mm.h 87 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. #include <linux/overflow.h>
  26. struct mempolicy;
  27. struct anon_vma;
  28. struct anon_vma_chain;
  29. struct file_ra_state;
  30. struct user_struct;
  31. struct writeback_control;
  32. struct bdi_writeback;
  33. void init_mm_internals(void);
  34. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  35. extern unsigned long max_mapnr;
  36. static inline void set_max_mapnr(unsigned long limit)
  37. {
  38. max_mapnr = limit;
  39. }
  40. #else
  41. static inline void set_max_mapnr(unsigned long limit) { }
  42. #endif
  43. extern unsigned long totalram_pages;
  44. extern void * high_memory;
  45. extern int page_cluster;
  46. #ifdef CONFIG_SYSCTL
  47. extern int sysctl_legacy_va_layout;
  48. #else
  49. #define sysctl_legacy_va_layout 0
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  52. extern const int mmap_rnd_bits_min;
  53. extern const int mmap_rnd_bits_max;
  54. extern int mmap_rnd_bits __read_mostly;
  55. #endif
  56. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  57. extern const int mmap_rnd_compat_bits_min;
  58. extern const int mmap_rnd_compat_bits_max;
  59. extern int mmap_rnd_compat_bits __read_mostly;
  60. #endif
  61. #include <asm/page.h>
  62. #include <asm/pgtable.h>
  63. #include <asm/processor.h>
  64. #ifndef __pa_symbol
  65. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  66. #endif
  67. #ifndef page_to_virt
  68. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  69. #endif
  70. #ifndef lm_alias
  71. #define lm_alias(x) __va(__pa_symbol(x))
  72. #endif
  73. /*
  74. * To prevent common memory management code establishing
  75. * a zero page mapping on a read fault.
  76. * This macro should be defined within <asm/pgtable.h>.
  77. * s390 does this to prevent multiplexing of hardware bits
  78. * related to the physical page in case of virtualization.
  79. */
  80. #ifndef mm_forbids_zeropage
  81. #define mm_forbids_zeropage(X) (0)
  82. #endif
  83. /*
  84. * On some architectures it is expensive to call memset() for small sizes.
  85. * Those architectures should provide their own implementation of "struct page"
  86. * zeroing by defining this macro in <asm/pgtable.h>.
  87. */
  88. #ifndef mm_zero_struct_page
  89. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  90. #endif
  91. /*
  92. * Default maximum number of active map areas, this limits the number of vmas
  93. * per mm struct. Users can overwrite this number by sysctl but there is a
  94. * problem.
  95. *
  96. * When a program's coredump is generated as ELF format, a section is created
  97. * per a vma. In ELF, the number of sections is represented in unsigned short.
  98. * This means the number of sections should be smaller than 65535 at coredump.
  99. * Because the kernel adds some informative sections to a image of program at
  100. * generating coredump, we need some margin. The number of extra sections is
  101. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  102. *
  103. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  104. * not a hard limit any more. Although some userspace tools can be surprised by
  105. * that.
  106. */
  107. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  108. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  109. extern int sysctl_max_map_count;
  110. extern unsigned long sysctl_user_reserve_kbytes;
  111. extern unsigned long sysctl_admin_reserve_kbytes;
  112. extern int sysctl_overcommit_memory;
  113. extern int sysctl_overcommit_ratio;
  114. extern unsigned long sysctl_overcommit_kbytes;
  115. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  116. size_t *, loff_t *);
  117. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  118. size_t *, loff_t *);
  119. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  120. /* to align the pointer to the (next) page boundary */
  121. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  122. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  123. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  124. /*
  125. * Linux kernel virtual memory manager primitives.
  126. * The idea being to have a "virtual" mm in the same way
  127. * we have a virtual fs - giving a cleaner interface to the
  128. * mm details, and allowing different kinds of memory mappings
  129. * (from shared memory to executable loading to arbitrary
  130. * mmap() functions).
