fib_trie.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <linux/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <linux/notifier.h>
  75. #include <net/net_namespace.h>
  76. #include <net/ip.h>
  77. #include <net/protocol.h>
  78. #include <net/route.h>
  79. #include <net/tcp.h>
  80. #include <net/sock.h>
  81. #include <net/ip_fib.h>
  82. #include <trace/events/fib.h>
  83. #include "fib_lookup.h"
  84. static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  85. enum fib_event_type event_type, u32 dst,
  86. int dst_len, struct fib_info *fi,
  87. u8 tos, u8 type, u32 tb_id)
  88. {
  89. struct fib_entry_notifier_info info = {
  90. .dst = dst,
  91. .dst_len = dst_len,
  92. .fi = fi,
  93. .tos = tos,
  94. .type = type,
  95. .tb_id = tb_id,
  96. };
  97. return call_fib_notifier(nb, net, event_type, &info.info);
  98. }
  99. static int call_fib_entry_notifiers(struct net *net,
  100. enum fib_event_type event_type, u32 dst,
  101. int dst_len, struct fib_info *fi,
  102. u8 tos, u8 type, u32 tb_id)
  103. {
  104. struct fib_entry_notifier_info info = {
  105. .dst = dst,
  106. .dst_len = dst_len,
  107. .fi = fi,
  108. .tos = tos,
  109. .type = type,
  110. .tb_id = tb_id,
  111. };
  112. return call_fib_notifiers(net, event_type, &info.info);
  113. }
  114. #define MAX_STAT_DEPTH 32
  115. #define KEYLENGTH (8*sizeof(t_key))
  116. #define KEY_MAX ((t_key)~0)
  117. typedef unsigned int t_key;
  118. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  119. #define IS_TNODE(n) ((n)->bits)
  120. #define IS_LEAF(n) (!(n)->bits)
  121. struct key_vector {
  122. t_key key;
  123. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  124. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  125. unsigned char slen;
  126. union {
  127. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  128. struct hlist_head leaf;
  129. /* This array is valid if (pos | bits) > 0 (TNODE) */
  130. struct key_vector __rcu *tnode[0];
  131. };
  132. };
  133. struct tnode {
  134. struct rcu_head rcu;
  135. t_key empty_children; /* KEYLENGTH bits needed */
  136. t_key full_children; /* KEYLENGTH bits needed */
  137. struct key_vector __rcu *parent;
  138. struct key_vector kv[1];
  139. #define tn_bits kv[0].bits
  140. };
  141. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  142. #define LEAF_SIZE TNODE_SIZE(1)
  143. #ifdef CONFIG_IP_FIB_TRIE_STATS
  144. struct trie_use_stats {
  145. unsigned int gets;
  146. unsigned int backtrack;
  147. unsigned int semantic_match_passed;
  148. unsigned int semantic_match_miss;
  149. unsigned int null_node_hit;
  150. unsigned int resize_node_skipped;
  151. };
  152. #endif
  153. struct trie_stat {
  154. unsigned int totdepth;
  155. unsigned int maxdepth;
  156. unsigned int tnodes;
  157. unsigned int leaves;
  158. unsigned int nullpointers;
  159. unsigned int prefixes;
  160. unsigned int nodesizes[MAX_STAT_DEPTH];
  161. };
  162. struct trie {
  163. struct key_vector kv[1];
  164. #ifdef CONFIG_IP_FIB_TRIE_STATS
  165. struct trie_use_stats __percpu *stats;
  166. #endif
  167. };
  168. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  169. static size_t tnode_free_size;
  170. /*
  171. * synchronize_rcu after call_rcu for that many pages; it should be especially
  172. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  173. * obtained experimentally, aiming to avoid visible slowdown.
  174. */
  175. static const int sync_pages = 128;
  176. static struct kmem_cache *fn_alias_kmem __read_mostly;
  177. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  178. static inline struct tnode *tn_info(struct key_vector *kv)
  179. {
  180. return container_of(kv, struct tnode, kv[0]);
  181. }
  182. /* caller must hold RTNL */
  183. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  184. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  185. /* caller must hold RCU read lock or RTNL */
  186. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  187. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  188. /* wrapper for rcu_assign_pointer */
  189. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  190. {
  191. if (n)
  192. rcu_assign_pointer(tn_info(n)->parent, tp);
  193. }
  194. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  195. /* This provides us with the number of children in this node, in the case of a
  196. * leaf this will return 0 meaning none of the children are accessible.
  197. */
  198. static inline unsigned long child_length(const struct key_vector *tn)
  199. {
  200. return (1ul << tn->bits) & ~(1ul);
  201. }
  202. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  203. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  204. {
  205. unsigned long index = key ^ kv->key;
  206. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  207. return 0;
  208. return index >> kv->pos;
  209. }
  210. /* To understand this stuff, an understanding of keys and all their bits is
  211. * necessary. Every node in the trie has a key associated with it, but not
  212. * all of the bits in that key are significant.
  213. *
  214. * Consider a node 'n' and its parent 'tp'.
  215. *
  216. * If n is a leaf, every bit in its key is significant. Its presence is
  217. * necessitated by path compression, since during a tree traversal (when
  218. * searching for a leaf - unless we are doing an insertion) we will completely
  219. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  220. * a potentially successful search, that we have indeed been walking the
  221. * correct key path.
  222. *
  223. * Note that we can never "miss" the correct key in the tree if present by
  224. * following the wrong path. Path compression ensures that segments of the key
  225. * that are the same for all keys with a given prefix are skipped, but the
  226. * skipped part *is* identical for each node in the subtrie below the skipped
  227. * bit! trie_insert() in this implementation takes care of that.
  228. *
  229. * if n is an internal node - a 'tnode' here, the various parts of its key
  230. * have many different meanings.
  231. *
  232. * Example:
  233. * _________________________________________________________________
  234. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  235. * -----------------------------------------------------------------
  236. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  237. *
  238. * _________________________________________________________________
  239. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  240. * -----------------------------------------------------------------
  241. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  242. *
  243. * tp->pos = 22
  244. * tp->bits = 3
  245. * n->pos = 13
  246. * n->bits = 4
  247. *
  248. * First, let's just ignore the bits that come before the parent tp, that is
  249. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  250. * point we do not use them for anything.
  251. *
  252. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  253. * index into the parent's child array. That is, they will be used to find
  254. * 'n' among tp's children.
  255. *
  256. * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
  257. * for the node n.
  258. *
  259. * All the bits we have seen so far are significant to the node n. The rest
  260. * of the bits are really not needed or indeed known in n->key.
  261. *
  262. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  263. * n's child array, and will of course be different for each child.
  264. *
  265. * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
  266. * at this point.
  267. */
  268. static const int halve_threshold = 25;
  269. static const int inflate_threshold = 50;
  270. static const int halve_threshold_root = 15;
  271. static const int inflate_threshold_root = 30;
  272. static void __alias_free_mem(struct rcu_head *head)
  273. {
  274. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  275. kmem_cache_free(fn_alias_kmem, fa);
  276. }
  277. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  278. {
  279. call_rcu(&fa->rcu, __alias_free_mem);
  280. }
  281. #define TNODE_KMALLOC_MAX \
  282. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  283. #define TNODE_VMALLOC_MAX \
  284. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  285. static void __node_free_rcu(struct rcu_head *head)
  286. {
  287. struct tnode *n = container_of(head, struct tnode, rcu);
  288. if (!n->tn_bits)
  289. kmem_cache_free(trie_leaf_kmem, n);
  290. else
  291. kvfree(n);
  292. }
  293. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  294. static struct tnode *tnode_alloc(int bits)
  295. {
  296. size_t size;
  297. /* verify bits is within bounds */
  298. if (bits > TNODE_VMALLOC_MAX)
  299. return NULL;
  300. /* determine size and verify it is non-zero and didn't overflow */
  301. size = TNODE_SIZE(1ul << bits);
  302. if (size <= PAGE_SIZE)
  303. return kzalloc(size, GFP_KERNEL);
  304. else
  305. return vzalloc(size);
  306. }
  307. static inline void empty_child_inc(struct key_vector *n)
  308. {
  309. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  310. }
  311. static inline void empty_child_dec(struct key_vector *n)
  312. {
  313. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  314. }
  315. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  316. {
  317. struct key_vector *l;
  318. struct tnode *kv;
  319. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  320. if (!kv)
  321. return NULL;
  322. /* initialize key vector */
  323. l = kv->kv;
  324. l->key = key;
  325. l->pos = 0;
  326. l->bits = 0;
  327. l->slen = fa->fa_slen;
  328. /* link leaf to fib alias */
  329. INIT_HLIST_HEAD(&l->leaf);
  330. hlist_add_head(&fa->fa_list, &l->leaf);
  331. return l;
  332. }
  333. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  334. {
  335. unsigned int shift = pos + bits;
  336. struct key_vector *tn;
  337. struct tnode *tnode;
  338. /* verify bits and pos their msb bits clear and values are valid */
  339. BUG_ON(!bits || (shift > KEYLENGTH));
  340. tnode = tnode_alloc(bits);
  341. if (!tnode)
  342. return NULL;
  343. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  344. sizeof(struct key_vector *) << bits);
  345. if (bits == KEYLENGTH)
  346. tnode->full_children = 1;
  347. else
  348. tnode->empty_children = 1ul << bits;
  349. tn = tnode->kv;
  350. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  351. tn->pos = pos;
  352. tn->bits = bits;
  353. tn->slen = pos;
  354. return tn;
  355. }
  356. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  357. * and no bits are skipped. See discussion in dyntree paper p. 6
  358. */
  359. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  360. {
  361. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  362. }
  363. /* Add a child at position i overwriting the old value.
