adutux.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. /*
  2. * adutux - driver for ADU devices from Ontrak Control Systems
  3. * This is an experimental driver. Use at your own risk.
  4. * This driver is not supported by Ontrak Control Systems.
  5. *
  6. * Copyright (c) 2003 John Homppi (SCO, leave this notice here)
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * derived from the Lego USB Tower driver 0.56:
  14. * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
  15. * 2001 Juergen Stuber <stuber@loria.fr>
  16. * that was derived from USB Skeleton driver - 0.5
  17. * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
  18. *
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/init.h>
  23. #include <linux/slab.h>
  24. #include <linux/module.h>
  25. #include <linux/usb.h>
  26. #include <linux/mutex.h>
  27. #include <linux/smp_lock.h>
  28. #include <asm/uaccess.h>
  29. #ifdef CONFIG_USB_DEBUG
  30. static int debug = 5;
  31. #else
  32. static int debug = 1;
  33. #endif
  34. /* Use our own dbg macro */
  35. #undef dbg
  36. #define dbg(lvl, format, arg...) \
  37. do { \
  38. if (debug >= lvl) \
  39. printk(KERN_DEBUG __FILE__ " : " format " \n", ## arg); \
  40. } while (0)
  41. /* Version Information */
  42. #define DRIVER_VERSION "v0.0.13"
  43. #define DRIVER_AUTHOR "John Homppi"
  44. #define DRIVER_DESC "adutux (see www.ontrak.net)"
  45. /* Module parameters */
  46. module_param(debug, int, S_IRUGO | S_IWUSR);
  47. MODULE_PARM_DESC(debug, "Debug enabled or not");
  48. /* Define these values to match your device */
  49. #define ADU_VENDOR_ID 0x0a07
  50. #define ADU_PRODUCT_ID 0x0064
  51. /* table of devices that work with this driver */
  52. static const struct usb_device_id device_table[] = {
  53. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */
  54. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */
  55. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */
  56. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */
  57. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */
  58. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */
  59. { }/* Terminating entry */
  60. };
  61. MODULE_DEVICE_TABLE(usb, device_table);
  62. #ifdef CONFIG_USB_DYNAMIC_MINORS
  63. #define ADU_MINOR_BASE 0
  64. #else
  65. #define ADU_MINOR_BASE 67
  66. #endif
  67. /* we can have up to this number of device plugged in at once */
  68. #define MAX_DEVICES 16
  69. #define COMMAND_TIMEOUT (2*HZ) /* 60 second timeout for a command */
  70. /*
  71. * The locking scheme is a vanilla 3-lock:
  72. * adu_device.buflock: A spinlock, covers what IRQs touch.
  73. * adutux_mutex: A Static lock to cover open_count. It would also cover
  74. * any globals, but we don't have them in 2.6.
  75. * adu_device.mtx: A mutex to hold across sleepers like copy_from_user.
  76. * It covers all of adu_device, except the open_count
  77. * and what .buflock covers.