  131. */
  132. struct vm_area_struct *vm_area_alloc(struct mm_struct *);
  133. struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
  134. void vm_area_free(struct vm_area_struct *);
  135. #ifndef CONFIG_MMU
  136. extern struct rb_root nommu_region_tree;
  137. extern struct rw_semaphore nommu_region_sem;
  138. extern unsigned int kobjsize(const void *objp);
  139. #endif
  140. /*
  141. * vm_flags in vm_area_struct, see mm_types.h.
  142. * When changing, update also include/trace/events/mmflags.h
  143. */
  144. #define VM_NONE 0x00000000
  145. #define VM_READ 0x00000001 /* currently active flags */
  146. #define VM_WRITE 0x00000002
  147. #define VM_EXEC 0x00000004
  148. #define VM_SHARED 0x00000008
  149. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  150. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  151. #define VM_MAYWRITE 0x00000020
  152. #define VM_MAYEXEC 0x00000040
  153. #define VM_MAYSHARE 0x00000080
  154. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  155. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  156. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  157. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  158. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  159. #define VM_LOCKED 0x00002000
  160. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  161. /* Used by sys_madvise() */
  162. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  163. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  164. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  165. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  166. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  167. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  168. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  169. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  170. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  171. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  172. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  173. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  174. #ifdef CONFIG_MEM_SOFT_DIRTY
  175. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  176. #else
  177. # define VM_SOFTDIRTY 0
  178. #endif
  179. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  180. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  181. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  182. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  183. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  184. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  187. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  188. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  189. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  190. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  191. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  192. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  193. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  194. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  195. #ifdef CONFIG_ARCH_HAS_PKEYS
  196. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  197. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  198. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
  199. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  200. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  201. #ifdef CONFIG_PPC
  202. # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
  203. #else
  204. # define VM_PKEY_BIT4 0
  205. #endif
  206. #endif /* CONFIG_ARCH_HAS_PKEYS */
  207. #if defined(CONFIG_X86)
  208. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  209. #elif defined(CONFIG_PPC)
  210. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  211. #elif defined(CONFIG_PARISC)
  212. # define VM_GROWSUP VM_ARCH_1
  213. #elif defined(CONFIG_IA64)
  214. # define VM_GROWSUP VM_ARCH_1
  215. #elif defined(CONFIG_SPARC64)
  216. # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
  217. # define VM_ARCH_CLEAR VM_SPARC_ADI
  218. #elif !defined(CONFIG_MMU)
  219. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  220. #endif
  221. #if defined(CONFIG_X86_INTEL_MPX)
  222. /* MPX specific bounds table or bounds directory */
  223. # define VM_MPX VM_HIGH_ARCH_4
  224. #else
  225. # define VM_MPX VM_NONE
  226. #endif
  227. #ifndef VM_GROWSUP
  228. # define VM_GROWSUP VM_NONE
  229. #endif
  230. /* Bits set in the VMA until the stack is in its final location */
  231. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  232. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  233. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  234. #endif
  235. #ifdef CONFIG_STACK_GROWSUP
  236. #define VM_STACK VM_GROWSUP
  237. #else
  238. #define VM_STACK VM_GROWSDOWN
  239. #endif
  240. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  241. /*
  242. * Special vmas that are non-mergable, non-mlock()able.
  243. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  244. */
  245. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  246. /* This mask defines which mm->def_flags a process can inherit its parent */
  247. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  248. /* This mask is used to clear all the VMA flags used by mlock */
  249. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  250. /* Arch-specific flags to clear when updating VM flags on protection change */
  251. #ifndef VM_ARCH_CLEAR
  252. # define VM_ARCH_CLEAR VM_NONE
  253. #endif
  254. #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
  255. /*
  256. * mapping from the currently active vm_flags protection bits (the
  257. * low four bits) to a page protection mask..