  364. * Update the value of full_children and empty_children.
  365. */
  366. static void put_child(struct key_vector *tn, unsigned long i,
  367. struct key_vector *n)
  368. {
  369. struct key_vector *chi = get_child(tn, i);
  370. int isfull, wasfull;
  371. BUG_ON(i >= child_length(tn));
  372. /* update emptyChildren, overflow into fullChildren */
  373. if (!n && chi)
  374. empty_child_inc(tn);
  375. if (n && !chi)
  376. empty_child_dec(tn);
  377. /* update fullChildren */
  378. wasfull = tnode_full(tn, chi);
  379. isfull = tnode_full(tn, n);
  380. if (wasfull && !isfull)
  381. tn_info(tn)->full_children--;
  382. else if (!wasfull && isfull)
  383. tn_info(tn)->full_children++;
  384. if (n && (tn->slen < n->slen))
  385. tn->slen = n->slen;
  386. rcu_assign_pointer(tn->tnode[i], n);
  387. }
  388. static void update_children(struct key_vector *tn)
  389. {
  390. unsigned long i;
  391. /* update all of the child parent pointers */
  392. for (i = child_length(tn); i;) {
  393. struct key_vector *inode = get_child(tn, --i);
  394. if (!inode)
  395. continue;
  396. /* Either update the children of a tnode that
  397. * already belongs to us or update the child
  398. * to point to ourselves.
  399. */
  400. if (node_parent(inode) == tn)
  401. update_children(inode);
  402. else
  403. node_set_parent(inode, tn);
  404. }
  405. }
  406. static inline void put_child_root(struct key_vector *tp, t_key key,
  407. struct key_vector *n)
  408. {
  409. if (IS_TRIE(tp))
  410. rcu_assign_pointer(tp->tnode[0], n);
  411. else
  412. put_child(tp, get_index(key, tp), n);
  413. }
  414. static inline void tnode_free_init(struct key_vector *tn)
  415. {
  416. tn_info(tn)->rcu.next = NULL;
  417. }
  418. static inline void tnode_free_append(struct key_vector *tn,
  419. struct key_vector *n)
  420. {
  421. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  422. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  423. }
  424. static void tnode_free(struct key_vector *tn)
  425. {
  426. struct callback_head *head = &tn_info(tn)->rcu;
  427. while (head) {
  428. head = head->next;
  429. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  430. node_free(tn);
  431. tn = container_of(head, struct tnode, rcu)->kv;
  432. }
  433. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  434. tnode_free_size = 0;
  435. synchronize_rcu();
  436. }
  437. }
  438. static struct key_vector *replace(struct trie *t,
  439. struct key_vector *oldtnode,
  440. struct key_vector *tn)
  441. {
  442. struct key_vector *tp = node_parent(oldtnode);
  443. unsigned long i;
  444. /* setup the parent pointer out of and back into this node */
  445. NODE_INIT_PARENT(tn, tp);
  446. put_child_root(tp, tn->key, tn);
  447. /* update all of the child parent pointers */
  448. update_children(tn);
  449. /* all pointers should be clean so we are done */
  450. tnode_free(oldtnode);
  451. /* resize children now that oldtnode is freed */
  452. for (i = child_length(tn); i;) {
  453. struct key_vector *inode = get_child(tn, --i);
  454. /* resize child node */
  455. if (tnode_full(tn, inode))
  456. tn = resize(t, inode);
  457. }
  458. return tp;
  459. }
  460. static struct key_vector *inflate(struct trie *t,
  461. struct key_vector *oldtnode)
  462. {
  463. struct key_vector *tn;
  464. unsigned long i;
  465. t_key m;
  466. pr_debug("In inflate\n");
  467. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  468. if (!tn)
  469. goto notnode;
  470. /* prepare oldtnode to be freed */
  471. tnode_free_init(oldtnode);
  472. /* Assemble all of the pointers in our cluster, in this case that
  473. * represents all of the pointers out of our allocated nodes that
  474. * point to existing tnodes and the links between our allocated
  475. * nodes.
  476. */
  477. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  478. struct key_vector *inode = get_child(oldtnode, --i);
  479. struct key_vector *node0, *node1;
  480. unsigned long j, k;
  481. /* An empty child */
  482. if (!inode)
  483. continue;
  484. /* A leaf or an internal node with skipped bits */
  485. if (!tnode_full(oldtnode, inode)) {
  486. put_child(tn, get_index(inode->key, tn), inode);
  487. continue;
  488. }
  489. /* drop the node in the old tnode free list */
  490. tnode_free_append(oldtnode, inode);
  491. /* An internal node with two children */
  492. if (inode->bits == 1) {
  493. put_child(tn, 2 * i + 1, get_child(inode, 1));
  494. put_child(tn, 2 * i, get_child(inode, 0));
  495. continue;
  496. }
  497. /* We will replace this node 'inode' with two new
  498. * ones, 'node0' and 'node1', each with half of the
  499. * original children. The two new nodes will have
  500. * a position one bit further down the key and this
  501. * means that the "significant" part of their keys
  502. * (see the discussion near the top of this file)
  503. * will differ by one bit, which will be "0" in
  504. * node0's key and "1" in node1's key. Since we are
  505. * moving the key position by one step, the bit that
  506. * we are moving away from - the bit at position
  507. * (tn->pos) - is the one that will differ between
  508. * node0 and node1. So... we synthesize that bit in the
  509. * two new keys.
  510. */
  511. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  512. if (!node1)
  513. goto nomem;
  514. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  515. tnode_free_append(tn, node1);
  516. if (!node0)
  517. goto nomem;
  518. tnode_free_append(tn, node0);
  519. /* populate child pointers in new nodes */
  520. for (k = child_length(inode), j = k / 2; j;) {
  521. put_child(node1, --j, get_child(inode, --k));
  522. put_child(node0, j, get_child(inode, j));
  523. put_child(node1, --j, get_child(inode, --k));
  524. put_child(node0, j, get_child(inode, j));
  525. }
  526. /* link new nodes to parent */
  527. NODE_INIT_PARENT(node1, tn);
  528. NODE_INIT_PARENT(node0, tn);
  529. /* link parent to nodes */
  530. put_child(tn, 2 * i + 1, node1);
  531. put_child(tn, 2 * i, node0);
  532. }
  533. /* setup the parent pointers into and out of this node */
  534. return replace(t, oldtnode, tn);
  535. nomem:
  536. /* all pointers should be clean so we are done */
  537. tnode_free(tn);
  538. notnode:
  539. return NULL;
  540. }
  541. static struct key_vector *halve(struct trie *t,
  542. struct key_vector *oldtnode)
  543. {
  544. struct key_vector *tn;
  545. unsigned long i;
  546. pr_debug("In halve\n");
  547. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  548. if (!tn)
  549. goto notnode;
  550. /* prepare oldtnode to be freed */
  551. tnode_free_init(oldtnode);
  552. /* Assemble all of the pointers in our cluster, in this case that
  553. * represents all of the pointers out of our allocated nodes that
  554. * point to existing tnodes and the links between our allocated
  555. * nodes.
  556. */
  557. for (i = child_length(oldtnode); i;) {
  558. struct key_vector *node1 = get_child(oldtnode, --i);
  559. struct key_vector *node0 = get_child(oldtnode, --i);
  560. struct key_vector *inode;
  561. /* At least one of the children is empty */
  562. if (!node1 || !node0) {
  563. put_child(tn, i / 2, node1 ? : node0);
  564. continue;
  565. }
  566. /* Two nonempty children */
  567. inode = tnode_new(node0->key, oldtnode->pos, 1);
  568. if (!inode)
  569. goto nomem;
  570. tnode_free_append(tn, inode);
  571. /* initialize pointers out of node */
  572. put_child(inode, 1, node1);
  573. put_child(inode, 0, node0);
  574. NODE_INIT_PARENT(inode, tn);
  575. /* link parent to node */
  576. put_child(tn, i / 2, inode);
  577. }
  578. /* setup the parent pointers into and out of this node */
  579. return replace(t, oldtnode, tn);
  580. nomem:
  581. /* all pointers should be clean so we are done */
  582. tnode_free(tn);
  583. notnode:
  584. return NULL;
  585. }
  586. static struct key_vector *collapse(struct trie *t,
  587. struct key_vector *oldtnode)
  588. {
  589. struct key_vector *n, *tp;
  590. unsigned long i;
  591. /* scan the tnode looking for that one child that might still exist */
  592. for (n = NULL, i = child_length(oldtnode); !n && i;)
  593. n = get_child(oldtnode, --i);
  594. /* compress one level */
  595. tp = node_parent(oldtnode);
  596. put_child_root(tp, oldtnode->key, n);
  597. node_set_parent(n, tp);
  598. /* drop dead node */
  599. node_free(oldtnode);
  600. return tp;
  601. }
  602. static unsigned char update_suffix(struct key_vector *tn)
  603. {
  604. unsigned char slen = tn->pos;
  605. unsigned long stride, i;
  606. unsigned char slen_max;
  607. /* only vector 0 can have a suffix length greater than or equal to
  608. * tn->pos + tn->bits, the second highest node will have a suffix
  609. * length at most of tn->pos + tn->bits - 1
  610. */
  611. slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
  612. /* search though the list of children looking for nodes that might
  613. * have a suffix greater than the one we currently have. This is
  614. * why we start with a stride of 2 since a stride of 1 would
  615. * represent the nodes with suffix length equal to tn->pos
  616. */
  617. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  618. struct key_vector *n = get_child(tn, i);
  619. if (!n || (n->slen <= slen))
  620. continue;
  621. /* update stride and slen based on new value */
  622. stride <<= (n->slen - slen);
  623. slen = n->slen;
  624. i &= ~(stride - 1);
  625. /* stop searching if we have hit the maximum possible value */
  626. if (slen >= slen_max)
  627. break;
  628. }
  629. tn->slen = slen;
  630. return slen;
  631. }
  632. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  633. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  634. * Telecommunications, page 6:
  635. * "A node is doubled if the ratio of non-empty children to all
  636. * children in the *doubled* node is at least 'high'."