  78. */
  79. /* Structure to hold all of our device specific stuff */
  80. struct adu_device {
  81. struct mutex mtx;
  82. struct usb_device* udev; /* save off the usb device pointer */
  83. struct usb_interface* interface;
  84. unsigned int minor; /* the starting minor number for this device */
  85. char serial_number[8];
  86. int open_count; /* number of times this port has been opened */
  87. char* read_buffer_primary;
  88. int read_buffer_length;
  89. char* read_buffer_secondary;
  90. int secondary_head;
  91. int secondary_tail;
  92. spinlock_t buflock;
  93. wait_queue_head_t read_wait;
  94. wait_queue_head_t write_wait;
  95. char* interrupt_in_buffer;
  96. struct usb_endpoint_descriptor* interrupt_in_endpoint;
  97. struct urb* interrupt_in_urb;
  98. int read_urb_finished;
  99. char* interrupt_out_buffer;
  100. struct usb_endpoint_descriptor* interrupt_out_endpoint;
  101. struct urb* interrupt_out_urb;
  102. int out_urb_finished;
  103. };
  104. static DEFINE_MUTEX(adutux_mutex);
  105. static struct usb_driver adu_driver;
  106. static void adu_debug_data(int level, const char *function, int size,
  107. const unsigned char *data)
  108. {
  109. int i;
  110. if (debug < level)
  111. return;
  112. printk(KERN_DEBUG __FILE__": %s - length = %d, data = ",
  113. function, size);
  114. for (i = 0; i < size; ++i)
  115. printk("%.2x ", data[i]);
  116. printk("\n");
  117. }
  118. /**
  119. * adu_abort_transfers
  120. * aborts transfers and frees associated data structures
  121. */
  122. static void adu_abort_transfers(struct adu_device *dev)
  123. {
  124. unsigned long flags;
  125. dbg(2," %s : enter", __func__);
  126. if (dev->udev == NULL) {
  127. dbg(1," %s : udev is null", __func__);
  128. goto exit;
  129. }
  130. /* shutdown transfer */
  131. /* XXX Anchor these instead */
  132. spin_lock_irqsave(&dev->buflock, flags);
  133. if (!dev->read_urb_finished) {
  134. spin_unlock_irqrestore(&dev->buflock, flags);
  135. usb_kill_urb(dev->interrupt_in_urb);
  136. } else
  137. spin_unlock_irqrestore(&dev->buflock, flags);
  138. spin_lock_irqsave(&dev->buflock, flags);
  139. if (!dev->out_urb_finished) {
  140. spin_unlock_irqrestore(&dev->buflock, flags);
  141. usb_kill_urb(dev->interrupt_out_urb);
  142. } else
  143. spin_unlock_irqrestore(&dev->buflock, flags);
  144. exit:
  145. dbg(2," %s : leave", __func__);
  146. }
  147. static void adu_delete(struct adu_device *dev)
  148. {
  149. dbg(2, "%s enter", __func__);
  150. /* free data structures */
  151. usb_free_urb(dev->interrupt_in_urb);
  152. usb_free_urb(dev->interrupt_out_urb);
  153. kfree(dev->read_buffer_primary);
  154. kfree(dev->read_buffer_secondary);
  155. kfree(dev->interrupt_in_buffer);
  156. kfree(dev->interrupt_out_buffer);
  157. kfree(dev);
  158. dbg(2, "%s : leave", __func__);
  159. }
  160. static void adu_interrupt_in_callback(struct urb *urb)
  161. {
  162. struct adu_device *dev = urb->context;
  163. int status = urb->status;
  164. dbg(4," %s : enter, status %d", __func__, status);
  165. adu_debug_data(5, __func__, urb->actual_length,
  166. urb->transfer_buffer);
  167. spin_lock(&dev->buflock);
  168. if (status != 0) {
  169. if ((status != -ENOENT) && (status != -ECONNRESET) &&
  170. (status != -ESHUTDOWN)) {
  171. dbg(1," %s : nonzero status received: %d",
  172. __func__, status);
  173. }
  174. goto exit;
  175. }
  176. if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
  177. if (dev->read_buffer_length <
  178. (4 * le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize)) -
  179. (urb->actual_length)) {
  180. memcpy (dev->read_buffer_primary +