  258. */
  259. extern pgprot_t protection_map[16];
  260. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  261. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  262. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  263. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  264. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  265. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  266. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  267. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  268. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  269. #define FAULT_FLAG_TRACE \
  270. { FAULT_FLAG_WRITE, "WRITE" }, \
  271. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  272. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  273. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  274. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  275. { FAULT_FLAG_TRIED, "TRIED" }, \
  276. { FAULT_FLAG_USER, "USER" }, \
  277. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  278. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  279. /*
  280. * vm_fault is filled by the the pagefault handler and passed to the vma's
  281. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  282. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  283. *
  284. * MM layer fills up gfp_mask for page allocations but fault handler might
  285. * alter it if its implementation requires a different allocation context.
  286. *
  287. * pgoff should be used in favour of virtual_address, if possible.
  288. */
  289. struct vm_fault {
  290. struct vm_area_struct *vma; /* Target VMA */
  291. unsigned int flags; /* FAULT_FLAG_xxx flags */
  292. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  293. pgoff_t pgoff; /* Logical page offset based on vma */
  294. unsigned long address; /* Faulting virtual address */
  295. pmd_t *pmd; /* Pointer to pmd entry matching
  296. * the 'address' */
  297. pud_t *pud; /* Pointer to pud entry matching
  298. * the 'address'
  299. */
  300. pte_t orig_pte; /* Value of PTE at the time of fault */
  301. struct page *cow_page; /* Page handler may use for COW fault */
  302. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  303. struct page *page; /* ->fault handlers should return a
  304. * page here, unless VM_FAULT_NOPAGE
  305. * is set (which is also implied by
  306. * VM_FAULT_ERROR).
  307. */
  308. /* These three entries are valid only while holding ptl lock */
  309. pte_t *pte; /* Pointer to pte entry matching
  310. * the 'address'. NULL if the page
  311. * table hasn't been allocated.
  312. */
  313. spinlock_t *ptl; /* Page table lock.
  314. * Protects pte page table if 'pte'
  315. * is not NULL, otherwise pmd.
  316. */
  317. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  318. * vm_ops->map_pages() calls
  319. * alloc_set_pte() from atomic context.
  320. * do_fault_around() pre-allocates
  321. * page table to avoid allocation from
  322. * atomic context.
  323. */
  324. };
  325. /* page entry size for vm->huge_fault() */
  326. enum page_entry_size {
  327. PE_SIZE_PTE = 0,
  328. PE_SIZE_PMD,
  329. PE_SIZE_PUD,
  330. };
  331. /*
  332. * These are the virtual MM functions - opening of an area, closing and
  333. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  334. * to the functions called when a no-page or a wp-page exception occurs.
  335. */
  336. struct vm_operations_struct {
  337. void (*open)(struct vm_area_struct * area);
  338. void (*close)(struct vm_area_struct * area);
  339. int (*split)(struct vm_area_struct * area, unsigned long addr);
  340. int (*mremap)(struct vm_area_struct * area);
  341. vm_fault_t (*fault)(struct vm_fault *vmf);
  342. vm_fault_t (*huge_fault)(struct vm_fault *vmf,
  343. enum page_entry_size pe_size);
  344. void (*map_pages)(struct vm_fault *vmf,
  345. pgoff_t start_pgoff, pgoff_t end_pgoff);
  346. unsigned long (*pagesize)(struct vm_area_struct * area);
  347. /* notification that a previously read-only page is about to become
  348. * writable, if an error is returned it will cause a SIGBUS */
  349. vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
  350. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  351. vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
  352. /* called by access_process_vm when get_user_pages() fails, typically
  353. * for use by special VMAs that can switch between memory and hardware
  354. */
  355. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  356. void *buf, int len, int write);
  357. /* Called by the /proc/PID/maps code to ask the vma whether it
  358. * has a special name. Returning non-NULL will also cause this
  359. * vma to be dumped unconditionally. */
  360. const char *(*name)(struct vm_area_struct *vma);
  361. #ifdef CONFIG_NUMA
  362. /*
  363. * set_policy() op must add a reference to any non-NULL @new mempolicy
  364. * to hold the policy upon return. Caller should pass NULL @new to
  365. * remove a policy and fall back to surrounding context--i.e. do not
  366. * install a MPOL_DEFAULT policy, nor the task or system default
  367. * mempolicy.
