af_can.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997
  1. /*
  2. * af_can.c - Protocol family CAN core module
  3. * (used by different CAN protocol modules)
  4. *
  5. * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
  6. * All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. * 1. Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * 2. Redistributions in binary form must reproduce the above copyright
  14. * notice, this list of conditions and the following disclaimer in the
  15. * documentation and/or other materials provided with the distribution.
  16. * 3. Neither the name of Volkswagen nor the names of its contributors
  17. * may be used to endorse or promote products derived from this software
  18. * without specific prior written permission.
  19. *
  20. * Alternatively, provided that this notice is retained in full, this
  21. * software may be distributed under the terms of the GNU General
  22. * Public License ("GPL") version 2, in which case the provisions of the
  23. * GPL apply INSTEAD OF those given above.
  24. *
  25. * The provided data structures and external interfaces from this code
  26. * are not restricted to be used by modules with a GPL compatible license.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  29. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  30. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  31. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  32. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  33. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  34. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  35. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  36. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  38. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. *
  41. */
  42. #include <linux/module.h>
  43. #include <linux/stddef.h>
  44. #include <linux/init.h>
  45. #include <linux/kmod.h>
  46. #include <linux/slab.h>
  47. #include <linux/list.h>
  48. #include <linux/spinlock.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/uaccess.h>
  51. #include <linux/net.h>
  52. #include <linux/netdevice.h>
  53. #include <linux/socket.h>
  54. #include <linux/if_ether.h>
  55. #include <linux/if_arp.h>
  56. #include <linux/skbuff.h>
  57. #include <linux/can.h>
  58. #include <linux/can/core.h>
  59. #include <linux/can/skb.h>
  60. #include <linux/ratelimit.h>
  61. #include <net/net_namespace.h>
  62. #include <net/sock.h>
  63. #include "af_can.h"
  64. MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
  65. MODULE_LICENSE("Dual BSD/GPL");
  66. MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
  67. "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
  68. MODULE_ALIAS_NETPROTO(PF_CAN);
  69. static int stats_timer __read_mostly = 1;
  70. module_param(stats_timer, int, S_IRUGO);
  71. MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
  72. static struct kmem_cache *rcv_cache __read_mostly;
  73. /* table of registered CAN protocols */
  74. static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
  75. static DEFINE_MUTEX(proto_tab_lock);
  76. static atomic_t skbcounter = ATOMIC_INIT(0);
  77. /*
  78. * af_can socket functions
  79. */
  80. int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  81. {
  82. struct sock *sk = sock->sk;
  83. switch (cmd) {
  84. case SIOCGSTAMP:
  85. return sock_get_timestamp(sk, (struct timeval __user *)arg);
  86. default:
  87. return -ENOIOCTLCMD;
  88. }
  89. }
  90. EXPORT_SYMBOL(can_ioctl);
  91. static void can_sock_destruct(struct sock *sk)
  92. {
  93. skb_queue_purge(&sk->sk_receive_queue);
  94. }
  95. static const struct can_proto *can_get_proto(int protocol)
  96. {
  97. const struct can_proto *cp;
  98. rcu_read_lock();
  99. cp = rcu_dereference(proto_tab[protocol]);
  100. if (cp && !try_module_get(cp->prot->owner))
  101. cp = NULL;
  102. rcu_read_unlock();
  103. return cp;
  104. }
  105. static inline void can_put_proto(const struct can_proto *cp)
  106. {
  107. module_put(cp->prot->owner);
  108. }
  109. static int can_create(struct net *net, struct socket *sock, int protocol,
  110. int kern)
  111. {
  112. struct sock *sk;
  113. const struct can_proto *cp;
  114. int err = 0;
  115. sock->state = SS_UNCONNECTED;
  116. if (protocol < 0 || protocol >= CAN_NPROTO)
  117. return -EINVAL;
  118. cp = can_get_proto(protocol);
  119. #ifdef CONFIG_MODULES
  120. if (!cp) {
  121. /* try to load protocol module if kernel is modular */
  122. err = request_module("can-proto-%d", protocol);
  123. /*
  124. * In case of error we only print a message but don't
  125. * return the error code immediately. Below we will
  126. * return -EPROTONOSUPPORT
  127. */
  128. if (err)
  129. printk_ratelimited(KERN_ERR "can: request_module "
  130. "(can-proto-%d) failed.\n", protocol);
  131. cp = can_get_proto(protocol);
  132. }
  133. #endif
  134. /* check for available protocol and correct usage */
  135. if (!cp)
  136. return -EPROTONOSUPPORT;
  137. if (cp->type != sock->type) {
  138. err = -EPROTOTYPE;
  139. goto errout;
  140. }
  141. sock->ops = cp->ops;
  142. sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
  143. if (!sk) {
  144. err = -ENOMEM;
  145. goto errout;
  146. }
  147. sock_init_data(sock, sk);
  148. sk->sk_destruct = can_sock_destruct;
  149. if (sk->sk_prot->init)
  150. err = sk->sk_prot->init(sk);
  151. if (err) {
  152. /* release sk on errors */
  153. sock_orphan(sk);
  154. sock_put(sk);
  155. }
  156. errout:
  157. can_put_proto(cp);
  158. return err;
  159. }
  160. /*
  161. * af_can tx path
  162. */
  163. /**
  164. * can_send - transmit a CAN frame (optional with local loopback)
  165. * @skb: pointer to socket buffer with CAN frame in data section
  166. * @loop: loopback for listeners on local CAN sockets (recommended default!)