  181. dev->read_buffer_length,
  182. dev->interrupt_in_buffer, urb->actual_length);
  183. dev->read_buffer_length += urb->actual_length;
  184. dbg(2," %s reading %d ", __func__,
  185. urb->actual_length);
  186. } else {
  187. dbg(1," %s : read_buffer overflow", __func__);
  188. }
  189. }
  190. exit:
  191. dev->read_urb_finished = 1;
  192. spin_unlock(&dev->buflock);
  193. /* always wake up so we recover from errors */
  194. wake_up_interruptible(&dev->read_wait);
  195. adu_debug_data(5, __func__, urb->actual_length,
  196. urb->transfer_buffer);
  197. dbg(4," %s : leave, status %d", __func__, status);
  198. }
  199. static void adu_interrupt_out_callback(struct urb *urb)
  200. {
  201. struct adu_device *dev = urb->context;
  202. int status = urb->status;
  203. dbg(4," %s : enter, status %d", __func__, status);
  204. adu_debug_data(5,__func__, urb->actual_length, urb->transfer_buffer);
  205. if (status != 0) {
  206. if ((status != -ENOENT) &&
  207. (status != -ECONNRESET)) {
  208. dbg(1, " %s :nonzero status received: %d",
  209. __func__, status);
  210. }
  211. goto exit;
  212. }
  213. spin_lock(&dev->buflock);
  214. dev->out_urb_finished = 1;
  215. wake_up(&dev->write_wait);
  216. spin_unlock(&dev->buflock);
  217. exit:
  218. adu_debug_data(5, __func__, urb->actual_length,
  219. urb->transfer_buffer);
  220. dbg(4," %s : leave, status %d", __func__, status);
  221. }
  222. static int adu_open(struct inode *inode, struct file *file)
  223. {
  224. struct adu_device *dev = NULL;
  225. struct usb_interface *interface;
  226. int subminor;
  227. int retval;
  228. dbg(2,"%s : enter", __func__);
  229. lock_kernel();
  230. subminor = iminor(inode);
  231. if ((retval = mutex_lock_interruptible(&adutux_mutex))) {
  232. dbg(2, "%s : mutex lock failed", __func__);
  233. goto exit_no_lock;
  234. }
  235. interface = usb_find_interface(&adu_driver, subminor);
  236. if (!interface) {
  237. printk(KERN_ERR "adutux: %s - error, can't find device for "
  238. "minor %d\n", __func__, subminor);
  239. retval = -ENODEV;
  240. goto exit_no_device;
  241. }
  242. dev = usb_get_intfdata(interface);
  243. if (!dev || !dev->udev) {
  244. retval = -ENODEV;
  245. goto exit_no_device;
  246. }
  247. /* check that nobody else is using the device */
  248. if (dev->open_count) {
  249. retval = -EBUSY;
  250. goto exit_no_device;
  251. }
  252. ++dev->open_count;
  253. dbg(2,"%s : open count %d", __func__, dev->open_count);
  254. /* save device in the file's private structure */
  255. file->private_data = dev;
  256. /* initialize in direction */
  257. dev->read_buffer_length = 0;
  258. /* fixup first read by having urb waiting for it */
  259. usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
  260. usb_rcvintpipe(dev->udev,
  261. dev->interrupt_in_endpoint->bEndpointAddress),
  262. dev->interrupt_in_buffer,
  263. le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
  264. adu_interrupt_in_callback, dev,
  265. dev->interrupt_in_endpoint->bInterval);
  266. dev->read_urb_finished = 0;
  267. if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL))
  268. dev->read_urb_finished = 1;
  269. /* we ignore failure */
  270. /* end of fixup for first read */
  271. /* initialize out direction */
  272. dev->out_urb_finished = 1;
  273. retval = 0;
  274. exit_no_device:
  275. mutex_unlock(&adutux_mutex);
  276. exit_no_lock:
  277. unlock_kernel();
  278. dbg(2,"%s : leave, return value %d ", __func__, retval);
  279. return retval;
  280. }
  281. static void adu_release_internal(struct adu_device *dev)
  282. {
  283. dbg(2," %s : enter", __func__);
  284. /* decrement our usage count for the device */
