legacy.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771
  1. /*
  2. * net/dsa/legacy.c - Hardware switch handling
  3. * Copyright (c) 2008-2009 Marvell Semiconductor
  4. * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/device.h>
  12. #include <linux/list.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/slab.h>
  15. #include <linux/module.h>
  16. #include <linux/of.h>
  17. #include <linux/of_mdio.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/of_net.h>
  20. #include <linux/netdevice.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/phy_fixed.h>
  23. #include <linux/etherdevice.h>
  24. #include "dsa_priv.h"
  25. /* switch driver registration ***********************************************/
  26. static DEFINE_MUTEX(dsa_switch_drivers_mutex);
  27. static LIST_HEAD(dsa_switch_drivers);
  28. void register_switch_driver(struct dsa_switch_driver *drv)
  29. {
  30. mutex_lock(&dsa_switch_drivers_mutex);
  31. list_add_tail(&drv->list, &dsa_switch_drivers);
  32. mutex_unlock(&dsa_switch_drivers_mutex);
  33. }
  34. EXPORT_SYMBOL_GPL(register_switch_driver);
  35. void unregister_switch_driver(struct dsa_switch_driver *drv)
  36. {
  37. mutex_lock(&dsa_switch_drivers_mutex);
  38. list_del_init(&drv->list);
  39. mutex_unlock(&dsa_switch_drivers_mutex);
  40. }
  41. EXPORT_SYMBOL_GPL(unregister_switch_driver);
  42. static const struct dsa_switch_ops *
  43. dsa_switch_probe(struct device *parent, struct device *host_dev, int sw_addr,
  44. const char **_name, void **priv)
  45. {
  46. const struct dsa_switch_ops *ret;
  47. struct list_head *list;
  48. const char *name;
  49. ret = NULL;
  50. name = NULL;
  51. mutex_lock(&dsa_switch_drivers_mutex);
  52. list_for_each(list, &dsa_switch_drivers) {
  53. const struct dsa_switch_ops *ops;
  54. struct dsa_switch_driver *drv;
  55. drv = list_entry(list, struct dsa_switch_driver, list);
  56. ops = drv->ops;
  57. name = ops->probe(parent, host_dev, sw_addr, priv);
  58. if (name != NULL) {
  59. ret = ops;
  60. break;
  61. }
  62. }
  63. mutex_unlock(&dsa_switch_drivers_mutex);
  64. *_name = name;
  65. return ret;
  66. }
  67. /* basic switch operations **************************************************/
  68. static int dsa_cpu_dsa_setups(struct dsa_switch *ds, struct device *dev)
  69. {
  70. struct dsa_port *dport;
  71. int ret, port;
  72. for (port = 0; port < ds->num_ports; port++) {
  73. if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
  74. continue;
  75. dport = &ds->ports[port];
  76. ret = dsa_cpu_dsa_setup(ds, dev, dport, port);
  77. if (ret)
  78. return ret;
  79. }
  80. return 0;
  81. }
  82. static int dsa_switch_setup_one(struct dsa_switch *ds, struct net_device *master,
  83. struct device *parent)
  84. {
  85. const struct dsa_switch_ops *ops = ds->ops;
  86. struct dsa_switch_tree *dst = ds->dst;
  87. struct dsa_chip_data *cd = ds->cd;
  88. bool valid_name_found = false;
  89. int index = ds->index;
  90. int i, ret;
  91. /*
  92. * Validate supplied switch configuration.