  637. *
  638. * 'high' in this instance is the variable 'inflate_threshold'. It
  639. * is expressed as a percentage, so we multiply it with
  640. * child_length() and instead of multiplying by 2 (since the
  641. * child array will be doubled by inflate()) and multiplying
  642. * the left-hand side by 100 (to handle the percentage thing) we
  643. * multiply the left-hand side by 50.
  644. *
  645. * The left-hand side may look a bit weird: child_length(tn)
  646. * - tn->empty_children is of course the number of non-null children
  647. * in the current node. tn->full_children is the number of "full"
  648. * children, that is non-null tnodes with a skip value of 0.
  649. * All of those will be doubled in the resulting inflated tnode, so
  650. * we just count them one extra time here.
  651. *
  652. * A clearer way to write this would be:
  653. *
  654. * to_be_doubled = tn->full_children;
  655. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  656. * tn->full_children;
  657. *
  658. * new_child_length = child_length(tn) * 2;
  659. *
  660. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  661. * new_child_length;
  662. * if (new_fill_factor >= inflate_threshold)
  663. *
  664. * ...and so on, tho it would mess up the while () loop.
  665. *
  666. * anyway,
  667. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  668. * inflate_threshold
  669. *
  670. * avoid a division:
  671. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  672. * inflate_threshold * new_child_length
  673. *
  674. * expand not_to_be_doubled and to_be_doubled, and shorten:
  675. * 100 * (child_length(tn) - tn->empty_children +
  676. * tn->full_children) >= inflate_threshold * new_child_length
  677. *
  678. * expand new_child_length:
  679. * 100 * (child_length(tn) - tn->empty_children +
  680. * tn->full_children) >=
  681. * inflate_threshold * child_length(tn) * 2
  682. *
  683. * shorten again:
  684. * 50 * (tn->full_children + child_length(tn) -
  685. * tn->empty_children) >= inflate_threshold *
  686. * child_length(tn)
  687. *
  688. */
  689. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  690. {
  691. unsigned long used = child_length(tn);
  692. unsigned long threshold = used;
  693. /* Keep root node larger */
  694. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  695. used -= tn_info(tn)->empty_children;
  696. used += tn_info(tn)->full_children;
  697. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  698. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  699. }
  700. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  701. {
  702. unsigned long used = child_length(tn);
  703. unsigned long threshold = used;
  704. /* Keep root node larger */
  705. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  706. used -= tn_info(tn)->empty_children;
  707. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  708. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  709. }
  710. static inline bool should_collapse(struct key_vector *tn)
  711. {
  712. unsigned long used = child_length(tn);
  713. used -= tn_info(tn)->empty_children;
  714. /* account for bits == KEYLENGTH case */
  715. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  716. used -= KEY_MAX;
  717. /* One child or none, time to drop us from the trie */
  718. return used < 2;
  719. }
  720. #define MAX_WORK 10
  721. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  722. {
  723. #ifdef CONFIG_IP_FIB_TRIE_STATS
  724. struct trie_use_stats __percpu *stats = t->stats;
  725. #endif
  726. struct key_vector *tp = node_parent(tn);
  727. unsigned long cindex = get_index(tn->key, tp);
  728. int max_work = MAX_WORK;
  729. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  730. tn, inflate_threshold, halve_threshold);
  731. /* track the tnode via the pointer from the parent instead of
  732. * doing it ourselves. This way we can let RCU fully do its
  733. * thing without us interfering
  734. */
  735. BUG_ON(tn != get_child(tp, cindex));
  736. /* Double as long as the resulting node has a number of
  737. * nonempty nodes that are above the threshold.
  738. */
  739. while (should_inflate(tp, tn) && max_work) {
  740. tp = inflate(t, tn);
  741. if (!tp) {
  742. #ifdef CONFIG_IP_FIB_TRIE_STATS
  743. this_cpu_inc(stats->resize_node_skipped);
  744. #endif
  745. break;
  746. }
  747. max_work--;
  748. tn = get_child(tp, cindex);
  749. }
  750. /* update parent in case inflate failed */
  751. tp = node_parent(tn);
  752. /* Return if at least one inflate is run */
  753. if (max_work != MAX_WORK)
  754. return tp;
  755. /* Halve as long as the number of empty children in this
  756. * node is above threshold.
  757. */
  758. while (should_halve(tp, tn) && max_work) {
  759. tp = halve(t, tn);
  760. if (!tp) {
  761. #ifdef CONFIG_IP_FIB_TRIE_STATS
  762. this_cpu_inc(stats->resize_node_skipped);
  763. #endif
  764. break;
  765. }
  766. max_work--;
  767. tn = get_child(tp, cindex);
  768. }
  769. /* Only one child remains */
  770. if (should_collapse(tn))
  771. return collapse(t, tn);
  772. /* update parent in case halve failed */
  773. return node_parent(tn);
  774. }
  775. static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
  776. {
  777. unsigned char node_slen = tn->slen;
  778. while ((node_slen > tn->pos) && (node_slen > slen)) {
  779. slen = update_suffix(tn);
  780. if (node_slen == slen)
  781. break;
  782. tn = node_parent(tn);
  783. node_slen = tn->slen;
  784. }
  785. }
  786. static void node_push_suffix(struct key_vector *tn, unsigned char slen)
  787. {
  788. while (tn->slen < slen) {
  789. tn->slen = slen;
  790. tn = node_parent(tn);
  791. }
  792. }
  793. /* rcu_read_lock needs to be hold by caller from readside */
  794. static struct key_vector *fib_find_node(struct trie *t,
  795. struct key_vector **tp, u32 key)
  796. {
  797. struct key_vector *pn, *n = t->kv;
  798. unsigned long index = 0;
  799. do {
  800. pn = n;
  801. n = get_child_rcu(n, index);
  802. if (!n)
  803. break;
  804. index = get_cindex(key, n);
  805. /* This bit of code is a bit tricky but it combines multiple
  806. * checks into a single check. The prefix consists of the
  807. * prefix plus zeros for the bits in the cindex. The index
  808. * is the difference between the key and this value. From
  809. * this we can actually derive several pieces of data.
  810. * if (index >= (1ul << bits))
  811. * we have a mismatch in skip bits and failed
  812. * else
  813. * we know the value is cindex
  814. *
  815. * This check is safe even if bits == KEYLENGTH due to the
  816. * fact that we can only allocate a node with 32 bits if a
  817. * long is greater than 32 bits.
  818. */
  819. if (index >= (1ul << n->bits)) {
  820. n = NULL;
  821. break;
  822. }
  823. /* keep searching until we find a perfect match leaf or NULL */
  824. } while (IS_TNODE(n));
  825. *tp = pn;
  826. return n;
  827. }
  828. /* Return the first fib alias matching TOS with
  829. * priority less than or equal to PRIO.
  830. */
  831. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  832. u8 tos, u32 prio, u32 tb_id)
  833. {
  834. struct fib_alias *fa;
  835. if (!fah)
  836. return NULL;
  837. hlist_for_each_entry(fa, fah, fa_list) {
  838. if (fa->fa_slen < slen)
  839. continue;
  840. if (fa->fa_slen != slen)
  841. break;
  842. if (fa->tb_id > tb_id)
  843. continue;
  844. if (fa->tb_id != tb_id)
  845. break;
  846. if (fa->fa_tos > tos)
  847. continue;
  848. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  849. return fa;
  850. }
  851. return NULL;
  852. }
  853. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  854. {
  855. while (!IS_TRIE(tn))
  856. tn = resize(t, tn);
  857. }
  858. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  859. struct fib_alias *new, t_key key)
  860. {
  861. struct key_vector *n, *l;
  862. l = leaf_new(key, new);
  863. if (!l)
  864. goto noleaf;
  865. /* retrieve child from parent node */
  866. n = get_child(tp, get_index(key, tp));
  867. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  868. *
  869. * Add a new tnode here
  870. * first tnode need some special handling
  871. * leaves us in position for handling as case 3
  872. */
  873. if (n) {
  874. struct key_vector *tn;
  875. tn = tnode_new(key, __fls(key ^ n->key), 1);
  876. if (!tn)
  877. goto notnode;
  878. /* initialize routes out of node */
  879. NODE_INIT_PARENT(tn, tp);
  880. put_child(tn, get_index(key, tn) ^ 1, n);
  881. /* start adding routes into the node */
  882. put_child_root(tp, key, tn);
  883. node_set_parent(n, tn);
  884. /* parent now has a NULL spot where the leaf can go */
  885. tp = tn;
  886. }
  887. /* Case 3: n is NULL, and will just insert a new leaf */
  888. node_push_suffix(tp, new->fa_slen);
  889. NODE_INIT_PARENT(l, tp);
  890. put_child_root(tp, key, l);
  891. trie_rebalance(t, tp);
  892. return 0;
  893. notnode:
  894. node_free(l);
  895. noleaf:
  896. return -ENOMEM;
  897. }
  898. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  899. struct key_vector *l, struct fib_alias *new,
  900. struct fib_alias *fa, t_key key)
  901. {
  902. if (!l)
  903. return fib_insert_node(t, tp, new, key);
  904. if (fa) {
  905. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  906. } else {
  907. struct fib_alias *last;
  908. hlist_for_each_entry(last, &l->leaf, fa_list) {
  909. if (new->fa_slen < last->fa_slen)
  910. break;
  911. if ((new->fa_slen == last->fa_slen) &&
  912. (new->tb_id > last->tb_id))
  913. break;
  914. fa = last;
  915. }
  916. if (fa)
  917. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  918. else
  919. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  920. }
  921. /* if we added to the tail node then we need to update slen */
  922. if (l->slen < new->fa_slen) {
  923. l->slen = new->fa_slen;
  924. node_push_suffix(tp, new->fa_slen);
  925. }
  926. return 0;
  927. }
  928. static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
  929. {
  930. if (plen > KEYLENGTH) {
  931. NL_SET_ERR_MSG(extack, "Invalid prefix length");
  932. return false;
  933. }
  934. if ((plen < KEYLENGTH) && (key << plen)) {
  935. NL_SET_ERR_MSG(extack,
  936. "Invalid prefix for given prefix length");
  937. return false;
  938. }
  939. return true;
  940. }
  941. /* Caller must hold RTNL. */
  942. int fib_table_insert(struct net *net, struct fib_table *tb,
  943. struct fib_config *cfg, struct netlink_ext_ack *extack)
  944. {
  945. enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
  946. struct trie *t = (struct trie *)tb->tb_data;
  947. struct fib_alias *fa, *new_fa;
  948. struct key_vector *l, *tp;
  949. u16 nlflags = NLM_F_EXCL;
  950. struct fib_info *fi;
  951. u8 plen = cfg->fc_dst_len;
  952. u8 slen = KEYLENGTH - plen;
  953. u8 tos = cfg->fc_tos;
  954. u32 key;
  955. int err;
  956. key = ntohl(cfg->fc_dst);
  957. if (!fib_valid_key_len(key, plen, extack))
  958. return -EINVAL;
  959. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  960. fi = fib_create_info(cfg, extack);
  961. if (IS_ERR(fi)) {
  962. err = PTR_ERR(fi);
  963. goto err;
  964. }
  965. l = fib_find_node(t, &tp, key);
  966. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  967. tb->tb_id) : NULL;
  968. /* Now fa, if non-NULL, points to the first fib alias
  969. * with the same keys [prefix,tos,priority], if such key already
  970. * exists or to the node before which we will insert new one.