  285. --dev->open_count;
  286. dbg(2," %s : open count %d", __func__, dev->open_count);
  287. if (dev->open_count <= 0) {
  288. adu_abort_transfers(dev);
  289. dev->open_count = 0;
  290. }
  291. dbg(2," %s : leave", __func__);
  292. }
  293. static int adu_release(struct inode *inode, struct file *file)
  294. {
  295. struct adu_device *dev;
  296. int retval = 0;
  297. dbg(2," %s : enter", __func__);
  298. if (file == NULL) {
  299. dbg(1," %s : file is NULL", __func__);
  300. retval = -ENODEV;
  301. goto exit;
  302. }
  303. dev = file->private_data;
  304. if (dev == NULL) {
  305. dbg(1," %s : object is NULL", __func__);
  306. retval = -ENODEV;
  307. goto exit;
  308. }
  309. mutex_lock(&adutux_mutex); /* not interruptible */
  310. if (dev->open_count <= 0) {
  311. dbg(1," %s : device not opened", __func__);
  312. retval = -ENODEV;
  313. goto unlock;
  314. }
  315. adu_release_internal(dev);
  316. if (dev->udev == NULL) {
  317. /* the device was unplugged before the file was released */
  318. if (!dev->open_count) /* ... and we're the last user */
  319. adu_delete(dev);
  320. }
  321. unlock:
  322. mutex_unlock(&adutux_mutex);
  323. exit:
  324. dbg(2," %s : leave, return value %d", __func__, retval);
  325. return retval;
  326. }
  327. static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
  328. loff_t *ppos)
  329. {
  330. struct adu_device *dev;
  331. size_t bytes_read = 0;
  332. size_t bytes_to_read = count;
  333. int i;
  334. int retval = 0;
  335. int timeout = 0;
  336. int should_submit = 0;
  337. unsigned long flags;
  338. DECLARE_WAITQUEUE(wait, current);
  339. dbg(2," %s : enter, count = %Zd, file=%p", __func__, count, file);
  340. dev = file->private_data;
  341. dbg(2," %s : dev=%p", __func__, dev);
  342. if (mutex_lock_interruptible(&dev->mtx))
  343. return -ERESTARTSYS;
  344. /* verify that the device wasn't unplugged */
  345. if (dev->udev == NULL) {
  346. retval = -ENODEV;
  347. printk(KERN_ERR "adutux: No device or device unplugged %d\n",
  348. retval);
  349. goto exit;
  350. }
  351. /* verify that some data was requested */
  352. if (count == 0) {
  353. dbg(1," %s : read request of 0 bytes", __func__);
  354. goto exit;
  355. }
  356. timeout = COMMAND_TIMEOUT;
  357. dbg(2," %s : about to start looping", __func__);
  358. while (bytes_to_read) {
  359. int data_in_secondary = dev->secondary_tail - dev->secondary_head;
  360. dbg(2," %s : while, data_in_secondary=%d, status=%d",
  361. __func__, data_in_secondary,
  362. dev->interrupt_in_urb->status);
  363. if (data_in_secondary) {
  364. /* drain secondary buffer */
  365. int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary;
  366. i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount);
  367. if (i < 0) {
  368. retval = -EFAULT;
  369. goto exit;
  370. }
  371. dev->secondary_head += (amount - i);
  372. bytes_read += (amount - i);
  373. bytes_to_read -= (amount - i);
  374. if (i) {
  375. retval = bytes_read ? bytes_read : -EFAULT;
  376. goto exit;
  377. }
  378. } else {
  379. /* we check the primary buffer */
  380. spin_lock_irqsave (&dev->buflock, flags);
  381. if (dev->read_buffer_length) {
  382. /* we secure access to the primary */
  383. char *tmp;
  384. dbg(2," %s : swap, read_buffer_length = %d",
  385. __func__, dev->read_buffer_length);
  386. tmp = dev->read_buffer_secondary;
  387. dev->read_buffer_secondary = dev->read_buffer_primary;
  388. dev->read_buffer_primary = tmp;
  389. dev->secondary_head = 0;
  390. dev->secondary_tail = dev->read_buffer_length;
  391. dev->read_buffer_length = 0;
  392. spin_unlock_irqrestore(&dev->buflock, flags);
