->vlan))
  1061. goto nla_put_failure;
  1062. if ((key->basic.n_proto == htons(ETH_P_IP) ||
  1063. key->basic.n_proto == htons(ETH_P_IPV6)) &&
  1064. (fl_dump_key_val(skb, &key->basic.ip_proto, TCA_FLOWER_KEY_IP_PROTO,
  1065. &mask->basic.ip_proto, TCA_FLOWER_UNSPEC,
  1066. sizeof(key->basic.ip_proto)) ||
  1067. fl_dump_key_ip(skb, &key->ip, &mask->ip)))
  1068. goto nla_put_failure;
  1069. if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1070. (fl_dump_key_val(skb, &key->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC,
  1071. &mask->ipv4.src, TCA_FLOWER_KEY_IPV4_SRC_MASK,
  1072. sizeof(key->ipv4.src)) ||
  1073. fl_dump_key_val(skb, &key->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST,
  1074. &mask->ipv4.dst, TCA_FLOWER_KEY_IPV4_DST_MASK,
  1075. sizeof(key->ipv4.dst))))
  1076. goto nla_put_failure;
  1077. else if (key->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1078. (fl_dump_key_val(skb, &key->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC,
  1079. &mask->ipv6.src, TCA_FLOWER_KEY_IPV6_SRC_MASK,
  1080. sizeof(key->ipv6.src)) ||
  1081. fl_dump_key_val(skb, &key->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST,
  1082. &mask->ipv6.dst, TCA_FLOWER_KEY_IPV6_DST_MASK,
  1083. sizeof(key->ipv6.dst))))
  1084. goto nla_put_failure;
  1085. if (key->basic.ip_proto == IPPROTO_TCP &&
  1086. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_TCP_SRC,
  1087. &mask->tp.src, TCA_FLOWER_KEY_TCP_SRC_MASK,
  1088. sizeof(key->tp.src)) ||
  1089. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_TCP_DST,
  1090. &mask->tp.dst, TCA_FLOWER_KEY_TCP_DST_MASK,
  1091. sizeof(key->tp.dst)) ||
  1092. fl_dump_key_val(skb, &key->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS,
  1093. &mask->tcp.flags, TCA_FLOWER_KEY_TCP_FLAGS_MASK,
  1094. sizeof(key->tcp.flags))))
  1095. goto nla_put_failure;
  1096. else if (key->basic.ip_proto == IPPROTO_UDP &&
  1097. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_UDP_SRC,
  1098. &mask->tp.src, TCA_FLOWER_KEY_UDP_SRC_MASK,
  1099. sizeof(key->tp.src)) ||
  1100. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_UDP_DST,
  1101. &mask->tp.dst, TCA_FLOWER_KEY_UDP_DST_MASK,
  1102. sizeof(key->tp.dst))))
  1103. goto nla_put_failure;
  1104. else if (key->basic.ip_proto == IPPROTO_SCTP &&
  1105. (fl_dump_key_val(skb, &key->tp.src, TCA_FLOWER_KEY_SCTP_SRC,
  1106. &mask->tp.src, TCA_FLOWER_KEY_SCTP_SRC_MASK,
  1107. sizeof(key->tp.src)) ||
  1108. fl_dump_key_val(skb, &key->tp.dst, TCA_FLOWER_KEY_SCTP_DST,
  1109. &mask->tp.dst, TCA_FLOWER_KEY_SCTP_DST_MASK,
  1110. sizeof(key->tp.dst))))
  1111. goto nla_put_failure;
  1112. else if (key->basic.n_proto == htons(ETH_P_IP) &&
  1113. key->basic.ip_proto == IPPROTO_ICMP &&
  1114. (fl_dump_key_val(skb, &key->icmp.type,
  1115. TCA_FLOWER_KEY_ICMPV4_TYPE, &mask->icmp.type,
  1116. TCA_FLOWER_KEY_ICMPV4_TYPE_MASK,
  1117. sizeof(key->icmp.type)) ||
  1118. fl_dump_key_val(skb, &key->icmp.code,
  1119. TCA_FLOWER_KEY_ICMPV4_CODE, &mask->icmp.code,
  1120. TCA_FLOWER_KEY_ICMPV4_CODE_MASK,
  1121. sizeof(key->icmp.code))))
  1122. goto nla_put_failure;
  1123. else if (key->basic.n_proto == htons(ETH_P_IPV6) &&
  1124. key->basic.ip_proto == IPPROTO_ICMPV6 &&
  1125. (fl_dump_key_val(skb, &key->icmp.type,
  1126. TCA_FLOWER_KEY_ICMPV6_TYPE, &mask->icmp.type,
  1127. TCA_FLOWER_KEY_ICMPV6_TYPE_MASK,
  1128. sizeof(key->icmp.type)) ||
  1129. fl_dump_key_val(skb, &key->icmp.code,
  1130. TCA_FLOWER_KEY_ICMPV6_CODE, &mask->icmp.code,
  1131. TCA_FLOWER_KEY_ICMPV6_CODE_MASK,
  1132. sizeof(key->icmp.code))))
  1133. goto nla_put_failure;
  1134. else if ((key->basic.n_proto == htons(ETH_P_ARP) ||
