disk-io.c 122 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int rw;
  119. int mirror_num;
  120. unsigned long bio_flags;
  121. /*
  122. * bio_offset is optional, can be used if the pages in the bio
  123. * can't tell us where in the file the bio should go
  124. */
  125. u64 bio_offset;
  126. struct btrfs_work work;
  127. int error;
  128. };
  129. /*
  130. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  131. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  132. * the level the eb occupies in the tree.
  133. *
  134. * Different roots are used for different purposes and may nest inside each
  135. * other and they require separate keysets. As lockdep keys should be
  136. * static, assign keysets according to the purpose of the root as indicated
  137. * by btrfs_root->objectid. This ensures that all special purpose roots
  138. * have separate keysets.
  139. *
  140. * Lock-nesting across peer nodes is always done with the immediate parent
  141. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  142. * subclass to avoid triggering lockdep warning in such cases.
  143. *
  144. * The key is set by the readpage_end_io_hook after the buffer has passed
  145. * csum validation but before the pages are unlocked. It is also set by
  146. * btrfs_init_new_buffer on freshly allocated blocks.
  147. *
  148. * We also add a check to make sure the highest level of the tree is the
  149. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  150. * needs update as well.
  151. */
  152. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  153. # if BTRFS_MAX_LEVEL != 8
  154. # error
  155. # endif
  156. static struct btrfs_lockdep_keyset {
  157. u64 id; /* root objectid */
  158. const char *name_stem; /* lock name stem */
  159. char names[BTRFS_MAX_LEVEL + 1][20];
  160. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  161. } btrfs_lockdep_keysets[] = {
  162. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  163. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  164. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  165. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  166. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  167. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  168. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  169. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  170. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  171. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  172. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  173. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  174. { .id = 0, .name_stem = "tree" },
  175. };
  176. void __init btrfs_init_lockdep(void)
  177. {
  178. int i, j;
  179. /* initialize lockdep class names */
  180. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  181. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  182. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  183. snprintf(ks->names[j], sizeof(ks->names[j]),
  184. "btrfs-%s-%02d", ks->name_stem, j);
  185. }
  186. }
  187. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  188. int level)
  189. {
  190. struct btrfs_lockdep_keyset *ks;
  191. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  192. /* find the matching keyset, id 0 is the default entry */
  193. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  194. if (ks->id == objectid)
  195. break;
  196. lockdep_set_class_and_name(&eb->lock,
  197. &ks->keys[level], ks->names[level]);
  198. }
  199. #endif
  200. /*
  201. * extents on the btree inode are pretty simple, there's one extent
  202. * that covers the entire device
  203. */
  204. static struct extent_map *btree_get_extent(struct inode *inode,
  205. struct page *page, size_t pg_offset, u64 start, u64 len,
  206. int create)
  207. {
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev =
  215. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  216. read_unlock(&em_tree->lock);
  217. goto out;
  218. }
  219. read_unlock(&em_tree->lock);
  220. em = alloc_extent_map();
  221. if (!em) {
  222. em = ERR_PTR(-ENOMEM);
  223. goto out;
  224. }
  225. em->start = 0;
  226. em->len = (u64)-1;
  227. em->block_len = (u64)-1;
  228. em->block_start = 0;
  229. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  230. write_lock(&em_tree->lock);
  231. ret = add_extent_mapping(em_tree, em, 0);
  232. if (ret == -EEXIST) {
  233. free_extent_map(em);
  234. em = lookup_extent_mapping(em_tree, start, len);
  235. if (!em)
  236. em = ERR_PTR(-EIO);
  237. } else if (ret) {
  238. free_extent_map(em);
  239. em = ERR_PTR(ret);
  240. }
  241. write_unlock(&em_tree->lock);
  242. out:
  243. return em;
  244. }
  245. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  246. {
  247. return btrfs_crc32c(seed, data, len);
  248. }
  249. void btrfs_csum_final(u32 crc, char *result)
  250. {
  251. put_unaligned_le32(~crc, result);
  252. }
  253. /*
  254. * compute the csum for a btree block, and either verify it or write it
  255. * into the csum field of the block.
  256. */
  257. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  258. struct extent_buffer *buf,
  259. int verify)
  260. {
  261. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  262. char *result = NULL;
  263. unsigned long len;
  264. unsigned long cur_len;
  265. unsigned long offset = BTRFS_CSUM_SIZE;
  266. char *kaddr;
  267. unsigned long map_start;
  268. unsigned long map_len;
  269. int err;
  270. u32 crc = ~(u32)0;
  271. unsigned long inline_result;
  272. len = buf->len - offset;
  273. while (len > 0) {
  274. err = map_private_extent_buffer(buf, offset, 32,
  275. &kaddr, &map_start, &map_len);
  276. if (err)
  277. return err;
  278. cur_len = min(len, map_len - (offset - map_start));
  279. crc = btrfs_csum_data(kaddr + offset - map_start,
  280. crc, cur_len);
  281. len -= cur_len;
  282. offset += cur_len;
  283. }
  284. if (csum_size > sizeof(inline_result)) {
  285. result = kzalloc(csum_size, GFP_NOFS);
  286. if (!result)
  287. return -ENOMEM;
  288. } else {
  289. result = (char *)&inline_result;
  290. }
  291. btrfs_csum_final(crc, result);
  292. if (verify) {
  293. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  294. u32 val;
  295. u32 found = 0;
  296. memcpy(&found, result, csum_size);
  297. read_extent_buffer(buf, &val, 0, csum_size);
  298. btrfs_warn_rl(fs_info,
  299. "%s checksum verify failed on %llu wanted %X found %X "
  300. "level %d",
  301. fs_info->sb->s_id, buf->start,
  302. val, found, btrfs_header_level(buf));
  303. if (result != (char *)&inline_result)
  304. kfree(result);
  305. return -EUCLEAN;
  306. }
  307. } else {
  308. write_extent_buffer(buf, result, 0, csum_size);
  309. }
  310. if (result != (char *)&inline_result)
  311. kfree(result);
  312. return 0;
  313. }
  314. /*
  315. * we can't consider a given block up to date unless the transid of the
  316. * block matches the transid in the parent node's pointer. This is how we
  317. * detect blocks that either didn't get written at all or got written
  318. * in the wrong place.
  319. */
  320. static int verify_parent_transid(struct extent_io_tree *io_tree,
  321. struct extent_buffer *eb, u64 parent_transid,
  322. int atomic)
  323. {
  324. struct extent_state *cached_state = NULL;
  325. int ret;
  326. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  327. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  328. return 0;
  329. if (atomic)
  330. return -EAGAIN;
  331. if (need_lock) {
  332. btrfs_tree_read_lock(eb);
  333. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  334. }
  335. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  336. &cached_state);
  337. if (extent_buffer_uptodate(eb) &&
  338. btrfs_header_generation(eb) == parent_transid) {
  339. ret = 0;
  340. goto out;
  341. }
  342. btrfs_err_rl(eb->fs_info,
  343. "parent transid verify failed on %llu wanted %llu found %llu",
  344. eb->start,
  345. parent_transid, btrfs_header_generation(eb));
  346. ret = 1;
  347. /*
  348. * Things reading via commit roots that don't have normal protection,
  349. * like send, can have a really old block in cache that may point at a
  350. * block that has been freed and re-allocated. So don't clear uptodate
  351. * if we find an eb that is under IO (dirty/writeback) because we could
  352. * end up reading in the stale data and then writing it back out and
  353. * making everybody very sad.
  354. */
  355. if (!extent_buffer_under_io(eb))
  356. clear_extent_buffer_uptodate(eb);
  357. out:
  358. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  359. &cached_state, GFP_NOFS);
  360. if (need_lock)
  361. btrfs_tree_read_unlock_blocking(eb);
  362. return ret;
  363. }
  364. /*
  365. * Return 0 if the superblock checksum type matches the checksum value of that
  366. * algorithm. Pass the raw disk superblock data.
  367. */
  368. static int btrfs_check_super_csum(char *raw_disk_sb)
  369. {
  370. struct btrfs_super_block *disk_sb =
  371. (struct btrfs_super_block *)raw_disk_sb;
  372. u16 csum_type = btrfs_super_csum_type(disk_sb);
  373. int ret = 0;
  374. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  375. u32 crc = ~(u32)0;
  376. const int csum_size = sizeof(crc);
  377. char result[csum_size];
  378. /*
  379. * The super_block structure does not span the whole
  380. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  381. * is filled with zeros and is included in the checksum.
  382. */
  383. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  384. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  385. btrfs_csum_final(crc, result);
  386. if (memcmp(raw_disk_sb, result, csum_size))
  387. ret = 1;
  388. }
  389. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  390. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  391. csum_type);
  392. ret = 1;
  393. }
  394. return ret;
  395. }
  396. /*
  397. * helper to read a given tree block, doing retries as required when
  398. * the checksums don't match and we have alternate mirrors to try.
  399. */
  400. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  401. struct extent_buffer *eb,
  402. u64 start, u64 parent_transid)
  403. {
  404. struct extent_io_tree *io_tree;
  405. int failed = 0;
  406. int ret;
  407. int num_copies = 0;
  408. int mirror_num = 0;
  409. int failed_mirror = 0;
  410. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  411. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. ret = read_extent_buffer_pages(io_tree, eb, start,
  414. WAIT_COMPLETE,
  415. btree_get_extent, mirror_num);
  416. if (!ret) {
  417. if (!verify_parent_transid(io_tree, eb,
  418. parent_transid, 0))
  419. break;
  420. else
  421. ret = -EIO;
  422. }
  423. /*
  424. * This buffer's crc is fine, but its contents are corrupted, so
  425. * there is no reason to read the other copies, they won't be
  426. * any less wrong.
  427. */
  428. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  429. break;
  430. num_copies = btrfs_num_copies(root->fs_info,
  431. eb->start, eb->len);
  432. if (num_copies == 1)
  433. break;
  434. if (!failed_mirror) {
  435. failed = 1;
  436. failed_mirror = eb->read_mirror;
  437. }
  438. mirror_num++;
  439. if (mirror_num == failed_mirror)
  440. mirror_num++;
  441. if (mirror_num > num_copies)
  442. break;
  443. }
  444. if (failed && !ret && failed_mirror)
  445. repair_eb_io_failure(root, eb, failed_mirror);
  446. return ret;
  447. }
  448. /*
  449. * checksum a dirty tree block before IO. This has extra checks to make sure
  450. * we only fill in the checksum field in the first page of a multi-page block
  451. */
  452. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  453. {
  454. u64 start = page_offset(page);
  455. u64 found_start;
  456. struct extent_buffer *eb;
  457. eb = (struct extent_buffer *)page->private;
  458. if (page != eb->pages[0])
  459. return 0;
  460. found_start = btrfs_header_bytenr(eb);
  461. /*
  462. * Please do not consolidate these warnings into a single if.
  463. * It is useful to know what went wrong.
  464. */
  465. if (WARN_ON(found_start != start))
  466. return -EUCLEAN;
  467. if (WARN_ON(!PageUptodate(page)))
  468. return -EUCLEAN;
  469. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  470. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  471. return csum_tree_block(fs_info, eb, 0);
  472. }
  473. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  474. struct extent_buffer *eb)
  475. {
  476. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  477. u8 fsid[BTRFS_UUID_SIZE];
  478. int ret = 1;
  479. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  480. while (fs_devices) {
  481. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  482. ret = 0;
  483. break;
  484. }
  485. fs_devices = fs_devices->seed;
  486. }
  487. return ret;
  488. }
  489. #define CORRUPT(reason, eb, root, slot) \
  490. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  491. "root=%llu, slot=%d", reason, \
  492. btrfs_header_bytenr(eb), root->objectid, slot)
  493. static noinline int check_leaf(struct btrfs_root *root,
  494. struct extent_buffer *leaf)
  495. {
  496. struct btrfs_key key;
  497. struct btrfs_key leaf_key;
  498. u32 nritems = btrfs_header_nritems(leaf);
  499. int slot;
  500. if (nritems == 0)
  501. return 0;
  502. /* Check the 0 item */
  503. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  504. BTRFS_LEAF_DATA_SIZE(root)) {
  505. CORRUPT("invalid item offset size pair", leaf, root, 0);
  506. return -EIO;
  507. }
  508. /*
  509. * Check to make sure each items keys are in the correct order and their
  510. * offsets make sense. We only have to loop through nritems-1 because
  511. * we check the current slot against the next slot, which verifies the
  512. * next slot's offset+size makes sense and that the current's slot
  513. * offset is correct.
  514. */
  515. for (slot = 0; slot < nritems - 1; slot++) {
  516. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  517. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  518. /* Make sure the keys are in the right order */
  519. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  520. CORRUPT("bad key order", leaf, root, slot);
  521. return -EIO;
  522. }
  523. /*
  524. * Make sure the offset and ends are right, remember that the
  525. * item data starts at the end of the leaf and grows towards the
  526. * front.
  527. */
  528. if (btrfs_item_offset_nr(leaf, slot) !=
  529. btrfs_item_end_nr(leaf, slot + 1)) {
  530. CORRUPT("slot offset bad", leaf, root, slot);
  531. return -EIO;
  532. }
  533. /*
  534. * Check to make sure that we don't point outside of the leaf,
  535. * just in case all the items are consistent to each other, but
  536. * all point outside of the leaf.
  537. */
  538. if (btrfs_item_end_nr(leaf, slot) >
  539. BTRFS_LEAF_DATA_SIZE(root)) {
  540. CORRUPT("slot end outside of leaf", leaf, root, slot);
  541. return -EIO;
  542. }
  543. }
  544. return 0;
  545. }
  546. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  547. u64 phy_offset, struct page *page,
  548. u64 start, u64 end, int mirror)
  549. {
  550. u64 found_start;
  551. int found_level;
  552. struct extent_buffer *eb;
  553. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  554. struct btrfs_fs_info *fs_info = root->fs_info;
  555. int ret = 0;
  556. int reads_done;
  557. if (!page->private)
  558. goto out;
  559. eb = (struct extent_buffer *)page->private;
  560. /* the pending IO might have been the only thing that kept this buffer
  561. * in memory. Make sure we have a ref for all this other checks
  562. */
  563. extent_buffer_get(eb);
  564. reads_done = atomic_dec_and_test(&eb->io_pages);
  565. if (!reads_done)
  566. goto err;
  567. eb->read_mirror = mirror;
  568. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  569. ret = -EIO;
  570. goto err;
  571. }
  572. found_start = btrfs_header_bytenr(eb);
  573. if (found_start != eb->start) {
  574. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  575. found_start, eb->start);
  576. ret = -EIO;
  577. goto err;
  578. }
  579. if (check_tree_block_fsid(fs_info, eb)) {
  580. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  581. eb->start);
  582. ret = -EIO;
  583. goto err;
  584. }
  585. found_level = btrfs_header_level(eb);
  586. if (found_level >= BTRFS_MAX_LEVEL) {
  587. btrfs_err(fs_info, "bad tree block level %d",
  588. (int)btrfs_header_level(eb));
  589. ret = -EIO;
  590. goto err;
  591. }
  592. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  593. eb, found_level);
  594. ret = csum_tree_block(fs_info, eb, 1);
  595. if (ret)
  596. goto err;
  597. /*
  598. * If this is a leaf block and it is corrupt, set the corrupt bit so
  599. * that we don't try and read the other copies of this block, just
  600. * return -EIO.