  393. /* we have a free buffer so use it */
  394. should_submit = 1;
  395. } else {
  396. /* even the primary was empty - we may need to do IO */
  397. if (!dev->read_urb_finished) {
  398. /* somebody is doing IO */
  399. spin_unlock_irqrestore(&dev->buflock, flags);
  400. dbg(2," %s : submitted already", __func__);
  401. } else {
  402. /* we must initiate input */
  403. dbg(2," %s : initiate input", __func__);
  404. dev->read_urb_finished = 0;
  405. spin_unlock_irqrestore(&dev->buflock, flags);
  406. usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
  407. usb_rcvintpipe(dev->udev,
  408. dev->interrupt_in_endpoint->bEndpointAddress),
  409. dev->interrupt_in_buffer,
  410. le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
  411. adu_interrupt_in_callback,
  412. dev,
  413. dev->interrupt_in_endpoint->bInterval);
  414. retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
  415. if (retval) {
  416. dev->read_urb_finished = 1;
  417. if (retval == -ENOMEM) {
  418. retval = bytes_read ? bytes_read : -ENOMEM;
  419. }
  420. dbg(2," %s : submit failed", __func__);
  421. goto exit;
  422. }
  423. }
  424. /* we wait for I/O to complete */
  425. set_current_state(TASK_INTERRUPTIBLE);
  426. add_wait_queue(&dev->read_wait, &wait);
  427. spin_lock_irqsave(&dev->buflock, flags);
  428. if (!dev->read_urb_finished) {
  429. spin_unlock_irqrestore(&dev->buflock, flags);
  430. timeout = schedule_timeout(COMMAND_TIMEOUT);
  431. } else {
  432. spin_unlock_irqrestore(&dev->buflock, flags);
  433. set_current_state(TASK_RUNNING);
  434. }
  435. remove_wait_queue(&dev->read_wait, &wait);
  436. if (timeout <= 0) {
  437. dbg(2," %s : timeout", __func__);
  438. retval = bytes_read ? bytes_read : -ETIMEDOUT;
  439. goto exit;
  440. }
  441. if (signal_pending(current)) {
  442. dbg(2," %s : signal pending", __func__);
  443. retval = bytes_read ? bytes_read : -EINTR;
  444. goto exit;
  445. }
  446. }
  447. }
  448. }
  449. retval = bytes_read;
  450. /* if the primary buffer is empty then use it */
  451. spin_lock_irqsave(&dev->buflock, flags);
  452. if (should_submit && dev->read_urb_finished) {
  453. dev->read_urb_finished = 0;
  454. spin_unlock_irqrestore(&dev->buflock, flags);
  455. usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
  456. usb_rcvintpipe(dev->udev,
  457. dev->interrupt_in_endpoint->bEndpointAddress),
  458. dev->interrupt_in_buffer,
  459. le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
  460. adu_interrupt_in_callback,
  461. dev,
  462. dev->interrupt_in_endpoint->bInterval);
  463. if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0)
  464. dev->read_urb_finished = 1;
  465. /* we ignore failure */
  466. } else {
  467. spin_unlock_irqrestore(&dev->buflock, flags);
  468. }
  469. exit:
  470. /* unlock the device */
  471. mutex_unlock(&dev->mtx);
  472. dbg(2," %s : leave, return value %d", __func__, retval);
  473. return retval;
  474. }
  475. static ssize_t adu_write(struct file *file, const __user char *buffer,
  476. size_t count, loff_t *ppos)
  477. {
  478. DECLARE_WAITQUEUE(waita, current);
  479. struct adu_device *dev;
  480. size_t bytes_written = 0;
  481. size_t bytes_to_write;
  482. size_t buffer_size;
  483. unsigned long flags;
  484. int retval;
  485. dbg(2," %s : enter, count = %Zd", __func__, count);
  486. dev = file->private_data;
  487. retval = mutex_lock_interruptible(&dev->mtx);
  488. if (retval)
  489. goto exit_nolock;
  490. /* verify that the device wasn't unplugged */
  491. if (dev->udev == NULL) {
  492. retval = -ENODEV;
  493. printk(KERN_ERR "adutux: No device or device unplugged %d\n",