  368. */
  369. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  370. /*
  371. * get_policy() op must add reference [mpol_get()] to any policy at
  372. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  373. * in mm/mempolicy.c will do this automatically.
  374. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  375. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  376. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  377. * must return NULL--i.e., do not "fallback" to task or system default
  378. * policy.
  379. */
  380. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  381. unsigned long addr);
  382. #endif
  383. /*
  384. * Called by vm_normal_page() for special PTEs to find the
  385. * page for @addr. This is useful if the default behavior
  386. * (using pte_page()) would not find the correct page.
  387. */
  388. struct page *(*find_special_page)(struct vm_area_struct *vma,
  389. unsigned long addr);
  390. };
  391. static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
  392. {
  393. static const struct vm_operations_struct dummy_vm_ops = {};
  394. memset(vma, 0, sizeof(*vma));
  395. vma->vm_mm = mm;
  396. vma->vm_ops = &dummy_vm_ops;
  397. INIT_LIST_HEAD(&vma->anon_vma_chain);
  398. }
  399. static inline void vma_set_anonymous(struct vm_area_struct *vma)
  400. {
  401. vma->vm_ops = NULL;
  402. }
  403. /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
  404. #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
  405. struct mmu_gather;
  406. struct inode;
  407. #define page_private(page) ((page)->private)
  408. #define set_page_private(page, v) ((page)->private = (v))
  409. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  410. static inline int pmd_devmap(pmd_t pmd)
  411. {
  412. return 0;
  413. }
  414. static inline int pud_devmap(pud_t pud)
  415. {
  416. return 0;
  417. }
  418. static inline int pgd_devmap(pgd_t pgd)
  419. {
  420. return 0;
  421. }
  422. #endif
  423. /*
  424. * FIXME: take this include out, include page-flags.h in
  425. * files which need it (119 of them)
  426. */
  427. #include <linux/page-flags.h>
  428. #include <linux/huge_mm.h>
  429. /*
  430. * Methods to modify the page usage count.
  431. *
  432. * What counts for a page usage:
  433. * - cache mapping (page->mapping)
  434. * - private data (page->private)
  435. * - page mapped in a task's page tables, each mapping
  436. * is counted separately
  437. *
  438. * Also, many kernel routines increase the page count before a critical
  439. * routine so they can be sure the page doesn't go away from under them.
  440. */
  441. /*
  442. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  443. */
  444. static inline int put_page_testzero(struct page *page)
  445. {
  446. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  447. return page_ref_dec_and_test(page);
  448. }
  449. /*
  450. * Try to grab a ref unless the page has a refcount of zero, return false if
  451. * that is the case.
  452. * This can be called when MMU is off so it must not access
  453. * any of the virtual mappings.
  454. */
  455. static inline int get_page_unless_zero(struct page *page)
  456. {
  457. return page_ref_add_unless(page, 1, 0);
  458. }
  459. extern int page_is_ram(unsigned long pfn);
  460. enum {
  461. REGION_INTERSECTS,
  462. REGION_DISJOINT,
  463. REGION_MIXED,
  464. };
  465. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  466. unsigned long desc);
  467. /* Support for virtually mapped pages */
  468. struct page *vmalloc_to_page(const void *addr);
  469. unsigned long vmalloc_to_pfn(const void *addr);
  470. /*
  471. * Determine if an address is within the vmalloc range
  472. *
  473. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  474. * is no special casing required.