  167. *
  168. * Due to the loopback this routine must not be called from hardirq context.
  169. *
  170. * Return:
  171. * 0 on success
  172. * -ENETDOWN when the selected interface is down
  173. * -ENOBUFS on full driver queue (see net_xmit_errno())
  174. * -ENOMEM when local loopback failed at calling skb_clone()
  175. * -EPERM when trying to send on a non-CAN interface
  176. * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
  177. * -EINVAL when the skb->data does not contain a valid CAN frame
  178. */
  179. int can_send(struct sk_buff *skb, int loop)
  180. {
  181. struct sk_buff *newskb = NULL;
  182. struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
  183. struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
  184. int err = -EINVAL;
  185. if (skb->len == CAN_MTU) {
  186. skb->protocol = htons(ETH_P_CAN);
  187. if (unlikely(cfd->len > CAN_MAX_DLEN))
  188. goto inval_skb;
  189. } else if (skb->len == CANFD_MTU) {
  190. skb->protocol = htons(ETH_P_CANFD);
  191. if (unlikely(cfd->len > CANFD_MAX_DLEN))
  192. goto inval_skb;
  193. } else
  194. goto inval_skb;
  195. /*
  196. * Make sure the CAN frame can pass the selected CAN netdevice.
  197. * As structs can_frame and canfd_frame are similar, we can provide
  198. * CAN FD frames to legacy CAN drivers as long as the length is <= 8
  199. */
  200. if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
  201. err = -EMSGSIZE;
  202. goto inval_skb;
  203. }
  204. if (unlikely(skb->dev->type != ARPHRD_CAN)) {
  205. err = -EPERM;
  206. goto inval_skb;
  207. }
  208. if (unlikely(!(skb->dev->flags & IFF_UP))) {
  209. err = -ENETDOWN;
  210. goto inval_skb;
  211. }
  212. skb->ip_summed = CHECKSUM_UNNECESSARY;
  213. skb_reset_mac_header(skb);
  214. skb_reset_network_header(skb);
  215. skb_reset_transport_header(skb);
  216. if (loop) {
  217. /* local loopback of sent CAN frames */
  218. /* indication for the CAN driver: do loopback */
  219. skb->pkt_type = PACKET_LOOPBACK;
  220. /*
  221. * The reference to the originating sock may be required
  222. * by the receiving socket to check whether the frame is
  223. * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
  224. * Therefore we have to ensure that skb->sk remains the
  225. * reference to the originating sock by restoring skb->sk
  226. * after each skb_clone() or skb_orphan() usage.
  227. */
  228. if (!(skb->dev->flags & IFF_ECHO)) {
  229. /*
  230. * If the interface is not capable to do loopback
  231. * itself, we do it here.