  971. *
  972. * If fa is NULL, we will need to allocate a new one and
  973. * insert to the tail of the section matching the suffix length
  974. * of the new alias.
  975. */
  976. if (fa && fa->fa_tos == tos &&
  977. fa->fa_info->fib_priority == fi->fib_priority) {
  978. struct fib_alias *fa_first, *fa_match;
  979. err = -EEXIST;
  980. if (cfg->fc_nlflags & NLM_F_EXCL)
  981. goto out;
  982. nlflags &= ~NLM_F_EXCL;
  983. /* We have 2 goals:
  984. * 1. Find exact match for type, scope, fib_info to avoid
  985. * duplicate routes
  986. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  987. */
  988. fa_match = NULL;
  989. fa_first = fa;
  990. hlist_for_each_entry_from(fa, fa_list) {
  991. if ((fa->fa_slen != slen) ||
  992. (fa->tb_id != tb->tb_id) ||
  993. (fa->fa_tos != tos))
  994. break;
  995. if (fa->fa_info->fib_priority != fi->fib_priority)
  996. break;
  997. if (fa->fa_type == cfg->fc_type &&
  998. fa->fa_info == fi) {
  999. fa_match = fa;
  1000. break;
  1001. }
  1002. }
  1003. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  1004. struct fib_info *fi_drop;
  1005. u8 state;
  1006. nlflags |= NLM_F_REPLACE;
  1007. fa = fa_first;
  1008. if (fa_match) {
  1009. if (fa == fa_match)
  1010. err = 0;
  1011. goto out;
  1012. }
  1013. err = -ENOBUFS;
  1014. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1015. if (!new_fa)
  1016. goto out;
  1017. fi_drop = fa->fa_info;
  1018. new_fa->fa_tos = fa->fa_tos;
  1019. new_fa->fa_info = fi;
  1020. new_fa->fa_type = cfg->fc_type;
  1021. state = fa->fa_state;
  1022. new_fa->fa_state = state & ~FA_S_ACCESSED;
  1023. new_fa->fa_slen = fa->fa_slen;
  1024. new_fa->tb_id = tb->tb_id;
  1025. new_fa->fa_default = -1;
  1026. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
  1027. key, plen, fi,
  1028. new_fa->fa_tos, cfg->fc_type,
  1029. tb->tb_id);
  1030. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1031. tb->tb_id, &cfg->fc_nlinfo, nlflags);
  1032. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1033. alias_free_mem_rcu(fa);
  1034. fib_release_info(fi_drop);
  1035. if (state & FA_S_ACCESSED)
  1036. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1037. goto succeeded;
  1038. }
  1039. /* Error if we find a perfect match which
  1040. * uses the same scope, type, and nexthop
  1041. * information.
  1042. */
  1043. if (fa_match)
  1044. goto out;
  1045. if (cfg->fc_nlflags & NLM_F_APPEND) {
  1046. event = FIB_EVENT_ENTRY_APPEND;
  1047. nlflags |= NLM_F_APPEND;
  1048. } else {
  1049. fa = fa_first;
  1050. }
  1051. }
  1052. err = -ENOENT;
  1053. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1054. goto out;
  1055. nlflags |= NLM_F_CREATE;
  1056. err = -ENOBUFS;
  1057. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1058. if (!new_fa)
  1059. goto out;
  1060. new_fa->fa_info = fi;
  1061. new_fa->fa_tos = tos;
  1062. new_fa->fa_type = cfg->fc_type;
  1063. new_fa->fa_state = 0;
  1064. new_fa->fa_slen = slen;
  1065. new_fa->tb_id = tb->tb_id;
  1066. new_fa->fa_default = -1;
  1067. /* Insert new entry to the list. */
  1068. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1069. if (err)
  1070. goto out_free_new_fa;
  1071. if (!plen)
  1072. tb->tb_num_default++;
  1073. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1074. call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
  1075. tb->tb_id);
  1076. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1077. &cfg->fc_nlinfo, nlflags);
  1078. succeeded:
  1079. return 0;
  1080. out_free_new_fa:
  1081. kmem_cache_free(fn_alias_kmem, new_fa);
  1082. out:
  1083. fib_release_info(fi);
  1084. err:
  1085. return err;
  1086. }
  1087. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1088. {
  1089. t_key prefix = n->key;
  1090. return (key ^ prefix) & (prefix | -prefix);
  1091. }
  1092. /* should be called with rcu_read_lock */
  1093. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1094. struct fib_result *res, int fib_flags)
  1095. {
  1096. struct trie *t = (struct trie *) tb->tb_data;
  1097. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1098. struct trie_use_stats __percpu *stats = t->stats;
  1099. #endif
  1100. const t_key key = ntohl(flp->daddr);
  1101. struct key_vector *n, *pn;
  1102. struct fib_alias *fa;
  1103. unsigned long index;
  1104. t_key cindex;
  1105. trace_fib_table_lookup(tb->tb_id, flp);
  1106. pn = t->kv;
  1107. cindex = 0;
  1108. n = get_child_rcu(pn, cindex);
  1109. if (!n)
  1110. return -EAGAIN;
  1111. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1112. this_cpu_inc(stats->gets);
  1113. #endif
  1114. /* Step 1: Travel to the longest prefix match in the trie */
  1115. for (;;) {
  1116. index = get_cindex(key, n);
  1117. /* This bit of code is a bit tricky but it combines multiple
  1118. * checks into a single check. The prefix consists of the
  1119. * prefix plus zeros for the "bits" in the prefix. The index
  1120. * is the difference between the key and this value. From
  1121. * this we can actually derive several pieces of data.
  1122. * if (index >= (1ul << bits))
  1123. * we have a mismatch in skip bits and failed
  1124. * else
  1125. * we know the value is cindex
  1126. *
  1127. * This check is safe even if bits == KEYLENGTH due to the
  1128. * fact that we can only allocate a node with 32 bits if a
  1129. * long is greater than 32 bits.
  1130. */
  1131. if (index >= (1ul << n->bits))
  1132. break;
  1133. /* we have found a leaf. Prefixes have already been compared */
  1134. if (IS_LEAF(n))
  1135. goto found;
  1136. /* only record pn and cindex if we are going to be chopping
  1137. * bits later. Otherwise we are just wasting cycles.
  1138. */
  1139. if (n->slen > n->pos) {
  1140. pn = n;
  1141. cindex = index;
  1142. }
  1143. n = get_child_rcu(n, index);
  1144. if (unlikely(!n))
  1145. goto backtrace;
  1146. }
  1147. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1148. for (;;) {
  1149. /* record the pointer where our next node pointer is stored */
  1150. struct key_vector __rcu **cptr = n->tnode;
  1151. /* This test verifies that none of the bits that differ
  1152. * between the key and the prefix exist in the region of
  1153. * the lsb and higher in the prefix.
  1154. */
  1155. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1156. goto backtrace;
  1157. /* exit out and process leaf */
  1158. if (unlikely(IS_LEAF(n)))
  1159. break;
  1160. /* Don't bother recording parent info. Since we are in
  1161. * prefix match mode we will have to come back to wherever
  1162. * we started this traversal anyway
  1163. */
  1164. while ((n = rcu_dereference(*cptr)) == NULL) {
  1165. backtrace:
  1166. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1167. if (!n)
  1168. this_cpu_inc(stats->null_node_hit);
  1169. #endif
  1170. /* If we are at cindex 0 there are no more bits for
  1171. * us to strip at this level so we must ascend back
  1172. * up one level to see if there are any more bits to
  1173. * be stripped there.