  93. */
  94. for (i = 0; i < ds->num_ports; i++) {
  95. char *name;
  96. name = cd->port_names[i];
  97. if (name == NULL)
  98. continue;
  99. if (!strcmp(name, "cpu")) {
  100. if (dst->cpu_dp) {
  101. netdev_err(master,
  102. "multiple cpu ports?!\n");
  103. return -EINVAL;
  104. }
  105. dst->cpu_dp = &ds->ports[i];
  106. dst->cpu_dp->netdev = master;
  107. ds->cpu_port_mask |= 1 << i;
  108. } else if (!strcmp(name, "dsa")) {
  109. ds->dsa_port_mask |= 1 << i;
  110. } else {
  111. ds->enabled_port_mask |= 1 << i;
  112. }
  113. valid_name_found = true;
  114. }
  115. if (!valid_name_found && i == ds->num_ports)
  116. return -EINVAL;
  117. /* Make the built-in MII bus mask match the number of ports,
  118. * switch drivers can override this later
  119. */
  120. ds->phys_mii_mask = ds->enabled_port_mask;
  121. /*
  122. * If the CPU connects to this switch, set the switch tree
  123. * tagging protocol to the preferred tagging format of this
  124. * switch.
  125. */
  126. if (dst->cpu_dp->ds == ds) {
  127. enum dsa_tag_protocol tag_protocol;
  128. tag_protocol = ops->get_tag_protocol(ds);
  129. dst->tag_ops = dsa_resolve_tag_protocol(tag_protocol);
  130. if (IS_ERR(dst->tag_ops))
  131. return PTR_ERR(dst->tag_ops);
  132. dst->rcv = dst->tag_ops->rcv;
  133. }
  134. memcpy(ds->rtable, cd->rtable, sizeof(ds->rtable));
  135. /*
  136. * Do basic register setup.
  137. */
  138. ret = ops->setup(ds);
  139. if (ret < 0)
  140. return ret;
  141. ret = dsa_switch_register_notifier(ds);
  142. if (ret)
  143. return ret;
  144. if (ops->set_addr) {
  145. ret = ops->set_addr(ds, master->dev_addr);
  146. if (ret < 0)
  147. return ret;
  148. }
  149. if (!ds->slave_mii_bus && ops->phy_read) {
  150. ds->slave_mii_bus = devm_mdiobus_alloc(parent);
  151. if (!ds->slave_mii_bus)
  152. return -ENOMEM;
  153. dsa_slave_mii_bus_init(ds);
  154. ret = mdiobus_register(ds->slave_mii_bus);
  155. if (ret < 0)
  156. return ret;
  157. }
  158. /*
  159. * Create network devices for physical switch ports.
  160. */
  161. for (i = 0; i < ds->num_ports; i++) {
  162. ds->ports[i].dn = cd->port_dn[i];
  163. ds->ports[i].cpu_dp = dst->cpu_dp;
  164. if (!(ds->enabled_port_mask & (1 << i)))
  165. continue;
  166. ret = dsa_slave_create(ds, parent, i, cd->port_names[i]);
  167. if (ret < 0)
  168. netdev_err(master, "[%d]: can't create dsa slave device for port %d(%s): %d\n",
  169. index, i, cd->port_names[i], ret);
  170. }
  171. /* Perform configuration of the CPU and DSA ports */
  172. ret = dsa_cpu_dsa_setups(ds, parent);
  173. if (ret < 0)
  174. netdev_err(master, "[%d] : can't configure CPU and DSA ports\n",
  175. index);
  176. ret = dsa_cpu_port_ethtool_setup(ds->dst->cpu_dp);
  177. if (ret)
  178. return ret;
  179. return 0;
  180. }
  181. static struct dsa_switch *
  182. dsa_switch_setup(struct dsa_switch_tree *dst, struct net_device *master,
  183. int index, struct device *parent, struct device *host_dev)
  184. {
  185. struct dsa_chip_data *cd = dst->pd->chip + index;
  186. const struct dsa_switch_ops *ops;
  187. struct dsa_switch *ds;
  188. int ret;
  189. const char *name;
  190. void *priv;
  191. /*
  192. * Probe for switch model.
  193. */
  194. ops = dsa_switch_probe(parent, host_dev, cd->sw_addr, &name, &priv);
  195. if (!ops) {
  196. netdev_err(master, "[%d]: could not detect attached switch\n",
  197. index);
  198. return ERR_PTR(-EINVAL);
  199. }
  200. netdev_info(master, "[%d]: detected a %s switch\n",
  201. index, name);
  202. /*
  203. * Allocate and initialise switch state.