  601. */
  602. if (found_level == 0 && check_leaf(root, eb)) {
  603. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  604. ret = -EIO;
  605. }
  606. if (!ret)
  607. set_extent_buffer_uptodate(eb);
  608. err:
  609. if (reads_done &&
  610. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  611. btree_readahead_hook(fs_info, eb, eb->start, ret);
  612. if (ret) {
  613. /*
  614. * our io error hook is going to dec the io pages
  615. * again, we have to make sure it has something
  616. * to decrement
  617. */
  618. atomic_inc(&eb->io_pages);
  619. clear_extent_buffer_uptodate(eb);
  620. }
  621. free_extent_buffer(eb);
  622. out:
  623. return ret;
  624. }
  625. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  626. {
  627. struct extent_buffer *eb;
  628. eb = (struct extent_buffer *)page->private;
  629. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  630. eb->read_mirror = failed_mirror;
  631. atomic_dec(&eb->io_pages);
  632. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  633. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  634. return -EIO; /* we fixed nothing */
  635. }
  636. static void end_workqueue_bio(struct bio *bio)
  637. {
  638. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  639. struct btrfs_fs_info *fs_info;
  640. struct btrfs_workqueue *wq;
  641. btrfs_work_func_t func;
  642. fs_info = end_io_wq->info;
  643. end_io_wq->error = bio->bi_error;
  644. if (bio->bi_rw & REQ_WRITE) {
  645. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  646. wq = fs_info->endio_meta_write_workers;
  647. func = btrfs_endio_meta_write_helper;
  648. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  649. wq = fs_info->endio_freespace_worker;
  650. func = btrfs_freespace_write_helper;
  651. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  652. wq = fs_info->endio_raid56_workers;
  653. func = btrfs_endio_raid56_helper;
  654. } else {
  655. wq = fs_info->endio_write_workers;
  656. func = btrfs_endio_write_helper;
  657. }
  658. } else {
  659. if (unlikely(end_io_wq->metadata ==
  660. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  661. wq = fs_info->endio_repair_workers;
  662. func = btrfs_endio_repair_helper;
  663. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  664. wq = fs_info->endio_raid56_workers;
  665. func = btrfs_endio_raid56_helper;
  666. } else if (end_io_wq->metadata) {
  667. wq = fs_info->endio_meta_workers;
  668. func = btrfs_endio_meta_helper;
  669. } else {
  670. wq = fs_info->endio_workers;
  671. func = btrfs_endio_helper;
  672. }
  673. }
  674. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  675. btrfs_queue_work(wq, &end_io_wq->work);
  676. }
  677. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  678. enum btrfs_wq_endio_type metadata)
  679. {
  680. struct btrfs_end_io_wq *end_io_wq;
  681. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  682. if (!end_io_wq)
  683. return -ENOMEM;
  684. end_io_wq->private = bio->bi_private;
  685. end_io_wq->end_io = bio->bi_end_io;
  686. end_io_wq->info = info;
  687. end_io_wq->error = 0;
  688. end_io_wq->bio = bio;
  689. end_io_wq->metadata = metadata;
  690. bio->bi_private = end_io_wq;
  691. bio->bi_end_io = end_workqueue_bio;
  692. return 0;
  693. }
  694. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  695. {
  696. unsigned long limit = min_t(unsigned long,
  697. info->thread_pool_size,
  698. info->fs_devices->open_devices);
  699. return 256 * limit;
  700. }
  701. static void run_one_async_start(struct btrfs_work *work)
  702. {
  703. struct async_submit_bio *async;
  704. int ret;
  705. async = container_of(work, struct async_submit_bio, work);
  706. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  707. async->mirror_num, async->bio_flags,
  708. async->bio_offset);
  709. if (ret)
  710. async->error = ret;
  711. }
  712. static void run_one_async_done(struct btrfs_work *work)
  713. {
  714. struct btrfs_fs_info *fs_info;
  715. struct async_submit_bio *async;
  716. int limit;
  717. async = container_of(work, struct async_submit_bio, work);
  718. fs_info = BTRFS_I(async->inode)->root->fs_info;
  719. limit = btrfs_async_submit_limit(fs_info);
  720. limit = limit * 2 / 3;
  721. /*
  722. * atomic_dec_return implies a barrier for waitqueue_active
  723. */
  724. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  725. waitqueue_active(&fs_info->async_submit_wait))
  726. wake_up(&fs_info->async_submit_wait);
  727. /* If an error occurred we just want to clean up the bio and move on */
  728. if (async->error) {
  729. async->bio->bi_error = async->error;
  730. bio_endio(async->bio);
  731. return;
  732. }
  733. async->submit_bio_done(async->inode, async->rw, async->bio,
  734. async->mirror_num, async->bio_flags,
  735. async->bio_offset);
  736. }
  737. static void run_one_async_free(struct btrfs_work *work)
  738. {
  739. struct async_submit_bio *async;
  740. async = container_of(work, struct async_submit_bio, work);
  741. kfree(async);
  742. }
  743. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  744. int rw, struct bio *bio, int mirror_num,
  745. unsigned long bio_flags,
  746. u64 bio_offset,
  747. extent_submit_bio_hook_t *submit_bio_start,
  748. extent_submit_bio_hook_t *submit_bio_done)
  749. {
  750. struct async_submit_bio *async;
  751. async = kmalloc(sizeof(*async), GFP_NOFS);
  752. if (!async)
  753. return -ENOMEM;
  754. async->inode = inode;
  755. async->rw = rw;
  756. async->bio = bio;
  757. async->mirror_num = mirror_num;
  758. async->submit_bio_start = submit_bio_start;
  759. async->submit_bio_done = submit_bio_done;
  760. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  761. run_one_async_done, run_one_async_free);
  762. async->bio_flags = bio_flags;
  763. async->bio_offset = bio_offset;
  764. async->error = 0;
  765. atomic_inc(&fs_info->nr_async_submits);
  766. if (rw & REQ_SYNC)
  767. btrfs_set_work_high_priority(&async->work);
  768. btrfs_queue_work(fs_info->workers, &async->work);
  769. while (atomic_read(&fs_info->async_submit_draining) &&
  770. atomic_read(&fs_info->nr_async_submits)) {
  771. wait_event(fs_info->async_submit_wait,
  772. (atomic_read(&fs_info->nr_async_submits) == 0));
  773. }
  774. return 0;
  775. }
  776. static int btree_csum_one_bio(struct bio *bio)
  777. {
  778. struct bio_vec *bvec;
  779. struct btrfs_root *root;
  780. int i, ret = 0;
  781. bio_for_each_segment_all(bvec, bio, i) {
  782. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  783. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  784. if (ret)
  785. break;
  786. }
  787. return ret;
  788. }
  789. static int __btree_submit_bio_start(struct inode *inode, int rw,
  790. struct bio *bio, int mirror_num,
  791. unsigned long bio_flags,
  792. u64 bio_offset)
  793. {
  794. /*
  795. * when we're called for a write, we're already in the async
  796. * submission context. Just jump into btrfs_map_bio
  797. */
  798. return btree_csum_one_bio(bio);
  799. }
  800. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  801. int mirror_num, unsigned long bio_flags,
  802. u64 bio_offset)
  803. {
  804. int ret;
  805. /*
  806. * when we're called for a write, we're already in the async
  807. * submission context. Just jump into btrfs_map_bio
  808. */
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  810. if (ret) {
  811. bio->bi_error = ret;
  812. bio_endio(bio);
  813. }
  814. return ret;
  815. }
  816. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  817. {
  818. if (bio_flags & EXTENT_BIO_TREE_LOG)
  819. return 0;
  820. #ifdef CONFIG_X86
  821. if (static_cpu_has(X86_FEATURE_XMM4_2))
  822. return 0;
  823. #endif
  824. return 1;
  825. }
  826. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  827. int mirror_num, unsigned long bio_flags,
  828. u64 bio_offset)
  829. {
  830. int async = check_async_write(inode, bio_flags);
  831. int ret;
  832. if (!(rw & REQ_WRITE)) {
  833. /*
  834. * called for a read, do the setup so that checksum validation
  835. * can happen in the async kernel threads
  836. */
  837. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  838. bio, BTRFS_WQ_ENDIO_METADATA);
  839. if (ret)
  840. goto out_w_error;
  841. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  842. mirror_num, 0);
  843. } else if (!async) {
  844. ret = btree_csum_one_bio(bio);
  845. if (ret)
  846. goto out_w_error;
  847. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  848. mirror_num, 0);
  849. } else {
  850. /*
  851. * kthread helpers are used to submit writes so that
  852. * checksumming can happen in parallel across all CPUs
  853. */
  854. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  855. inode, rw, bio, mirror_num, 0,
  856. bio_offset,
  857. __btree_submit_bio_start,
  858. __btree_submit_bio_done);
  859. }
  860. if (ret)
  861. goto out_w_error;
  862. return 0;
  863. out_w_error:
  864. bio->bi_error = ret;
  865. bio_endio(bio);
  866. return ret;
  867. }
  868. #ifdef CONFIG_MIGRATION
  869. static int btree_migratepage(struct address_space *mapping,
  870. struct page *newpage, struct page *page,
  871. enum migrate_mode mode)
  872. {
  873. /*
  874. * we can't safely write a btree page from here,
  875. * we haven't done the locking hook
  876. */
  877. if (PageDirty(page))
  878. return -EAGAIN;
  879. /*
  880. * Buffers may be managed in a filesystem specific way.
  881. * We must have no buffers or drop them.
  882. */
  883. if (page_has_private(page) &&
  884. !try_to_release_page(page, GFP_KERNEL))
  885. return -EAGAIN;
  886. return migrate_page(mapping, newpage, page, mode);
  887. }
  888. #endif
  889. static int btree_writepages(struct address_space *mapping,
  890. struct writeback_control *wbc)
  891. {
  892. struct btrfs_fs_info *fs_info;
  893. int ret;
  894. if (wbc->sync_mode == WB_SYNC_NONE) {
  895. if (wbc->for_kupdate)
  896. return 0;
  897. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  898. /* this is a bit racy, but that's ok */
  899. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  900. BTRFS_DIRTY_METADATA_THRESH);
  901. if (ret < 0)
  902. return 0;
  903. }
  904. return btree_write_cache_pages(mapping, wbc);
  905. }
  906. static int btree_readpage(struct file *file, struct page *page)
  907. {
  908. struct extent_io_tree *tree;
  909. tree = &BTRFS_I(page->mapping->host)->io_tree;
  910. return extent_read_full_page(tree, page, btree_get_extent, 0);
  911. }
  912. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  913. {
  914. if (PageWriteback(page) || PageDirty(page))
  915. return 0;
  916. return try_release_extent_buffer(page);
  917. }
  918. static void btree_invalidatepage(struct page *page, unsigned int offset,
  919. unsigned int length)
  920. {
  921. struct extent_io_tree *tree;
  922. tree = &BTRFS_I(page->mapping->host)->io_tree;
  923. extent_invalidatepage(tree, page, offset);
  924. btree_releasepage(page, GFP_NOFS);
  925. if (PagePrivate(page)) {
  926. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  927. "page private not zero on page %llu",
  928. (unsigned long long)page_offset(page));
  929. ClearPagePrivate(page);
  930. set_page_private(page, 0);
  931. put_page(page);
  932. }
  933. }
  934. static int btree_set_page_dirty(struct page *page)
  935. {
  936. #ifdef DEBUG
  937. struct extent_buffer *eb;
  938. BUG_ON(!PagePrivate(page));
  939. eb = (struct extent_buffer *)page->private;
  940. BUG_ON(!eb);
  941. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  942. BUG_ON(!atomic_read(&eb->refs));
  943. btrfs_assert_tree_locked(eb);
  944. #endif
  945. return __set_page_dirty_nobuffers(page);
  946. }
  947. static const struct address_space_operations btree_aops = {
  948. .readpage = btree_readpage,
  949. .writepages = btree_writepages,
  950. .releasepage = btree_releasepage,
  951. .invalidatepage = btree_invalidatepage,
  952. #ifdef CONFIG_MIGRATION
  953. .migratepage = btree_migratepage,
  954. #endif
  955. .set_page_dirty = btree_set_page_dirty,
  956. };
  957. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  958. {
  959. struct extent_buffer *buf = NULL;
  960. struct inode *btree_inode = root->fs_info->btree_inode;
  961. buf = btrfs_find_create_tree_block(root, bytenr);
  962. if (IS_ERR(buf))
  963. return;
  964. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  965. buf, 0, WAIT_NONE, btree_get_extent, 0);
  966. free_extent_buffer(buf);
  967. }
  968. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  969. int mirror_num, struct extent_buffer **eb)
  970. {
  971. struct extent_buffer *buf = NULL;
  972. struct inode *btree_inode = root->fs_info->btree_inode;
  973. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  974. int ret;
  975. buf = btrfs_find_create_tree_block(root, bytenr);
  976. if (IS_ERR(buf))
  977. return 0;
  978. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  979. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  980. btree_get_extent, mirror_num);
  981. if (ret) {
  982. free_extent_buffer(buf);
  983. return ret;
  984. }
  985. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  986. free_extent_buffer(buf);
  987. return -EIO;
  988. } else if (extent_buffer_uptodate(buf)) {
  989. *eb = buf;
  990. } else {
  991. free_extent_buffer(buf);
  992. }
  993. return 0;
  994. }
  995. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  996. u64 bytenr)
  997. {
  998. return find_extent_buffer(fs_info, bytenr);
  999. }
  1000. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  1001. u64 bytenr)
  1002. {
  1003. if (btrfs_test_is_dummy_root(root))
  1004. return alloc_test_extent_buffer(root->fs_info, bytenr,
  1005. root->nodesize);
  1006. return alloc_extent_buffer(root->fs_info, bytenr);
  1007. }
  1008. int btrfs_write_tree_block(struct extent_buffer *buf)
  1009. {
  1010. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1011. buf->start + buf->len - 1);
  1012. }
  1013. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1014. {
  1015. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1016. buf->start, buf->start + buf->len - 1);
  1017. }
  1018. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1019. u64 parent_transid)
  1020. {
  1021. struct extent_buffer *buf = NULL;
  1022. int ret;
  1023. buf = btrfs_find_create_tree_block(root, bytenr);
  1024. if (IS_ERR(buf))
  1025. return buf;
  1026. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1027. if (ret) {
  1028. free_extent_buffer(buf);
  1029. return ERR_PTR(ret);
  1030. }
  1031. return buf;
  1032. }
  1033. void clean_tree_block(struct btrfs_trans_handle *trans,
  1034. struct btrfs_fs_info *fs_info,
  1035. struct extent_buffer *buf)
  1036. {
  1037. if (btrfs_header_generation(buf) ==
  1038. fs_info->running_transaction->transid) {
  1039. btrfs_assert_tree_locked(buf);
  1040. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1041. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1042. -buf->len,
  1043. fs_info->dirty_metadata_batch);
  1044. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1045. btrfs_set_lock_blocking(buf);
  1046. clear_extent_buffer_dirty(buf);
  1047. }
  1048. }
  1049. }
  1050. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1051. {
  1052. struct btrfs_subvolume_writers *writers;
  1053. int ret;
  1054. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1055. if (!writers)
  1056. return ERR_PTR(-ENOMEM);
  1057. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1058. if (ret < 0) {
  1059. kfree(writers);
  1060. return ERR_PTR(ret);
  1061. }
  1062. init_waitqueue_head(&writers->wait);
  1063. return writers;
  1064. }
  1065. static void
  1066. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1067. {
  1068. percpu_counter_destroy(&writers->counter);
  1069. kfree(writers);
  1070. }
  1071. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1072. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1073. u64 objectid)
  1074. {
  1075. root->node = NULL;
  1076. root->commit_root = NULL;
  1077. root->sectorsize = sectorsize;
  1078. root->nodesize = nodesize;
  1079. root->stripesize = stripesize;
  1080. root->state = 0;
  1081. root->orphan_cleanup_state = 0;
  1082. root->objectid = objectid;
  1083. root->last_trans = 0;
  1084. root->highest_objectid = 0;
  1085. root->nr_delalloc_inodes = 0;
  1086. root->nr_ordered_extents = 0;
  1087. root->name = NULL;
  1088. root->inode_tree = RB_ROOT;
  1089. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1090. root->block_rsv = NULL;
  1091. root->orphan_block_rsv = NULL;
  1092. INIT_LIST_HEAD(&root->dirty_list);
  1093. INIT_LIST_HEAD(&root->root_list);
  1094. INIT_LIST_HEAD(&root->delalloc_inodes);
  1095. INIT_LIST_HEAD(&root->delalloc_root);
  1096. INIT_LIST_HEAD(&root->ordered_extents);
  1097. INIT_LIST_HEAD(&root->ordered_root);
  1098. INIT_LIST_HEAD(&root->logged_list[0]);
  1099. INIT_LIST_HEAD(&root->logged_list[1]);
  1100. spin_lock_init(&root->orphan_lock);
  1101. spin_lock_init(&root->inode_lock);
  1102. spin_lock_init(&root->delalloc_lock);
  1103. spin_lock_init(&root->ordered_extent_lock);
  1104. spin_lock_init(&root->accounting_lock);
  1105. spin_lock_init(&root->log_extents_lock[0]);
  1106. spin_lock_init(&root->log_extents_lock[1]);
  1107. mutex_init(&root->objectid_mutex);
  1108. mutex_init(&root->log_mutex);
  1109. mutex_init(&root->ordered_extent_mutex);