  232. */
  233. newskb = skb_clone(skb, GFP_ATOMIC);
  234. if (!newskb) {
  235. kfree_skb(skb);
  236. return -ENOMEM;
  237. }
  238. can_skb_set_owner(newskb, skb->sk);
  239. newskb->ip_summed = CHECKSUM_UNNECESSARY;
  240. newskb->pkt_type = PACKET_BROADCAST;
  241. }
  242. } else {
  243. /* indication for the CAN driver: no loopback required */
  244. skb->pkt_type = PACKET_HOST;
  245. }
  246. /* send to netdevice */
  247. err = dev_queue_xmit(skb);
  248. if (err > 0)
  249. err = net_xmit_errno(err);
  250. if (err) {
  251. kfree_skb(newskb);
  252. return err;
  253. }
  254. if (newskb)
  255. netif_rx_ni(newskb);
  256. /* update statistics */
  257. can_stats->tx_frames++;
  258. can_stats->tx_frames_delta++;
  259. return 0;
  260. inval_skb:
  261. kfree_skb(skb);
  262. return err;
  263. }
  264. EXPORT_SYMBOL(can_send);
  265. /*
  266. * af_can rx path
  267. */
  268. static struct dev_rcv_lists *find_dev_rcv_lists(struct net *net,
  269. struct net_device *dev)
  270. {
  271. if (!dev)
  272. return net->can.can_rx_alldev_list;
  273. else
  274. return (struct dev_rcv_lists *)dev->ml_priv;
  275. }
  276. /**
  277. * effhash - hash function for 29 bit CAN identifier reduction
  278. * @can_id: 29 bit CAN identifier
  279. *
  280. * Description:
  281. * To reduce the linear traversal in one linked list of _single_ EFF CAN
  282. * frame subscriptions the 29 bit identifier is mapped to 10 bits.
  283. * (see CAN_EFF_RCV_HASH_BITS definition)
  284. *
  285. * Return:
  286. * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
  287. */
  288. static unsigned int effhash(canid_t can_id)
  289. {
  290. unsigned int hash;
  291. hash = can_id;
  292. hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
  293. hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
  294. return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
  295. }
  296. /**
  297. * find_rcv_list - determine optimal filterlist inside device filter struct
  298. * @can_id: pointer to CAN identifier of a given can_filter
  299. * @mask: pointer to CAN mask of a given can_filter
  300. * @d: pointer to the device filter struct
  301. *
  302. * Description:
  303. * Returns the optimal filterlist to reduce the filter handling in the
  304. * receive path. This function is called by service functions that need
  305. * to register or unregister a can_filter in the filter lists.
  306. *
  307. * A filter matches in general, when
  308. *
  309. * <received_can_id> & mask == can_id & mask
  310. *
  311. * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
  312. * relevant bits for the filter.
  313. *
  314. * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
  315. * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
  316. * frames there is a special filterlist and a special rx path filter handling.
  317. *
  318. * Return:
  319. * Pointer to optimal filterlist for the given can_id/mask pair.
  320. * Constistency checked mask.
  321. * Reduced can_id to have a preprocessed filter compare value.
  322. */
  323. static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
  324. struct dev_rcv_lists *d)
  325. {
  326. canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
  327. /* filter for error message frames in extra filterlist */
  328. if (*mask & CAN_ERR_FLAG) {
  329. /* clear CAN_ERR_FLAG in filter entry */
  330. *mask &= CAN_ERR_MASK;
  331. return &d->rx[RX_ERR];
  332. }
  333. /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
  334. #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
  335. /* ensure valid values in can_mask for 'SFF only' frame filtering */
  336. if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
  337. *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
  338. /* reduce condition testing at receive time */
  339. *can_id &= *mask;
  340. /* inverse can_id/can_mask filter */
  341. if (inv)
  342. return &d->rx[RX_INV];
  343. /* mask == 0 => no condition testing at receive time */
  344. if (!(*mask))
  345. return &d->rx[RX_ALL];
  346. /* extra filterlists for the subscription of a single non-RTR can_id */
  347. if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
  348. !(*can_id & CAN_RTR_FLAG)) {
  349. if (*can_id & CAN_EFF_FLAG) {
  350. if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
  351. return &d->rx_eff[effhash(*can_id)];
  352. } else {
  353. if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
  354. return &d->rx_sff[*can_id];
  355. }
  356. }
  357. /* default: filter via can_id/can_mask */
  358. return &d->rx[RX_FIL];
  359. }
  360. /**
  361. * can_rx_register - subscribe CAN frames from a specific interface
  362. * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
  363. * @can_id: CAN identifier (see description)
  364. * @mask: CAN mask (see description)
  365. * @func: callback function on filter match
  366. * @data: returned parameter for callback function
  367. * @ident: string for calling module identification
  368. * @sk: socket pointer (might be NULL)
  369. *
  370. * Description:
  371. * Invokes the callback function with the received sk_buff and the given
  372. * parameter 'data' on a matching receive filter. A filter matches, when
  373. *
  374. * <received_can_id> & mask == can_id & mask
  375. *
  376. * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
  377. * filter for error message frames (CAN_ERR_FLAG bit set in mask).