  1174. */
  1175. while (!cindex) {
  1176. t_key pkey = pn->key;
  1177. /* If we don't have a parent then there is
  1178. * nothing for us to do as we do not have any
  1179. * further nodes to parse.
  1180. */
  1181. if (IS_TRIE(pn))
  1182. return -EAGAIN;
  1183. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1184. this_cpu_inc(stats->backtrack);
  1185. #endif
  1186. /* Get Child's index */
  1187. pn = node_parent_rcu(pn);
  1188. cindex = get_index(pkey, pn);
  1189. }
  1190. /* strip the least significant bit from the cindex */
  1191. cindex &= cindex - 1;
  1192. /* grab pointer for next child node */
  1193. cptr = &pn->tnode[cindex];
  1194. }
  1195. }
  1196. found:
  1197. /* this line carries forward the xor from earlier in the function */
  1198. index = key ^ n->key;
  1199. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1200. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1201. struct fib_info *fi = fa->fa_info;
  1202. int nhsel, err;
  1203. if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
  1204. if (index >= (1ul << fa->fa_slen))
  1205. continue;
  1206. }
  1207. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1208. continue;
  1209. if (fi->fib_dead)
  1210. continue;
  1211. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1212. continue;
  1213. fib_alias_accessed(fa);
  1214. err = fib_props[fa->fa_type].error;
  1215. if (unlikely(err < 0)) {
  1216. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1217. this_cpu_inc(stats->semantic_match_passed);
  1218. #endif
  1219. return err;
  1220. }
  1221. if (fi->fib_flags & RTNH_F_DEAD)
  1222. continue;
  1223. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1224. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1225. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1226. if (nh->nh_flags & RTNH_F_DEAD)
  1227. continue;
  1228. if (in_dev &&
  1229. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1230. nh->nh_flags & RTNH_F_LINKDOWN &&
  1231. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1232. continue;
  1233. if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
  1234. if (flp->flowi4_oif &&
  1235. flp->flowi4_oif != nh->nh_oif)
  1236. continue;
  1237. }
  1238. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1239. refcount_inc(&fi->fib_clntref);
  1240. res->prefix = htonl(n->key);
  1241. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1242. res->nh_sel = nhsel;
  1243. res->type = fa->fa_type;
  1244. res->scope = fi->fib_scope;
  1245. res->fi = fi;
  1246. res->table = tb;
  1247. res->fa_head = &n->leaf;
  1248. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1249. this_cpu_inc(stats->semantic_match_passed);
  1250. #endif
  1251. trace_fib_table_lookup_nh(nh);
  1252. return err;
  1253. }
  1254. }
  1255. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1256. this_cpu_inc(stats->semantic_match_miss);
  1257. #endif
  1258. goto backtrace;
  1259. }
  1260. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1261. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1262. struct key_vector *l, struct fib_alias *old)
  1263. {
  1264. /* record the location of the previous list_info entry */
  1265. struct hlist_node **pprev = old->fa_list.pprev;
  1266. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1267. /* remove the fib_alias from the list */
  1268. hlist_del_rcu(&old->fa_list);
  1269. /* if we emptied the list this leaf will be freed and we can sort
  1270. * out parent suffix lengths as a part of trie_rebalance
  1271. */
  1272. if (hlist_empty(&l->leaf)) {
  1273. if (tp->slen == l->slen)
  1274. node_pull_suffix(tp, tp->pos);
  1275. put_child_root(tp, l->key, NULL);
  1276. node_free(l);
  1277. trie_rebalance(t, tp);
  1278. return;
  1279. }
  1280. /* only access fa if it is pointing at the last valid hlist_node */
  1281. if (*pprev)
  1282. return;
  1283. /* update the trie with the latest suffix length */
  1284. l->slen = fa->fa_slen;
  1285. node_pull_suffix(tp, fa->fa_slen);
  1286. }
  1287. /* Caller must hold RTNL. */
  1288. int fib_table_delete(struct net *net, struct fib_table *tb,
  1289. struct fib_config *cfg, struct netlink_ext_ack *extack)
  1290. {
  1291. struct trie *t = (struct trie *) tb->tb_data;
  1292. struct fib_alias *fa, *fa_to_delete;
  1293. struct key_vector *l, *tp;
  1294. u8 plen = cfg->fc_dst_len;
  1295. u8 slen = KEYLENGTH - plen;
  1296. u8 tos = cfg->fc_tos;
  1297. u32 key;
  1298. key = ntohl(cfg->fc_dst);
  1299. if (!fib_valid_key_len(key, plen, extack))
  1300. return -EINVAL;
  1301. l = fib_find_node(t, &tp, key);
  1302. if (!l)
  1303. return -ESRCH;
  1304. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1305. if (!fa)
  1306. return -ESRCH;
  1307. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1308. fa_to_delete = NULL;
  1309. hlist_for_each_entry_from(fa, fa_list) {
  1310. struct fib_info *fi = fa->fa_info;
  1311. if ((fa->fa_slen != slen) ||
  1312. (fa->tb_id != tb->tb_id) ||
  1313. (fa->fa_tos != tos))
  1314. break;
  1315. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1316. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1317. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1318. (!cfg->fc_prefsrc ||
  1319. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1320. (!cfg->fc_protocol ||
  1321. fi->fib_protocol == cfg->fc_protocol) &&
  1322. fib_nh_match(cfg, fi, extack) == 0) {
  1323. fa_to_delete = fa;
  1324. break;
  1325. }
  1326. }
  1327. if (!fa_to_delete)
  1328. return -ESRCH;
  1329. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
  1330. fa_to_delete->fa_info, tos,
  1331. fa_to_delete->fa_type, tb->tb_id);
  1332. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1333. &cfg->fc_nlinfo, 0);
  1334. if (!plen)
  1335. tb->tb_num_default--;
  1336. fib_remove_alias(t, tp, l, fa_to_delete);
  1337. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1338. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1339. fib_release_info(fa_to_delete->fa_info);
  1340. alias_free_mem_rcu(fa_to_delete);
  1341. return 0;
  1342. }
  1343. /* Scan for the next leaf starting at the provided key value */
  1344. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1345. {
  1346. struct key_vector *pn, *n = *tn;
  1347. unsigned long cindex;
  1348. /* this loop is meant to try and find the key in the trie */
  1349. do {
  1350. /* record parent and next child index */
  1351. pn = n;
  1352. cindex = (key > pn->key) ? get_index(key, pn) : 0;
  1353. if (cindex >> pn->bits)
  1354. break;
  1355. /* descend into the next child */
  1356. n = get_child_rcu(pn, cindex++);
  1357. if (!n)
  1358. break;
  1359. /* guarantee forward progress on the keys */
  1360. if (IS_LEAF(n) && (n->key >= key))
  1361. goto found;
  1362. } while (IS_TNODE(n));
  1363. /* this loop will search for the next leaf with a greater key */
  1364. while (!IS_TRIE(pn)) {
  1365. /* if we exhausted the parent node we will need to climb */
  1366. if (cindex >= (1ul << pn->bits)) {
  1367. t_key pkey = pn->key;
  1368. pn = node_parent_rcu(pn);
  1369. cindex = get_index(pkey, pn) + 1;
  1370. continue;
  1371. }
  1372. /* grab the next available node */
  1373. n = get_child_rcu(pn, cindex++);
  1374. if (!n)
  1375. continue;
  1376. /* no need to compare keys since we bumped the index */
  1377. if (IS_LEAF(n))
  1378. goto found;
  1379. /* Rescan start scanning in new node */
  1380. pn = n;
  1381. cindex = 0;
  1382. }
  1383. *tn = pn;
  1384. return NULL; /* Root of trie */
  1385. found:
  1386. /* if we are at the limit for keys just return NULL for the tnode */
  1387. *tn = pn;
  1388. return n;
  1389. }
  1390. static void fib_trie_free(struct fib_table *tb)
  1391. {
  1392. struct trie *t = (struct trie *)tb->tb_data;
  1393. struct key_vector *pn = t->kv;
  1394. unsigned long cindex = 1;
  1395. struct hlist_node *tmp;
  1396. struct fib_alias *fa;
  1397. /* walk trie in reverse order and free everything */
  1398. for (;;) {
  1399. struct key_vector *n;
  1400. if (!(cindex--)) {
  1401. t_key pkey = pn->key;
  1402. if (IS_TRIE(pn))
  1403. break;
  1404. n = pn;
  1405. pn = node_parent(pn);
  1406. /* drop emptied tnode */
  1407. put_child_root(pn, n->key, NULL);
  1408. node_free(n);
  1409. cindex = get_index(pkey, pn);
  1410. continue;
  1411. }
  1412. /* grab the next available node */
  1413. n = get_child(pn, cindex);
  1414. if (!n)
  1415. continue;
  1416. if (IS_TNODE(n)) {
  1417. /* record pn and cindex for leaf walking */
  1418. pn = n;
  1419. cindex = 1ul << n->bits;
  1420. continue;