  1110. mutex_init(&root->delalloc_mutex);
  1111. init_waitqueue_head(&root->log_writer_wait);
  1112. init_waitqueue_head(&root->log_commit_wait[0]);
  1113. init_waitqueue_head(&root->log_commit_wait[1]);
  1114. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1115. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1116. atomic_set(&root->log_commit[0], 0);
  1117. atomic_set(&root->log_commit[1], 0);
  1118. atomic_set(&root->log_writers, 0);
  1119. atomic_set(&root->log_batch, 0);
  1120. atomic_set(&root->orphan_inodes, 0);
  1121. atomic_set(&root->refs, 1);
  1122. atomic_set(&root->will_be_snapshoted, 0);
  1123. atomic_set(&root->qgroup_meta_rsv, 0);
  1124. root->log_transid = 0;
  1125. root->log_transid_committed = -1;
  1126. root->last_log_commit = 0;
  1127. if (fs_info)
  1128. extent_io_tree_init(&root->dirty_log_pages,
  1129. fs_info->btree_inode->i_mapping);
  1130. memset(&root->root_key, 0, sizeof(root->root_key));
  1131. memset(&root->root_item, 0, sizeof(root->root_item));
  1132. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1133. if (fs_info)
  1134. root->defrag_trans_start = fs_info->generation;
  1135. else
  1136. root->defrag_trans_start = 0;
  1137. root->root_key.objectid = objectid;
  1138. root->anon_dev = 0;
  1139. spin_lock_init(&root->root_item_lock);
  1140. }
  1141. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1142. gfp_t flags)
  1143. {
  1144. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1145. if (root)
  1146. root->fs_info = fs_info;
  1147. return root;
  1148. }
  1149. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1150. /* Should only be used by the testing infrastructure */
  1151. struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
  1152. {
  1153. struct btrfs_root *root;
  1154. root = btrfs_alloc_root(NULL, GFP_KERNEL);
  1155. if (!root)
  1156. return ERR_PTR(-ENOMEM);
  1157. /* We don't use the stripesize in selftest, set it as sectorsize */
  1158. __setup_root(nodesize, sectorsize, sectorsize, root, NULL,
  1159. BTRFS_ROOT_TREE_OBJECTID);
  1160. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1161. root->alloc_bytenr = 0;
  1162. return root;
  1163. }
  1164. #endif
  1165. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1166. struct btrfs_fs_info *fs_info,
  1167. u64 objectid)
  1168. {
  1169. struct extent_buffer *leaf;
  1170. struct btrfs_root *tree_root = fs_info->tree_root;
  1171. struct btrfs_root *root;
  1172. struct btrfs_key key;
  1173. int ret = 0;
  1174. uuid_le uuid;
  1175. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1176. if (!root)
  1177. return ERR_PTR(-ENOMEM);
  1178. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1179. tree_root->stripesize, root, fs_info, objectid);
  1180. root->root_key.objectid = objectid;
  1181. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1182. root->root_key.offset = 0;
  1183. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1184. if (IS_ERR(leaf)) {
  1185. ret = PTR_ERR(leaf);
  1186. leaf = NULL;
  1187. goto fail;
  1188. }
  1189. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1190. btrfs_set_header_bytenr(leaf, leaf->start);
  1191. btrfs_set_header_generation(leaf, trans->transid);
  1192. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1193. btrfs_set_header_owner(leaf, objectid);
  1194. root->node = leaf;
  1195. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1196. BTRFS_FSID_SIZE);
  1197. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1198. btrfs_header_chunk_tree_uuid(leaf),
  1199. BTRFS_UUID_SIZE);
  1200. btrfs_mark_buffer_dirty(leaf);
  1201. root->commit_root = btrfs_root_node(root);
  1202. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1203. root->root_item.flags = 0;
  1204. root->root_item.byte_limit = 0;
  1205. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1206. btrfs_set_root_generation(&root->root_item, trans->transid);
  1207. btrfs_set_root_level(&root->root_item, 0);
  1208. btrfs_set_root_refs(&root->root_item, 1);
  1209. btrfs_set_root_used(&root->root_item, leaf->len);
  1210. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1211. btrfs_set_root_dirid(&root->root_item, 0);
  1212. uuid_le_gen(&uuid);
  1213. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1214. root->root_item.drop_level = 0;
  1215. key.objectid = objectid;
  1216. key.type = BTRFS_ROOT_ITEM_KEY;
  1217. key.offset = 0;
  1218. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1219. if (ret)
  1220. goto fail;
  1221. btrfs_tree_unlock(leaf);
  1222. return root;
  1223. fail:
  1224. if (leaf) {
  1225. btrfs_tree_unlock(leaf);
  1226. free_extent_buffer(root->commit_root);
  1227. free_extent_buffer(leaf);
  1228. }
  1229. kfree(root);
  1230. return ERR_PTR(ret);
  1231. }
  1232. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1233. struct btrfs_fs_info *fs_info)
  1234. {
  1235. struct btrfs_root *root;
  1236. struct btrfs_root *tree_root = fs_info->tree_root;
  1237. struct extent_buffer *leaf;
  1238. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1239. if (!root)
  1240. return ERR_PTR(-ENOMEM);
  1241. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1242. tree_root->stripesize, root, fs_info,
  1243. BTRFS_TREE_LOG_OBJECTID);
  1244. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1245. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1246. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1247. /*
  1248. * DON'T set REF_COWS for log trees
  1249. *
  1250. * log trees do not get reference counted because they go away
  1251. * before a real commit is actually done. They do store pointers
  1252. * to file data extents, and those reference counts still get
  1253. * updated (along with back refs to the log tree).
  1254. */
  1255. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1256. NULL, 0, 0, 0);
  1257. if (IS_ERR(leaf)) {
  1258. kfree(root);
  1259. return ERR_CAST(leaf);
  1260. }
  1261. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1262. btrfs_set_header_bytenr(leaf, leaf->start);
  1263. btrfs_set_header_generation(leaf, trans->transid);
  1264. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1265. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1266. root->node = leaf;
  1267. write_extent_buffer(root->node, root->fs_info->fsid,
  1268. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1269. btrfs_mark_buffer_dirty(root->node);
  1270. btrfs_tree_unlock(root->node);
  1271. return root;
  1272. }
  1273. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1274. struct btrfs_fs_info *fs_info)
  1275. {
  1276. struct btrfs_root *log_root;
  1277. log_root = alloc_log_tree(trans, fs_info);
  1278. if (IS_ERR(log_root))
  1279. return PTR_ERR(log_root);
  1280. WARN_ON(fs_info->log_root_tree);
  1281. fs_info->log_root_tree = log_root;
  1282. return 0;
  1283. }
  1284. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1285. struct btrfs_root *root)
  1286. {
  1287. struct btrfs_root *log_root;
  1288. struct btrfs_inode_item *inode_item;
  1289. log_root = alloc_log_tree(trans, root->fs_info);
  1290. if (IS_ERR(log_root))
  1291. return PTR_ERR(log_root);
  1292. log_root->last_trans = trans->transid;
  1293. log_root->root_key.offset = root->root_key.objectid;
  1294. inode_item = &log_root->root_item.inode;
  1295. btrfs_set_stack_inode_generation(inode_item, 1);
  1296. btrfs_set_stack_inode_size(inode_item, 3);
  1297. btrfs_set_stack_inode_nlink(inode_item, 1);
  1298. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1299. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1300. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1301. WARN_ON(root->log_root);
  1302. root->log_root = log_root;
  1303. root->log_transid = 0;
  1304. root->log_transid_committed = -1;
  1305. root->last_log_commit = 0;
  1306. return 0;
  1307. }
  1308. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1309. struct btrfs_key *key)
  1310. {
  1311. struct btrfs_root *root;
  1312. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1313. struct btrfs_path *path;
  1314. u64 generation;
  1315. int ret;
  1316. path = btrfs_alloc_path();
  1317. if (!path)
  1318. return ERR_PTR(-ENOMEM);
  1319. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1320. if (!root) {
  1321. ret = -ENOMEM;
  1322. goto alloc_fail;
  1323. }
  1324. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1325. tree_root->stripesize, root, fs_info, key->objectid);
  1326. ret = btrfs_find_root(tree_root, key, path,
  1327. &root->root_item, &root->root_key);
  1328. if (ret) {
  1329. if (ret > 0)
  1330. ret = -ENOENT;
  1331. goto find_fail;
  1332. }
  1333. generation = btrfs_root_generation(&root->root_item);
  1334. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1335. generation);
  1336. if (IS_ERR(root->node)) {
  1337. ret = PTR_ERR(root->node);
  1338. goto find_fail;
  1339. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1340. ret = -EIO;
  1341. free_extent_buffer(root->node);
  1342. goto find_fail;
  1343. }
  1344. root->commit_root = btrfs_root_node(root);
  1345. out:
  1346. btrfs_free_path(path);
  1347. return root;
  1348. find_fail:
  1349. kfree(root);
  1350. alloc_fail:
  1351. root = ERR_PTR(ret);
  1352. goto out;
  1353. }
  1354. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1355. struct btrfs_key *location)
  1356. {
  1357. struct btrfs_root *root;
  1358. root = btrfs_read_tree_root(tree_root, location);
  1359. if (IS_ERR(root))
  1360. return root;
  1361. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1362. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1363. btrfs_check_and_init_root_item(&root->root_item);
  1364. }
  1365. return root;
  1366. }
  1367. int btrfs_init_fs_root(struct btrfs_root *root)
  1368. {
  1369. int ret;
  1370. struct btrfs_subvolume_writers *writers;
  1371. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1372. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1373. GFP_NOFS);
  1374. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1375. ret = -ENOMEM;
  1376. goto fail;
  1377. }
  1378. writers = btrfs_alloc_subvolume_writers();
  1379. if (IS_ERR(writers)) {
  1380. ret = PTR_ERR(writers);
  1381. goto fail;
  1382. }
  1383. root->subv_writers = writers;
  1384. btrfs_init_free_ino_ctl(root);
  1385. spin_lock_init(&root->ino_cache_lock);
  1386. init_waitqueue_head(&root->ino_cache_wait);
  1387. ret = get_anon_bdev(&root->anon_dev);
  1388. if (ret)
  1389. goto fail;
  1390. mutex_lock(&root->objectid_mutex);
  1391. ret = btrfs_find_highest_objectid(root,
  1392. &root->highest_objectid);
  1393. if (ret) {
  1394. mutex_unlock(&root->objectid_mutex);
  1395. goto fail;
  1396. }
  1397. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1398. mutex_unlock(&root->objectid_mutex);
  1399. return 0;
  1400. fail:
  1401. /* the caller is responsible to call free_fs_root */
  1402. return ret;
  1403. }
  1404. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1405. u64 root_id)
  1406. {
  1407. struct btrfs_root *root;
  1408. spin_lock(&fs_info->fs_roots_radix_lock);
  1409. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1410. (unsigned long)root_id);
  1411. spin_unlock(&fs_info->fs_roots_radix_lock);
  1412. return root;
  1413. }
  1414. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1415. struct btrfs_root *root)
  1416. {
  1417. int ret;
  1418. ret = radix_tree_preload(GFP_NOFS);
  1419. if (ret)
  1420. return ret;
  1421. spin_lock(&fs_info->fs_roots_radix_lock);
  1422. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1423. (unsigned long)root->root_key.objectid,
  1424. root);
  1425. if (ret == 0)
  1426. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1427. spin_unlock(&fs_info->fs_roots_radix_lock);
  1428. radix_tree_preload_end();
  1429. return ret;
  1430. }
  1431. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1432. struct btrfs_key *location,
  1433. bool check_ref)
  1434. {
  1435. struct btrfs_root *root;
  1436. struct btrfs_path *path;
  1437. struct btrfs_key key;
  1438. int ret;
  1439. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1440. return fs_info->tree_root;
  1441. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1442. return fs_info->extent_root;
  1443. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1444. return fs_info->chunk_root;
  1445. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1446. return fs_info->dev_root;
  1447. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1448. return fs_info->csum_root;
  1449. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1450. return fs_info->quota_root ? fs_info->quota_root :
  1451. ERR_PTR(-ENOENT);
  1452. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1453. return fs_info->uuid_root ? fs_info->uuid_root :
  1454. ERR_PTR(-ENOENT);
  1455. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1456. return fs_info->free_space_root ? fs_info->free_space_root :
  1457. ERR_PTR(-ENOENT);
  1458. again:
  1459. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1460. if (root) {
  1461. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1462. return ERR_PTR(-ENOENT);
  1463. return root;
  1464. }
  1465. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1466. if (IS_ERR(root))
  1467. return root;
  1468. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1469. ret = -ENOENT;
  1470. goto fail;
  1471. }
  1472. ret = btrfs_init_fs_root(root);
  1473. if (ret)
  1474. goto fail;
  1475. path = btrfs_alloc_path();
  1476. if (!path) {
  1477. ret = -ENOMEM;
  1478. goto fail;
  1479. }
  1480. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1481. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1482. key.offset = location->objectid;
  1483. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1484. btrfs_free_path(path);
  1485. if (ret < 0)
  1486. goto fail;
  1487. if (ret == 0)
  1488. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1489. ret = btrfs_insert_fs_root(fs_info, root);
  1490. if (ret) {
  1491. if (ret == -EEXIST) {
  1492. free_fs_root(root);
  1493. goto again;
  1494. }
  1495. goto fail;
  1496. }
  1497. return root;
  1498. fail:
  1499. free_fs_root(root);
  1500. return ERR_PTR(ret);
  1501. }
  1502. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1503. {
  1504. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1505. int ret = 0;
  1506. struct btrfs_device *device;
  1507. struct backing_dev_info *bdi;
  1508. rcu_read_lock();
  1509. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1510. if (!device->bdev)
  1511. continue;
  1512. bdi = blk_get_backing_dev_info(device->bdev);
  1513. if (bdi_congested(bdi, bdi_bits)) {
  1514. ret = 1;
  1515. break;
  1516. }
  1517. }
  1518. rcu_read_unlock();
  1519. return ret;
  1520. }
  1521. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1522. {
  1523. int err;
  1524. err = bdi_setup_and_register(bdi, "btrfs");
  1525. if (err)
  1526. return err;
  1527. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1528. bdi->congested_fn = btrfs_congested_fn;
  1529. bdi->congested_data = info;
  1530. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1531. return 0;
  1532. }
  1533. /*
  1534. * called by the kthread helper functions to finally call the bio end_io
  1535. * functions. This is where read checksum verification actually happens
  1536. */
  1537. static void end_workqueue_fn(struct btrfs_work *work)
  1538. {
  1539. struct bio *bio;
  1540. struct btrfs_end_io_wq *end_io_wq;
  1541. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1542. bio = end_io_wq->bio;
  1543. bio->bi_error = end_io_wq->error;
  1544. bio->bi_private = end_io_wq->private;
  1545. bio->bi_end_io = end_io_wq->end_io;
  1546. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1547. bio_endio(bio);
  1548. }
  1549. static int cleaner_kthread(void *arg)
  1550. {
  1551. struct btrfs_root *root = arg;
  1552. int again;
  1553. struct btrfs_trans_handle *trans;
  1554. do {
  1555. again = 0;
  1556. /* Make the cleaner go to sleep early. */
  1557. if (btrfs_need_cleaner_sleep(root))
  1558. goto sleep;
  1559. /*
  1560. * Do not do anything if we might cause open_ctree() to block
  1561. * before we have finished mounting the filesystem.
  1562. */
  1563. if (!root->fs_info->open)
  1564. goto sleep;
  1565. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1566. goto sleep;
  1567. /*
  1568. * Avoid the problem that we change the status of the fs
  1569. * during the above check and trylock.
  1570. */
  1571. if (btrfs_need_cleaner_sleep(root)) {
  1572. mutex_unlock(&root->fs_info->cleaner_mutex);
  1573. goto sleep;
  1574. }
  1575. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1576. btrfs_run_delayed_iputs(root);
  1577. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1578. again = btrfs_clean_one_deleted_snapshot(root);
  1579. mutex_unlock(&root->fs_info->cleaner_mutex);
  1580. /*
  1581. * The defragger has dealt with the R/O remount and umount,
  1582. * needn't do anything special here.
  1583. */
  1584. btrfs_run_defrag_inodes(root->fs_info);
  1585. /*
  1586. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1587. * with relocation (btrfs_relocate_chunk) and relocation
  1588. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1589. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1590. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1591. * unused block groups.
