main.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559
  1. /*
  2. * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
  3. *
  4. * This file is free software: you may copy, redistribute and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation, either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This file is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  16. *
  17. * This file incorporates work covered by the following copyright and
  18. * permission notice:
  19. *
  20. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  21. *
  22. * Permission to use, copy, modify, and/or distribute this software for any
  23. * purpose with or without fee is hereby granted, provided that the above
  24. * copyright notice and this permission notice appear in all copies.
  25. *
  26. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  27. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  28. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  29. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  30. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  31. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  32. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/ip.h>
  38. #include <linux/ipv6.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/mdio.h>
  41. #include <linux/aer.h>
  42. #include <linux/bitops.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/etherdevice.h>
  45. #include <net/ip6_checksum.h>
  46. #include <linux/crc32.h>
  47. #include "alx.h"
  48. #include "hw.h"
  49. #include "reg.h"
  50. const char alx_drv_name[] = "alx";
  51. static void alx_free_txbuf(struct alx_priv *alx, int entry)
  52. {
  53. struct alx_buffer *txb = &alx->txq.bufs[entry];
  54. if (dma_unmap_len(txb, size)) {
  55. dma_unmap_single(&alx->hw.pdev->dev,
  56. dma_unmap_addr(txb, dma),
  57. dma_unmap_len(txb, size),
  58. DMA_TO_DEVICE);
  59. dma_unmap_len_set(txb, size, 0);
  60. }
  61. if (txb->skb) {
  62. dev_kfree_skb_any(txb->skb);
  63. txb->skb = NULL;
  64. }
  65. }
  66. static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
  67. {
  68. struct alx_rx_queue *rxq = &alx->rxq;
  69. struct sk_buff *skb;
  70. struct alx_buffer *cur_buf;
  71. dma_addr_t dma;
  72. u16 cur, next, count = 0;
  73. next = cur = rxq->write_idx;
  74. if (++next == alx->rx_ringsz)
  75. next = 0;
  76. cur_buf = &rxq->bufs[cur];
  77. while (!cur_buf->skb && next != rxq->read_idx) {
  78. struct alx_rfd *rfd = &rxq->rfd[cur];
  79. skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
  80. if (!skb)
  81. break;
  82. dma = dma_map_single(&alx->hw.pdev->dev,
  83. skb->data, alx->rxbuf_size,
  84. DMA_FROM_DEVICE);
  85. if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
  86. dev_kfree_skb(skb);
  87. break;
  88. }
  89. /* Unfortunately, RX descriptor buffers must be 4-byte
  90. * aligned, so we can't use IP alignment.
  91. */
  92. if (WARN_ON(dma & 3)) {
  93. dev_kfree_skb(skb);
  94. break;
  95. }
  96. cur_buf->skb = skb;
  97. dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
  98. dma_unmap_addr_set(cur_buf, dma, dma);
  99. rfd->addr = cpu_to_le64(dma);
  100. cur = next;
  101. if (++next == alx->rx_ringsz)
  102. next = 0;
  103. cur_buf = &rxq->bufs[cur];
  104. count++;
  105. }
  106. if (count) {
  107. /* flush all updates before updating hardware */
  108. wmb();
  109. rxq->write_idx = cur;
  110. alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
  111. }
  112. return count;
  113. }
  114. static inline int alx_tpd_avail(struct alx_priv *alx)
  115. {
  116. struct alx_tx_queue *txq = &alx->txq;
  117. if (txq->write_idx >= txq->read_idx)
  118. return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
  119. return txq->read_idx - txq->write_idx - 1;
  120. }
  121. static bool alx_clean_tx_irq(struct alx_priv *alx)
  122. {
  123. struct alx_tx_queue *txq = &alx->txq;
  124. u16 hw_read_idx, sw_read_idx;
  125. unsigned int total_bytes = 0, total_packets = 0;
  126. int budget = ALX_DEFAULT_TX_WORK;
  127. sw_read_idx = txq->read_idx;
  128. hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
  129. if (sw_read_idx != hw_read_idx) {
  130. while (sw_read_idx != hw_read_idx && budget > 0) {
  131. struct sk_buff *skb;
  132. skb = txq->bufs[sw_read_idx].skb;
  133. if (skb) {
  134. total_bytes += skb->len;
  135. total_packets++;
  136. budget--;
  137. }
  138. alx_free_txbuf(alx, sw_read_idx);
  139. if (++sw_read_idx == alx->tx_ringsz)
  140. sw_read_idx = 0;
  141. }
  142. txq->read_idx = sw_read_idx;
  143. netdev_completed_queue(alx->dev, total_packets, total_bytes);
  144. }
  145. if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
  146. alx_tpd_avail(alx) > alx->tx_ringsz/4)
  147. netif_wake_queue(alx->dev);
  148. return sw_read_idx == hw_read_idx;
  149. }
  150. static void alx_schedule_link_check(struct alx_priv *alx)
  151. {
  152. schedule_work(&alx->link_check_wk);
  153. }
  154. static void alx_schedule_reset(struct alx_priv *alx)
  155. {
  156. schedule_work(&alx->reset_wk);
  157. }
  158. static int alx_clean_rx_irq(struct alx_priv *alx, int budget)
  159. {
  160. struct alx_rx_queue *rxq = &alx->rxq;
  161. struct alx_rrd *rrd;
  162. struct alx_buffer *rxb;
  163. struct sk_buff *skb;
  164. u16 length, rfd_cleaned = 0;
  165. int work = 0;
  166. while (work < budget) {
  167. rrd = &rxq->rrd[rxq->rrd_read_idx];
  168. if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