  494. retval);
  495. goto exit;
  496. }
  497. /* verify that we actually have some data to write */
  498. if (count == 0) {
  499. dbg(1," %s : write request of 0 bytes", __func__);
  500. goto exit;
  501. }
  502. while (count > 0) {
  503. add_wait_queue(&dev->write_wait, &waita);
  504. set_current_state(TASK_INTERRUPTIBLE);
  505. spin_lock_irqsave(&dev->buflock, flags);
  506. if (!dev->out_urb_finished) {
  507. spin_unlock_irqrestore(&dev->buflock, flags);
  508. mutex_unlock(&dev->mtx);
  509. if (signal_pending(current)) {
  510. dbg(1," %s : interrupted", __func__);
  511. set_current_state(TASK_RUNNING);
  512. retval = -EINTR;
  513. goto exit_onqueue;
  514. }
  515. if (schedule_timeout(COMMAND_TIMEOUT) == 0) {
  516. dbg(1, "%s - command timed out.", __func__);
  517. retval = -ETIMEDOUT;
  518. goto exit_onqueue;
  519. }
  520. remove_wait_queue(&dev->write_wait, &waita);
  521. retval = mutex_lock_interruptible(&dev->mtx);
  522. if (retval) {
  523. retval = bytes_written ? bytes_written : retval;
  524. goto exit_nolock;
  525. }
  526. dbg(4," %s : in progress, count = %Zd", __func__, count);
  527. } else {
  528. spin_unlock_irqrestore(&dev->buflock, flags);
  529. set_current_state(TASK_RUNNING);
  530. remove_wait_queue(&dev->write_wait, &waita);
  531. dbg(4," %s : sending, count = %Zd", __func__, count);
  532. /* write the data into interrupt_out_buffer from userspace */
  533. buffer_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize);
  534. bytes_to_write = count > buffer_size ? buffer_size : count;
  535. dbg(4," %s : buffer_size = %Zd, count = %Zd, bytes_to_write = %Zd",
  536. __func__, buffer_size, count, bytes_to_write);
  537. if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
  538. retval = -EFAULT;
  539. goto exit;
  540. }
  541. /* send off the urb */
  542. usb_fill_int_urb(
  543. dev->interrupt_out_urb,
  544. dev->udev,
  545. usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
  546. dev->interrupt_out_buffer,
  547. bytes_to_write,
  548. adu_interrupt_out_callback,
  549. dev,
  550. dev->interrupt_out_endpoint->bInterval);
  551. dev->interrupt_out_urb->actual_length = bytes_to_write;
  552. dev->out_urb_finished = 0;
  553. retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
  554. if (retval < 0) {
  555. dev->out_urb_finished = 1;
  556. dev_err(&dev->udev->dev, "Couldn't submit "
  557. "interrupt_out_urb %d\n", retval);
  558. goto exit;
  559. }
  560. buffer += bytes_to_write;
  561. count -= bytes_to_write;
  562. bytes_written += bytes_to_write;
  563. }
  564. }
  565. mutex_unlock(&dev->mtx);
  566. return bytes_written;
  567. exit:
  568. mutex_unlock(&dev->mtx);
  569. exit_nolock:
  570. dbg(2," %s : leave, return value %d", __func__, retval);
  571. return retval;
  572. exit_onqueue:
  573. remove_wait_queue(&dev->write_wait, &waita);
  574. return retval;
  575. }
  576. /* file operations needed when we register this driver */
  577. static const struct file_operations adu_fops = {
  578. .owner = THIS_MODULE,
  579. .read = adu_read,
  580. .write = adu_write,
  581. .open = adu_open,
  582. .release = adu_release,
  583. };
  584. /*
  585. * usb class driver info in order to get a minor number from the usb core,
  586. * and to have the device registered with devfs and the driver core
  587. */
  588. static struct usb_class_driver adu_class = {
  589. .name = "usb/adutux%d",
  590. .fops = &adu_fops,
  591. .minor_base = ADU_MINOR_BASE,
  592. };
  593. /**
  594. * adu_probe
  595. *
  596. * Called by the usb core when a new device is connected that it thinks
  597. * this driver might be interested in.