  1592. */
  1593. btrfs_delete_unused_bgs(root->fs_info);
  1594. sleep:
  1595. if (!again) {
  1596. set_current_state(TASK_INTERRUPTIBLE);
  1597. if (!kthread_should_stop())
  1598. schedule();
  1599. __set_current_state(TASK_RUNNING);
  1600. }
  1601. } while (!kthread_should_stop());
  1602. /*
  1603. * Transaction kthread is stopped before us and wakes us up.
  1604. * However we might have started a new transaction and COWed some
  1605. * tree blocks when deleting unused block groups for example. So
  1606. * make sure we commit the transaction we started to have a clean
  1607. * shutdown when evicting the btree inode - if it has dirty pages
  1608. * when we do the final iput() on it, eviction will trigger a
  1609. * writeback for it which will fail with null pointer dereferences
  1610. * since work queues and other resources were already released and
  1611. * destroyed by the time the iput/eviction/writeback is made.
  1612. */
  1613. trans = btrfs_attach_transaction(root);
  1614. if (IS_ERR(trans)) {
  1615. if (PTR_ERR(trans) != -ENOENT)
  1616. btrfs_err(root->fs_info,
  1617. "cleaner transaction attach returned %ld",
  1618. PTR_ERR(trans));
  1619. } else {
  1620. int ret;
  1621. ret = btrfs_commit_transaction(trans, root);
  1622. if (ret)
  1623. btrfs_err(root->fs_info,
  1624. "cleaner open transaction commit returned %d",
  1625. ret);
  1626. }
  1627. return 0;
  1628. }
  1629. static int transaction_kthread(void *arg)
  1630. {
  1631. struct btrfs_root *root = arg;
  1632. struct btrfs_trans_handle *trans;
  1633. struct btrfs_transaction *cur;
  1634. u64 transid;
  1635. unsigned long now;
  1636. unsigned long delay;
  1637. bool cannot_commit;
  1638. do {
  1639. cannot_commit = false;
  1640. delay = HZ * root->fs_info->commit_interval;
  1641. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1642. spin_lock(&root->fs_info->trans_lock);
  1643. cur = root->fs_info->running_transaction;
  1644. if (!cur) {
  1645. spin_unlock(&root->fs_info->trans_lock);
  1646. goto sleep;
  1647. }
  1648. now = get_seconds();
  1649. if (cur->state < TRANS_STATE_BLOCKED &&
  1650. (now < cur->start_time ||
  1651. now - cur->start_time < root->fs_info->commit_interval)) {
  1652. spin_unlock(&root->fs_info->trans_lock);
  1653. delay = HZ * 5;
  1654. goto sleep;
  1655. }
  1656. transid = cur->transid;
  1657. spin_unlock(&root->fs_info->trans_lock);
  1658. /* If the file system is aborted, this will always fail. */
  1659. trans = btrfs_attach_transaction(root);
  1660. if (IS_ERR(trans)) {
  1661. if (PTR_ERR(trans) != -ENOENT)
  1662. cannot_commit = true;
  1663. goto sleep;
  1664. }
  1665. if (transid == trans->transid) {
  1666. btrfs_commit_transaction(trans, root);
  1667. } else {
  1668. btrfs_end_transaction(trans, root);
  1669. }
  1670. sleep:
  1671. wake_up_process(root->fs_info->cleaner_kthread);
  1672. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1673. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1674. &root->fs_info->fs_state)))
  1675. btrfs_cleanup_transaction(root);
  1676. set_current_state(TASK_INTERRUPTIBLE);
  1677. if (!kthread_should_stop() &&
  1678. (!btrfs_transaction_blocked(root->fs_info) ||
  1679. cannot_commit))
  1680. schedule_timeout(delay);
  1681. __set_current_state(TASK_RUNNING);
  1682. } while (!kthread_should_stop());
  1683. return 0;
  1684. }
  1685. /*
  1686. * this will find the highest generation in the array of
  1687. * root backups. The index of the highest array is returned,
  1688. * or -1 if we can't find anything.
  1689. *
  1690. * We check to make sure the array is valid by comparing the
  1691. * generation of the latest root in the array with the generation
  1692. * in the super block. If they don't match we pitch it.
  1693. */
  1694. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1695. {
  1696. u64 cur;
  1697. int newest_index = -1;
  1698. struct btrfs_root_backup *root_backup;
  1699. int i;
  1700. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1701. root_backup = info->super_copy->super_roots + i;
  1702. cur = btrfs_backup_tree_root_gen(root_backup);
  1703. if (cur == newest_gen)
  1704. newest_index = i;
  1705. }
  1706. /* check to see if we actually wrapped around */
  1707. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1708. root_backup = info->super_copy->super_roots;
  1709. cur = btrfs_backup_tree_root_gen(root_backup);
  1710. if (cur == newest_gen)
  1711. newest_index = 0;
  1712. }
  1713. return newest_index;
  1714. }
  1715. /*
  1716. * find the oldest backup so we know where to store new entries
  1717. * in the backup array. This will set the backup_root_index
  1718. * field in the fs_info struct
  1719. */
  1720. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1721. u64 newest_gen)
  1722. {
  1723. int newest_index = -1;
  1724. newest_index = find_newest_super_backup(info, newest_gen);
  1725. /* if there was garbage in there, just move along */
  1726. if (newest_index == -1) {
  1727. info->backup_root_index = 0;
  1728. } else {
  1729. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1730. }
  1731. }
  1732. /*
  1733. * copy all the root pointers into the super backup array.
  1734. * this will bump the backup pointer by one when it is
  1735. * done
  1736. */
  1737. static void backup_super_roots(struct btrfs_fs_info *info)
  1738. {
  1739. int next_backup;
  1740. struct btrfs_root_backup *root_backup;
  1741. int last_backup;
  1742. next_backup = info->backup_root_index;
  1743. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1744. BTRFS_NUM_BACKUP_ROOTS;
  1745. /*
  1746. * just overwrite the last backup if we're at the same generation
  1747. * this happens only at umount
  1748. */
  1749. root_backup = info->super_for_commit->super_roots + last_backup;
  1750. if (btrfs_backup_tree_root_gen(root_backup) ==
  1751. btrfs_header_generation(info->tree_root->node))
  1752. next_backup = last_backup;
  1753. root_backup = info->super_for_commit->super_roots + next_backup;
  1754. /*
  1755. * make sure all of our padding and empty slots get zero filled
  1756. * regardless of which ones we use today
  1757. */
  1758. memset(root_backup, 0, sizeof(*root_backup));
  1759. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1760. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1761. btrfs_set_backup_tree_root_gen(root_backup,
  1762. btrfs_header_generation(info->tree_root->node));
  1763. btrfs_set_backup_tree_root_level(root_backup,
  1764. btrfs_header_level(info->tree_root->node));
  1765. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1766. btrfs_set_backup_chunk_root_gen(root_backup,
  1767. btrfs_header_generation(info->chunk_root->node));
  1768. btrfs_set_backup_chunk_root_level(root_backup,
  1769. btrfs_header_level(info->chunk_root->node));
  1770. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1771. btrfs_set_backup_extent_root_gen(root_backup,
  1772. btrfs_header_generation(info->extent_root->node));
  1773. btrfs_set_backup_extent_root_level(root_backup,
  1774. btrfs_header_level(info->extent_root->node));
  1775. /*
  1776. * we might commit during log recovery, which happens before we set
  1777. * the fs_root. Make sure it is valid before we fill it in.
  1778. */
  1779. if (info->fs_root && info->fs_root->node) {
  1780. btrfs_set_backup_fs_root(root_backup,
  1781. info->fs_root->node->start);
  1782. btrfs_set_backup_fs_root_gen(root_backup,
  1783. btrfs_header_generation(info->fs_root->node));
  1784. btrfs_set_backup_fs_root_level(root_backup,
  1785. btrfs_header_level(info->fs_root->node));
  1786. }
  1787. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1788. btrfs_set_backup_dev_root_gen(root_backup,
  1789. btrfs_header_generation(info->dev_root->node));
  1790. btrfs_set_backup_dev_root_level(root_backup,
  1791. btrfs_header_level(info->dev_root->node));
  1792. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1793. btrfs_set_backup_csum_root_gen(root_backup,
  1794. btrfs_header_generation(info->csum_root->node));
  1795. btrfs_set_backup_csum_root_level(root_backup,
  1796. btrfs_header_level(info->csum_root->node));
  1797. btrfs_set_backup_total_bytes(root_backup,
  1798. btrfs_super_total_bytes(info->super_copy));
  1799. btrfs_set_backup_bytes_used(root_backup,
  1800. btrfs_super_bytes_used(info->super_copy));
  1801. btrfs_set_backup_num_devices(root_backup,
  1802. btrfs_super_num_devices(info->super_copy));
  1803. /*
  1804. * if we don't copy this out to the super_copy, it won't get remembered
  1805. * for the next commit
  1806. */
  1807. memcpy(&info->super_copy->super_roots,
  1808. &info->super_for_commit->super_roots,
  1809. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1810. }
  1811. /*
  1812. * this copies info out of the root backup array and back into
  1813. * the in-memory super block. It is meant to help iterate through
  1814. * the array, so you send it the number of backups you've already
  1815. * tried and the last backup index you used.
  1816. *
  1817. * this returns -1 when it has tried all the backups
  1818. */
  1819. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1820. struct btrfs_super_block *super,
  1821. int *num_backups_tried, int *backup_index)
  1822. {
  1823. struct btrfs_root_backup *root_backup;
  1824. int newest = *backup_index;
  1825. if (*num_backups_tried == 0) {
  1826. u64 gen = btrfs_super_generation(super);
  1827. newest = find_newest_super_backup(info, gen);
  1828. if (newest == -1)
  1829. return -1;
  1830. *backup_index = newest;
  1831. *num_backups_tried = 1;
  1832. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1833. /* we've tried all the backups, all done */
  1834. return -1;
  1835. } else {
  1836. /* jump to the next oldest backup */
  1837. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1838. BTRFS_NUM_BACKUP_ROOTS;
  1839. *backup_index = newest;
  1840. *num_backups_tried += 1;
  1841. }
  1842. root_backup = super->super_roots + newest;
  1843. btrfs_set_super_generation(super,
  1844. btrfs_backup_tree_root_gen(root_backup));
  1845. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1846. btrfs_set_super_root_level(super,
  1847. btrfs_backup_tree_root_level(root_backup));
  1848. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1849. /*
  1850. * fixme: the total bytes and num_devices need to match or we should
  1851. * need a fsck
  1852. */
  1853. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1854. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1855. return 0;
  1856. }
  1857. /* helper to cleanup workers */
  1858. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1859. {
  1860. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1861. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1862. btrfs_destroy_workqueue(fs_info->workers);
  1863. btrfs_destroy_workqueue(fs_info->endio_workers);
  1864. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1865. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1866. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1867. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1868. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1869. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1870. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1871. btrfs_destroy_workqueue(fs_info->submit_workers);
  1872. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1873. btrfs_destroy_workqueue(fs_info->caching_workers);
  1874. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1875. btrfs_destroy_workqueue(fs_info->flush_workers);
  1876. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1877. btrfs_destroy_workqueue(fs_info->extent_workers);
  1878. }
  1879. static void free_root_extent_buffers(struct btrfs_root *root)
  1880. {
  1881. if (root) {
  1882. free_extent_buffer(root->node);
  1883. free_extent_buffer(root->commit_root);
  1884. root->node = NULL;
  1885. root->commit_root = NULL;
  1886. }
  1887. }
  1888. /* helper to cleanup tree roots */
  1889. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1890. {
  1891. free_root_extent_buffers(info->tree_root);
  1892. free_root_extent_buffers(info->dev_root);
  1893. free_root_extent_buffers(info->extent_root);
  1894. free_root_extent_buffers(info->csum_root);
  1895. free_root_extent_buffers(info->quota_root);
  1896. free_root_extent_buffers(info->uuid_root);
  1897. if (chunk_root)
  1898. free_root_extent_buffers(info->chunk_root);
  1899. free_root_extent_buffers(info->free_space_root);
  1900. }
  1901. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1902. {
  1903. int ret;
  1904. struct btrfs_root *gang[8];
  1905. int i;
  1906. while (!list_empty(&fs_info->dead_roots)) {
  1907. gang[0] = list_entry(fs_info->dead_roots.next,
  1908. struct btrfs_root, root_list);
  1909. list_del(&gang[0]->root_list);
  1910. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1911. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1912. } else {
  1913. free_extent_buffer(gang[0]->node);
  1914. free_extent_buffer(gang[0]->commit_root);
  1915. btrfs_put_fs_root(gang[0]);
  1916. }
  1917. }
  1918. while (1) {
  1919. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1920. (void **)gang, 0,
  1921. ARRAY_SIZE(gang));
  1922. if (!ret)
  1923. break;
  1924. for (i = 0; i < ret; i++)
  1925. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1926. }
  1927. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1928. btrfs_free_log_root_tree(NULL, fs_info);
  1929. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1930. fs_info->pinned_extents);
  1931. }
  1932. }
  1933. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1934. {
  1935. mutex_init(&fs_info->scrub_lock);
  1936. atomic_set(&fs_info->scrubs_running, 0);
  1937. atomic_set(&fs_info->scrub_pause_req, 0);
  1938. atomic_set(&fs_info->scrubs_paused, 0);
  1939. atomic_set(&fs_info->scrub_cancel_req, 0);
  1940. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1941. fs_info->scrub_workers_refcnt = 0;
  1942. }
  1943. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1944. {
  1945. spin_lock_init(&fs_info->balance_lock);
  1946. mutex_init(&fs_info->balance_mutex);
  1947. atomic_set(&fs_info->balance_running, 0);
  1948. atomic_set(&fs_info->balance_pause_req, 0);
  1949. atomic_set(&fs_info->balance_cancel_req, 0);
  1950. fs_info->balance_ctl = NULL;
  1951. init_waitqueue_head(&fs_info->balance_wait_q);
  1952. }
  1953. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1954. struct btrfs_root *tree_root)
  1955. {
  1956. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1957. set_nlink(fs_info->btree_inode, 1);
  1958. /*
  1959. * we set the i_size on the btree inode to the max possible int.