  1135. key->basic.n_proto == htons(ETH_P_RARP)) &&
  1136. (fl_dump_key_val(skb, &key->arp.sip,
  1137. TCA_FLOWER_KEY_ARP_SIP, &mask->arp.sip,
  1138. TCA_FLOWER_KEY_ARP_SIP_MASK,
  1139. sizeof(key->arp.sip)) ||
  1140. fl_dump_key_val(skb, &key->arp.tip,
  1141. TCA_FLOWER_KEY_ARP_TIP, &mask->arp.tip,
  1142. TCA_FLOWER_KEY_ARP_TIP_MASK,
  1143. sizeof(key->arp.tip)) ||
  1144. fl_dump_key_val(skb, &key->arp.op,
  1145. TCA_FLOWER_KEY_ARP_OP, &mask->arp.op,
  1146. TCA_FLOWER_KEY_ARP_OP_MASK,
  1147. sizeof(key->arp.op)) ||
  1148. fl_dump_key_val(skb, key->arp.sha, TCA_FLOWER_KEY_ARP_SHA,
  1149. mask->arp.sha, TCA_FLOWER_KEY_ARP_SHA_MASK,
  1150. sizeof(key->arp.sha)) ||
  1151. fl_dump_key_val(skb, key->arp.tha, TCA_FLOWER_KEY_ARP_THA,
  1152. mask->arp.tha, TCA_FLOWER_KEY_ARP_THA_MASK,
  1153. sizeof(key->arp.tha))))
  1154. goto nla_put_failure;
  1155. if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS &&
  1156. (fl_dump_key_val(skb, &key->enc_ipv4.src,
  1157. TCA_FLOWER_KEY_ENC_IPV4_SRC, &mask->enc_ipv4.src,
  1158. TCA_FLOWER_KEY_ENC_IPV4_SRC_MASK,
  1159. sizeof(key->enc_ipv4.src)) ||
  1160. fl_dump_key_val(skb, &key->enc_ipv4.dst,
  1161. TCA_FLOWER_KEY_ENC_IPV4_DST, &mask->enc_ipv4.dst,
  1162. TCA_FLOWER_KEY_ENC_IPV4_DST_MASK,
  1163. sizeof(key->enc_ipv4.dst))))
  1164. goto nla_put_failure;
  1165. else if (key->enc_control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS &&
  1166. (fl_dump_key_val(skb, &key->enc_ipv6.src,
  1167. TCA_FLOWER_KEY_ENC_IPV6_SRC, &mask->enc_ipv6.src,
  1168. TCA_FLOWER_KEY_ENC_IPV6_SRC_MASK,
  1169. sizeof(key->enc_ipv6.src)) ||
  1170. fl_dump_key_val(skb, &key->enc_ipv6.dst,
  1171. TCA_FLOWER_KEY_ENC_IPV6_DST,
  1172. &mask->enc_ipv6.dst,
  1173. TCA_FLOWER_KEY_ENC_IPV6_DST_MASK,
  1174. sizeof(key->enc_ipv6.dst))))
  1175. goto nla_put_failure;
  1176. if (fl_dump_key_val(skb, &key->enc_key_id, TCA_FLOWER_KEY_ENC_KEY_ID,
  1177. &mask->enc_key_id, TCA_FLOWER_UNSPEC,
  1178. sizeof(key->enc_key_id)) ||
  1179. fl_dump_key_val(skb, &key->enc_tp.src,
  1180. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT,
  1181. &mask->enc_tp.src,
  1182. TCA_FLOWER_KEY_ENC_UDP_SRC_PORT_MASK,
  1183. sizeof(key->enc_tp.src)) ||
  1184. fl_dump_key_val(skb, &key->enc_tp.dst,
  1185. TCA_FLOWER_KEY_ENC_UDP_DST_PORT,
  1186. &mask->enc_tp.dst,
  1187. TCA_FLOWER_KEY_ENC_UDP_DST_PORT_MASK,
  1188. sizeof(key->enc_tp.dst)))
  1189. goto nla_put_failure;
  1190. if (fl_dump_key_flags(skb, key->control.flags, mask->control.flags))
  1191. goto nla_put_failure;
  1192. if (f->flags && nla_put_u32(skb, TCA_FLOWER_FLAGS, f->flags))
  1193. goto nla_put_failure;
  1194. if (tcf_exts_dump(skb, &f->exts))
  1195. goto nla_put_failure;
  1196. nla_nest_end(skb, nest);
  1197. if (tcf_exts_dump_stats(skb, &f->exts) < 0)
  1198. goto nla_put_failure;
  1199. return skb->len;
  1200. nla_put_failure:
  1201. nla_nest_cancel(skb, nest);
  1202. return -1;
  1203. }
  1204. static struct tcf_proto_ops cls_fl_ops __read_mostly = {
  1205. .kind = "flower",
  1206. .classify = fl_classify,
  1207. .init = fl_init,
  1208. .destroy = fl_destroy,
  1209. .get = fl_get,
  1210. .change = fl_change,
  1211. .delete = fl_delete,
  1212. .walk = fl_walk,
  1213. .dump = fl_dump,
  1214. .owner = THIS_MODULE,
  1215. };
  1216. static int __init cls_fl_init(void)
  1217. {
  1218. return register_tcf_proto_ops(&cls_fl_ops);
  1219. }
  1220. static void __exit cls_fl_exit(void)
  1221. {
  1222. unregister_tcf_proto_ops(&cls_fl_ops);
  1223. }
  1224. module_init(cls_fl_init);
  1225. module_exit(cls_fl_exit);
  1226. MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>");
  1227. MODULE_DESCRIPTION("Flower classifier");
  1228. MODULE_LICENSE("GPL v2");