  378. *
  379. * The provided pointer to the sk_buff is guaranteed to be valid as long as
  380. * the callback function is running. The callback function must *not* free
  381. * the given sk_buff while processing it's task. When the given sk_buff is
  382. * needed after the end of the callback function it must be cloned inside
  383. * the callback function with skb_clone().
  384. *
  385. * Return:
  386. * 0 on success
  387. * -ENOMEM on missing cache mem to create subscription entry
  388. * -ENODEV unknown device
  389. */
  390. int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
  391. canid_t mask, void (*func)(struct sk_buff *, void *),
  392. void *data, char *ident, struct sock *sk)
  393. {
  394. struct receiver *r;
  395. struct hlist_head *rl;
  396. struct dev_rcv_lists *d;
  397. struct s_pstats *can_pstats = net->can.can_pstats;
  398. int err = 0;
  399. /* insert new receiver (dev,canid,mask) -> (func,data) */
  400. if (dev && dev->type != ARPHRD_CAN)
  401. return -ENODEV;
  402. if (dev && !net_eq(net, dev_net(dev)))
  403. return -ENODEV;
  404. r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
  405. if (!r)
  406. return -ENOMEM;
  407. spin_lock(&net->can.can_rcvlists_lock);
  408. d = find_dev_rcv_lists(net, dev);
  409. if (d) {
  410. rl = find_rcv_list(&can_id, &mask, d);
  411. r->can_id = can_id;
  412. r->mask = mask;
  413. r->matches = 0;
  414. r->func = func;
  415. r->data = data;
  416. r->ident = ident;
  417. r->sk = sk;
  418. hlist_add_head_rcu(&r->list, rl);
  419. d->entries++;
  420. can_pstats->rcv_entries++;
  421. if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
  422. can_pstats->rcv_entries_max = can_pstats->rcv_entries;
  423. } else {
  424. kmem_cache_free(rcv_cache, r);
  425. err = -ENODEV;
  426. }
  427. spin_unlock(&net->can.can_rcvlists_lock);
  428. return err;
  429. }
  430. EXPORT_SYMBOL(can_rx_register);
  431. /*
  432. * can_rx_delete_receiver - rcu callback for single receiver entry removal
  433. */
  434. static void can_rx_delete_receiver(struct rcu_head *rp)
  435. {
  436. struct receiver *r = container_of(rp, struct receiver, rcu);
  437. struct sock *sk = r->sk;
  438. kmem_cache_free(rcv_cache, r);
  439. if (sk)
  440. sock_put(sk);
  441. }
  442. /**
  443. * can_rx_unregister - unsubscribe CAN frames from a specific interface
  444. * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
  445. * @can_id: CAN identifier
  446. * @mask: CAN mask
  447. * @func: callback function on filter match
  448. * @data: returned parameter for callback function
  449. *
  450. * Description:
  451. * Removes subscription entry depending on given (subscription) values.
  452. */
  453. void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
  454. canid_t mask, void (*func)(struct sk_buff *, void *),
  455. void *data)
  456. {
  457. struct receiver *r = NULL;
  458. struct hlist_head *rl;
  459. struct s_pstats *can_pstats = net->can.can_pstats;
  460. struct dev_rcv_lists *d;
  461. if (dev && dev->type != ARPHRD_CAN)
  462. return;
  463. if (dev && !net_eq(net, dev_net(dev)))
  464. return;
  465. spin_lock(&net->can.can_rcvlists_lock);
  466. d = find_dev_rcv_lists(net, dev);
  467. if (!d) {
  468. pr_err("BUG: receive list not found for "
  469. "dev %s, id %03X, mask %03X\n",
  470. DNAME(dev), can_id, mask);
  471. goto out;
  472. }
  473. rl = find_rcv_list(&can_id, &mask, d);
  474. /*
  475. * Search the receiver list for the item to delete. This should
  476. * exist, since no receiver may be unregistered that hasn't
  477. * been registered before.