  1421. }
  1422. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1423. hlist_del_rcu(&fa->fa_list);
  1424. alias_free_mem_rcu(fa);
  1425. }
  1426. put_child_root(pn, n->key, NULL);
  1427. node_free(n);
  1428. }
  1429. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1430. free_percpu(t->stats);
  1431. #endif
  1432. kfree(tb);
  1433. }
  1434. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1435. {
  1436. struct trie *ot = (struct trie *)oldtb->tb_data;
  1437. struct key_vector *l, *tp = ot->kv;
  1438. struct fib_table *local_tb;
  1439. struct fib_alias *fa;
  1440. struct trie *lt;
  1441. t_key key = 0;
  1442. if (oldtb->tb_data == oldtb->__data)
  1443. return oldtb;
  1444. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1445. if (!local_tb)
  1446. return NULL;
  1447. lt = (struct trie *)local_tb->tb_data;
  1448. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1449. struct key_vector *local_l = NULL, *local_tp;
  1450. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1451. struct fib_alias *new_fa;
  1452. if (local_tb->tb_id != fa->tb_id)
  1453. continue;
  1454. /* clone fa for new local table */
  1455. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1456. if (!new_fa)
  1457. goto out;
  1458. memcpy(new_fa, fa, sizeof(*fa));
  1459. /* insert clone into table */
  1460. if (!local_l)
  1461. local_l = fib_find_node(lt, &local_tp, l->key);
  1462. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1463. NULL, l->key)) {
  1464. kmem_cache_free(fn_alias_kmem, new_fa);
  1465. goto out;
  1466. }
  1467. }
  1468. /* stop loop if key wrapped back to 0 */
  1469. key = l->key + 1;
  1470. if (key < l->key)
  1471. break;
  1472. }
  1473. return local_tb;
  1474. out:
  1475. fib_trie_free(local_tb);
  1476. return NULL;
  1477. }
  1478. /* Caller must hold RTNL */
  1479. void fib_table_flush_external(struct fib_table *tb)
  1480. {
  1481. struct trie *t = (struct trie *)tb->tb_data;
  1482. struct key_vector *pn = t->kv;
  1483. unsigned long cindex = 1;
  1484. struct hlist_node *tmp;
  1485. struct fib_alias *fa;
  1486. /* walk trie in reverse order */
  1487. for (;;) {
  1488. unsigned char slen = 0;
  1489. struct key_vector *n;
  1490. if (!(cindex--)) {
  1491. t_key pkey = pn->key;
  1492. /* cannot resize the trie vector */
  1493. if (IS_TRIE(pn))
  1494. break;
  1495. /* update the suffix to address pulled leaves */
  1496. if (pn->slen > pn->pos)
  1497. update_suffix(pn);
  1498. /* resize completed node */
  1499. pn = resize(t, pn);
  1500. cindex = get_index(pkey, pn);
  1501. continue;
  1502. }
  1503. /* grab the next available node */
  1504. n = get_child(pn, cindex);
  1505. if (!n)
  1506. continue;
  1507. if (IS_TNODE(n)) {
  1508. /* record pn and cindex for leaf walking */
  1509. pn = n;
  1510. cindex = 1ul << n->bits;
  1511. continue;
  1512. }
  1513. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1514. /* if alias was cloned to local then we just
  1515. * need to remove the local copy from main
  1516. */
  1517. if (tb->tb_id != fa->tb_id) {
  1518. hlist_del_rcu(&fa->fa_list);
  1519. alias_free_mem_rcu(fa);
  1520. continue;
  1521. }
  1522. /* record local slen */
  1523. slen = fa->fa_slen;
  1524. }
  1525. /* update leaf slen */
  1526. n->slen = slen;
  1527. if (hlist_empty(&n->leaf)) {
  1528. put_child_root(pn, n->key, NULL);
  1529. node_free(n);
  1530. }
  1531. }
  1532. }
  1533. /* Caller must hold RTNL. */
  1534. int fib_table_flush(struct net *net, struct fib_table *tb)
  1535. {
  1536. struct trie *t = (struct trie *)tb->tb_data;
  1537. struct key_vector *pn = t->kv;
  1538. unsigned long cindex = 1;
  1539. struct hlist_node *tmp;
  1540. struct fib_alias *fa;
  1541. int found = 0;
  1542. /* walk trie in reverse order */
  1543. for (;;) {
  1544. unsigned char slen = 0;
  1545. struct key_vector *n;
  1546. if (!(cindex--)) {
  1547. t_key pkey = pn->key;
  1548. /* cannot resize the trie vector */
  1549. if (IS_TRIE(pn))
  1550. break;
  1551. /* update the suffix to address pulled leaves */
  1552. if (pn->slen > pn->pos)
  1553. update_suffix(pn);
  1554. /* resize completed node */
  1555. pn = resize(t, pn);
  1556. cindex = get_index(pkey, pn);
  1557. continue;
  1558. }
  1559. /* grab the next available node */
  1560. n = get_child(pn, cindex);
  1561. if (!n)
  1562. continue;
  1563. if (IS_TNODE(n)) {
  1564. /* record pn and cindex for leaf walking */
  1565. pn = n;
  1566. cindex = 1ul << n->bits;
  1567. continue;
  1568. }
  1569. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1570. struct fib_info *fi = fa->fa_info;
  1571. if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
  1572. tb->tb_id != fa->tb_id) {
  1573. slen = fa->fa_slen;
  1574. continue;
  1575. }
  1576. call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
  1577. n->key,
  1578. KEYLENGTH - fa->fa_slen,
  1579. fi, fa->fa_tos, fa->fa_type,
  1580. tb->tb_id);
  1581. hlist_del_rcu(&fa->fa_list);
  1582. fib_release_info(fa->fa_info);
  1583. alias_free_mem_rcu(fa);
  1584. found++;
  1585. }
  1586. /* update leaf slen */
  1587. n->slen = slen;
  1588. if (hlist_empty(&n->leaf)) {
  1589. put_child_root(pn, n->key, NULL);
  1590. node_free(n);
  1591. }
  1592. }
  1593. pr_debug("trie_flush found=%d\n", found);
  1594. return found;
  1595. }
  1596. static void fib_leaf_notify(struct net *net, struct key_vector *l,
  1597. struct fib_table *tb, struct notifier_block *nb)
  1598. {
  1599. struct fib_alias *fa;
  1600. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1601. struct fib_info *fi = fa->fa_info;
  1602. if (!fi)
  1603. continue;
  1604. /* local and main table can share the same trie,
  1605. * so don't notify twice for the same entry.
  1606. */
  1607. if (tb->tb_id != fa->tb_id)
  1608. continue;
  1609. call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
  1610. KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
  1611. fa->fa_type, fa->tb_id);
  1612. }
  1613. }
  1614. static void fib_table_notify(struct net *net, struct fib_table *tb,
  1615. struct notifier_block *nb)
  1616. {
  1617. struct trie *t = (struct trie *)tb->tb_data;
  1618. struct key_vector *l, *tp = t->kv;
  1619. t_key key = 0;
  1620. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1621. fib_leaf_notify(net, l, tb, nb);
  1622. key = l->key + 1;
  1623. /* stop in case of wrap around */
  1624. if (key < l->key)
  1625. break;
  1626. }
  1627. }
  1628. void fib_notify(struct net *net, struct notifier_block *nb)
  1629. {
  1630. unsigned int h;
  1631. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1632. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1633. struct fib_table *tb;
  1634. hlist_for_each_entry_rcu(tb, head, tb_hlist)
  1635. fib_table_notify(net, tb, nb);
  1636. }
  1637. }
  1638. static void __trie_free_rcu(struct rcu_head *head)
  1639. {
  1640. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1641. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1642. struct trie *t = (struct trie *)tb->tb_data;
  1643. if (tb->tb_data == tb->__data)
  1644. free_percpu(t->stats);
  1645. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1646. kfree(tb);
  1647. }
  1648. void fib_free_table(struct fib_table *tb)
  1649. {
  1650. call_rcu(&tb->rcu, __trie_free_rcu);
  1651. }
  1652. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1653. struct sk_buff *skb, struct netlink_callback *cb)
  1654. {
  1655. __be32 xkey = htonl(l->key);
  1656. struct fib_alias *fa;
  1657. int i, s_i;
  1658. s_i = cb->args[4];
  1659. i = 0;
  1660. /* rcu_read_lock is hold by caller */
  1661. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1662. int err;
  1663. if (i < s_i) {
  1664. i++;
  1665. continue;
  1666. }
  1667. if (tb->tb_id != fa->tb_id) {
  1668. i++;
  1669. continue;
  1670. }
  1671. err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1672. cb->nlh->nlmsg_seq, RTM_NEWROUTE,
  1673. tb->tb_id, fa->fa_type,
  1674. xkey, KEYLENGTH - fa->fa_slen,
  1675. fa->fa_tos, fa->fa_info, NLM_F_MULTI);
  1676. if (err < 0) {
  1677. cb->args[4] = i;
  1678. return err;
  1679. }
  1680. i++;
  1681. }
  1682. cb->args[4] = i;
  1683. return skb->len;
  1684. }
  1685. /* rcu_read_lock needs to be hold by caller from readside */
  1686. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1687. struct netlink_callback *cb)
  1688. {
  1689. struct trie *t = (struct trie *)tb->tb_data;
  1690. struct key_vector *l, *tp = t->kv;
  1691. /* Dump starting at last key.
  1692. * Note: 0.0.0.0/0 (ie default) is first key.