  475. */
  476. static inline bool is_vmalloc_addr(const void *x)
  477. {
  478. #ifdef CONFIG_MMU
  479. unsigned long addr = (unsigned long)x;
  480. return addr >= VMALLOC_START && addr < VMALLOC_END;
  481. #else
  482. return false;
  483. #endif
  484. }
  485. #ifdef CONFIG_MMU
  486. extern int is_vmalloc_or_module_addr(const void *x);
  487. #else
  488. static inline int is_vmalloc_or_module_addr(const void *x)
  489. {
  490. return 0;
  491. }
  492. #endif
  493. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  494. static inline void *kvmalloc(size_t size, gfp_t flags)
  495. {
  496. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  497. }
  498. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  499. {
  500. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  501. }
  502. static inline void *kvzalloc(size_t size, gfp_t flags)
  503. {
  504. return kvmalloc(size, flags | __GFP_ZERO);
  505. }
  506. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  507. {
  508. size_t bytes;
  509. if (unlikely(check_mul_overflow(n, size, &bytes)))
  510. return NULL;
  511. return kvmalloc(bytes, flags);
  512. }
  513. static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
  514. {
  515. return kvmalloc_array(n, size, flags | __GFP_ZERO);
  516. }
  517. extern void kvfree(const void *addr);
  518. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  519. {
  520. return &page[1].compound_mapcount;
  521. }
  522. static inline int compound_mapcount(struct page *page)
  523. {
  524. VM_BUG_ON_PAGE(!PageCompound(page), page);
  525. page = compound_head(page);
  526. return atomic_read(compound_mapcount_ptr(page)) + 1;
  527. }
  528. /*
  529. * The atomic page->_mapcount, starts from -1: so that transitions
  530. * both from it and to it can be tracked, using atomic_inc_and_test
  531. * and atomic_add_negative(-1).
  532. */
  533. static inline void page_mapcount_reset(struct page *page)
  534. {
  535. atomic_set(&(page)->_mapcount, -1);
  536. }
  537. int __page_mapcount(struct page *page);
  538. static inline int page_mapcount(struct page *page)
  539. {
  540. VM_BUG_ON_PAGE(PageSlab(page), page);
  541. if (unlikely(PageCompound(page)))
  542. return __page_mapcount(page);
  543. return atomic_read(&page->_mapcount) + 1;
  544. }
  545. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  546. int total_mapcount(struct page *page);
  547. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  548. #else
  549. static inline int total_mapcount(struct page *page)
  550. {
  551. return page_mapcount(page);
  552. }
  553. static inline int page_trans_huge_mapcount(struct page *page,
  554. int *total_mapcount)
  555. {
  556. int mapcount = page_mapcount(page);
  557. if (total_mapcount)
  558. *total_mapcount = mapcount;
  559. return mapcount;
  560. }
  561. #endif
  562. static inline struct page *virt_to_head_page(const void *x)
  563. {
  564. struct page *page = virt_to_page(x);
  565. return compound_head(page);
  566. }
  567. void __put_page(struct page *page);
  568. void put_pages_list(struct list_head *pages);
  569. void split_page(struct page *page, unsigned int order);
  570. /*
  571. * Compound pages have a destructor function. Provide a
  572. * prototype for that function and accessor functions.
  573. * These are _only_ valid on the head of a compound page.
  574. */
  575. typedef void compound_page_dtor(struct page *);
  576. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  577. enum compound_dtor_id {
  578. NULL_COMPOUND_DTOR,
  579. COMPOUND_PAGE_DTOR,
  580. #ifdef CONFIG_HUGETLB_PAGE
  581. HUGETLB_PAGE_DTOR,
  582. #endif
  583. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  584. TRANSHUGE_PAGE_DTOR,
  585. #endif
  586. NR_COMPOUND_DTORS,
  587. };
  588. extern compound_page_dtor * const compound_page_dtors[];
  589. static inline void set_compound_page_dtor(struct page *page,
  590. enum compound_dtor_id compound_dtor)
  591. {
  592. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  593. page[1].compound_dtor = compound_dtor;
  594. }
  595. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  596. {
  597. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  598. return compound_page_dtors[page[1].compound_dtor];
  599. }
  600. static inline unsigned int compound_order(struct page *page)
  601. {
  602. if (!PageHead(page))
  603. return 0;
  604. return page[1].compound_order;
  605. }
  606. static inline void set_compound_order(struct page *page, unsigned int order)
  607. {
  608. page[1].compound_order = order;
  609. }
  610. void free_compound_page(struct page *page);
  611. #ifdef CONFIG_MMU
  612. /*
  613. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  614. * servicing faults for write access. In the normal case, do always want
  615. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  616. * that do not have writing enabled, when used by access_process_vm.