  204. */
  205. ds = dsa_switch_alloc(parent, DSA_MAX_PORTS);
  206. if (!ds)
  207. return ERR_PTR(-ENOMEM);
  208. ds->dst = dst;
  209. ds->index = index;
  210. ds->cd = cd;
  211. ds->ops = ops;
  212. ds->priv = priv;
  213. ret = dsa_switch_setup_one(ds, master, parent);
  214. if (ret)
  215. return ERR_PTR(ret);
  216. return ds;
  217. }
  218. static void dsa_switch_destroy(struct dsa_switch *ds)
  219. {
  220. int port;
  221. /* Destroy network devices for physical switch ports. */
  222. for (port = 0; port < ds->num_ports; port++) {
  223. if (!(ds->enabled_port_mask & (1 << port)))
  224. continue;
  225. if (!ds->ports[port].netdev)
  226. continue;
  227. dsa_slave_destroy(ds->ports[port].netdev);
  228. }
  229. /* Disable configuration of the CPU and DSA ports */
  230. for (port = 0; port < ds->num_ports; port++) {
  231. if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)))
  232. continue;
  233. dsa_cpu_dsa_destroy(&ds->ports[port]);
  234. /* Clearing a bit which is not set does no harm */
  235. ds->cpu_port_mask |= ~(1 << port);
  236. ds->dsa_port_mask |= ~(1 << port);
  237. }
  238. if (ds->slave_mii_bus && ds->ops->phy_read)
  239. mdiobus_unregister(ds->slave_mii_bus);
  240. dsa_switch_unregister_notifier(ds);
  241. }
  242. /* platform driver init and cleanup *****************************************/
  243. static int dev_is_class(struct device *dev, void *class)
  244. {
  245. if (dev->class != NULL && !strcmp(dev->class->name, class))
  246. return 1;
  247. return 0;
  248. }
  249. static struct device *dev_find_class(struct device *parent, char *class)
  250. {
  251. if (dev_is_class(parent, class)) {
  252. get_device(parent);
  253. return parent;
  254. }
  255. return device_find_child(parent, class, dev_is_class);
  256. }
  257. struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev)
  258. {
  259. struct device *d;
  260. d = dev_find_class(dev, "mdio_bus");
  261. if (d != NULL) {
  262. struct mii_bus *bus;
  263. bus = to_mii_bus(d);
  264. put_device(d);
  265. return bus;
  266. }
  267. return NULL;
  268. }
  269. EXPORT_SYMBOL_GPL(dsa_host_dev_to_mii_bus);
  270. #ifdef CONFIG_OF
  271. static int dsa_of_setup_routing_table(struct dsa_platform_data *pd,
  272. struct dsa_chip_data *cd,
  273. int chip_index, int port_index,
  274. struct device_node *link)
  275. {
  276. const __be32 *reg;
  277. int link_sw_addr;
  278. struct device_node *parent_sw;
  279. int len;
  280. parent_sw = of_get_parent(link);
  281. if (!parent_sw)
  282. return -EINVAL;
  283. reg = of_get_property(parent_sw, "reg", &len);
  284. if (!reg || (len != sizeof(*reg) * 2))
  285. return -EINVAL;
  286. /*
  287. * Get the destination switch number from the second field of its 'reg'
  288. * property, i.e. for "reg = <0x19 1>" sw_addr is '1'.