  1693. */
  1694. int count = cb->args[2];
  1695. t_key key = cb->args[3];
  1696. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1697. int err;
  1698. err = fn_trie_dump_leaf(l, tb, skb, cb);
  1699. if (err < 0) {
  1700. cb->args[3] = key;
  1701. cb->args[2] = count;
  1702. return err;
  1703. }
  1704. ++count;
  1705. key = l->key + 1;
  1706. memset(&cb->args[4], 0,
  1707. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1708. /* stop loop if key wrapped back to 0 */
  1709. if (key < l->key)
  1710. break;
  1711. }
  1712. cb->args[3] = key;
  1713. cb->args[2] = count;
  1714. return skb->len;
  1715. }
  1716. void __init fib_trie_init(void)
  1717. {
  1718. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1719. sizeof(struct fib_alias),
  1720. 0, SLAB_PANIC, NULL);
  1721. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1722. LEAF_SIZE,
  1723. 0, SLAB_PANIC, NULL);
  1724. }
  1725. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1726. {
  1727. struct fib_table *tb;
  1728. struct trie *t;
  1729. size_t sz = sizeof(*tb);
  1730. if (!alias)
  1731. sz += sizeof(struct trie);
  1732. tb = kzalloc(sz, GFP_KERNEL);
  1733. if (!tb)
  1734. return NULL;
  1735. tb->tb_id = id;
  1736. tb->tb_num_default = 0;
  1737. tb->tb_data = (alias ? alias->__data : tb->__data);
  1738. if (alias)
  1739. return tb;
  1740. t = (struct trie *) tb->tb_data;
  1741. t->kv[0].pos = KEYLENGTH;
  1742. t->kv[0].slen = KEYLENGTH;
  1743. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1744. t->stats = alloc_percpu(struct trie_use_stats);
  1745. if (!t->stats) {
  1746. kfree(tb);
  1747. tb = NULL;
  1748. }
  1749. #endif
  1750. return tb;
  1751. }
  1752. #ifdef CONFIG_PROC_FS
  1753. /* Depth first Trie walk iterator */
  1754. struct fib_trie_iter {
  1755. struct seq_net_private p;
  1756. struct fib_table *tb;
  1757. struct key_vector *tnode;
  1758. unsigned int index;
  1759. unsigned int depth;
  1760. };
  1761. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1762. {
  1763. unsigned long cindex = iter->index;
  1764. struct key_vector *pn = iter->tnode;
  1765. t_key pkey;
  1766. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1767. iter->tnode, iter->index, iter->depth);
  1768. while (!IS_TRIE(pn)) {
  1769. while (cindex < child_length(pn)) {
  1770. struct key_vector *n = get_child_rcu(pn, cindex++);
  1771. if (!n)
  1772. continue;
  1773. if (IS_LEAF(n)) {
  1774. iter->tnode = pn;
  1775. iter->index = cindex;
  1776. } else {
  1777. /* push down one level */
  1778. iter->tnode = n;
  1779. iter->index = 0;
  1780. ++iter->depth;
  1781. }
  1782. return n;
  1783. }
  1784. /* Current node exhausted, pop back up */
  1785. pkey = pn->key;
  1786. pn = node_parent_rcu(pn);
  1787. cindex = get_index(pkey, pn) + 1;
  1788. --iter->depth;
  1789. }
  1790. /* record root node so further searches know we are done */
  1791. iter->tnode = pn;
  1792. iter->index = 0;
  1793. return NULL;
  1794. }
  1795. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1796. struct trie *t)
  1797. {
  1798. struct key_vector *n, *pn;
  1799. if (!t)
  1800. return NULL;
  1801. pn = t->kv;
  1802. n = rcu_dereference(pn->tnode[0]);
  1803. if (!n)
  1804. return NULL;
  1805. if (IS_TNODE(n)) {
  1806. iter->tnode = n;
  1807. iter->index = 0;
  1808. iter->depth = 1;
  1809. } else {
  1810. iter->tnode = pn;
  1811. iter->index = 0;
  1812. iter->depth = 0;
  1813. }
  1814. return n;
  1815. }
  1816. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1817. {
  1818. struct key_vector *n;
  1819. struct fib_trie_iter iter;
  1820. memset(s, 0, sizeof(*s));
  1821. rcu_read_lock();
  1822. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1823. if (IS_LEAF(n)) {
  1824. struct fib_alias *fa;
  1825. s->leaves++;
  1826. s->totdepth += iter.depth;
  1827. if (iter.depth > s->maxdepth)
  1828. s->maxdepth = iter.depth;
  1829. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1830. ++s->prefixes;
  1831. } else {
  1832. s->tnodes++;
  1833. if (n->bits < MAX_STAT_DEPTH)
  1834. s->nodesizes[n->bits]++;
  1835. s->nullpointers += tn_info(n)->empty_children;
  1836. }
  1837. }
  1838. rcu_read_unlock();
  1839. }
  1840. /*
  1841. * This outputs /proc/net/fib_triestats
  1842. */
  1843. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1844. {
  1845. unsigned int i, max, pointers, bytes, avdepth;
  1846. if (stat->leaves)
  1847. avdepth = stat->totdepth*100 / stat->leaves;
  1848. else
  1849. avdepth = 0;
  1850. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1851. avdepth / 100, avdepth % 100);
  1852. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1853. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1854. bytes = LEAF_SIZE * stat->leaves;
  1855. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1856. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1857. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1858. bytes += TNODE_SIZE(0) * stat->tnodes;
  1859. max = MAX_STAT_DEPTH;
  1860. while (max > 0 && stat->nodesizes[max-1] == 0)
  1861. max--;
  1862. pointers = 0;
  1863. for (i = 1; i < max; i++)
  1864. if (stat->nodesizes[i] != 0) {
  1865. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1866. pointers += (1<<i) * stat->nodesizes[i];
  1867. }
  1868. seq_putc(seq, '\n');
  1869. seq_printf(seq, "\tPointers: %u\n", pointers);
  1870. bytes += sizeof(struct key_vector *) * pointers;
  1871. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1872. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1873. }
  1874. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1875. static void trie_show_usage(struct seq_file *seq,
  1876. const struct trie_use_stats __percpu *stats)
  1877. {
  1878. struct trie_use_stats s = { 0 };
  1879. int cpu;
  1880. /* loop through all of the CPUs and gather up the stats */
  1881. for_each_possible_cpu(cpu) {
  1882. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1883. s.gets += pcpu->gets;
  1884. s.backtrack += pcpu->backtrack;
  1885. s.semantic_match_passed += pcpu->semantic_match_passed;
  1886. s.semantic_match_miss += pcpu->semantic_match_miss;
  1887. s.null_node_hit += pcpu->null_node_hit;
  1888. s.resize_node_skipped += pcpu->resize_node_skipped;
  1889. }
  1890. seq_printf(seq, "\nCounters:\n---------\n");
  1891. seq_printf(seq, "gets = %u\n", s.gets);
  1892. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1893. seq_printf(seq, "semantic match passed = %u\n",
  1894. s.semantic_match_passed);
  1895. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1896. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1897. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1898. }
  1899. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1900. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1901. {
  1902. if (tb->tb_id == RT_TABLE_LOCAL)
  1903. seq_puts(seq, "Local:\n");
  1904. else if (tb->tb_id == RT_TABLE_MAIN)
  1905. seq_puts(seq, "Main:\n");
  1906. else
  1907. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1908. }
  1909. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1910. {
  1911. struct net *net = (struct net *)seq->private;
  1912. unsigned int h;
  1913. seq_printf(seq,
  1914. "Basic info: size of leaf:"
  1915. " %zd bytes, size of tnode: %zd bytes.\n",
  1916. LEAF_SIZE, TNODE_SIZE(0));
  1917. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1918. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1919. struct fib_table *tb;
  1920. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1921. struct trie *t = (struct trie *) tb->tb_data;
  1922. struct trie_stat stat;
  1923. if (!t)
  1924. continue;
  1925. fib_table_print(seq, tb);
  1926. trie_collect_stats(t, &stat);
  1927. trie_show_stats(seq, &stat);
  1928. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1929. trie_show_usage(seq, t->stats);
  1930. #endif
  1931. }
  1932. }
  1933. return 0;
  1934. }
  1935. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1936. {
  1937. return single_open_net(inode, file, fib_triestat_seq_show);
  1938. }
  1939. static const struct file_operations fib_triestat_fops = {
  1940. .owner = THIS_MODULE,
  1941. .open = fib_triestat_seq_open,
  1942. .read = seq_read,
  1943. .llseek = seq_lseek,
  1944. .release = single_release_net,
  1945. };
  1946. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1947. {
  1948. struct fib_trie_iter *iter = seq->private;
  1949. struct net *net = seq_file_net(seq);
  1950. loff_t idx = 0;
  1951. unsigned int h;
  1952. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1953. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1954. struct fib_table *tb;
  1955. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1956. struct key_vector *n;
  1957. for (n = fib_trie_get_first(iter,
  1958. (struct trie *) tb->tb_data);
  1959. n; n = fib_trie_get_next(iter))
  1960. if (pos == idx++) {
  1961. iter->tb = tb;
  1962. return n;
  1963. }
  1964. }
  1965. }
  1966. return NULL;
  1967. }
  1968. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1969. __acquires(RCU)
  1970. {
  1971. rcu_read_lock();
  1972. return fib_trie_get_idx(seq, *pos);
  1973. }
  1974. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1975. {
  1976. struct fib_trie_iter *iter = seq->private;
  1977. struct net *net = seq_file_net(seq);
  1978. struct fib_table *tb = iter->tb;
  1979. struct hlist_node *tb_node;
  1980. unsigned int h;
  1981. struct key_vector *n;
  1982. ++*pos;
  1983. /* next node in same table */
  1984. n = fib_trie_get_next(iter);
  1985. if (n)
  1986. return n;