  1960. * the real end of the address space is determined by all of
  1961. * the devices in the system
  1962. */
  1963. fs_info->btree_inode->i_size = OFFSET_MAX;
  1964. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1965. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1966. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1967. fs_info->btree_inode->i_mapping);
  1968. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1969. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1970. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1971. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1972. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1973. sizeof(struct btrfs_key));
  1974. set_bit(BTRFS_INODE_DUMMY,
  1975. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1976. btrfs_insert_inode_hash(fs_info->btree_inode);
  1977. }
  1978. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1979. {
  1980. fs_info->dev_replace.lock_owner = 0;
  1981. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1982. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1983. rwlock_init(&fs_info->dev_replace.lock);
  1984. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1985. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1986. init_waitqueue_head(&fs_info->replace_wait);
  1987. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1988. }
  1989. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1990. {
  1991. spin_lock_init(&fs_info->qgroup_lock);
  1992. mutex_init(&fs_info->qgroup_ioctl_lock);
  1993. fs_info->qgroup_tree = RB_ROOT;
  1994. fs_info->qgroup_op_tree = RB_ROOT;
  1995. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1996. fs_info->qgroup_seq = 1;
  1997. fs_info->quota_enabled = 0;
  1998. fs_info->pending_quota_state = 0;
  1999. fs_info->qgroup_ulist = NULL;
  2000. mutex_init(&fs_info->qgroup_rescan_lock);
  2001. }
  2002. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2003. struct btrfs_fs_devices *fs_devices)
  2004. {
  2005. int max_active = fs_info->thread_pool_size;
  2006. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2007. fs_info->workers =
  2008. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2009. max_active, 16);
  2010. fs_info->delalloc_workers =
  2011. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2012. fs_info->flush_workers =
  2013. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2014. fs_info->caching_workers =
  2015. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2016. /*
  2017. * a higher idle thresh on the submit workers makes it much more
  2018. * likely that bios will be send down in a sane order to the
  2019. * devices
  2020. */
  2021. fs_info->submit_workers =
  2022. btrfs_alloc_workqueue("submit", flags,
  2023. min_t(u64, fs_devices->num_devices,
  2024. max_active), 64);
  2025. fs_info->fixup_workers =
  2026. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2027. /*
  2028. * endios are largely parallel and should have a very
  2029. * low idle thresh
  2030. */
  2031. fs_info->endio_workers =
  2032. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2033. fs_info->endio_meta_workers =
  2034. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2035. fs_info->endio_meta_write_workers =
  2036. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2037. fs_info->endio_raid56_workers =
  2038. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2039. fs_info->endio_repair_workers =
  2040. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2041. fs_info->rmw_workers =
  2042. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2043. fs_info->endio_write_workers =
  2044. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2045. fs_info->endio_freespace_worker =
  2046. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2047. fs_info->delayed_workers =
  2048. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2049. fs_info->readahead_workers =
  2050. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2051. fs_info->qgroup_rescan_workers =
  2052. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2053. fs_info->extent_workers =
  2054. btrfs_alloc_workqueue("extent-refs", flags,
  2055. min_t(u64, fs_devices->num_devices,
  2056. max_active), 8);
  2057. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2058. fs_info->submit_workers && fs_info->flush_workers &&
  2059. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2060. fs_info->endio_meta_write_workers &&
  2061. fs_info->endio_repair_workers &&
  2062. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2063. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2064. fs_info->caching_workers && fs_info->readahead_workers &&
  2065. fs_info->fixup_workers && fs_info->delayed_workers &&
  2066. fs_info->extent_workers &&
  2067. fs_info->qgroup_rescan_workers)) {
  2068. return -ENOMEM;
  2069. }
  2070. return 0;
  2071. }
  2072. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2073. struct btrfs_fs_devices *fs_devices)
  2074. {
  2075. int ret;
  2076. struct btrfs_root *tree_root = fs_info->tree_root;
  2077. struct btrfs_root *log_tree_root;
  2078. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2079. u64 bytenr = btrfs_super_log_root(disk_super);
  2080. if (fs_devices->rw_devices == 0) {
  2081. btrfs_warn(fs_info, "log replay required on RO media");
  2082. return -EIO;
  2083. }
  2084. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2085. if (!log_tree_root)
  2086. return -ENOMEM;
  2087. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2088. tree_root->stripesize, log_tree_root, fs_info,
  2089. BTRFS_TREE_LOG_OBJECTID);
  2090. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2091. fs_info->generation + 1);
  2092. if (IS_ERR(log_tree_root->node)) {
  2093. btrfs_warn(fs_info, "failed to read log tree");
  2094. ret = PTR_ERR(log_tree_root->node);
  2095. kfree(log_tree_root);
  2096. return ret;
  2097. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2098. btrfs_err(fs_info, "failed to read log tree");
  2099. free_extent_buffer(log_tree_root->node);
  2100. kfree(log_tree_root);
  2101. return -EIO;
  2102. }
  2103. /* returns with log_tree_root freed on success */
  2104. ret = btrfs_recover_log_trees(log_tree_root);
  2105. if (ret) {
  2106. btrfs_handle_fs_error(tree_root->fs_info, ret,
  2107. "Failed to recover log tree");
  2108. free_extent_buffer(log_tree_root->node);
  2109. kfree(log_tree_root);
  2110. return ret;
  2111. }
  2112. if (fs_info->sb->s_flags & MS_RDONLY) {
  2113. ret = btrfs_commit_super(tree_root);
  2114. if (ret)
  2115. return ret;
  2116. }
  2117. return 0;
  2118. }
  2119. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2120. struct btrfs_root *tree_root)
  2121. {
  2122. struct btrfs_root *root;
  2123. struct btrfs_key location;
  2124. int ret;
  2125. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2126. location.type = BTRFS_ROOT_ITEM_KEY;
  2127. location.offset = 0;
  2128. root = btrfs_read_tree_root(tree_root, &location);
  2129. if (IS_ERR(root))
  2130. return PTR_ERR(root);
  2131. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2132. fs_info->extent_root = root;
  2133. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2134. root = btrfs_read_tree_root(tree_root, &location);
  2135. if (IS_ERR(root))
  2136. return PTR_ERR(root);
  2137. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2138. fs_info->dev_root = root;
  2139. btrfs_init_devices_late(fs_info);
  2140. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2141. root = btrfs_read_tree_root(tree_root, &location);
  2142. if (IS_ERR(root))
  2143. return PTR_ERR(root);
  2144. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2145. fs_info->csum_root = root;
  2146. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2147. root = btrfs_read_tree_root(tree_root, &location);
  2148. if (!IS_ERR(root)) {
  2149. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2150. fs_info->quota_enabled = 1;
  2151. fs_info->pending_quota_state = 1;
  2152. fs_info->quota_root = root;
  2153. }
  2154. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2155. root = btrfs_read_tree_root(tree_root, &location);
  2156. if (IS_ERR(root)) {
  2157. ret = PTR_ERR(root);
  2158. if (ret != -ENOENT)
  2159. return ret;
  2160. } else {
  2161. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2162. fs_info->uuid_root = root;
  2163. }
  2164. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2165. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2166. root = btrfs_read_tree_root(tree_root, &location);
  2167. if (IS_ERR(root))
  2168. return PTR_ERR(root);
  2169. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2170. fs_info->free_space_root = root;
  2171. }
  2172. return 0;
  2173. }
  2174. int open_ctree(struct super_block *sb,
  2175. struct btrfs_fs_devices *fs_devices,
  2176. char *options)
  2177. {
  2178. u32 sectorsize;
  2179. u32 nodesize;
  2180. u32 stripesize;
  2181. u64 generation;
  2182. u64 features;
  2183. struct btrfs_key location;
  2184. struct buffer_head *bh;
  2185. struct btrfs_super_block *disk_super;
  2186. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2187. struct btrfs_root *tree_root;
  2188. struct btrfs_root *chunk_root;
  2189. int ret;
  2190. int err = -EINVAL;
  2191. int num_backups_tried = 0;
  2192. int backup_index = 0;
  2193. int max_active;
  2194. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2195. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2196. if (!tree_root || !chunk_root) {
  2197. err = -ENOMEM;
  2198. goto fail;
  2199. }
  2200. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2201. if (ret) {
  2202. err = ret;
  2203. goto fail;
  2204. }
  2205. ret = setup_bdi(fs_info, &fs_info->bdi);
  2206. if (ret) {
  2207. err = ret;
  2208. goto fail_srcu;
  2209. }
  2210. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2211. if (ret) {
  2212. err = ret;
  2213. goto fail_bdi;
  2214. }
  2215. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2216. (1 + ilog2(nr_cpu_ids));
  2217. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2218. if (ret) {
  2219. err = ret;
  2220. goto fail_dirty_metadata_bytes;
  2221. }
  2222. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2223. if (ret) {
  2224. err = ret;
  2225. goto fail_delalloc_bytes;
  2226. }
  2227. fs_info->btree_inode = new_inode(sb);
  2228. if (!fs_info->btree_inode) {
  2229. err = -ENOMEM;
  2230. goto fail_bio_counter;
  2231. }
  2232. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2233. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2234. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2235. INIT_LIST_HEAD(&fs_info->trans_list);
  2236. INIT_LIST_HEAD(&fs_info->dead_roots);
  2237. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2238. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2239. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2240. spin_lock_init(&fs_info->delalloc_root_lock);
  2241. spin_lock_init(&fs_info->trans_lock);
  2242. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2243. spin_lock_init(&fs_info->delayed_iput_lock);
  2244. spin_lock_init(&fs_info->defrag_inodes_lock);
  2245. spin_lock_init(&fs_info->free_chunk_lock);
  2246. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2247. spin_lock_init(&fs_info->super_lock);
  2248. spin_lock_init(&fs_info->qgroup_op_lock);
  2249. spin_lock_init(&fs_info->buffer_lock);
  2250. spin_lock_init(&fs_info->unused_bgs_lock);
  2251. rwlock_init(&fs_info->tree_mod_log_lock);
  2252. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2253. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2254. mutex_init(&fs_info->reloc_mutex);
  2255. mutex_init(&fs_info->delalloc_root_mutex);
  2256. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2257. seqlock_init(&fs_info->profiles_lock);
  2258. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2259. INIT_LIST_HEAD(&fs_info->space_info);
  2260. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2261. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2262. btrfs_mapping_init(&fs_info->mapping_tree);
  2263. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2264. BTRFS_BLOCK_RSV_GLOBAL);
  2265. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2266. BTRFS_BLOCK_RSV_DELALLOC);
  2267. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2268. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2269. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2270. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2271. BTRFS_BLOCK_RSV_DELOPS);
  2272. atomic_set(&fs_info->nr_async_submits, 0);
  2273. atomic_set(&fs_info->async_delalloc_pages, 0);
  2274. atomic_set(&fs_info->async_submit_draining, 0);
  2275. atomic_set(&fs_info->nr_async_bios, 0);
  2276. atomic_set(&fs_info->defrag_running, 0);
  2277. atomic_set(&fs_info->qgroup_op_seq, 0);
  2278. atomic_set(&fs_info->reada_works_cnt, 0);
  2279. atomic64_set(&fs_info->tree_mod_seq, 0);
  2280. fs_info->sb = sb;
  2281. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2282. fs_info->metadata_ratio = 0;
  2283. fs_info->defrag_inodes = RB_ROOT;
  2284. fs_info->free_chunk_space = 0;
  2285. fs_info->tree_mod_log = RB_ROOT;
  2286. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2287. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2288. /* readahead state */
  2289. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2290. spin_lock_init(&fs_info->reada_lock);
  2291. fs_info->thread_pool_size = min_t(unsigned long,
  2292. num_online_cpus() + 2, 8);
  2293. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2294. spin_lock_init(&fs_info->ordered_root_lock);
  2295. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2296. GFP_KERNEL);
  2297. if (!fs_info->delayed_root) {
  2298. err = -ENOMEM;
  2299. goto fail_iput;
  2300. }
  2301. btrfs_init_delayed_root(fs_info->delayed_root);
  2302. btrfs_init_scrub(fs_info);
  2303. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2304. fs_info->check_integrity_print_mask = 0;
  2305. #endif
  2306. btrfs_init_balance(fs_info);
  2307. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2308. sb->s_blocksize = 4096;
  2309. sb->s_blocksize_bits = blksize_bits(4096);
  2310. sb->s_bdi = &fs_info->bdi;
  2311. btrfs_init_btree_inode(fs_info, tree_root);
  2312. spin_lock_init(&fs_info->block_group_cache_lock);
  2313. fs_info->block_group_cache_tree = RB_ROOT;
  2314. fs_info->first_logical_byte = (u64)-1;
  2315. extent_io_tree_init(&fs_info->freed_extents[0],
  2316. fs_info->btree_inode->i_mapping);
  2317. extent_io_tree_init(&fs_info->freed_extents[1],
  2318. fs_info->btree_inode->i_mapping);
  2319. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2320. fs_info->do_barriers = 1;
  2321. mutex_init(&fs_info->ordered_operations_mutex);
  2322. mutex_init(&fs_info->tree_log_mutex);
  2323. mutex_init(&fs_info->chunk_mutex);
  2324. mutex_init(&fs_info->transaction_kthread_mutex);
  2325. mutex_init(&fs_info->cleaner_mutex);
  2326. mutex_init(&fs_info->volume_mutex);
  2327. mutex_init(&fs_info->ro_block_group_mutex);
  2328. init_rwsem(&fs_info->commit_root_sem);
  2329. init_rwsem(&fs_info->cleanup_work_sem);
  2330. init_rwsem(&fs_info->subvol_sem);
  2331. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2332. btrfs_init_dev_replace_locks(fs_info);
  2333. btrfs_init_qgroup(fs_info);
  2334. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2335. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2336. init_waitqueue_head(&fs_info->transaction_throttle);
  2337. init_waitqueue_head(&fs_info->transaction_wait);
  2338. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2339. init_waitqueue_head(&fs_info->async_submit_wait);
  2340. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2341. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2342. if (ret) {
  2343. err = ret;
  2344. goto fail_alloc;
  2345. }
  2346. __setup_root(4096, 4096, 4096, tree_root,
  2347. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2348. invalidate_bdev(fs_devices->latest_bdev);
  2349. /*
  2350. * Read super block and check the signature bytes only
  2351. */
  2352. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2353. if (IS_ERR(bh)) {
  2354. err = PTR_ERR(bh);
  2355. goto fail_alloc;
  2356. }
  2357. /*
  2358. * We want to check superblock checksum, the type is stored inside.
  2359. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2360. */
  2361. if (btrfs_check_super_csum(bh->b_data)) {
  2362. btrfs_err(fs_info, "superblock checksum mismatch");
  2363. err = -EINVAL;
  2364. brelse(bh);
  2365. goto fail_alloc;
  2366. }
  2367. /*
  2368. * super_copy is zeroed at allocation time and we never touch the
  2369. * following bytes up to INFO_SIZE, the checksum is calculated from
  2370. * the whole block of INFO_SIZE
  2371. */
  2372. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2373. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2374. sizeof(*fs_info->super_for_commit));
  2375. brelse(bh);
  2376. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2377. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2378. if (ret) {
  2379. btrfs_err(fs_info, "superblock contains fatal errors");
  2380. err = -EINVAL;
  2381. goto fail_alloc;
  2382. }
  2383. disk_super = fs_info->super_copy;
  2384. if (!btrfs_super_root(disk_super))
  2385. goto fail_alloc;
  2386. /* check FS state, whether FS is broken. */
  2387. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2388. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2389. /*
  2390. * run through our array of backup supers and setup
  2391. * our ring pointer to the oldest one
  2392. */
  2393. generation = btrfs_super_generation(disk_super);
  2394. find_oldest_super_backup(fs_info, generation);
  2395. /*
  2396. * In the long term, we'll store the compression type in the super
  2397. * block, and it'll be used for per file compression control.
  2398. */
  2399. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2400. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2401. if (ret) {
  2402. err = ret;
  2403. goto fail_alloc;
  2404. }
  2405. features = btrfs_super_incompat_flags(disk_super) &
  2406. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2407. if (features) {
  2408. btrfs_err(fs_info,
  2409. "cannot mount because of unsupported optional features (%llx)",
  2410. features);
  2411. err = -EINVAL;
  2412. goto fail_alloc;
  2413. }
  2414. features = btrfs_super_incompat_flags(disk_super);
  2415. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2416. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2417. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2418. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2419. btrfs_info(fs_info, "has skinny extents");
  2420. /*
  2421. * flag our filesystem as having big metadata blocks if
  2422. * they are bigger than the page size
  2423. */
  2424. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2425. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2426. btrfs_info(fs_info,
  2427. "flagging fs with big metadata feature");
  2428. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2429. }
  2430. nodesize = btrfs_super_nodesize(disk_super);
  2431. sectorsize = btrfs_super_sectorsize(disk_super);
  2432. stripesize = sectorsize;
  2433. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2434. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2435. /*
  2436. * mixed block groups end up with duplicate but slightly offset
  2437. * extent buffers for the same range. It leads to corruptions
  2438. */
  2439. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2440. (sectorsize != nodesize)) {
  2441. btrfs_err(fs_info,
  2442. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2443. nodesize, sectorsize);
  2444. goto fail_alloc;
  2445. }
  2446. /*
  2447. * Needn't use the lock because there is no other task which will
  2448. * update the flag.