  289. */
  290. link_sw_addr = be32_to_cpup(reg + 1);
  291. if (link_sw_addr >= pd->nr_chips)
  292. return -EINVAL;
  293. cd->rtable[link_sw_addr] = port_index;
  294. return 0;
  295. }
  296. static int dsa_of_probe_links(struct dsa_platform_data *pd,
  297. struct dsa_chip_data *cd,
  298. int chip_index, int port_index,
  299. struct device_node *port,
  300. const char *port_name)
  301. {
  302. struct device_node *link;
  303. int link_index;
  304. int ret;
  305. for (link_index = 0;; link_index++) {
  306. link = of_parse_phandle(port, "link", link_index);
  307. if (!link)
  308. break;
  309. if (!strcmp(port_name, "dsa") && pd->nr_chips > 1) {
  310. ret = dsa_of_setup_routing_table(pd, cd, chip_index,
  311. port_index, link);
  312. if (ret)
  313. return ret;
  314. }
  315. }
  316. return 0;
  317. }
  318. static void dsa_of_free_platform_data(struct dsa_platform_data *pd)
  319. {
  320. int i;
  321. int port_index;
  322. for (i = 0; i < pd->nr_chips; i++) {
  323. port_index = 0;
  324. while (port_index < DSA_MAX_PORTS) {
  325. kfree(pd->chip[i].port_names[port_index]);
  326. port_index++;
  327. }
  328. /* Drop our reference to the MDIO bus device */
  329. if (pd->chip[i].host_dev)
  330. put_device(pd->chip[i].host_dev);
  331. }
  332. kfree(pd->chip);
  333. }
  334. static int dsa_of_probe(struct device *dev)
  335. {
  336. struct device_node *np = dev->of_node;
  337. struct device_node *child, *mdio, *ethernet, *port;
  338. struct mii_bus *mdio_bus, *mdio_bus_switch;
  339. struct net_device *ethernet_dev;
  340. struct dsa_platform_data *pd;
  341. struct dsa_chip_data *cd;
  342. const char *port_name;
  343. int chip_index, port_index;
  344. const unsigned int *sw_addr, *port_reg;
  345. u32 eeprom_len;
  346. int ret;
  347. mdio = of_parse_phandle(np, "dsa,mii-bus", 0);
  348. if (!mdio)
  349. return -EINVAL;
  350. mdio_bus = of_mdio_find_bus(mdio);
  351. if (!mdio_bus)
  352. return -EPROBE_DEFER;
  353. ethernet = of_parse_phandle(np, "dsa,ethernet", 0);
  354. if (!ethernet) {
  355. ret = -EINVAL;
  356. goto out_put_mdio;
  357. }
  358. ethernet_dev = of_find_net_device_by_node(ethernet);
  359. if (!ethernet_dev) {
  360. ret = -EPROBE_DEFER;
  361. goto out_put_mdio;
  362. }
  363. pd = kzalloc(sizeof(*pd), GFP_KERNEL);
  364. if (!pd) {
  365. ret = -ENOMEM;
  366. goto out_put_ethernet;
  367. }
  368. dev->platform_data = pd;
  369. pd->of_netdev = ethernet_dev;
  370. pd->nr_chips = of_get_available_child_count(np);
  371. if (pd->nr_chips > DSA_MAX_SWITCHES)
  372. pd->nr_chips = DSA_MAX_SWITCHES;
  373. pd->chip = kcalloc(pd->nr_chips, sizeof(struct dsa_chip_data),
  374. GFP_KERNEL);
  375. if (!pd->chip) {
  376. ret = -ENOMEM;
  377. goto out_free;
  378. }
  379. chip_index = -1;
  380. for_each_available_child_of_node(np, child) {
  381. int i;
  382. chip_index++;
  383. cd = &pd->chip[chip_index];
  384. cd->of_node = child;
  385. /* Initialize the routing table */
  386. for (i = 0; i < DSA_MAX_SWITCHES; ++i)
  387. cd->rtable[i] = DSA_RTABLE_NONE;
  388. /* When assigning the host device, increment its refcount */
  389. cd->host_dev = get_device(&mdio_bus->dev);
  390. sw_addr = of_get_property(child, "reg", NULL);
  391. if (!sw_addr)
  392. continue;
  393. cd->sw_addr = be32_to_cpup(sw_addr);
  394. if (cd->sw_addr >= PHY_MAX_ADDR)
  395. continue;
  396. if (!of_property_read_u32(child, "eeprom-length", &eeprom_len))
  397. cd->eeprom_len = eeprom_len;
  398. mdio = of_parse_phandle(child, "mii-bus", 0);
  399. if (mdio) {
  400. mdio_bus_switch = of_mdio_find_bus(mdio);
  401. if (!mdio_bus_switch) {
  402. ret = -EPROBE_DEFER;
  403. goto out_free_chip;
  404. }
  405. /* Drop the mdio_bus device ref, replacing the host
  406. * device with the mdio_bus_switch device, keeping
  407. * the refcount from of_mdio_find_bus() above.