  169. break;
  170. rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
  171. if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
  172. RRD_SI) != rxq->read_idx ||
  173. ALX_GET_FIELD(le32_to_cpu(rrd->word0),
  174. RRD_NOR) != 1) {
  175. alx_schedule_reset(alx);
  176. return work;
  177. }
  178. rxb = &rxq->bufs[rxq->read_idx];
  179. dma_unmap_single(&alx->hw.pdev->dev,
  180. dma_unmap_addr(rxb, dma),
  181. dma_unmap_len(rxb, size),
  182. DMA_FROM_DEVICE);
  183. dma_unmap_len_set(rxb, size, 0);
  184. skb = rxb->skb;
  185. rxb->skb = NULL;
  186. if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
  187. rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
  188. rrd->word3 = 0;
  189. dev_kfree_skb_any(skb);
  190. goto next_pkt;
  191. }
  192. length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
  193. RRD_PKTLEN) - ETH_FCS_LEN;
  194. skb_put(skb, length);
  195. skb->protocol = eth_type_trans(skb, alx->dev);
  196. skb_checksum_none_assert(skb);
  197. if (alx->dev->features & NETIF_F_RXCSUM &&
  198. !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
  199. cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
  200. switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
  201. RRD_PID)) {
  202. case RRD_PID_IPV6UDP:
  203. case RRD_PID_IPV4UDP:
  204. case RRD_PID_IPV4TCP:
  205. case RRD_PID_IPV6TCP:
  206. skb->ip_summed = CHECKSUM_UNNECESSARY;
  207. break;
  208. }
  209. }
  210. napi_gro_receive(&alx->napi, skb);
  211. work++;
  212. next_pkt:
  213. if (++rxq->read_idx == alx->rx_ringsz)
  214. rxq->read_idx = 0;
  215. if (++rxq->rrd_read_idx == alx->rx_ringsz)
  216. rxq->rrd_read_idx = 0;
  217. if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
  218. rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
  219. }
  220. if (rfd_cleaned)
  221. alx_refill_rx_ring(alx, GFP_ATOMIC);
  222. return work;
  223. }
  224. static int alx_poll(struct napi_struct *napi, int budget)
  225. {
  226. struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
  227. struct alx_hw *hw = &alx->hw;
  228. unsigned long flags;
  229. bool tx_complete;
  230. int work;
  231. tx_complete = alx_clean_tx_irq(alx);
  232. work = alx_clean_rx_irq(alx, budget);
  233. if (!tx_complete || work == budget)
  234. return budget;
  235. napi_complete(&alx->napi);
  236. /* enable interrupt */
  237. spin_lock_irqsave(&alx->irq_lock, flags);
  238. alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
  239. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  240. spin_unlock_irqrestore(&alx->irq_lock, flags);
  241. alx_post_write(hw);
  242. return work;
  243. }
  244. static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
  245. {
  246. struct alx_hw *hw = &alx->hw;
  247. bool write_int_mask = false;
  248. spin_lock(&alx->irq_lock);
  249. /* ACK interrupt */
  250. alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
  251. intr &= alx->int_mask;
  252. if (intr & ALX_ISR_FATAL) {
  253. netif_warn(alx, hw, alx->dev,
  254. "fatal interrupt 0x%x, resetting\n", intr);
  255. alx_schedule_reset(alx);
  256. goto out;
  257. }
  258. if (intr & ALX_ISR_ALERT)
  259. netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
  260. if (intr & ALX_ISR_PHY) {
  261. /* suppress PHY interrupt, because the source
  262. * is from PHY internal. only the internal status
  263. * is cleared, the interrupt status could be cleared.
  264. */
  265. alx->int_mask &= ~ALX_ISR_PHY;
  266. write_int_mask = true;
  267. alx_schedule_link_check(alx);
  268. }
  269. if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
  270. napi_schedule(&alx->napi);
  271. /* mask rx/tx interrupt, enable them when napi complete */
  272. alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
  273. write_int_mask = true;
  274. }
  275. if (write_int_mask)
  276. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  277. alx_write_mem32(hw, ALX_ISR, 0);
  278. out:
  279. spin_unlock(&alx->irq_lock);
  280. return IRQ_HANDLED;
  281. }
  282. static irqreturn_t alx_intr_msi(int irq, void *data)
  283. {
  284. struct alx_priv *alx = data;
  285. return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
  286. }
  287. static irqreturn_t alx_intr_legacy(int irq, void *data)
  288. {
  289. struct alx_priv *alx = data;
  290. struct alx_hw *hw = &alx->hw;
  291. u32 intr;
  292. intr = alx_read_mem32(hw, ALX_ISR);
  293. if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
  294. return IRQ_NONE;
  295. return alx_intr_handle(alx, intr);
  296. }
  297. static void alx_init_ring_ptrs(struct alx_priv *alx)
  298. {
  299. struct alx_hw *hw = &alx->hw;
  300. u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
  301. alx->rxq.read_idx = 0;
  302. alx->rxq.write_idx = 0;
  303. alx->rxq.rrd_read_idx = 0;
  304. alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
  305. alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
  306. alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
  307. alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
  308. alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
  309. alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
  310. alx->txq.read_idx = 0;
  311. alx->txq.write_idx = 0;
  312. alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
  313. alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
  314. alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