  1987. /* walk rest of this hash chain */
  1988. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1989. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1990. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1991. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1992. if (n)
  1993. goto found;
  1994. }
  1995. /* new hash chain */
  1996. while (++h < FIB_TABLE_HASHSZ) {
  1997. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1998. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1999. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  2000. if (n)
  2001. goto found;
  2002. }
  2003. }
  2004. return NULL;
  2005. found:
  2006. iter->tb = tb;
  2007. return n;
  2008. }
  2009. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  2010. __releases(RCU)
  2011. {
  2012. rcu_read_unlock();
  2013. }
  2014. static void seq_indent(struct seq_file *seq, int n)
  2015. {
  2016. while (n-- > 0)
  2017. seq_puts(seq, " ");
  2018. }
  2019. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  2020. {
  2021. switch (s) {
  2022. case RT_SCOPE_UNIVERSE: return "universe";
  2023. case RT_SCOPE_SITE: return "site";
  2024. case RT_SCOPE_LINK: return "link";
  2025. case RT_SCOPE_HOST: return "host";
  2026. case RT_SCOPE_NOWHERE: return "nowhere";
  2027. default:
  2028. snprintf(buf, len, "scope=%d", s);
  2029. return buf;
  2030. }
  2031. }
  2032. static const char *const rtn_type_names[__RTN_MAX] = {
  2033. [RTN_UNSPEC] = "UNSPEC",
  2034. [RTN_UNICAST] = "UNICAST",
  2035. [RTN_LOCAL] = "LOCAL",
  2036. [RTN_BROADCAST] = "BROADCAST",
  2037. [RTN_ANYCAST] = "ANYCAST",
  2038. [RTN_MULTICAST] = "MULTICAST",
  2039. [RTN_BLACKHOLE] = "BLACKHOLE",
  2040. [RTN_UNREACHABLE] = "UNREACHABLE",
  2041. [RTN_PROHIBIT] = "PROHIBIT",
  2042. [RTN_THROW] = "THROW",
  2043. [RTN_NAT] = "NAT",
  2044. [RTN_XRESOLVE] = "XRESOLVE",
  2045. };
  2046. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  2047. {
  2048. if (t < __RTN_MAX && rtn_type_names[t])
  2049. return rtn_type_names[t];
  2050. snprintf(buf, len, "type %u", t);
  2051. return buf;
  2052. }
  2053. /* Pretty print the trie */
  2054. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  2055. {
  2056. const struct fib_trie_iter *iter = seq->private;
  2057. struct key_vector *n = v;
  2058. if (IS_TRIE(node_parent_rcu(n)))
  2059. fib_table_print(seq, iter->tb);
  2060. if (IS_TNODE(n)) {
  2061. __be32 prf = htonl(n->key);
  2062. seq_indent(seq, iter->depth-1);
  2063. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  2064. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  2065. tn_info(n)->full_children,
  2066. tn_info(n)->empty_children);
  2067. } else {
  2068. __be32 val = htonl(n->key);
  2069. struct fib_alias *fa;
  2070. seq_indent(seq, iter->depth);
  2071. seq_printf(seq, " |-- %pI4\n", &val);
  2072. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  2073. char buf1[32], buf2[32];
  2074. seq_indent(seq, iter->depth + 1);
  2075. seq_printf(seq, " /%zu %s %s",
  2076. KEYLENGTH - fa->fa_slen,
  2077. rtn_scope(buf1, sizeof(buf1),
  2078. fa->fa_info->fib_scope),
  2079. rtn_type(buf2, sizeof(buf2),
  2080. fa->fa_type));
  2081. if (fa->fa_tos)
  2082. seq_printf(seq, " tos=%d", fa->fa_tos);
  2083. seq_putc(seq, '\n');
  2084. }
  2085. }
  2086. return 0;
  2087. }
  2088. static const struct seq_operations fib_trie_seq_ops = {
  2089. .start = fib_trie_seq_start,
  2090. .next = fib_trie_seq_next,
  2091. .stop = fib_trie_seq_stop,
  2092. .show = fib_trie_seq_show,
  2093. };
  2094. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2095. {
  2096. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2097. sizeof(struct fib_trie_iter));
  2098. }
  2099. static const struct file_operations fib_trie_fops = {
  2100. .owner = THIS_MODULE,
  2101. .open = fib_trie_seq_open,
  2102. .read = seq_read,
  2103. .llseek = seq_lseek,
  2104. .release = seq_release_net,
  2105. };
  2106. struct fib_route_iter {
  2107. struct seq_net_private p;
  2108. struct fib_table *main_tb;
  2109. struct key_vector *tnode;
  2110. loff_t pos;
  2111. t_key key;
  2112. };
  2113. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2114. loff_t pos)
  2115. {
  2116. struct key_vector *l, **tp = &iter->tnode;
  2117. t_key key;
  2118. /* use cached location of previously found key */
  2119. if (iter->pos > 0 && pos >= iter->pos) {
  2120. key = iter->key;
  2121. } else {
  2122. iter->pos = 1;
  2123. key = 0;
  2124. }
  2125. pos -= iter->pos;
  2126. while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
  2127. key = l->key + 1;
  2128. iter->pos++;
  2129. l = NULL;
  2130. /* handle unlikely case of a key wrap */
  2131. if (!key)
  2132. break;
  2133. }
  2134. if (l)
  2135. iter->key = l->key; /* remember it */
  2136. else
  2137. iter->pos = 0; /* forget it */
  2138. return l;
  2139. }
  2140. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2141. __acquires(RCU)
  2142. {
  2143. struct fib_route_iter *iter = seq->private;
  2144. struct fib_table *tb;
  2145. struct trie *t;
  2146. rcu_read_lock();
  2147. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2148. if (!tb)
  2149. return NULL;
  2150. iter->main_tb = tb;
  2151. t = (struct trie *)tb->tb_data;
  2152. iter->tnode = t->kv;
  2153. if (*pos != 0)
  2154. return fib_route_get_idx(iter, *pos);
  2155. iter->pos = 0;
  2156. iter->key = KEY_MAX;
  2157. return SEQ_START_TOKEN;
  2158. }
  2159. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2160. {
  2161. struct fib_route_iter *iter = seq->private;
  2162. struct key_vector *l = NULL;
  2163. t_key key = iter->key + 1;
  2164. ++*pos;
  2165. /* only allow key of 0 for start of sequence */
  2166. if ((v == SEQ_START_TOKEN) || key)
  2167. l = leaf_walk_rcu(&iter->tnode, key);
  2168. if (l) {
  2169. iter->key = l->key;
  2170. iter->pos++;
  2171. } else {
  2172. iter->pos = 0;
  2173. }
  2174. return l;
  2175. }
  2176. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2177. __releases(RCU)
  2178. {
  2179. rcu_read_unlock();
  2180. }
  2181. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2182. {
  2183. unsigned int flags = 0;
  2184. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2185. flags = RTF_REJECT;
  2186. if (fi && fi->fib_nh->nh_gw)
  2187. flags |= RTF_GATEWAY;
  2188. if (mask == htonl(0xFFFFFFFF))
  2189. flags |= RTF_HOST;
  2190. flags |= RTF_UP;
  2191. return flags;
  2192. }
  2193. /*
  2194. * This outputs /proc/net/route.
  2195. * The format of the file is not supposed to be changed
  2196. * and needs to be same as fib_hash output to avoid breaking
  2197. * legacy utilities
  2198. */
  2199. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2200. {
  2201. struct fib_route_iter *iter = seq->private;
  2202. struct fib_table *tb = iter->main_tb;
  2203. struct fib_alias *fa;
  2204. struct key_vector *l = v;
  2205. __be32 prefix;
  2206. if (v == SEQ_START_TOKEN) {
  2207. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2208. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2209. "\tWindow\tIRTT");
  2210. return 0;
  2211. }
  2212. prefix = htonl(l->key);
  2213. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2214. const struct fib_info *fi = fa->fa_info;
  2215. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2216. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2217. if ((fa->fa_type == RTN_BROADCAST) ||
  2218. (fa->fa_type == RTN_MULTICAST))
  2219. continue;
  2220. if (fa->tb_id != tb->tb_id)
  2221. continue;
  2222. seq_setwidth(seq, 127);
  2223. if (fi)
  2224. seq_printf(seq,
  2225. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2226. "%d\t%08X\t%d\t%u\t%u",
  2227. fi->fib_dev ? fi->fib_dev->name : "*",
  2228. prefix,
  2229. fi->fib_nh->nh_gw, flags, 0, 0,
  2230. fi->fib_priority,
  2231. mask,
  2232. (fi->fib_advmss ?
  2233. fi->fib_advmss + 40 : 0),
  2234. fi->fib_window,
  2235. fi->fib_rtt >> 3);
  2236. else
  2237. seq_printf(seq,
  2238. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2239. "%d\t%08X\t%d\t%u\t%u",
  2240. prefix, 0, flags, 0, 0, 0,
  2241. mask, 0, 0, 0);
  2242. seq_pad(seq, '\n');
  2243. }
  2244. return 0;
  2245. }
  2246. static const struct seq_operations fib_route_seq_ops = {
  2247. .start = fib_route_seq_start,
  2248. .next = fib_route_seq_next,
  2249. .stop = fib_route_seq_stop,
  2250. .show = fib_route_seq_show,
  2251. };
  2252. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2253. {
  2254. return seq_open_net(inode, file, &fib_route_seq_ops,
  2255. sizeof(struct fib_route_iter));
  2256. }
  2257. static const struct file_operations fib_route_fops = {
  2258. .owner = THIS_MODULE,
  2259. .open = fib_route_seq_open,
  2260. .read = seq_read,
  2261. .llseek = seq_lseek,
  2262. .release = seq_release_net,
  2263. };
  2264. int __net_init fib_proc_init(struct net *net)
  2265. {
  2266. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2267. goto out1;
  2268. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2269. &fib_triestat_fops))
  2270. goto out2;
  2271. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2272. goto out3;
  2273. return 0;
  2274. out3:
  2275. remove_proc_entry("fib_triestat", net->proc_net);
  2276. out2:
  2277. remove_proc_entry("fib_trie", net->proc_net);
  2278. out1:
  2279. return -ENOMEM;
  2280. }
  2281. void __net_exit fib_proc_exit(struct net *net)
  2282. {
  2283. remove_proc_entry("fib_trie", net->proc_net);
  2284. remove_proc_entry("fib_triestat", net->proc_net);
  2285. remove_proc_entry("route", net->proc_net);
  2286. }
  2287. #endif /* CONFIG_PROC_FS */