  2449. */
  2450. btrfs_set_super_incompat_flags(disk_super, features);
  2451. features = btrfs_super_compat_ro_flags(disk_super) &
  2452. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2453. if (!(sb->s_flags & MS_RDONLY) && features) {
  2454. btrfs_err(fs_info,
  2455. "cannot mount read-write because of unsupported optional features (%llx)",
  2456. features);
  2457. err = -EINVAL;
  2458. goto fail_alloc;
  2459. }
  2460. max_active = fs_info->thread_pool_size;
  2461. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2462. if (ret) {
  2463. err = ret;
  2464. goto fail_sb_buffer;
  2465. }
  2466. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2467. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2468. SZ_4M / PAGE_SIZE);
  2469. tree_root->nodesize = nodesize;
  2470. tree_root->sectorsize = sectorsize;
  2471. tree_root->stripesize = stripesize;
  2472. sb->s_blocksize = sectorsize;
  2473. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2474. mutex_lock(&fs_info->chunk_mutex);
  2475. ret = btrfs_read_sys_array(tree_root);
  2476. mutex_unlock(&fs_info->chunk_mutex);
  2477. if (ret) {
  2478. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2479. goto fail_sb_buffer;
  2480. }
  2481. generation = btrfs_super_chunk_root_generation(disk_super);
  2482. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2483. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2484. chunk_root->node = read_tree_block(chunk_root,
  2485. btrfs_super_chunk_root(disk_super),
  2486. generation);
  2487. if (IS_ERR(chunk_root->node) ||
  2488. !extent_buffer_uptodate(chunk_root->node)) {
  2489. btrfs_err(fs_info, "failed to read chunk root");
  2490. if (!IS_ERR(chunk_root->node))
  2491. free_extent_buffer(chunk_root->node);
  2492. chunk_root->node = NULL;
  2493. goto fail_tree_roots;
  2494. }
  2495. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2496. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2497. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2498. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2499. ret = btrfs_read_chunk_tree(chunk_root);
  2500. if (ret) {
  2501. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2502. goto fail_tree_roots;
  2503. }
  2504. /*
  2505. * keep the device that is marked to be the target device for the
  2506. * dev_replace procedure
  2507. */
  2508. btrfs_close_extra_devices(fs_devices, 0);
  2509. if (!fs_devices->latest_bdev) {
  2510. btrfs_err(fs_info, "failed to read devices");
  2511. goto fail_tree_roots;
  2512. }
  2513. retry_root_backup:
  2514. generation = btrfs_super_generation(disk_super);
  2515. tree_root->node = read_tree_block(tree_root,
  2516. btrfs_super_root(disk_super),
  2517. generation);
  2518. if (IS_ERR(tree_root->node) ||
  2519. !extent_buffer_uptodate(tree_root->node)) {
  2520. btrfs_warn(fs_info, "failed to read tree root");
  2521. if (!IS_ERR(tree_root->node))
  2522. free_extent_buffer(tree_root->node);
  2523. tree_root->node = NULL;
  2524. goto recovery_tree_root;
  2525. }
  2526. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2527. tree_root->commit_root = btrfs_root_node(tree_root);
  2528. btrfs_set_root_refs(&tree_root->root_item, 1);
  2529. mutex_lock(&tree_root->objectid_mutex);
  2530. ret = btrfs_find_highest_objectid(tree_root,
  2531. &tree_root->highest_objectid);
  2532. if (ret) {
  2533. mutex_unlock(&tree_root->objectid_mutex);
  2534. goto recovery_tree_root;
  2535. }
  2536. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2537. mutex_unlock(&tree_root->objectid_mutex);
  2538. ret = btrfs_read_roots(fs_info, tree_root);
  2539. if (ret)
  2540. goto recovery_tree_root;
  2541. fs_info->generation = generation;
  2542. fs_info->last_trans_committed = generation;
  2543. ret = btrfs_recover_balance(fs_info);
  2544. if (ret) {
  2545. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2546. goto fail_block_groups;
  2547. }
  2548. ret = btrfs_init_dev_stats(fs_info);
  2549. if (ret) {
  2550. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2551. goto fail_block_groups;
  2552. }
  2553. ret = btrfs_init_dev_replace(fs_info);
  2554. if (ret) {
  2555. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2556. goto fail_block_groups;
  2557. }
  2558. btrfs_close_extra_devices(fs_devices, 1);
  2559. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2560. if (ret) {
  2561. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2562. ret);
  2563. goto fail_block_groups;
  2564. }
  2565. ret = btrfs_sysfs_add_device(fs_devices);
  2566. if (ret) {
  2567. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2568. ret);
  2569. goto fail_fsdev_sysfs;
  2570. }
  2571. ret = btrfs_sysfs_add_mounted(fs_info);
  2572. if (ret) {
  2573. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2574. goto fail_fsdev_sysfs;
  2575. }
  2576. ret = btrfs_init_space_info(fs_info);
  2577. if (ret) {
  2578. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2579. goto fail_sysfs;
  2580. }
  2581. ret = btrfs_read_block_groups(fs_info->extent_root);
  2582. if (ret) {
  2583. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2584. goto fail_sysfs;
  2585. }
  2586. fs_info->num_tolerated_disk_barrier_failures =
  2587. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2588. if (fs_info->fs_devices->missing_devices >
  2589. fs_info->num_tolerated_disk_barrier_failures &&
  2590. !(sb->s_flags & MS_RDONLY)) {
  2591. btrfs_warn(fs_info,
  2592. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2593. fs_info->fs_devices->missing_devices,
  2594. fs_info->num_tolerated_disk_barrier_failures);
  2595. goto fail_sysfs;
  2596. }
  2597. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2598. "btrfs-cleaner");
  2599. if (IS_ERR(fs_info->cleaner_kthread))
  2600. goto fail_sysfs;
  2601. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2602. tree_root,
  2603. "btrfs-transaction");
  2604. if (IS_ERR(fs_info->transaction_kthread))
  2605. goto fail_cleaner;
  2606. if (!btrfs_test_opt(tree_root, SSD) &&
  2607. !btrfs_test_opt(tree_root, NOSSD) &&
  2608. !fs_info->fs_devices->rotating) {
  2609. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2610. btrfs_set_opt(fs_info->mount_opt, SSD);
  2611. }
  2612. /*
  2613. * Mount does not set all options immediately, we can do it now and do
  2614. * not have to wait for transaction commit
  2615. */
  2616. btrfs_apply_pending_changes(fs_info);
  2617. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2618. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2619. ret = btrfsic_mount(tree_root, fs_devices,
  2620. btrfs_test_opt(tree_root,
  2621. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2622. 1 : 0,
  2623. fs_info->check_integrity_print_mask);
  2624. if (ret)
  2625. btrfs_warn(fs_info,
  2626. "failed to initialize integrity check module: %d",
  2627. ret);
  2628. }
  2629. #endif
  2630. ret = btrfs_read_qgroup_config(fs_info);
  2631. if (ret)
  2632. goto fail_trans_kthread;
  2633. /* do not make disk changes in broken FS or nologreplay is given */
  2634. if (btrfs_super_log_root(disk_super) != 0 &&
  2635. !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
  2636. ret = btrfs_replay_log(fs_info, fs_devices);
  2637. if (ret) {
  2638. err = ret;
  2639. goto fail_qgroup;
  2640. }
  2641. }
  2642. ret = btrfs_find_orphan_roots(tree_root);
  2643. if (ret)
  2644. goto fail_qgroup;
  2645. if (!(sb->s_flags & MS_RDONLY)) {
  2646. ret = btrfs_cleanup_fs_roots(fs_info);
  2647. if (ret)
  2648. goto fail_qgroup;
  2649. mutex_lock(&fs_info->cleaner_mutex);
  2650. ret = btrfs_recover_relocation(tree_root);
  2651. mutex_unlock(&fs_info->cleaner_mutex);
  2652. if (ret < 0) {
  2653. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2654. ret);
  2655. err = -EINVAL;
  2656. goto fail_qgroup;
  2657. }
  2658. }
  2659. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2660. location.type = BTRFS_ROOT_ITEM_KEY;
  2661. location.offset = 0;
  2662. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2663. if (IS_ERR(fs_info->fs_root)) {
  2664. err = PTR_ERR(fs_info->fs_root);
  2665. goto fail_qgroup;
  2666. }
  2667. if (sb->s_flags & MS_RDONLY)
  2668. return 0;
  2669. if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
  2670. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2671. btrfs_info(fs_info, "creating free space tree");
  2672. ret = btrfs_create_free_space_tree(fs_info);
  2673. if (ret) {
  2674. btrfs_warn(fs_info,
  2675. "failed to create free space tree: %d", ret);
  2676. close_ctree(tree_root);
  2677. return ret;
  2678. }
  2679. }
  2680. down_read(&fs_info->cleanup_work_sem);
  2681. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2682. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2683. up_read(&fs_info->cleanup_work_sem);
  2684. close_ctree(tree_root);
  2685. return ret;
  2686. }
  2687. up_read(&fs_info->cleanup_work_sem);
  2688. ret = btrfs_resume_balance_async(fs_info);
  2689. if (ret) {
  2690. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2691. close_ctree(tree_root);
  2692. return ret;
  2693. }
  2694. ret = btrfs_resume_dev_replace_async(fs_info);
  2695. if (ret) {
  2696. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2697. close_ctree(tree_root);
  2698. return ret;
  2699. }
  2700. btrfs_qgroup_rescan_resume(fs_info);
  2701. if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
  2702. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2703. btrfs_info(fs_info, "clearing free space tree");
  2704. ret = btrfs_clear_free_space_tree(fs_info);
  2705. if (ret) {
  2706. btrfs_warn(fs_info,
  2707. "failed to clear free space tree: %d", ret);
  2708. close_ctree(tree_root);
  2709. return ret;
  2710. }
  2711. }
  2712. if (!fs_info->uuid_root) {
  2713. btrfs_info(fs_info, "creating UUID tree");
  2714. ret = btrfs_create_uuid_tree(fs_info);
  2715. if (ret) {
  2716. btrfs_warn(fs_info,
  2717. "failed to create the UUID tree: %d", ret);
  2718. close_ctree(tree_root);
  2719. return ret;
  2720. }
  2721. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2722. fs_info->generation !=
  2723. btrfs_super_uuid_tree_generation(disk_super)) {
  2724. btrfs_info(fs_info, "checking UUID tree");
  2725. ret = btrfs_check_uuid_tree(fs_info);
  2726. if (ret) {
  2727. btrfs_warn(fs_info,
  2728. "failed to check the UUID tree: %d", ret);
  2729. close_ctree(tree_root);
  2730. return ret;
  2731. }
  2732. } else {
  2733. fs_info->update_uuid_tree_gen = 1;
  2734. }
  2735. fs_info->open = 1;
  2736. /*
  2737. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2738. * no need to keep the flag
  2739. */
  2740. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2741. return 0;
  2742. fail_qgroup:
  2743. btrfs_free_qgroup_config(fs_info);
  2744. fail_trans_kthread:
  2745. kthread_stop(fs_info->transaction_kthread);
  2746. btrfs_cleanup_transaction(fs_info->tree_root);
  2747. btrfs_free_fs_roots(fs_info);
  2748. fail_cleaner:
  2749. kthread_stop(fs_info->cleaner_kthread);
  2750. /*
  2751. * make sure we're done with the btree inode before we stop our
  2752. * kthreads
  2753. */
  2754. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2755. fail_sysfs:
  2756. btrfs_sysfs_remove_mounted(fs_info);
  2757. fail_fsdev_sysfs:
  2758. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2759. fail_block_groups:
  2760. btrfs_put_block_group_cache(fs_info);
  2761. btrfs_free_block_groups(fs_info);
  2762. fail_tree_roots:
  2763. free_root_pointers(fs_info, 1);
  2764. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2765. fail_sb_buffer:
  2766. btrfs_stop_all_workers(fs_info);
  2767. fail_alloc:
  2768. fail_iput:
  2769. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2770. iput(fs_info->btree_inode);
  2771. fail_bio_counter:
  2772. percpu_counter_destroy(&fs_info->bio_counter);
  2773. fail_delalloc_bytes:
  2774. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2775. fail_dirty_metadata_bytes:
  2776. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2777. fail_bdi:
  2778. bdi_destroy(&fs_info->bdi);
  2779. fail_srcu:
  2780. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2781. fail:
  2782. btrfs_free_stripe_hash_table(fs_info);
  2783. btrfs_close_devices(fs_info->fs_devices);
  2784. return err;
  2785. recovery_tree_root:
  2786. if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
  2787. goto fail_tree_roots;
  2788. free_root_pointers(fs_info, 0);
  2789. /* don't use the log in recovery mode, it won't be valid */
  2790. btrfs_set_super_log_root(disk_super, 0);
  2791. /* we can't trust the free space cache either */
  2792. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2793. ret = next_root_backup(fs_info, fs_info->super_copy,
  2794. &num_backups_tried, &backup_index);
  2795. if (ret == -1)
  2796. goto fail_block_groups;
  2797. goto retry_root_backup;
  2798. }
  2799. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2800. {
  2801. if (uptodate) {
  2802. set_buffer_uptodate(bh);
  2803. } else {
  2804. struct btrfs_device *device = (struct btrfs_device *)
  2805. bh->b_private;
  2806. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2807. "lost page write due to IO error on %s",
  2808. rcu_str_deref(device->name));
  2809. /* note, we don't set_buffer_write_io_error because we have
  2810. * our own ways of dealing with the IO errors
  2811. */
  2812. clear_buffer_uptodate(bh);
  2813. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2814. }
  2815. unlock_buffer(bh);
  2816. put_bh(bh);
  2817. }
  2818. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2819. struct buffer_head **bh_ret)
  2820. {
  2821. struct buffer_head *bh;
  2822. struct btrfs_super_block *super;
  2823. u64 bytenr;
  2824. bytenr = btrfs_sb_offset(copy_num);
  2825. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2826. return -EINVAL;
  2827. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2828. /*
  2829. * If we fail to read from the underlying devices, as of now
  2830. * the best option we have is to mark it EIO.
  2831. */
  2832. if (!bh)
  2833. return -EIO;
  2834. super = (struct btrfs_super_block *)bh->b_data;
  2835. if (btrfs_super_bytenr(super) != bytenr ||
  2836. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2837. brelse(bh);
  2838. return -EINVAL;
  2839. }
  2840. *bh_ret = bh;
  2841. return 0;
  2842. }
  2843. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2844. {
  2845. struct buffer_head *bh;
  2846. struct buffer_head *latest = NULL;
  2847. struct btrfs_super_block *super;
  2848. int i;
  2849. u64 transid = 0;
  2850. int ret = -EINVAL;
  2851. /* we would like to check all the supers, but that would make
  2852. * a btrfs mount succeed after a mkfs from a different FS.
  2853. * So, we need to add a special mount option to scan for
  2854. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2855. */
  2856. for (i = 0; i < 1; i++) {
  2857. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2858. if (ret)
  2859. continue;
  2860. super = (struct btrfs_super_block *)bh->b_data;
  2861. if (!latest || btrfs_super_generation(super) > transid) {
  2862. brelse(latest);
  2863. latest = bh;
  2864. transid = btrfs_super_generation(super);
  2865. } else {
  2866. brelse(bh);
  2867. }
  2868. }
  2869. if (!latest)
  2870. return ERR_PTR(ret);
  2871. return latest;
  2872. }
  2873. /*
  2874. * this should be called twice, once with wait == 0 and
  2875. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2876. * we write are pinned.
  2877. *
  2878. * They are released when wait == 1 is done.
  2879. * max_mirrors must be the same for both runs, and it indicates how
  2880. * many supers on this one device should be written.
  2881. *
  2882. * max_mirrors == 0 means to write them all.
  2883. */
  2884. static int write_dev_supers(struct btrfs_device *device,
  2885. struct btrfs_super_block *sb,
  2886. int do_barriers, int wait, int max_mirrors)
  2887. {
  2888. struct buffer_head *bh;
  2889. int i;
  2890. int ret;
  2891. int errors = 0;
  2892. u32 crc;
  2893. u64 bytenr;
  2894. if (max_mirrors == 0)
  2895. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2896. for (i = 0; i < max_mirrors; i++) {
  2897. bytenr = btrfs_sb_offset(i);
  2898. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2899. device->commit_total_bytes)
  2900. break;
  2901. if (wait) {
  2902. bh = __find_get_block(device->bdev, bytenr / 4096,
  2903. BTRFS_SUPER_INFO_SIZE);
  2904. if (!bh) {
  2905. errors++;
  2906. continue;
  2907. }
  2908. wait_on_buffer(bh);
  2909. if (!buffer_uptodate(bh))
  2910. errors++;
  2911. /* drop our reference */
  2912. brelse(bh);
  2913. /* drop the reference from the wait == 0 run */
  2914. brelse(bh);
  2915. continue;
  2916. } else {
  2917. btrfs_set_super_bytenr(sb, bytenr);
  2918. crc = ~(u32)0;
  2919. crc = btrfs_csum_data((char *)sb +
  2920. BTRFS_CSUM_SIZE, crc,
  2921. BTRFS_SUPER_INFO_SIZE -
  2922. BTRFS_CSUM_SIZE);
  2923. btrfs_csum_final(crc, sb->csum);
  2924. /*
  2925. * one reference for us, and we leave it for the
  2926. * caller
  2927. */
  2928. bh = __getblk(device->bdev, bytenr / 4096,
  2929. BTRFS_SUPER_INFO_SIZE);
  2930. if (!bh) {
  2931. btrfs_err(device->dev_root->fs_info,
  2932. "couldn't get super buffer head for bytenr %llu",
  2933. bytenr);
  2934. errors++;
  2935. continue;
  2936. }
  2937. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2938. /* one reference for submit_bh */
  2939. get_bh(bh);
  2940. set_buffer_uptodate(bh);
  2941. lock_buffer(bh);
  2942. bh->b_end_io = btrfs_end_buffer_write_sync;
  2943. bh->b_private = device;
  2944. }
  2945. /*
  2946. * we fua the first super. The others we allow
  2947. * to go down lazy.