  315. /* load these pointers into the chip */
  316. alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
  317. }
  318. static void alx_free_txring_buf(struct alx_priv *alx)
  319. {
  320. struct alx_tx_queue *txq = &alx->txq;
  321. int i;
  322. if (!txq->bufs)
  323. return;
  324. for (i = 0; i < alx->tx_ringsz; i++)
  325. alx_free_txbuf(alx, i);
  326. memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
  327. memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
  328. txq->write_idx = 0;
  329. txq->read_idx = 0;
  330. netdev_reset_queue(alx->dev);
  331. }
  332. static void alx_free_rxring_buf(struct alx_priv *alx)
  333. {
  334. struct alx_rx_queue *rxq = &alx->rxq;
  335. struct alx_buffer *cur_buf;
  336. u16 i;
  337. if (rxq == NULL)
  338. return;
  339. for (i = 0; i < alx->rx_ringsz; i++) {
  340. cur_buf = rxq->bufs + i;
  341. if (cur_buf->skb) {
  342. dma_unmap_single(&alx->hw.pdev->dev,
  343. dma_unmap_addr(cur_buf, dma),
  344. dma_unmap_len(cur_buf, size),
  345. DMA_FROM_DEVICE);
  346. dev_kfree_skb(cur_buf->skb);
  347. cur_buf->skb = NULL;
  348. dma_unmap_len_set(cur_buf, size, 0);
  349. dma_unmap_addr_set(cur_buf, dma, 0);
  350. }
  351. }
  352. rxq->write_idx = 0;
  353. rxq->read_idx = 0;
  354. rxq->rrd_read_idx = 0;
  355. }
  356. static void alx_free_buffers(struct alx_priv *alx)
  357. {
  358. alx_free_txring_buf(alx);
  359. alx_free_rxring_buf(alx);
  360. }
  361. static int alx_reinit_rings(struct alx_priv *alx)
  362. {
  363. alx_free_buffers(alx);
  364. alx_init_ring_ptrs(alx);
  365. if (!alx_refill_rx_ring(alx, GFP_KERNEL))
  366. return -ENOMEM;
  367. return 0;
  368. }
  369. static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
  370. {
  371. u32 crc32, bit, reg;
  372. crc32 = ether_crc(ETH_ALEN, addr);
  373. reg = (crc32 >> 31) & 0x1;
  374. bit = (crc32 >> 26) & 0x1F;
  375. mc_hash[reg] |= BIT(bit);
  376. }
  377. static void __alx_set_rx_mode(struct net_device *netdev)
  378. {
  379. struct alx_priv *alx = netdev_priv(netdev);
  380. struct alx_hw *hw = &alx->hw;
  381. struct netdev_hw_addr *ha;
  382. u32 mc_hash[2] = {};
  383. if (!(netdev->flags & IFF_ALLMULTI)) {
  384. netdev_for_each_mc_addr(ha, netdev)
  385. alx_add_mc_addr(hw, ha->addr, mc_hash);
  386. alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
  387. alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
  388. }
  389. hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
  390. if (netdev->flags & IFF_PROMISC)
  391. hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
  392. if (netdev->flags & IFF_ALLMULTI)
  393. hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
  394. alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
  395. }
  396. static void alx_set_rx_mode(struct net_device *netdev)
  397. {
  398. __alx_set_rx_mode(netdev);
  399. }
  400. static int alx_set_mac_address(struct net_device *netdev, void *data)
  401. {
  402. struct alx_priv *alx = netdev_priv(netdev);
  403. struct alx_hw *hw = &alx->hw;
  404. struct sockaddr *addr = data;
  405. if (!is_valid_ether_addr(addr->sa_data))
  406. return -EADDRNOTAVAIL;
  407. if (netdev->addr_assign_type & NET_ADDR_RANDOM)
  408. netdev->addr_assign_type ^= NET_ADDR_RANDOM;
  409. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  410. memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
  411. alx_set_macaddr(hw, hw->mac_addr);
  412. return 0;
  413. }
  414. static int alx_alloc_descriptors(struct alx_priv *alx)
  415. {
  416. alx->txq.bufs = kcalloc(alx->tx_ringsz,
  417. sizeof(struct alx_buffer),
  418. GFP_KERNEL);
  419. if (!alx->txq.bufs)
  420. return -ENOMEM;
  421. alx->rxq.bufs = kcalloc(alx->rx_ringsz,
  422. sizeof(struct alx_buffer),
  423. GFP_KERNEL);
  424. if (!alx->rxq.bufs)
  425. goto out_free;
  426. /* physical tx/rx ring descriptors
  427. *
  428. * Allocate them as a single chunk because they must not cross a
  429. * 4G boundary (hardware has a single register for high 32 bits
  430. * of addresses only)
  431. */
  432. alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
  433. sizeof(struct alx_rrd) * alx->rx_ringsz +
  434. sizeof(struct alx_rfd) * alx->rx_ringsz;
  435. alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
  436. alx->descmem.size,
  437. &alx->descmem.dma,
  438. GFP_KERNEL);
  439. if (!alx->descmem.virt)
  440. goto out_free;
  441. alx->txq.tpd = alx->descmem.virt;
  442. alx->txq.tpd_dma = alx->descmem.dma;
  443. /* alignment requirement for next block */
  444. BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
  445. alx->rxq.rrd =
  446. (void *)((u8 *)alx->descmem.virt +
  447. sizeof(struct alx_txd) * alx->tx_ringsz);
  448. alx->rxq.rrd_dma = alx->descmem.dma +
  449. sizeof(struct alx_txd) * alx->tx_ringsz;
  450. /* alignment requirement for next block */
  451. BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
  452. alx->rxq.rfd =
  453. (void *)((u8 *)alx->descmem.virt +
  454. sizeof(struct alx_txd) * alx->tx_ringsz +
  455. sizeof(struct alx_rrd) * alx->rx_ringsz);
  456. alx->rxq.rfd_dma = alx->descmem.dma +
  457. sizeof(struct alx_txd) * alx->tx_ringsz +
  458. sizeof(struct alx_rrd) * alx->rx_ringsz;
  459. return 0;
  460. out_free:
  461. kfree(alx->txq.bufs);
  462. kfree(alx->rxq.bufs);
  463. return -ENOMEM;
  464. }
  465. static int alx_alloc_rings(struct alx_priv *alx)
  466. {
  467. int err;