  478. */
  479. hlist_for_each_entry_rcu(r, rl, list) {
  480. if (r->can_id == can_id && r->mask == mask &&
  481. r->func == func && r->data == data)
  482. break;
  483. }
  484. /*
  485. * Check for bugs in CAN protocol implementations using af_can.c:
  486. * 'r' will be NULL if no matching list item was found for removal.
  487. */
  488. if (!r) {
  489. WARN(1, "BUG: receive list entry not found for dev %s, "
  490. "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
  491. goto out;
  492. }
  493. hlist_del_rcu(&r->list);
  494. d->entries--;
  495. if (can_pstats->rcv_entries > 0)
  496. can_pstats->rcv_entries--;
  497. /* remove device structure requested by NETDEV_UNREGISTER */
  498. if (d->remove_on_zero_entries && !d->entries) {
  499. kfree(d);
  500. dev->ml_priv = NULL;
  501. }
  502. out:
  503. spin_unlock(&net->can.can_rcvlists_lock);
  504. /* schedule the receiver item for deletion */
  505. if (r) {
  506. if (r->sk)
  507. sock_hold(r->sk);
  508. call_rcu(&r->rcu, can_rx_delete_receiver);
  509. }
  510. }
  511. EXPORT_SYMBOL(can_rx_unregister);
  512. static inline void deliver(struct sk_buff *skb, struct receiver *r)
  513. {
  514. r->func(skb, r->data);
  515. r->matches++;
  516. }
  517. static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
  518. {
  519. struct receiver *r;
  520. int matches = 0;
  521. struct can_frame *cf = (struct can_frame *)skb->data;
  522. canid_t can_id = cf->can_id;
  523. if (d->entries == 0)
  524. return 0;
  525. if (can_id & CAN_ERR_FLAG) {
  526. /* check for error message frame entries only */
  527. hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
  528. if (can_id & r->mask) {
  529. deliver(skb, r);
  530. matches++;
  531. }
  532. }
  533. return matches;
  534. }
  535. /* check for unfiltered entries */
  536. hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
  537. deliver(skb, r);
  538. matches++;
  539. }
  540. /* check for can_id/mask entries */
  541. hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
  542. if ((can_id & r->mask) == r->can_id) {
  543. deliver(skb, r);
  544. matches++;
  545. }
  546. }
  547. /* check for inverted can_id/mask entries */
  548. hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
  549. if ((can_id & r->mask) != r->can_id) {
  550. deliver(skb, r);
  551. matches++;
  552. }
  553. }
  554. /* check filterlists for single non-RTR can_ids */
  555. if (can_id & CAN_RTR_FLAG)
  556. return matches;
  557. if (can_id & CAN_EFF_FLAG) {
  558. hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
  559. if (r->can_id == can_id) {
  560. deliver(skb, r);
  561. matches++;
  562. }
  563. }
  564. } else {
  565. can_id &= CAN_SFF_MASK;
  566. hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
  567. deliver(skb, r);
  568. matches++;
  569. }
  570. }
  571. return matches;
  572. }
  573. static void can_receive(struct sk_buff *skb, struct net_device *dev)
  574. {
  575. struct dev_rcv_lists *d;
  576. struct net *net = dev_net(dev);
  577. struct s_stats *can_stats = net->can.can_stats;
  578. int matches;
  579. /* update statistics */
  580. can_stats->rx_frames++;
  581. can_stats->rx_frames_delta++;
  582. /* create non-zero unique skb identifier together with *skb */
  583. while (!(can_skb_prv(skb)->skbcnt))
  584. can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
  585. rcu_read_lock();
  586. /* deliver the packet to sockets listening on all devices */
  587. matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
  588. /* find receive list for this device */
  589. d = find_dev_rcv_lists(net, dev);
  590. if (d)
  591. matches += can_rcv_filter(d, skb);
  592. rcu_read_unlock();
  593. /* consume the skbuff allocated by the netdevice driver */