  2948. */
  2949. if (i == 0)
  2950. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2951. else
  2952. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2953. if (ret)
  2954. errors++;
  2955. }
  2956. return errors < i ? 0 : -1;
  2957. }
  2958. /*
  2959. * endio for the write_dev_flush, this will wake anyone waiting
  2960. * for the barrier when it is done
  2961. */
  2962. static void btrfs_end_empty_barrier(struct bio *bio)
  2963. {
  2964. if (bio->bi_private)
  2965. complete(bio->bi_private);
  2966. bio_put(bio);
  2967. }
  2968. /*
  2969. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2970. * sent down. With wait == 1, it waits for the previous flush.
  2971. *
  2972. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2973. * capable
  2974. */
  2975. static int write_dev_flush(struct btrfs_device *device, int wait)
  2976. {
  2977. struct bio *bio;
  2978. int ret = 0;
  2979. if (device->nobarriers)
  2980. return 0;
  2981. if (wait) {
  2982. bio = device->flush_bio;
  2983. if (!bio)
  2984. return 0;
  2985. wait_for_completion(&device->flush_wait);
  2986. if (bio->bi_error) {
  2987. ret = bio->bi_error;
  2988. btrfs_dev_stat_inc_and_print(device,
  2989. BTRFS_DEV_STAT_FLUSH_ERRS);
  2990. }
  2991. /* drop the reference from the wait == 0 run */
  2992. bio_put(bio);
  2993. device->flush_bio = NULL;
  2994. return ret;
  2995. }
  2996. /*
  2997. * one reference for us, and we leave it for the
  2998. * caller
  2999. */
  3000. device->flush_bio = NULL;
  3001. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3002. if (!bio)
  3003. return -ENOMEM;
  3004. bio->bi_end_io = btrfs_end_empty_barrier;
  3005. bio->bi_bdev = device->bdev;
  3006. init_completion(&device->flush_wait);
  3007. bio->bi_private = &device->flush_wait;
  3008. device->flush_bio = bio;
  3009. bio_get(bio);
  3010. btrfsic_submit_bio(WRITE_FLUSH, bio);
  3011. return 0;
  3012. }
  3013. /*
  3014. * send an empty flush down to each device in parallel,
  3015. * then wait for them
  3016. */
  3017. static int barrier_all_devices(struct btrfs_fs_info *info)
  3018. {
  3019. struct list_head *head;
  3020. struct btrfs_device *dev;
  3021. int errors_send = 0;
  3022. int errors_wait = 0;
  3023. int ret;
  3024. /* send down all the barriers */
  3025. head = &info->fs_devices->devices;
  3026. list_for_each_entry_rcu(dev, head, dev_list) {
  3027. if (dev->missing)
  3028. continue;
  3029. if (!dev->bdev) {
  3030. errors_send++;
  3031. continue;
  3032. }
  3033. if (!dev->in_fs_metadata || !dev->writeable)
  3034. continue;
  3035. ret = write_dev_flush(dev, 0);
  3036. if (ret)
  3037. errors_send++;
  3038. }
  3039. /* wait for all the barriers */
  3040. list_for_each_entry_rcu(dev, head, dev_list) {
  3041. if (dev->missing)
  3042. continue;
  3043. if (!dev->bdev) {
  3044. errors_wait++;
  3045. continue;
  3046. }
  3047. if (!dev->in_fs_metadata || !dev->writeable)
  3048. continue;
  3049. ret = write_dev_flush(dev, 1);
  3050. if (ret)
  3051. errors_wait++;
  3052. }
  3053. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3054. errors_wait > info->num_tolerated_disk_barrier_failures)
  3055. return -EIO;
  3056. return 0;
  3057. }
  3058. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3059. {
  3060. int raid_type;
  3061. int min_tolerated = INT_MAX;
  3062. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3063. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3064. min_tolerated = min(min_tolerated,
  3065. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3066. tolerated_failures);
  3067. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3068. if (raid_type == BTRFS_RAID_SINGLE)
  3069. continue;
  3070. if (!(flags & btrfs_raid_group[raid_type]))
  3071. continue;
  3072. min_tolerated = min(min_tolerated,
  3073. btrfs_raid_array[raid_type].
  3074. tolerated_failures);
  3075. }
  3076. if (min_tolerated == INT_MAX) {
  3077. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3078. min_tolerated = 0;
  3079. }
  3080. return min_tolerated;
  3081. }
  3082. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3083. struct btrfs_fs_info *fs_info)
  3084. {
  3085. struct btrfs_ioctl_space_info space;
  3086. struct btrfs_space_info *sinfo;
  3087. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3088. BTRFS_BLOCK_GROUP_SYSTEM,
  3089. BTRFS_BLOCK_GROUP_METADATA,
  3090. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3091. int i;
  3092. int c;
  3093. int num_tolerated_disk_barrier_failures =
  3094. (int)fs_info->fs_devices->num_devices;
  3095. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3096. struct btrfs_space_info *tmp;
  3097. sinfo = NULL;
  3098. rcu_read_lock();
  3099. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3100. if (tmp->flags == types[i]) {
  3101. sinfo = tmp;
  3102. break;
  3103. }
  3104. }
  3105. rcu_read_unlock();
  3106. if (!sinfo)
  3107. continue;
  3108. down_read(&sinfo->groups_sem);
  3109. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3110. u64 flags;
  3111. if (list_empty(&sinfo->block_groups[c]))
  3112. continue;
  3113. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3114. &space);
  3115. if (space.total_bytes == 0 || space.used_bytes == 0)
  3116. continue;
  3117. flags = space.flags;
  3118. num_tolerated_disk_barrier_failures = min(
  3119. num_tolerated_disk_barrier_failures,
  3120. btrfs_get_num_tolerated_disk_barrier_failures(
  3121. flags));
  3122. }
  3123. up_read(&sinfo->groups_sem);
  3124. }
  3125. return num_tolerated_disk_barrier_failures;
  3126. }
  3127. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3128. {
  3129. struct list_head *head;
  3130. struct btrfs_device *dev;
  3131. struct btrfs_super_block *sb;
  3132. struct btrfs_dev_item *dev_item;
  3133. int ret;
  3134. int do_barriers;
  3135. int max_errors;
  3136. int total_errors = 0;
  3137. u64 flags;
  3138. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3139. backup_super_roots(root->fs_info);
  3140. sb = root->fs_info->super_for_commit;
  3141. dev_item = &sb->dev_item;
  3142. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3143. head = &root->fs_info->fs_devices->devices;
  3144. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3145. if (do_barriers) {
  3146. ret = barrier_all_devices(root->fs_info);
  3147. if (ret) {
  3148. mutex_unlock(
  3149. &root->fs_info->fs_devices->device_list_mutex);
  3150. btrfs_handle_fs_error(root->fs_info, ret,
  3151. "errors while submitting device barriers.");
  3152. return ret;
  3153. }
  3154. }
  3155. list_for_each_entry_rcu(dev, head, dev_list) {
  3156. if (!dev->bdev) {
  3157. total_errors++;
  3158. continue;
  3159. }
  3160. if (!dev->in_fs_metadata || !dev->writeable)
  3161. continue;
  3162. btrfs_set_stack_device_generation(dev_item, 0);
  3163. btrfs_set_stack_device_type(dev_item, dev->type);
  3164. btrfs_set_stack_device_id(dev_item, dev->devid);
  3165. btrfs_set_stack_device_total_bytes(dev_item,
  3166. dev->commit_total_bytes);
  3167. btrfs_set_stack_device_bytes_used(dev_item,
  3168. dev->commit_bytes_used);
  3169. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3170. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3171. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3172. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3173. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3174. flags = btrfs_super_flags(sb);
  3175. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3176. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3177. if (ret)
  3178. total_errors++;
  3179. }
  3180. if (total_errors > max_errors) {
  3181. btrfs_err(root->fs_info, "%d errors while writing supers",
  3182. total_errors);
  3183. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3184. /* FUA is masked off if unsupported and can't be the reason */
  3185. btrfs_handle_fs_error(root->fs_info, -EIO,
  3186. "%d errors while writing supers", total_errors);
  3187. return -EIO;
  3188. }
  3189. total_errors = 0;
  3190. list_for_each_entry_rcu(dev, head, dev_list) {
  3191. if (!dev->bdev)
  3192. continue;
  3193. if (!dev->in_fs_metadata || !dev->writeable)
  3194. continue;
  3195. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3196. if (ret)
  3197. total_errors++;
  3198. }
  3199. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3200. if (total_errors > max_errors) {
  3201. btrfs_handle_fs_error(root->fs_info, -EIO,
  3202. "%d errors while writing supers", total_errors);
  3203. return -EIO;
  3204. }
  3205. return 0;
  3206. }
  3207. int write_ctree_super(struct btrfs_trans_handle *trans,
  3208. struct btrfs_root *root, int max_mirrors)
  3209. {
  3210. return write_all_supers(root, max_mirrors);
  3211. }
  3212. /* Drop a fs root from the radix tree and free it. */
  3213. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3214. struct btrfs_root *root)
  3215. {
  3216. spin_lock(&fs_info->fs_roots_radix_lock);
  3217. radix_tree_delete(&fs_info->fs_roots_radix,
  3218. (unsigned long)root->root_key.objectid);
  3219. spin_unlock(&fs_info->fs_roots_radix_lock);
  3220. if (btrfs_root_refs(&root->root_item) == 0)
  3221. synchronize_srcu(&fs_info->subvol_srcu);
  3222. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3223. btrfs_free_log(NULL, root);
  3224. if (root->free_ino_pinned)
  3225. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3226. if (root->free_ino_ctl)
  3227. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3228. free_fs_root(root);
  3229. }
  3230. static void free_fs_root(struct btrfs_root *root)
  3231. {
  3232. iput(root->ino_cache_inode);
  3233. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3234. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3235. root->orphan_block_rsv = NULL;
  3236. if (root->anon_dev)
  3237. free_anon_bdev(root->anon_dev);
  3238. if (root->subv_writers)
  3239. btrfs_free_subvolume_writers(root->subv_writers);
  3240. free_extent_buffer(root->node);
  3241. free_extent_buffer(root->commit_root);
  3242. kfree(root->free_ino_ctl);
  3243. kfree(root->free_ino_pinned);
  3244. kfree(root->name);
  3245. btrfs_put_fs_root(root);
  3246. }
  3247. void btrfs_free_fs_root(struct btrfs_root *root)
  3248. {
  3249. free_fs_root(root);
  3250. }
  3251. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3252. {
  3253. u64 root_objectid = 0;
  3254. struct btrfs_root *gang[8];
  3255. int i = 0;
  3256. int err = 0;
  3257. unsigned int ret = 0;
  3258. int index;
  3259. while (1) {
  3260. index = srcu_read_lock(&fs_info->subvol_srcu);
  3261. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3262. (void **)gang, root_objectid,
  3263. ARRAY_SIZE(gang));
  3264. if (!ret) {
  3265. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3266. break;
  3267. }
  3268. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3269. for (i = 0; i < ret; i++) {
  3270. /* Avoid to grab roots in dead_roots */
  3271. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3272. gang[i] = NULL;
  3273. continue;
  3274. }
  3275. /* grab all the search result for later use */
  3276. gang[i] = btrfs_grab_fs_root(gang[i]);
  3277. }
  3278. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3279. for (i = 0; i < ret; i++) {
  3280. if (!gang[i])
  3281. continue;
  3282. root_objectid = gang[i]->root_key.objectid;
  3283. err = btrfs_orphan_cleanup(gang[i]);
  3284. if (err)
  3285. break;
  3286. btrfs_put_fs_root(gang[i]);
  3287. }
  3288. root_objectid++;
  3289. }
  3290. /* release the uncleaned roots due to error */
  3291. for (; i < ret; i++) {
  3292. if (gang[i])
  3293. btrfs_put_fs_root(gang[i]);
  3294. }
  3295. return err;
  3296. }
  3297. int btrfs_commit_super(struct btrfs_root *root)
  3298. {
  3299. struct btrfs_trans_handle *trans;
  3300. mutex_lock(&root->fs_info->cleaner_mutex);
  3301. btrfs_run_delayed_iputs(root);
  3302. mutex_unlock(&root->fs_info->cleaner_mutex);
  3303. wake_up_process(root->fs_info->cleaner_kthread);
  3304. /* wait until ongoing cleanup work done */
  3305. down_write(&root->fs_info->cleanup_work_sem);
  3306. up_write(&root->fs_info->cleanup_work_sem);
  3307. trans = btrfs_join_transaction(root);
  3308. if (IS_ERR(trans))
  3309. return PTR_ERR(trans);
  3310. return btrfs_commit_transaction(trans, root);
  3311. }
  3312. void close_ctree(struct btrfs_root *root)
  3313. {
  3314. struct btrfs_fs_info *fs_info = root->fs_info;
  3315. int ret;
  3316. fs_info->closing = 1;
  3317. smp_mb();
  3318. /* wait for the qgroup rescan worker to stop */
  3319. btrfs_qgroup_wait_for_completion(fs_info);
  3320. /* wait for the uuid_scan task to finish */
  3321. down(&fs_info->uuid_tree_rescan_sem);
  3322. /* avoid complains from lockdep et al., set sem back to initial state */
  3323. up(&fs_info->uuid_tree_rescan_sem);
  3324. /* pause restriper - we want to resume on mount */
  3325. btrfs_pause_balance(fs_info);
  3326. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3327. btrfs_scrub_cancel(fs_info);
  3328. /* wait for any defraggers to finish */
  3329. wait_event(fs_info->transaction_wait,
  3330. (atomic_read(&fs_info->defrag_running) == 0));
  3331. /* clear out the rbtree of defraggable inodes */
  3332. btrfs_cleanup_defrag_inodes(fs_info);
  3333. cancel_work_sync(&fs_info->async_reclaim_work);
  3334. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3335. /*
  3336. * If the cleaner thread is stopped and there are
  3337. * block groups queued for removal, the deletion will be
  3338. * skipped when we quit the cleaner thread.
  3339. */
  3340. btrfs_delete_unused_bgs(root->fs_info);
  3341. ret = btrfs_commit_super(root);
  3342. if (ret)
  3343. btrfs_err(fs_info, "commit super ret %d", ret);
  3344. }
  3345. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3346. btrfs_error_commit_super(root);
  3347. kthread_stop(fs_info->transaction_kthread);
  3348. kthread_stop(fs_info->cleaner_kthread);
  3349. fs_info->closing = 2;
  3350. smp_mb();
  3351. btrfs_free_qgroup_config(fs_info);
  3352. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3353. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3354. percpu_counter_sum(&fs_info->delalloc_bytes));
  3355. }
  3356. btrfs_sysfs_remove_mounted(fs_info);
  3357. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3358. btrfs_free_fs_roots(fs_info);
  3359. btrfs_put_block_group_cache(fs_info);
  3360. btrfs_free_block_groups(fs_info);
  3361. /*
  3362. * we must make sure there is not any read request to
  3363. * submit after we stopping all workers.
  3364. */
  3365. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3366. btrfs_stop_all_workers(fs_info);
  3367. fs_info->open = 0;
  3368. free_root_pointers(fs_info, 1);
  3369. iput(fs_info->btree_inode);
  3370. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3371. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3372. btrfsic_unmount(root, fs_info->fs_devices);
  3373. #endif
  3374. btrfs_close_devices(fs_info->fs_devices);
  3375. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3376. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3377. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3378. percpu_counter_destroy(&fs_info->bio_counter);
  3379. bdi_destroy(&fs_info->bdi);
  3380. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3381. btrfs_free_stripe_hash_table(fs_info);
  3382. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3383. root->orphan_block_rsv = NULL;
  3384. lock_chunks(root);
  3385. while (!list_empty(&fs_info->pinned_chunks)) {
  3386. struct extent_map *em;
  3387. em = list_first_entry(&fs_info->pinned_chunks,
  3388. struct extent_map, list);
  3389. list_del_init(&em->list);
  3390. free_extent_map(em);
  3391. }
  3392. unlock_chunks(root);
  3393. }
  3394. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3395. int atomic)
  3396. {
  3397. int ret;
  3398. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3399. ret = extent_buffer_uptodate(buf);
  3400. if (!ret)
  3401. return ret;
  3402. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3403. parent_transid, atomic);
  3404. if (ret == -EAGAIN)
  3405. return ret;
  3406. return !ret;
  3407. }
  3408. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3409. {
  3410. struct btrfs_root *root;
  3411. u64 transid = btrfs_header_generation(buf);
  3412. int was_dirty;
  3413. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3414. /*
  3415. * This is a fast path so only do this check if we have sanity tests
  3416. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3417. * outside of the sanity tests.