  468. err = alx_alloc_descriptors(alx);
  469. if (err)
  470. return err;
  471. alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
  472. alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
  473. netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
  474. alx_reinit_rings(alx);
  475. return 0;
  476. }
  477. static void alx_free_rings(struct alx_priv *alx)
  478. {
  479. netif_napi_del(&alx->napi);
  480. alx_free_buffers(alx);
  481. kfree(alx->txq.bufs);
  482. kfree(alx->rxq.bufs);
  483. dma_free_coherent(&alx->hw.pdev->dev,
  484. alx->descmem.size,
  485. alx->descmem.virt,
  486. alx->descmem.dma);
  487. }
  488. static void alx_config_vector_mapping(struct alx_priv *alx)
  489. {
  490. struct alx_hw *hw = &alx->hw;
  491. alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
  492. alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
  493. alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
  494. }
  495. static void alx_irq_enable(struct alx_priv *alx)
  496. {
  497. struct alx_hw *hw = &alx->hw;
  498. /* level-1 interrupt switch */
  499. alx_write_mem32(hw, ALX_ISR, 0);
  500. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  501. alx_post_write(hw);
  502. }
  503. static void alx_irq_disable(struct alx_priv *alx)
  504. {
  505. struct alx_hw *hw = &alx->hw;
  506. alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
  507. alx_write_mem32(hw, ALX_IMR, 0);
  508. alx_post_write(hw);
  509. synchronize_irq(alx->hw.pdev->irq);
  510. }
  511. static int alx_request_irq(struct alx_priv *alx)
  512. {
  513. struct pci_dev *pdev = alx->hw.pdev;
  514. struct alx_hw *hw = &alx->hw;
  515. int err;
  516. u32 msi_ctrl;
  517. msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
  518. if (!pci_enable_msi(alx->hw.pdev)) {
  519. alx->msi = true;
  520. alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
  521. msi_ctrl | ALX_MSI_MASK_SEL_LINE);
  522. err = request_irq(pdev->irq, alx_intr_msi, 0,
  523. alx->dev->name, alx);
  524. if (!err)
  525. goto out;
  526. /* fall back to legacy interrupt */
  527. pci_disable_msi(alx->hw.pdev);
  528. }
  529. alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
  530. err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
  531. alx->dev->name, alx);
  532. out:
  533. if (!err)
  534. alx_config_vector_mapping(alx);
  535. return err;
  536. }
  537. static void alx_free_irq(struct alx_priv *alx)
  538. {
  539. struct pci_dev *pdev = alx->hw.pdev;
  540. free_irq(pdev->irq, alx);
  541. if (alx->msi) {
  542. pci_disable_msi(alx->hw.pdev);
  543. alx->msi = false;
  544. }
  545. }
  546. static int alx_identify_hw(struct alx_priv *alx)
  547. {
  548. struct alx_hw *hw = &alx->hw;
  549. int rev = alx_hw_revision(hw);
  550. if (rev > ALX_REV_C0)
  551. return -EINVAL;
  552. hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
  553. return 0;
  554. }
  555. static int alx_init_sw(struct alx_priv *alx)
  556. {
  557. struct pci_dev *pdev = alx->hw.pdev;
  558. struct alx_hw *hw = &alx->hw;
  559. int err;
  560. err = alx_identify_hw(alx);
  561. if (err) {
  562. dev_err(&pdev->dev, "unrecognized chip, aborting\n");
  563. return err;
  564. }
  565. alx->hw.lnk_patch =
  566. pdev->device == ALX_DEV_ID_AR8161 &&
  567. pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
  568. pdev->subsystem_device == 0x0091 &&
  569. pdev->revision == 0;
  570. hw->smb_timer = 400;
  571. hw->mtu = alx->dev->mtu;
  572. alx->rxbuf_size = ALX_MAX_FRAME_LEN(hw->mtu);
  573. alx->tx_ringsz = 256;
  574. alx->rx_ringsz = 512;
  575. hw->imt = 200;
  576. alx->int_mask = ALX_ISR_MISC;
  577. hw->dma_chnl = hw->max_dma_chnl;
  578. hw->ith_tpd = alx->tx_ringsz / 3;
  579. hw->link_speed = SPEED_UNKNOWN;
  580. hw->duplex = DUPLEX_UNKNOWN;
  581. hw->adv_cfg = ADVERTISED_Autoneg |
  582. ADVERTISED_10baseT_Half |
  583. ADVERTISED_10baseT_Full |
  584. ADVERTISED_100baseT_Full |
  585. ADVERTISED_100baseT_Half |
  586. ADVERTISED_1000baseT_Full;
  587. hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
  588. hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
  589. ALX_MAC_CTRL_MHASH_ALG_HI5B |
  590. ALX_MAC_CTRL_BRD_EN |
  591. ALX_MAC_CTRL_PCRCE |
  592. ALX_MAC_CTRL_CRCE |
  593. ALX_MAC_CTRL_RXFC_EN |
  594. ALX_MAC_CTRL_TXFC_EN |
  595. 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
  596. return err;
  597. }
  598. static netdev_features_t alx_fix_features(struct net_device *netdev,
  599. netdev_features_t features)
  600. {
  601. if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
  602. features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  603. return features;
  604. }
  605. static void alx_netif_stop(struct alx_priv *alx)
  606. {
  607. netif_trans_update(alx->dev);
  608. if (netif_carrier_ok(alx->dev)) {
  609. netif_carrier_off(alx->dev);
  610. netif_tx_disable(alx->dev);
  611. napi_disable(&alx->napi);
  612. }
  613. }
  614. static void alx_halt(struct alx_priv *alx)
  615. {
  616. struct alx_hw *hw = &alx->hw;
  617. alx_netif_stop(alx);
  618. hw->link_speed = SPEED_UNKNOWN;
  619. hw->duplex = DUPLEX_UNKNOWN;
  620. alx_reset_mac(hw);
  621. /* disable l0s/l1 */
  622. alx_enable_aspm(hw, false, false);
  623. alx_irq_disable(alx);
  624. alx_free_buffers(alx);
  625. }
  626. static void alx_configure(struct alx_priv *alx)
  627. {
  628. struct alx_hw *hw = &alx->hw;
  629. alx_configure_basic(hw);
  630. alx_disable_rss(hw);