  594. consume_skb(skb);
  595. if (matches > 0) {
  596. can_stats->matches++;
  597. can_stats->matches_delta++;
  598. }
  599. }
  600. static int can_rcv(struct sk_buff *skb, struct net_device *dev,
  601. struct packet_type *pt, struct net_device *orig_dev)
  602. {
  603. struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
  604. if (WARN_ONCE(dev->type != ARPHRD_CAN ||
  605. skb->len != CAN_MTU ||
  606. cfd->len > CAN_MAX_DLEN,
  607. "PF_CAN: dropped non conform CAN skbuf: "
  608. "dev type %d, len %d, datalen %d\n",
  609. dev->type, skb->len, cfd->len))
  610. goto drop;
  611. can_receive(skb, dev);
  612. return NET_RX_SUCCESS;
  613. drop:
  614. kfree_skb(skb);
  615. return NET_RX_DROP;
  616. }
  617. static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
  618. struct packet_type *pt, struct net_device *orig_dev)
  619. {
  620. struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
  621. if (WARN_ONCE(dev->type != ARPHRD_CAN ||
  622. skb->len != CANFD_MTU ||
  623. cfd->len > CANFD_MAX_DLEN,
  624. "PF_CAN: dropped non conform CAN FD skbuf: "
  625. "dev type %d, len %d, datalen %d\n",
  626. dev->type, skb->len, cfd->len))
  627. goto drop;
  628. can_receive(skb, dev);
  629. return NET_RX_SUCCESS;
  630. drop:
  631. kfree_skb(skb);
  632. return NET_RX_DROP;
  633. }
  634. /*
  635. * af_can protocol functions
  636. */
  637. /**
  638. * can_proto_register - register CAN transport protocol
  639. * @cp: pointer to CAN protocol structure
  640. *
  641. * Return:
  642. * 0 on success
  643. * -EINVAL invalid (out of range) protocol number
  644. * -EBUSY protocol already in use
  645. * -ENOBUF if proto_register() fails
  646. */
  647. int can_proto_register(const struct can_proto *cp)
  648. {
  649. int proto = cp->protocol;
  650. int err = 0;
  651. if (proto < 0 || proto >= CAN_NPROTO) {
  652. pr_err("can: protocol number %d out of range\n", proto);
  653. return -EINVAL;
  654. }
  655. err = proto_register(cp->prot, 0);
  656. if (err < 0)
  657. return err;
  658. mutex_lock(&proto_tab_lock);
  659. if (proto_tab[proto]) {
  660. pr_err("can: protocol %d already registered\n", proto);
  661. err = -EBUSY;
  662. } else
  663. RCU_INIT_POINTER(proto_tab[proto], cp);
  664. mutex_unlock(&proto_tab_lock);
  665. if (err < 0)
  666. proto_unregister(cp->prot);
  667. return err;
  668. }
  669. EXPORT_SYMBOL(can_proto_register);
  670. /**
  671. * can_proto_unregister - unregister CAN transport protocol
  672. * @cp: pointer to CAN protocol structure
  673. */
  674. void can_proto_unregister(const struct can_proto *cp)
  675. {
  676. int proto = cp->protocol;
  677. mutex_lock(&proto_tab_lock);
  678. BUG_ON(proto_tab[proto] != cp);
  679. RCU_INIT_POINTER(proto_tab[proto], NULL);
  680. mutex_unlock(&proto_tab_lock);
  681. synchronize_rcu();
  682. proto_unregister(cp->prot);
  683. }
  684. EXPORT_SYMBOL(can_proto_unregister);
  685. /*
  686. * af_can notifier to create/remove CAN netdevice specific structs
  687. */
  688. static int can_notifier(struct notifier_block *nb, unsigned long msg,
  689. void *ptr)
  690. {
  691. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  692. struct dev_rcv_lists *d;
  693. if (dev->type != ARPHRD_CAN)
  694. return NOTIFY_DONE;
  695. switch (msg) {
  696. case NETDEV_REGISTER:
  697. /* create new dev_rcv_lists for this device */
  698. d = kzalloc(sizeof(*d), GFP_KERNEL);
  699. if (!d)
  700. return NOTIFY_DONE;
  701. BUG_ON(dev->ml_priv);
  702. dev->ml_priv = d;
  703. break;
  704. case NETDEV_UNREGISTER:
  705. spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
  706. d = dev->ml_priv;
  707. if (d) {
  708. if (d->entries)
  709. d->remove_on_zero_entries = 1;
  710. else {
  711. kfree(d);
  712. dev->ml_priv = NULL;