  3418. */
  3419. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3420. return;
  3421. #endif
  3422. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3423. btrfs_assert_tree_locked(buf);
  3424. if (transid != root->fs_info->generation)
  3425. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3426. "found %llu running %llu\n",
  3427. buf->start, transid, root->fs_info->generation);
  3428. was_dirty = set_extent_buffer_dirty(buf);
  3429. if (!was_dirty)
  3430. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3431. buf->len,
  3432. root->fs_info->dirty_metadata_batch);
  3433. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3434. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3435. btrfs_print_leaf(root, buf);
  3436. ASSERT(0);
  3437. }
  3438. #endif
  3439. }
  3440. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3441. int flush_delayed)
  3442. {
  3443. /*
  3444. * looks as though older kernels can get into trouble with
  3445. * this code, they end up stuck in balance_dirty_pages forever
  3446. */
  3447. int ret;
  3448. if (current->flags & PF_MEMALLOC)
  3449. return;
  3450. if (flush_delayed)
  3451. btrfs_balance_delayed_items(root);
  3452. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3453. BTRFS_DIRTY_METADATA_THRESH);
  3454. if (ret > 0) {
  3455. balance_dirty_pages_ratelimited(
  3456. root->fs_info->btree_inode->i_mapping);
  3457. }
  3458. }
  3459. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3460. {
  3461. __btrfs_btree_balance_dirty(root, 1);
  3462. }
  3463. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3464. {
  3465. __btrfs_btree_balance_dirty(root, 0);
  3466. }
  3467. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3468. {
  3469. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3470. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3471. }
  3472. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3473. int read_only)
  3474. {
  3475. struct btrfs_super_block *sb = fs_info->super_copy;
  3476. u64 nodesize = btrfs_super_nodesize(sb);
  3477. u64 sectorsize = btrfs_super_sectorsize(sb);
  3478. int ret = 0;
  3479. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3480. printk(KERN_ERR "BTRFS: no valid FS found\n");
  3481. ret = -EINVAL;
  3482. }
  3483. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3484. printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
  3485. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3486. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3487. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3488. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3489. ret = -EINVAL;
  3490. }
  3491. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3492. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3493. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3494. ret = -EINVAL;
  3495. }
  3496. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3497. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3498. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3499. ret = -EINVAL;
  3500. }
  3501. /*
  3502. * Check sectorsize and nodesize first, other check will need it.
  3503. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3504. */
  3505. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3506. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3507. printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
  3508. ret = -EINVAL;
  3509. }
  3510. /* Only PAGE SIZE is supported yet */
  3511. if (sectorsize != PAGE_SIZE) {
  3512. printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
  3513. sectorsize, PAGE_SIZE);
  3514. ret = -EINVAL;
  3515. }
  3516. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3517. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3518. printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
  3519. ret = -EINVAL;
  3520. }
  3521. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3522. printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
  3523. le32_to_cpu(sb->__unused_leafsize),
  3524. nodesize);
  3525. ret = -EINVAL;
  3526. }
  3527. /* Root alignment check */
  3528. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3529. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3530. btrfs_super_root(sb));
  3531. ret = -EINVAL;
  3532. }
  3533. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3534. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3535. btrfs_super_chunk_root(sb));
  3536. ret = -EINVAL;
  3537. }
  3538. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3539. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3540. btrfs_super_log_root(sb));
  3541. ret = -EINVAL;
  3542. }
  3543. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3544. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3545. fs_info->fsid, sb->dev_item.fsid);
  3546. ret = -EINVAL;
  3547. }
  3548. /*
  3549. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3550. * done later
  3551. */
  3552. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3553. btrfs_err(fs_info, "bytes_used is too small %llu",
  3554. btrfs_super_bytes_used(sb));
  3555. ret = -EINVAL;
  3556. }
  3557. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3558. btrfs_err(fs_info, "invalid stripesize %u",
  3559. btrfs_super_stripesize(sb));
  3560. ret = -EINVAL;
  3561. }
  3562. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3563. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3564. btrfs_super_num_devices(sb));
  3565. if (btrfs_super_num_devices(sb) == 0) {
  3566. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3567. ret = -EINVAL;
  3568. }
  3569. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3570. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3571. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3572. ret = -EINVAL;
  3573. }
  3574. /*
  3575. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3576. * and one chunk
  3577. */
  3578. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3579. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3580. btrfs_super_sys_array_size(sb),
  3581. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3582. ret = -EINVAL;
  3583. }
  3584. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3585. + sizeof(struct btrfs_chunk)) {
  3586. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3587. btrfs_super_sys_array_size(sb),
  3588. sizeof(struct btrfs_disk_key)
  3589. + sizeof(struct btrfs_chunk));
  3590. ret = -EINVAL;
  3591. }
  3592. /*
  3593. * The generation is a global counter, we'll trust it more than the others
  3594. * but it's still possible that it's the one that's wrong.
  3595. */
  3596. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3597. printk(KERN_WARNING
  3598. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3599. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3600. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3601. && btrfs_super_cache_generation(sb) != (u64)-1)
  3602. printk(KERN_WARNING
  3603. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3604. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3605. return ret;
  3606. }
  3607. static void btrfs_error_commit_super(struct btrfs_root *root)
  3608. {
  3609. mutex_lock(&root->fs_info->cleaner_mutex);
  3610. btrfs_run_delayed_iputs(root);
  3611. mutex_unlock(&root->fs_info->cleaner_mutex);
  3612. down_write(&root->fs_info->cleanup_work_sem);
  3613. up_write(&root->fs_info->cleanup_work_sem);
  3614. /* cleanup FS via transaction */
  3615. btrfs_cleanup_transaction(root);
  3616. }
  3617. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3618. {
  3619. struct btrfs_ordered_extent *ordered;
  3620. spin_lock(&root->ordered_extent_lock);
  3621. /*
  3622. * This will just short circuit the ordered completion stuff which will
  3623. * make sure the ordered extent gets properly cleaned up.
  3624. */
  3625. list_for_each_entry(ordered, &root->ordered_extents,
  3626. root_extent_list)
  3627. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3628. spin_unlock(&root->ordered_extent_lock);
  3629. }
  3630. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3631. {
  3632. struct btrfs_root *root;
  3633. struct list_head splice;
  3634. INIT_LIST_HEAD(&splice);
  3635. spin_lock(&fs_info->ordered_root_lock);
  3636. list_splice_init(&fs_info->ordered_roots, &splice);
  3637. while (!list_empty(&splice)) {
  3638. root = list_first_entry(&splice, struct btrfs_root,
  3639. ordered_root);
  3640. list_move_tail(&root->ordered_root,
  3641. &fs_info->ordered_roots);
  3642. spin_unlock(&fs_info->ordered_root_lock);
  3643. btrfs_destroy_ordered_extents(root);
  3644. cond_resched();
  3645. spin_lock(&fs_info->ordered_root_lock);
  3646. }
  3647. spin_unlock(&fs_info->ordered_root_lock);
  3648. }
  3649. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3650. struct btrfs_root *root)
  3651. {
  3652. struct rb_node *node;
  3653. struct btrfs_delayed_ref_root *delayed_refs;
  3654. struct btrfs_delayed_ref_node *ref;
  3655. int ret = 0;
  3656. delayed_refs = &trans->delayed_refs;
  3657. spin_lock(&delayed_refs->lock);
  3658. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3659. spin_unlock(&delayed_refs->lock);
  3660. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3661. return ret;
  3662. }
  3663. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3664. struct btrfs_delayed_ref_head *head;
  3665. struct btrfs_delayed_ref_node *tmp;
  3666. bool pin_bytes = false;
  3667. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3668. href_node);
  3669. if (!mutex_trylock(&head->mutex)) {
  3670. atomic_inc(&head->node.refs);
  3671. spin_unlock(&delayed_refs->lock);
  3672. mutex_lock(&head->mutex);
  3673. mutex_unlock(&head->mutex);
  3674. btrfs_put_delayed_ref(&head->node);
  3675. spin_lock(&delayed_refs->lock);
  3676. continue;
  3677. }
  3678. spin_lock(&head->lock);
  3679. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3680. list) {
  3681. ref->in_tree = 0;
  3682. list_del(&ref->list);
  3683. atomic_dec(&delayed_refs->num_entries);
  3684. btrfs_put_delayed_ref(ref);
  3685. }
  3686. if (head->must_insert_reserved)
  3687. pin_bytes = true;
  3688. btrfs_free_delayed_extent_op(head->extent_op);
  3689. delayed_refs->num_heads--;
  3690. if (head->processing == 0)
  3691. delayed_refs->num_heads_ready--;
  3692. atomic_dec(&delayed_refs->num_entries);
  3693. head->node.in_tree = 0;
  3694. rb_erase(&head->href_node, &delayed_refs->href_root);
  3695. spin_unlock(&head->lock);
  3696. spin_unlock(&delayed_refs->lock);
  3697. mutex_unlock(&head->mutex);
  3698. if (pin_bytes)
  3699. btrfs_pin_extent(root, head->node.bytenr,
  3700. head->node.num_bytes, 1);
  3701. btrfs_put_delayed_ref(&head->node);
  3702. cond_resched();
  3703. spin_lock(&delayed_refs->lock);
  3704. }
  3705. spin_unlock(&delayed_refs->lock);
  3706. return ret;
  3707. }
  3708. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3709. {
  3710. struct btrfs_inode *btrfs_inode;
  3711. struct list_head splice;
  3712. INIT_LIST_HEAD(&splice);
  3713. spin_lock(&root->delalloc_lock);
  3714. list_splice_init(&root->delalloc_inodes, &splice);
  3715. while (!list_empty(&splice)) {
  3716. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3717. delalloc_inodes);
  3718. list_del_init(&btrfs_inode->delalloc_inodes);
  3719. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3720. &btrfs_inode->runtime_flags);
  3721. spin_unlock(&root->delalloc_lock);
  3722. btrfs_invalidate_inodes(btrfs_inode->root);
  3723. spin_lock(&root->delalloc_lock);
  3724. }
  3725. spin_unlock(&root->delalloc_lock);
  3726. }
  3727. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3728. {
  3729. struct btrfs_root *root;
  3730. struct list_head splice;
  3731. INIT_LIST_HEAD(&splice);
  3732. spin_lock(&fs_info->delalloc_root_lock);
  3733. list_splice_init(&fs_info->delalloc_roots, &splice);
  3734. while (!list_empty(&splice)) {
  3735. root = list_first_entry(&splice, struct btrfs_root,
  3736. delalloc_root);
  3737. list_del_init(&root->delalloc_root);
  3738. root = btrfs_grab_fs_root(root);
  3739. BUG_ON(!root);
  3740. spin_unlock(&fs_info->delalloc_root_lock);
  3741. btrfs_destroy_delalloc_inodes(root);
  3742. btrfs_put_fs_root(root);
  3743. spin_lock(&fs_info->delalloc_root_lock);
  3744. }
  3745. spin_unlock(&fs_info->delalloc_root_lock);
  3746. }
  3747. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3748. struct extent_io_tree *dirty_pages,
  3749. int mark)
  3750. {
  3751. int ret;
  3752. struct extent_buffer *eb;
  3753. u64 start = 0;
  3754. u64 end;
  3755. while (1) {
  3756. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3757. mark, NULL);
  3758. if (ret)
  3759. break;
  3760. clear_extent_bits(dirty_pages, start, end, mark);
  3761. while (start <= end) {
  3762. eb = btrfs_find_tree_block(root->fs_info, start);
  3763. start += root->nodesize;
  3764. if (!eb)
  3765. continue;
  3766. wait_on_extent_buffer_writeback(eb);
  3767. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3768. &eb->bflags))
  3769. clear_extent_buffer_dirty(eb);
  3770. free_extent_buffer_stale(eb);
  3771. }
  3772. }
  3773. return ret;
  3774. }
  3775. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3776. struct extent_io_tree *pinned_extents)
  3777. {
  3778. struct extent_io_tree *unpin;
  3779. u64 start;
  3780. u64 end;
  3781. int ret;
  3782. bool loop = true;
  3783. unpin = pinned_extents;
  3784. again:
  3785. while (1) {
  3786. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3787. EXTENT_DIRTY, NULL);
  3788. if (ret)
  3789. break;
  3790. clear_extent_dirty(unpin, start, end);
  3791. btrfs_error_unpin_extent_range(root, start, end);
  3792. cond_resched();
  3793. }
  3794. if (loop) {
  3795. if (unpin == &root->fs_info->freed_extents[0])
  3796. unpin = &root->fs_info->freed_extents[1];
  3797. else
  3798. unpin = &root->fs_info->freed_extents[0];
  3799. loop = false;
  3800. goto again;
  3801. }
  3802. return 0;
  3803. }
  3804. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3805. struct btrfs_root *root)
  3806. {
  3807. btrfs_destroy_delayed_refs(cur_trans, root);
  3808. cur_trans->state = TRANS_STATE_COMMIT_START;
  3809. wake_up(&root->fs_info->transaction_blocked_wait);
  3810. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3811. wake_up(&root->fs_info->transaction_wait);
  3812. btrfs_destroy_delayed_inodes(root);
  3813. btrfs_assert_delayed_root_empty(root);
  3814. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3815. EXTENT_DIRTY);
  3816. btrfs_destroy_pinned_extent(root,
  3817. root->fs_info->pinned_extents);
  3818. cur_trans->state =TRANS_STATE_COMPLETED;
  3819. wake_up(&cur_trans->commit_wait);
  3820. /*
  3821. memset(cur_trans, 0, sizeof(*cur_trans));
  3822. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3823. */
  3824. }
  3825. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3826. {
  3827. struct btrfs_transaction *t;
  3828. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3829. spin_lock(&root->fs_info->trans_lock);
  3830. while (!list_empty(&root->fs_info->trans_list)) {
  3831. t = list_first_entry(&root->fs_info->trans_list,
  3832. struct btrfs_transaction, list);
  3833. if (t->state >= TRANS_STATE_COMMIT_START) {
  3834. atomic_inc(&t->use_count);
  3835. spin_unlock(&root->fs_info->trans_lock);
  3836. btrfs_wait_for_commit(root, t->transid);
  3837. btrfs_put_transaction(t);
  3838. spin_lock(&root->fs_info->trans_lock);
  3839. continue;
  3840. }
  3841. if (t == root->fs_info->running_transaction) {
  3842. t->state = TRANS_STATE_COMMIT_DOING;
  3843. spin_unlock(&root->fs_info->trans_lock);
  3844. /*
  3845. * We wait for 0 num_writers since we don't hold a trans
  3846. * handle open currently for this transaction.
  3847. */
  3848. wait_event(t->writer_wait,
  3849. atomic_read(&t->num_writers) == 0);
  3850. } else {
  3851. spin_unlock(&root->fs_info->trans_lock);
  3852. }
  3853. btrfs_cleanup_one_transaction(t, root);
  3854. spin_lock(&root->fs_info->trans_lock);
  3855. if (t == root->fs_info->running_transaction)
  3856. root->fs_info->running_transaction = NULL;
  3857. list_del_init(&t->list);
  3858. spin_unlock(&root->fs_info->trans_lock);
  3859. btrfs_put_transaction(t);
  3860. trace_btrfs_transaction_commit(root);
  3861. spin_lock(&root->fs_info->trans_lock);
  3862. }
  3863. spin_unlock(&root->fs_info->trans_lock);
  3864. btrfs_destroy_all_ordered_extents(root->fs_info);
  3865. btrfs_destroy_delayed_inodes(root);
  3866. btrfs_assert_delayed_root_empty(root);
  3867. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3868. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3869. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3870. return 0;
  3871. }
  3872. static const struct extent_io_ops btree_extent_io_ops = {
  3873. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3874. .readpage_io_failed_hook = btree_io_failed_hook,
  3875. .submit_bio_hook = btree_submit_bio_hook,
  3876. /* note we're sharing with inode.c for the merge bio hook */
  3877. .merge_bio_hook = btrfs_merge_bio_hook,
  3878. };