  408. */
  409. put_device(cd->host_dev);
  410. cd->host_dev = &mdio_bus_switch->dev;
  411. }
  412. for_each_available_child_of_node(child, port) {
  413. port_reg = of_get_property(port, "reg", NULL);
  414. if (!port_reg)
  415. continue;
  416. port_index = be32_to_cpup(port_reg);
  417. if (port_index >= DSA_MAX_PORTS)
  418. break;
  419. port_name = of_get_property(port, "label", NULL);
  420. if (!port_name)
  421. continue;
  422. cd->port_dn[port_index] = port;
  423. cd->port_names[port_index] = kstrdup(port_name,
  424. GFP_KERNEL);
  425. if (!cd->port_names[port_index]) {
  426. ret = -ENOMEM;
  427. goto out_free_chip;
  428. }
  429. ret = dsa_of_probe_links(pd, cd, chip_index,
  430. port_index, port, port_name);
  431. if (ret)
  432. goto out_free_chip;
  433. }
  434. }
  435. /* The individual chips hold their own refcount on the mdio bus,
  436. * so drop ours */
  437. put_device(&mdio_bus->dev);
  438. return 0;
  439. out_free_chip:
  440. dsa_of_free_platform_data(pd);
  441. out_free:
  442. kfree(pd);
  443. dev->platform_data = NULL;
  444. out_put_ethernet:
  445. put_device(&ethernet_dev->dev);
  446. out_put_mdio:
  447. put_device(&mdio_bus->dev);
  448. return ret;
  449. }
  450. static void dsa_of_remove(struct device *dev)
  451. {
  452. struct dsa_platform_data *pd = dev->platform_data;
  453. if (!dev->of_node)
  454. return;
  455. dsa_of_free_platform_data(pd);
  456. put_device(&pd->of_netdev->dev);
  457. kfree(pd);
  458. }
  459. #else
  460. static inline int dsa_of_probe(struct device *dev)
  461. {
  462. return 0;
  463. }
  464. static inline void dsa_of_remove(struct device *dev)
  465. {
  466. }
  467. #endif
  468. static int dsa_setup_dst(struct dsa_switch_tree *dst, struct net_device *dev,
  469. struct device *parent, struct dsa_platform_data *pd)
  470. {
  471. int i;
  472. unsigned configured = 0;
  473. dst->pd = pd;
  474. for (i = 0; i < pd->nr_chips; i++) {
  475. struct dsa_switch *ds;
  476. ds = dsa_switch_setup(dst, dev, i, parent, pd->chip[i].host_dev);
  477. if (IS_ERR(ds)) {
  478. netdev_err(dev, "[%d]: couldn't create dsa switch instance (error %ld)\n",
  479. i, PTR_ERR(ds));
  480. continue;
  481. }
  482. dst->ds[i] = ds;
  483. ++configured;
  484. }
  485. /*
  486. * If no switch was found, exit cleanly
  487. */
  488. if (!configured)
  489. return -EPROBE_DEFER;
  490. /*
  491. * If we use a tagging format that doesn't have an ethertype
  492. * field, make sure that all packets from this point on get
  493. * sent to the tag format's receive function.