  598. */
  599. static int adu_probe(struct usb_interface *interface,
  600. const struct usb_device_id *id)
  601. {
  602. struct usb_device *udev = interface_to_usbdev(interface);
  603. struct adu_device *dev = NULL;
  604. struct usb_host_interface *iface_desc;
  605. struct usb_endpoint_descriptor *endpoint;
  606. int retval = -ENODEV;
  607. int in_end_size;
  608. int out_end_size;
  609. int i;
  610. dbg(2," %s : enter", __func__);
  611. if (udev == NULL) {
  612. dev_err(&interface->dev, "udev is NULL.\n");
  613. goto exit;
  614. }
  615. /* allocate memory for our device state and intialize it */
  616. dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
  617. if (dev == NULL) {
  618. dev_err(&interface->dev, "Out of memory\n");
  619. retval = -ENOMEM;
  620. goto exit;
  621. }
  622. mutex_init(&dev->mtx);
  623. spin_lock_init(&dev->buflock);
  624. dev->udev = udev;
  625. init_waitqueue_head(&dev->read_wait);
  626. init_waitqueue_head(&dev->write_wait);
  627. iface_desc = &interface->altsetting[0];
  628. /* set up the endpoint information */
  629. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  630. endpoint = &iface_desc->endpoint[i].desc;
  631. if (usb_endpoint_is_int_in(endpoint))
  632. dev->interrupt_in_endpoint = endpoint;
  633. if (usb_endpoint_is_int_out(endpoint))
  634. dev->interrupt_out_endpoint = endpoint;
  635. }
  636. if (dev->interrupt_in_endpoint == NULL) {
  637. dev_err(&interface->dev, "interrupt in endpoint not found\n");
  638. goto error;
  639. }
  640. if (dev->interrupt_out_endpoint == NULL) {
  641. dev_err(&interface->dev, "interrupt out endpoint not found\n");
  642. goto error;
  643. }
  644. in_end_size = le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize);
  645. out_end_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize);
  646. dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
  647. if (!dev->read_buffer_primary) {
  648. dev_err(&interface->dev, "Couldn't allocate read_buffer_primary\n");
  649. retval = -ENOMEM;
  650. goto error;
  651. }
  652. /* debug code prime the buffer */
  653. memset(dev->read_buffer_primary, 'a', in_end_size);
  654. memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
  655. memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
  656. memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);
  657. dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
  658. if (!dev->read_buffer_secondary) {
  659. dev_err(&interface->dev, "Couldn't allocate read_buffer_secondary\n");
  660. retval = -ENOMEM;
  661. goto error;
  662. }
  663. /* debug code prime the buffer */
  664. memset(dev->read_buffer_secondary, 'e', in_end_size);
  665. memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
  666. memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
  667. memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);
  668. dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
  669. if (!dev->interrupt_in_buffer) {
  670. dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n");
  671. goto error;
  672. }
  673. /* debug code prime the buffer */
  674. memset(dev->interrupt_in_buffer, 'i', in_end_size);
  675. dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
  676. if (!dev->interrupt_in_urb) {
  677. dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n");
  678. goto error;
  679. }
  680. dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
  681. if (!dev->interrupt_out_buffer) {
  682. dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n");
  683. goto error;
  684. }