  631. __alx_set_rx_mode(alx->dev);
  632. alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
  633. }
  634. static void alx_activate(struct alx_priv *alx)
  635. {
  636. /* hardware setting lost, restore it */
  637. alx_reinit_rings(alx);
  638. alx_configure(alx);
  639. /* clear old interrupts */
  640. alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
  641. alx_irq_enable(alx);
  642. alx_schedule_link_check(alx);
  643. }
  644. static void alx_reinit(struct alx_priv *alx)
  645. {
  646. ASSERT_RTNL();
  647. alx_halt(alx);
  648. alx_activate(alx);
  649. }
  650. static int alx_change_mtu(struct net_device *netdev, int mtu)
  651. {
  652. struct alx_priv *alx = netdev_priv(netdev);
  653. int max_frame = ALX_MAX_FRAME_LEN(mtu);
  654. if ((max_frame < ALX_MIN_FRAME_SIZE) ||
  655. (max_frame > ALX_MAX_FRAME_SIZE))
  656. return -EINVAL;
  657. if (netdev->mtu == mtu)
  658. return 0;
  659. netdev->mtu = mtu;
  660. alx->hw.mtu = mtu;
  661. alx->rxbuf_size = max(max_frame, ALX_DEF_RXBUF_SIZE);
  662. netdev_update_features(netdev);
  663. if (netif_running(netdev))
  664. alx_reinit(alx);
  665. return 0;
  666. }
  667. static void alx_netif_start(struct alx_priv *alx)
  668. {
  669. netif_tx_wake_all_queues(alx->dev);
  670. napi_enable(&alx->napi);
  671. netif_carrier_on(alx->dev);
  672. }
  673. static int __alx_open(struct alx_priv *alx, bool resume)
  674. {
  675. int err;
  676. if (!resume)
  677. netif_carrier_off(alx->dev);
  678. err = alx_alloc_rings(alx);
  679. if (err)
  680. return err;
  681. alx_configure(alx);
  682. err = alx_request_irq(alx);
  683. if (err)
  684. goto out_free_rings;
  685. /* clear old interrupts */
  686. alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
  687. alx_irq_enable(alx);
  688. if (!resume)
  689. netif_tx_start_all_queues(alx->dev);
  690. alx_schedule_link_check(alx);
  691. return 0;
  692. out_free_rings:
  693. alx_free_rings(alx);
  694. return err;
  695. }
  696. static void __alx_stop(struct alx_priv *alx)
  697. {
  698. alx_halt(alx);
  699. alx_free_irq(alx);
  700. alx_free_rings(alx);
  701. }
  702. static const char *alx_speed_desc(struct alx_hw *hw)
  703. {
  704. switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
  705. case ADVERTISED_1000baseT_Full:
  706. return "1 Gbps Full";
  707. case ADVERTISED_100baseT_Full:
  708. return "100 Mbps Full";
  709. case ADVERTISED_100baseT_Half:
  710. return "100 Mbps Half";
  711. case ADVERTISED_10baseT_Full:
  712. return "10 Mbps Full";
  713. case ADVERTISED_10baseT_Half:
  714. return "10 Mbps Half";
  715. default:
  716. return "Unknown speed";
  717. }
  718. }
  719. static void alx_check_link(struct alx_priv *alx)
  720. {
  721. struct alx_hw *hw = &alx->hw;
  722. unsigned long flags;
  723. int old_speed;
  724. u8 old_duplex;
  725. int err;
  726. /* clear PHY internal interrupt status, otherwise the main
  727. * interrupt status will be asserted forever
  728. */
  729. alx_clear_phy_intr(hw);
  730. old_speed = hw->link_speed;
  731. old_duplex = hw->duplex;
  732. err = alx_read_phy_link(hw);
  733. if (err < 0)
  734. goto reset;
  735. spin_lock_irqsave(&alx->irq_lock, flags);
  736. alx->int_mask |= ALX_ISR_PHY;
  737. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  738. spin_unlock_irqrestore(&alx->irq_lock, flags);
  739. if (old_speed == hw->link_speed)
  740. return;
  741. if (hw->link_speed != SPEED_UNKNOWN) {
  742. netif_info(alx, link, alx->dev,
  743. "NIC Up: %s\n", alx_speed_desc(hw));
  744. alx_post_phy_link(hw);
  745. alx_enable_aspm(hw, true, true);
  746. alx_start_mac(hw);
  747. if (old_speed == SPEED_UNKNOWN)
  748. alx_netif_start(alx);
  749. } else {
  750. /* link is now down */
  751. alx_netif_stop(alx);
  752. netif_info(alx, link, alx->dev, "Link Down\n");
  753. err = alx_reset_mac(hw);
  754. if (err)
  755. goto reset;
  756. alx_irq_disable(alx);
  757. /* MAC reset causes all HW settings to be lost, restore all */
  758. err = alx_reinit_rings(alx);
  759. if (err)
  760. goto reset;
  761. alx_configure(alx);
  762. alx_enable_aspm(hw, false, true);
  763. alx_post_phy_link(hw);
  764. alx_irq_enable(alx);
  765. }
  766. return;
  767. reset:
  768. alx_schedule_reset(alx);
  769. }
  770. static int alx_open(struct net_device *netdev)
  771. {
  772. return __alx_open(netdev_priv(netdev), false);
  773. }
  774. static int alx_stop(struct net_device *netdev)
  775. {
  776. __alx_stop(netdev_priv(netdev));
  777. return 0;
  778. }
  779. static void alx_link_check(struct work_struct *work)
  780. {
  781. struct alx_priv *alx;
  782. alx = container_of(work, struct alx_priv, link_check_wk);
  783. rtnl_lock();
  784. alx_check_link(alx);
  785. rtnl_unlock();
  786. }
  787. static void alx_reset(struct work_struct *work)
  788. {
  789. struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
  790. rtnl_lock();
  791. alx_reinit(alx);
  792. rtnl_unlock();
  793. }
  794. static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
  795. {
  796. u8 cso, css;
  797. if (skb->ip_summed != CHECKSUM_PARTIAL)
  798. return 0;
  799. cso = skb_checksum_start_offset(skb);
  800. if (cso & 1)
  801. return -EINVAL;
  802. css = cso + skb->csum_offset;
  803. first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
  804. first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
  805. first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