  617. */
  618. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  619. {
  620. if (likely(vma->vm_flags & VM_WRITE))
  621. pte = pte_mkwrite(pte);
  622. return pte;
  623. }
  624. vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  625. struct page *page);
  626. vm_fault_t finish_fault(struct vm_fault *vmf);
  627. vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
  628. #endif
  629. /*
  630. * Multiple processes may "see" the same page. E.g. for untouched
  631. * mappings of /dev/null, all processes see the same page full of
  632. * zeroes, and text pages of executables and shared libraries have
  633. * only one copy in memory, at most, normally.
  634. *
  635. * For the non-reserved pages, page_count(page) denotes a reference count.
  636. * page_count() == 0 means the page is free. page->lru is then used for
  637. * freelist management in the buddy allocator.
  638. * page_count() > 0 means the page has been allocated.
  639. *
  640. * Pages are allocated by the slab allocator in order to provide memory
  641. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  642. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  643. * unless a particular usage is carefully commented. (the responsibility of
  644. * freeing the kmalloc memory is the caller's, of course).
  645. *
  646. * A page may be used by anyone else who does a __get_free_page().
  647. * In this case, page_count still tracks the references, and should only
  648. * be used through the normal accessor functions. The top bits of page->flags
  649. * and page->virtual store page management information, but all other fields
  650. * are unused and could be used privately, carefully. The management of this
  651. * page is the responsibility of the one who allocated it, and those who have
  652. * subsequently been given references to it.
  653. *
  654. * The other pages (we may call them "pagecache pages") are completely
  655. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  656. * The following discussion applies only to them.
  657. *
  658. * A pagecache page contains an opaque `private' member, which belongs to the
  659. * page's address_space. Usually, this is the address of a circular list of
  660. * the page's disk buffers. PG_private must be set to tell the VM to call
  661. * into the filesystem to release these pages.
  662. *
  663. * A page may belong to an inode's memory mapping. In this case, page->mapping
  664. * is the pointer to the inode, and page->index is the file offset of the page,
  665. * in units of PAGE_SIZE.
  666. *
  667. * If pagecache pages are not associated with an inode, they are said to be
  668. * anonymous pages. These may become associated with the swapcache, and in that
  669. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  670. *
  671. * In either case (swapcache or inode backed), the pagecache itself holds one
  672. * reference to the page. Setting PG_private should also increment the
  673. * refcount. The each user mapping also has a reference to the page.
  674. *
  675. * The pagecache pages are stored in a per-mapping radix tree, which is
  676. * rooted at mapping->i_pages, and indexed by offset.
  677. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  678. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  679. *
  680. * All pagecache pages may be subject to I/O:
  681. * - inode pages may need to be read from disk,
  682. * - inode pages which have been modified and are MAP_SHARED may need
  683. * to be written back to the inode on disk,
  684. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  685. * modified may need to be swapped out to swap space and (later) to be read
  686. * back into memory.
  687. */
  688. /*
  689. * The zone field is never updated after free_area_init_core()
  690. * sets it, so none of the operations on it need to be atomic.
  691. */
  692. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  693. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  694. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  695. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  696. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  697. /*
  698. * Define the bit shifts to access each section. For non-existent
  699. * sections we define the shift as 0; that plus a 0 mask ensures
  700. * the compiler will optimise away reference to them.