  494. */
  495. wmb();
  496. dev->dsa_ptr = dst;
  497. return 0;
  498. }
  499. static int dsa_probe(struct platform_device *pdev)
  500. {
  501. struct dsa_platform_data *pd = pdev->dev.platform_data;
  502. struct net_device *dev;
  503. struct dsa_switch_tree *dst;
  504. int ret;
  505. if (pdev->dev.of_node) {
  506. ret = dsa_of_probe(&pdev->dev);
  507. if (ret)
  508. return ret;
  509. pd = pdev->dev.platform_data;
  510. }
  511. if (pd == NULL || (pd->netdev == NULL && pd->of_netdev == NULL))
  512. return -EINVAL;
  513. if (pd->of_netdev) {
  514. dev = pd->of_netdev;
  515. dev_hold(dev);
  516. } else {
  517. dev = dsa_dev_to_net_device(pd->netdev);
  518. }
  519. if (dev == NULL) {
  520. ret = -EPROBE_DEFER;
  521. goto out;
  522. }
  523. if (dev->dsa_ptr != NULL) {
  524. dev_put(dev);
  525. ret = -EEXIST;
  526. goto out;
  527. }
  528. dst = devm_kzalloc(&pdev->dev, sizeof(*dst), GFP_KERNEL);
  529. if (dst == NULL) {
  530. dev_put(dev);
  531. ret = -ENOMEM;
  532. goto out;
  533. }
  534. platform_set_drvdata(pdev, dst);
  535. ret = dsa_setup_dst(dst, dev, &pdev->dev, pd);
  536. if (ret) {
  537. dev_put(dev);
  538. goto out;
  539. }
  540. return 0;
  541. out:
  542. dsa_of_remove(&pdev->dev);
  543. return ret;
  544. }
  545. static void dsa_remove_dst(struct dsa_switch_tree *dst)
  546. {
  547. int i;
  548. dst->cpu_dp->netdev->dsa_ptr = NULL;
  549. /* If we used a tagging format that doesn't have an ethertype
  550. * field, make sure that all packets from this point get sent
  551. * without the tag and go through the regular receive path.
  552. */
  553. wmb();
  554. for (i = 0; i < dst->pd->nr_chips; i++) {
  555. struct dsa_switch *ds = dst->ds[i];
  556. if (ds)
  557. dsa_switch_destroy(ds);
  558. }
  559. dsa_cpu_port_ethtool_restore(dst->cpu_dp);
  560. dev_put(dst->cpu_dp->netdev);
  561. }
  562. static int dsa_remove(struct platform_device *pdev)
  563. {
  564. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  565. dsa_remove_dst(dst);
  566. dsa_of_remove(&pdev->dev);
  567. return 0;
  568. }
  569. static void dsa_shutdown(struct platform_device *pdev)
  570. {
  571. }
  572. #ifdef CONFIG_PM_SLEEP
  573. static int dsa_suspend(struct device *d)
  574. {
  575. struct platform_device *pdev = to_platform_device(d);
  576. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  577. int i, ret = 0;
  578. for (i = 0; i < dst->pd->nr_chips; i++) {
  579. struct dsa_switch *ds = dst->ds[i];
  580. if (ds != NULL)
  581. ret = dsa_switch_suspend(ds);
  582. }
  583. return ret;
  584. }
  585. static int dsa_resume(struct device *d)
  586. {
  587. struct platform_device *pdev = to_platform_device(d);
  588. struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
  589. int i, ret = 0;
  590. for (i = 0; i < dst->pd->nr_chips; i++) {
  591. struct dsa_switch *ds = dst->ds[i];
  592. if (ds != NULL)
  593. ret = dsa_switch_resume(ds);
  594. }
  595. return ret;
  596. }
  597. #endif
  598. static SIMPLE_DEV_PM_OPS(dsa_pm_ops, dsa_suspend, dsa_resume);
  599. static const struct of_device_id dsa_of_match_table[] = {
  600. { .compatible = "marvell,dsa", },
  601. {}
  602. };
  603. MODULE_DEVICE_TABLE(of, dsa_of_match_table);
  604. static struct platform_driver dsa_driver = {
  605. .probe = dsa_probe,
  606. .remove = dsa_remove,
  607. .shutdown = dsa_shutdown,
  608. .driver = {
  609. .name = "dsa",
  610. .of_match_table = dsa_of_match_table,
  611. .pm = &dsa_pm_ops,
  612. },
  613. };
  614. int dsa_legacy_register(void)
  615. {
  616. return platform_driver_register(&dsa_driver);
  617. }
  618. void dsa_legacy_unregister(void)
  619. {
  620. platform_driver_unregister(&dsa_driver);
  621. }