  806. return 0;
  807. }
  808. static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
  809. {
  810. struct alx_tx_queue *txq = &alx->txq;
  811. struct alx_txd *tpd, *first_tpd;
  812. dma_addr_t dma;
  813. int maplen, f, first_idx = txq->write_idx;
  814. first_tpd = &txq->tpd[txq->write_idx];
  815. tpd = first_tpd;
  816. maplen = skb_headlen(skb);
  817. dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
  818. DMA_TO_DEVICE);
  819. if (dma_mapping_error(&alx->hw.pdev->dev, dma))
  820. goto err_dma;
  821. dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
  822. dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
  823. tpd->adrl.addr = cpu_to_le64(dma);
  824. tpd->len = cpu_to_le16(maplen);
  825. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
  826. struct skb_frag_struct *frag;
  827. frag = &skb_shinfo(skb)->frags[f];
  828. if (++txq->write_idx == alx->tx_ringsz)
  829. txq->write_idx = 0;
  830. tpd = &txq->tpd[txq->write_idx];
  831. tpd->word1 = first_tpd->word1;
  832. maplen = skb_frag_size(frag);
  833. dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
  834. maplen, DMA_TO_DEVICE);
  835. if (dma_mapping_error(&alx->hw.pdev->dev, dma))
  836. goto err_dma;
  837. dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
  838. dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
  839. tpd->adrl.addr = cpu_to_le64(dma);
  840. tpd->len = cpu_to_le16(maplen);
  841. }
  842. /* last TPD, set EOP flag and store skb */
  843. tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
  844. txq->bufs[txq->write_idx].skb = skb;
  845. if (++txq->write_idx == alx->tx_ringsz)
  846. txq->write_idx = 0;
  847. return 0;
  848. err_dma:
  849. f = first_idx;
  850. while (f != txq->write_idx) {
  851. alx_free_txbuf(alx, f);
  852. if (++f == alx->tx_ringsz)
  853. f = 0;
  854. }
  855. return -ENOMEM;
  856. }
  857. static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
  858. struct net_device *netdev)
  859. {
  860. struct alx_priv *alx = netdev_priv(netdev);
  861. struct alx_tx_queue *txq = &alx->txq;
  862. struct alx_txd *first;
  863. int tpdreq = skb_shinfo(skb)->nr_frags + 1;
  864. if (alx_tpd_avail(alx) < tpdreq) {
  865. netif_stop_queue(alx->dev);
  866. goto drop;
  867. }
  868. first = &txq->tpd[txq->write_idx];
  869. memset(first, 0, sizeof(*first));
  870. if (alx_tx_csum(skb, first))
  871. goto drop;
  872. if (alx_map_tx_skb(alx, skb) < 0)
  873. goto drop;
  874. netdev_sent_queue(alx->dev, skb->len);
  875. /* flush updates before updating hardware */
  876. wmb();
  877. alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
  878. if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
  879. netif_stop_queue(alx->dev);
  880. return NETDEV_TX_OK;
  881. drop:
  882. dev_kfree_skb_any(skb);
  883. return NETDEV_TX_OK;
  884. }
  885. static void alx_tx_timeout(struct net_device *dev)
  886. {
  887. struct alx_priv *alx = netdev_priv(dev);
  888. alx_schedule_reset(alx);
  889. }
  890. static int alx_mdio_read(struct net_device *netdev,
  891. int prtad, int devad, u16 addr)
  892. {
  893. struct alx_priv *alx = netdev_priv(netdev);
  894. struct alx_hw *hw = &alx->hw;
  895. u16 val;
  896. int err;
  897. if (prtad != hw->mdio.prtad)
  898. return -EINVAL;
  899. if (devad == MDIO_DEVAD_NONE)
  900. err = alx_read_phy_reg(hw, addr, &val);
  901. else
  902. err = alx_read_phy_ext(hw, devad, addr, &val);
  903. if (err)
  904. return err;
  905. return val;
  906. }
  907. static int alx_mdio_write(struct net_device *netdev,
  908. int prtad, int devad, u16 addr, u16 val)
  909. {
  910. struct alx_priv *alx = netdev_priv(netdev);
  911. struct alx_hw *hw = &alx->hw;
  912. if (prtad != hw->mdio.prtad)
  913. return -EINVAL;
  914. if (devad == MDIO_DEVAD_NONE)
  915. return alx_write_phy_reg(hw, addr, val);
  916. return alx_write_phy_ext(hw, devad, addr, val);
  917. }
  918. static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  919. {
  920. struct alx_priv *alx = netdev_priv(netdev);
  921. if (!netif_running(netdev))
  922. return -EAGAIN;
  923. return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
  924. }
  925. #ifdef CONFIG_NET_POLL_CONTROLLER
  926. static void alx_poll_controller(struct net_device *netdev)
  927. {
  928. struct alx_priv *alx = netdev_priv(netdev);
  929. if (alx->msi)
  930. alx_intr_msi(0, alx);
  931. else
  932. alx_intr_legacy(0, alx);
  933. }
  934. #endif
  935. static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
  936. struct rtnl_link_stats64 *net_stats)
  937. {
  938. struct alx_priv *alx = netdev_priv(dev);
  939. struct alx_hw_stats *hw_stats = &alx->hw.stats;
  940. spin_lock(&alx->stats_lock);
  941. alx_update_hw_stats(&alx->hw);
  942. net_stats->tx_bytes = hw_stats->tx_byte_cnt;
  943. net_stats->rx_bytes = hw_stats->rx_byte_cnt;
  944. net_stats->multicast = hw_stats->rx_mcast;
  945. net_stats->collisions = hw_stats->tx_single_col +
  946. hw_stats->tx_multi_col +
  947. hw_stats->tx_late_col +
  948. hw_stats->tx_abort_col;
  949. net_stats->rx_errors = hw_stats->rx_frag +
  950. hw_stats->rx_fcs_err +
  951. hw_stats->rx_len_err +
  952. hw_stats->rx_ov_sz +
  953. hw_stats->rx_ov_rrd +
  954. hw_stats->rx_align_err +
  955. hw_stats->rx_ov_rxf;
  956. net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
  957. net_stats->rx_length_errors = hw_stats->rx_len_err;
  958. net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