  701. */
  702. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  703. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  704. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  705. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  706. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  707. #ifdef NODE_NOT_IN_PAGE_FLAGS
  708. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  709. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  710. SECTIONS_PGOFF : ZONES_PGOFF)
  711. #else
  712. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  713. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  714. NODES_PGOFF : ZONES_PGOFF)
  715. #endif
  716. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  717. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  718. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  719. #endif
  720. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  721. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  722. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  723. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  724. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  725. static inline enum zone_type page_zonenum(const struct page *page)
  726. {
  727. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  728. }
  729. #ifdef CONFIG_ZONE_DEVICE
  730. static inline bool is_zone_device_page(const struct page *page)
  731. {
  732. return page_zonenum(page) == ZONE_DEVICE;
  733. }
  734. extern void memmap_init_zone_device(struct zone *, unsigned long,
  735. unsigned long, struct dev_pagemap *);
  736. #else
  737. static inline bool is_zone_device_page(const struct page *page)
  738. {
  739. return false;
  740. }
  741. #endif
  742. #ifdef CONFIG_DEV_PAGEMAP_OPS
  743. void dev_pagemap_get_ops(void);
  744. void dev_pagemap_put_ops(void);
  745. void __put_devmap_managed_page(struct page *page);
  746. DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
  747. static inline bool put_devmap_managed_page(struct page *page)
  748. {
  749. if (!static_branch_unlikely(&devmap_managed_key))
  750. return false;
  751. if (!is_zone_device_page(page))
  752. return false;
  753. switch (page->pgmap->type) {
  754. case MEMORY_DEVICE_PRIVATE:
  755. case MEMORY_DEVICE_PUBLIC:
  756. case MEMORY_DEVICE_FS_DAX:
  757. __put_devmap_managed_page(page);
  758. return true;
  759. default:
  760. break;
  761. }
  762. return false;
  763. }
  764. static inline bool is_device_private_page(const struct page *page)
  765. {
  766. return is_zone_device_page(page) &&
  767. page->pgmap->type == MEMORY_DEVICE_PRIVATE;
  768. }
  769. static inline bool is_device_public_page(const struct page *page)
  770. {
  771. return is_zone_device_page(page) &&
  772. page->pgmap->type == MEMORY_DEVICE_PUBLIC;
  773. }
  774. #ifdef CONFIG_PCI_P2PDMA
  775. static inline bool is_pci_p2pdma_page(const struct page *page)
  776. {
  777. return is_zone_device_page(page) &&
  778. page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
  779. }
  780. #else /* CONFIG_PCI_P2PDMA */
  781. static inline bool is_pci_p2pdma_page(const struct page *page)
  782. {
  783. return false;
  784. }
  785. #endif /* CONFIG_PCI_P2PDMA */
  786. #else /* CONFIG_DEV_PAGEMAP_OPS */
  787. static inline void dev_pagemap_get_ops(void)
  788. {
  789. }
  790. static inline void dev_pagemap_put_ops(void)
  791. {
  792. }
  793. static inline bool put_devmap_managed_page(struct page *page)
  794. {
  795. return false;
  796. }
  797. static inline bool is_device_private_page(const struct page *page)
  798. {
  799. return false;
  800. }
  801. static inline bool is_device_public_page(const struct page *page)
  802. {
  803. return false;
  804. }
  805. static inline bool is_pci_p2pdma_page(const struct page *page)
  806. {
  807. return false;
  808. }
  809. #endif /* CONFIG_DEV_PAGEMAP_OPS */
  810. static inline void get_page(struct page *page)
  811. {
  812. page = compound_head(page);
  813. /*
  814. * Getting a normal page or the head of a compound page
  815. * requires to already have an elevated page->_refcount.
  816. */
  817. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  818. page_ref_inc(page);
  819. }
  820. static inline void put_page(struct page *page)
  821. {
  822. page = compound_head(page);
  823. /*
  824. * For devmap managed pages we need to catch refcount transition from
  825. * 2 to 1, when refcount reach one it means the page is free and we
  826. * need to inform the device driver through callback. See
  827. * include/linux/memremap.h and HMM for details.