  685. dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
  686. if (!dev->interrupt_out_urb) {
  687. dev_err(&interface->dev, "Couldn't allocate interrupt_out_urb\n");
  688. goto error;
  689. }
  690. if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
  691. sizeof(dev->serial_number))) {
  692. dev_err(&interface->dev, "Could not retrieve serial number\n");
  693. goto error;
  694. }
  695. dbg(2," %s : serial_number=%s", __func__, dev->serial_number);
  696. /* we can register the device now, as it is ready */
  697. usb_set_intfdata(interface, dev);
  698. retval = usb_register_dev(interface, &adu_class);
  699. if (retval) {
  700. /* something prevented us from registering this driver */
  701. dev_err(&interface->dev, "Not able to get a minor for this device.\n");
  702. usb_set_intfdata(interface, NULL);
  703. goto error;
  704. }
  705. dev->minor = interface->minor;
  706. /* let the user know what node this device is now attached to */
  707. dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n",
  708. udev->descriptor.idProduct, dev->serial_number,
  709. (dev->minor - ADU_MINOR_BASE));
  710. exit:
  711. dbg(2," %s : leave, return value %p (dev)", __func__, dev);
  712. return retval;
  713. error:
  714. adu_delete(dev);
  715. return retval;
  716. }
  717. /**
  718. * adu_disconnect
  719. *
  720. * Called by the usb core when the device is removed from the system.
  721. */
  722. static void adu_disconnect(struct usb_interface *interface)
  723. {
  724. struct adu_device *dev;
  725. int minor;
  726. dbg(2," %s : enter", __func__);
  727. dev = usb_get_intfdata(interface);
  728. mutex_lock(&dev->mtx); /* not interruptible */
  729. dev->udev = NULL; /* poison */
  730. minor = dev->minor;
  731. usb_deregister_dev(interface, &adu_class);
  732. mutex_unlock(&dev->mtx);
  733. mutex_lock(&adutux_mutex);
  734. usb_set_intfdata(interface, NULL);
  735. /* if the device is not opened, then we clean up right now */
  736. dbg(2," %s : open count %d", __func__, dev->open_count);
  737. if (!dev->open_count)
  738. adu_delete(dev);
  739. mutex_unlock(&adutux_mutex);
  740. dev_info(&interface->dev, "ADU device adutux%d now disconnected\n",
  741. (minor - ADU_MINOR_BASE));
  742. dbg(2," %s : leave", __func__);
  743. }
  744. /* usb specific object needed to register this driver with the usb subsystem */
  745. static struct usb_driver adu_driver = {
  746. .name = "adutux",
  747. .probe = adu_probe,
  748. .disconnect = adu_disconnect,
  749. .id_table = device_table,
  750. };
  751. static int __init adu_init(void)
  752. {
  753. int result;
  754. dbg(2," %s : enter", __func__);
  755. /* register this driver with the USB subsystem */
  756. result = usb_register(&adu_driver);
  757. if (result < 0) {
  758. printk(KERN_ERR "usb_register failed for the "__FILE__
  759. " driver. Error number %d\n", result);
  760. goto exit;
  761. }
  762. printk(KERN_INFO "adutux " DRIVER_DESC " " DRIVER_VERSION "\n");
  763. printk(KERN_INFO "adutux is an experimental driver. "
  764. "Use at your own risk\n");
  765. exit:
  766. dbg(2," %s : leave, return value %d", __func__, result);
  767. return result;
  768. }
  769. static void __exit adu_exit(void)
  770. {
  771. dbg(2," %s : enter", __func__);
  772. /* deregister this driver with the USB subsystem */
  773. usb_deregister(&adu_driver);
  774. dbg(2," %s : leave", __func__);
  775. }
  776. module_init(adu_init);
  777. module_exit(adu_exit);
  778. MODULE_AUTHOR(DRIVER_AUTHOR);
  779. MODULE_DESCRIPTION(DRIVER_DESC);
  780. MODULE_LICENSE("GPL");