  959. net_stats->rx_frame_errors = hw_stats->rx_align_err;
  960. net_stats->rx_dropped = hw_stats->rx_ov_rrd;
  961. net_stats->tx_errors = hw_stats->tx_late_col +
  962. hw_stats->tx_abort_col +
  963. hw_stats->tx_underrun +
  964. hw_stats->tx_trunc;
  965. net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
  966. net_stats->tx_fifo_errors = hw_stats->tx_underrun;
  967. net_stats->tx_window_errors = hw_stats->tx_late_col;
  968. net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
  969. net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
  970. spin_unlock(&alx->stats_lock);
  971. return net_stats;
  972. }
  973. static const struct net_device_ops alx_netdev_ops = {
  974. .ndo_open = alx_open,
  975. .ndo_stop = alx_stop,
  976. .ndo_start_xmit = alx_start_xmit,
  977. .ndo_get_stats64 = alx_get_stats64,
  978. .ndo_set_rx_mode = alx_set_rx_mode,
  979. .ndo_validate_addr = eth_validate_addr,
  980. .ndo_set_mac_address = alx_set_mac_address,
  981. .ndo_change_mtu = alx_change_mtu,
  982. .ndo_do_ioctl = alx_ioctl,
  983. .ndo_tx_timeout = alx_tx_timeout,
  984. .ndo_fix_features = alx_fix_features,
  985. #ifdef CONFIG_NET_POLL_CONTROLLER
  986. .ndo_poll_controller = alx_poll_controller,
  987. #endif
  988. };
  989. static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  990. {
  991. struct net_device *netdev;
  992. struct alx_priv *alx;
  993. struct alx_hw *hw;
  994. bool phy_configured;
  995. int bars, err;
  996. err = pci_enable_device_mem(pdev);
  997. if (err)
  998. return err;
  999. /* The alx chip can DMA to 64-bit addresses, but it uses a single
  1000. * shared register for the high 32 bits, so only a single, aligned,
  1001. * 4 GB physical address range can be used for descriptors.
  1002. */
  1003. if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
  1004. dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
  1005. } else {
  1006. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  1007. if (err) {
  1008. dev_err(&pdev->dev, "No usable DMA config, aborting\n");
  1009. goto out_pci_disable;
  1010. }
  1011. }
  1012. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1013. err = pci_request_selected_regions(pdev, bars, alx_drv_name);
  1014. if (err) {
  1015. dev_err(&pdev->dev,
  1016. "pci_request_selected_regions failed(bars:%d)\n", bars);
  1017. goto out_pci_disable;
  1018. }
  1019. pci_enable_pcie_error_reporting(pdev);
  1020. pci_set_master(pdev);
  1021. if (!pdev->pm_cap) {
  1022. dev_err(&pdev->dev,
  1023. "Can't find power management capability, aborting\n");
  1024. err = -EIO;
  1025. goto out_pci_release;
  1026. }
  1027. netdev = alloc_etherdev(sizeof(*alx));
  1028. if (!netdev) {
  1029. err = -ENOMEM;
  1030. goto out_pci_release;
  1031. }
  1032. SET_NETDEV_DEV(netdev, &pdev->dev);
  1033. alx = netdev_priv(netdev);
  1034. spin_lock_init(&alx->hw.mdio_lock);
  1035. spin_lock_init(&alx->irq_lock);
  1036. spin_lock_init(&alx->stats_lock);
  1037. alx->dev = netdev;
  1038. alx->hw.pdev = pdev;
  1039. alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
  1040. NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
  1041. hw = &alx->hw;
  1042. pci_set_drvdata(pdev, alx);
  1043. hw->hw_addr = pci_ioremap_bar(pdev, 0);
  1044. if (!hw->hw_addr) {
  1045. dev_err(&pdev->dev, "cannot map device registers\n");
  1046. err = -EIO;
  1047. goto out_free_netdev;
  1048. }
  1049. netdev->netdev_ops = &alx_netdev_ops;
  1050. netdev->ethtool_ops = &alx_ethtool_ops;
  1051. netdev->irq = pdev->irq;
  1052. netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
  1053. if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
  1054. pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
  1055. err = alx_init_sw(alx);
  1056. if (err) {
  1057. dev_err(&pdev->dev, "net device private data init failed\n");
  1058. goto out_unmap;
  1059. }
  1060. alx_reset_pcie(hw);
  1061. phy_configured = alx_phy_configured(hw);
  1062. if (!phy_configured)
  1063. alx_reset_phy(hw);
  1064. err = alx_reset_mac(hw);
  1065. if (err) {
  1066. dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
  1067. goto out_unmap;
  1068. }
  1069. /* setup link to put it in a known good starting state */
  1070. if (!phy_configured) {
  1071. err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
  1072. if (err) {
  1073. dev_err(&pdev->dev,
  1074. "failed to configure PHY speed/duplex (err=%d)\n",
  1075. err);
  1076. goto out_unmap;
  1077. }
  1078. }
  1079. netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
  1080. if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
  1081. dev_warn(&pdev->dev,
  1082. "Invalid permanent address programmed, using random one\n");
  1083. eth_hw_addr_random(netdev);
  1084. memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
  1085. }
  1086. memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
  1087. memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
  1088. memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
  1089. hw->mdio.prtad = 0;
  1090. hw->mdio.mmds = 0;
  1091. hw->mdio.dev = netdev;
  1092. hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
  1093. MDIO_SUPPORTS_C22 |
  1094. MDIO_EMULATE_C22;
  1095. hw->mdio.mdio_read = alx_mdio_read;
  1096. hw->mdio.mdio_write = alx_mdio_write;
  1097. if (!alx_get_phy_info(hw)) {
  1098. dev_err(&pdev->dev, "failed to identify PHY\n");
  1099. err = -EIO;