  713. }
  714. } else
  715. pr_err("can: notifier: receive list not found for dev "
  716. "%s\n", dev->name);
  717. spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
  718. break;
  719. }
  720. return NOTIFY_DONE;
  721. }
  722. static int can_pernet_init(struct net *net)
  723. {
  724. spin_lock_init(&net->can.can_rcvlists_lock);
  725. net->can.can_rx_alldev_list =
  726. kzalloc(sizeof(struct dev_rcv_lists), GFP_KERNEL);
  727. net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
  728. net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
  729. if (IS_ENABLED(CONFIG_PROC_FS)) {
  730. /* the statistics are updated every second (timer triggered) */
  731. if (stats_timer) {
  732. setup_timer(&net->can.can_stattimer, can_stat_update,
  733. (unsigned long)net);
  734. mod_timer(&net->can.can_stattimer,
  735. round_jiffies(jiffies + HZ));
  736. }
  737. net->can.can_stats->jiffies_init = jiffies;
  738. can_init_proc(net);
  739. }
  740. return 0;
  741. }
  742. static void can_pernet_exit(struct net *net)
  743. {
  744. struct net_device *dev;
  745. if (IS_ENABLED(CONFIG_PROC_FS)) {
  746. can_remove_proc(net);
  747. if (stats_timer)
  748. del_timer_sync(&net->can.can_stattimer);
  749. }
  750. /* remove created dev_rcv_lists from still registered CAN devices */
  751. rcu_read_lock();
  752. for_each_netdev_rcu(net, dev) {
  753. if (dev->type == ARPHRD_CAN && dev->ml_priv) {
  754. struct dev_rcv_lists *d = dev->ml_priv;
  755. BUG_ON(d->entries);
  756. kfree(d);
  757. dev->ml_priv = NULL;
  758. }
  759. }
  760. rcu_read_unlock();
  761. kfree(net->can.can_rx_alldev_list);
  762. kfree(net->can.can_stats);
  763. kfree(net->can.can_pstats);
  764. }
  765. /*
  766. * af_can module init/exit functions
  767. */
  768. static struct packet_type can_packet __read_mostly = {
  769. .type = cpu_to_be16(ETH_P_CAN),
  770. .func = can_rcv,
  771. };
  772. static struct packet_type canfd_packet __read_mostly = {
  773. .type = cpu_to_be16(ETH_P_CANFD),
  774. .func = canfd_rcv,
  775. };
  776. static const struct net_proto_family can_family_ops = {
  777. .family = PF_CAN,
  778. .create = can_create,
  779. .owner = THIS_MODULE,
  780. };
  781. /* notifier block for netdevice event */
  782. static struct notifier_block can_netdev_notifier __read_mostly = {
  783. .notifier_call = can_notifier,
  784. };
  785. static struct pernet_operations can_pernet_ops __read_mostly = {
  786. .init = can_pernet_init,
  787. .exit = can_pernet_exit,
  788. };
  789. static __init int can_init(void)
  790. {
  791. /* check for correct padding to be able to use the structs similarly */
  792. BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
  793. offsetof(struct canfd_frame, len) ||
  794. offsetof(struct can_frame, data) !=
  795. offsetof(struct canfd_frame, data));
  796. pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
  797. rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
  798. 0, 0, NULL);
  799. if (!rcv_cache)
  800. return -ENOMEM;
  801. register_pernet_subsys(&can_pernet_ops);
  802. /* protocol register */
  803. sock_register(&can_family_ops);
  804. register_netdevice_notifier(&can_netdev_notifier);
  805. dev_add_pack(&can_packet);
  806. dev_add_pack(&canfd_packet);
  807. return 0;
  808. }
  809. static __exit void can_exit(void)
  810. {
  811. /* protocol unregister */
  812. dev_remove_pack(&canfd_packet);
  813. dev_remove_pack(&can_packet);
  814. unregister_netdevice_notifier(&can_netdev_notifier);
  815. sock_unregister(PF_CAN);
  816. unregister_pernet_subsys(&can_pernet_ops);
  817. rcu_barrier(); /* Wait for completion of call_rcu()'s */
  818. kmem_cache_destroy(rcv_cache);
  819. }
  820. module_init(can_init);
  821. module_exit(can_exit);