  1100. goto out_unmap;
  1101. }
  1102. INIT_WORK(&alx->link_check_wk, alx_link_check);
  1103. INIT_WORK(&alx->reset_wk, alx_reset);
  1104. netif_carrier_off(netdev);
  1105. err = register_netdev(netdev);
  1106. if (err) {
  1107. dev_err(&pdev->dev, "register netdevice failed\n");
  1108. goto out_unmap;
  1109. }
  1110. netdev_info(netdev,
  1111. "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
  1112. netdev->dev_addr);
  1113. return 0;
  1114. out_unmap:
  1115. iounmap(hw->hw_addr);
  1116. out_free_netdev:
  1117. free_netdev(netdev);
  1118. out_pci_release:
  1119. pci_release_selected_regions(pdev, bars);
  1120. out_pci_disable:
  1121. pci_disable_device(pdev);
  1122. return err;
  1123. }
  1124. static void alx_remove(struct pci_dev *pdev)
  1125. {
  1126. struct alx_priv *alx = pci_get_drvdata(pdev);
  1127. struct alx_hw *hw = &alx->hw;
  1128. cancel_work_sync(&alx->link_check_wk);
  1129. cancel_work_sync(&alx->reset_wk);
  1130. /* restore permanent mac address */
  1131. alx_set_macaddr(hw, hw->perm_addr);
  1132. unregister_netdev(alx->dev);
  1133. iounmap(hw->hw_addr);
  1134. pci_release_selected_regions(pdev,
  1135. pci_select_bars(pdev, IORESOURCE_MEM));
  1136. pci_disable_pcie_error_reporting(pdev);
  1137. pci_disable_device(pdev);
  1138. free_netdev(alx->dev);
  1139. }
  1140. #ifdef CONFIG_PM_SLEEP
  1141. static int alx_suspend(struct device *dev)
  1142. {
  1143. struct pci_dev *pdev = to_pci_dev(dev);
  1144. struct alx_priv *alx = pci_get_drvdata(pdev);
  1145. if (!netif_running(alx->dev))
  1146. return 0;
  1147. netif_device_detach(alx->dev);
  1148. __alx_stop(alx);
  1149. return 0;
  1150. }
  1151. static int alx_resume(struct device *dev)
  1152. {
  1153. struct pci_dev *pdev = to_pci_dev(dev);
  1154. struct alx_priv *alx = pci_get_drvdata(pdev);
  1155. struct alx_hw *hw = &alx->hw;
  1156. alx_reset_phy(hw);
  1157. if (!netif_running(alx->dev))
  1158. return 0;
  1159. netif_device_attach(alx->dev);
  1160. return __alx_open(alx, true);
  1161. }
  1162. static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
  1163. #define ALX_PM_OPS (&alx_pm_ops)
  1164. #else
  1165. #define ALX_PM_OPS NULL
  1166. #endif
  1167. static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
  1168. pci_channel_state_t state)
  1169. {
  1170. struct alx_priv *alx = pci_get_drvdata(pdev);
  1171. struct net_device *netdev = alx->dev;
  1172. pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
  1173. dev_info(&pdev->dev, "pci error detected\n");
  1174. rtnl_lock();
  1175. if (netif_running(netdev)) {
  1176. netif_device_detach(netdev);
  1177. alx_halt(alx);
  1178. }
  1179. if (state == pci_channel_io_perm_failure)
  1180. rc = PCI_ERS_RESULT_DISCONNECT;
  1181. else
  1182. pci_disable_device(pdev);
  1183. rtnl_unlock();
  1184. return rc;
  1185. }
  1186. static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
  1187. {
  1188. struct alx_priv *alx = pci_get_drvdata(pdev);
  1189. struct alx_hw *hw = &alx->hw;
  1190. pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
  1191. dev_info(&pdev->dev, "pci error slot reset\n");
  1192. rtnl_lock();
  1193. if (pci_enable_device(pdev)) {
  1194. dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
  1195. goto out;
  1196. }
  1197. pci_set_master(pdev);
  1198. alx_reset_pcie(hw);
  1199. if (!alx_reset_mac(hw))
  1200. rc = PCI_ERS_RESULT_RECOVERED;
  1201. out:
  1202. pci_cleanup_aer_uncorrect_error_status(pdev);
  1203. rtnl_unlock();
  1204. return rc;
  1205. }
  1206. static void alx_pci_error_resume(struct pci_dev *pdev)
  1207. {
  1208. struct alx_priv *alx = pci_get_drvdata(pdev);
  1209. struct net_device *netdev = alx->dev;
  1210. dev_info(&pdev->dev, "pci error resume\n");
  1211. rtnl_lock();
  1212. if (netif_running(netdev)) {
  1213. alx_activate(alx);
  1214. netif_device_attach(netdev);
  1215. }
  1216. rtnl_unlock();
  1217. }
  1218. static const struct pci_error_handlers alx_err_handlers = {
  1219. .error_detected = alx_pci_error_detected,
  1220. .slot_reset = alx_pci_error_slot_reset,
  1221. .resume = alx_pci_error_resume,
  1222. };
  1223. static const struct pci_device_id alx_pci_tbl[] = {
  1224. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
  1225. .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
  1226. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
  1227. .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
  1228. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2400),
  1229. .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
  1230. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
  1231. .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
  1232. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
  1233. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
  1234. {}
  1235. };
  1236. static struct pci_driver alx_driver = {
  1237. .name = alx_drv_name,
  1238. .id_table = alx_pci_tbl,
  1239. .probe = alx_probe,
  1240. .remove = alx_remove,
  1241. .err_handler = &alx_err_handlers,
  1242. .driver.pm = ALX_PM_OPS,
  1243. };
  1244. module_pci_driver(alx_driver);
  1245. MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
  1246. MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  1247. MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
  1248. MODULE_DESCRIPTION(
  1249. "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
  1250. MODULE_LICENSE("GPL");