  828. */
  829. if (put_devmap_managed_page(page))
  830. return;
  831. if (put_page_testzero(page))
  832. __put_page(page);
  833. }
  834. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  835. #define SECTION_IN_PAGE_FLAGS
  836. #endif
  837. /*
  838. * The identification function is mainly used by the buddy allocator for
  839. * determining if two pages could be buddies. We are not really identifying
  840. * the zone since we could be using the section number id if we do not have
  841. * node id available in page flags.
  842. * We only guarantee that it will return the same value for two combinable
  843. * pages in a zone.
  844. */
  845. static inline int page_zone_id(struct page *page)
  846. {
  847. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  848. }
  849. #ifdef NODE_NOT_IN_PAGE_FLAGS
  850. extern int page_to_nid(const struct page *page);
  851. #else
  852. static inline int page_to_nid(const struct page *page)
  853. {
  854. struct page *p = (struct page *)page;
  855. return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
  856. }
  857. #endif
  858. #ifdef CONFIG_NUMA_BALANCING
  859. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  860. {
  861. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  862. }
  863. static inline int cpupid_to_pid(int cpupid)
  864. {
  865. return cpupid & LAST__PID_MASK;
  866. }
  867. static inline int cpupid_to_cpu(int cpupid)
  868. {
  869. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  870. }
  871. static inline int cpupid_to_nid(int cpupid)
  872. {
  873. return cpu_to_node(cpupid_to_cpu(cpupid));
  874. }
  875. static inline bool cpupid_pid_unset(int cpupid)
  876. {
  877. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  878. }
  879. static inline bool cpupid_cpu_unset(int cpupid)
  880. {
  881. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  882. }
  883. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  884. {
  885. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  886. }
  887. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  888. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  889. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  890. {
  891. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  892. }
  893. static inline int page_cpupid_last(struct page *page)
  894. {
  895. return page->_last_cpupid;
  896. }
  897. static inline void page_cpupid_reset_last(struct page *page)
  898. {
  899. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  900. }
  901. #else
  902. static inline int page_cpupid_last(struct page *page)
  903. {
  904. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  905. }
  906. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  907. static inline void page_cpupid_reset_last(struct page *page)
  908. {
  909. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  910. }
  911. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  912. #else /* !CONFIG_NUMA_BALANCING */
  913. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  914. {
  915. return page_to_nid(page); /* XXX */
  916. }
  917. static inline int page_cpupid_last(struct page *page)
  918. {
  919. return page_to_nid(page); /* XXX */
  920. }
  921. static inline int cpupid_to_nid(int cpupid)
  922. {
  923. return -1;
  924. }
  925. static inline int cpupid_to_pid(int cpupid)
  926. {
  927. return -1;
  928. }
  929. static inline int cpupid_to_cpu(int cpupid)
  930. {
  931. return -1;
  932. }
  933. static inline int cpu_pid_to_cpupid(int nid, int pid)
  934. {
  935. return -1;
  936. }
  937. static inline bool cpupid_pid_unset(int cpupid)
  938. {
  939. return 1;
  940. }
  941. static inline void page_cpupid_reset_last(struct page *page)
  942. {
  943. }
  944. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  945. {
  946. return false;
  947. }
  948. #endif /* CONFIG_NUMA_BALANCING */
  949. static inline struct zone *page_zone(const struct page *page)
  950. {
  951. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  952. }
  953. static inline pg_data_t *page_pgdat(const struct page *page)
  954. {
  955. return NODE_DATA(page_to_nid(page));
  956. }
  957. #ifdef SECTION_IN_PAGE_FLAGS
  958. static inline void set_page_section(struct page *page, unsigned long section)
  959. {
  960. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  961. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  962. }
  963. static inline unsigned long page_to_section(const struct page *page)
  964. {
  965. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  966. }
  967. #endif
  968. static inline void set_page_zone(struct page *page, enum zone_type zone)
  969. {
  970. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  971. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  972. }
  973. static inline void set_page_node(struct page *page, unsigned long node)
  974. {
  975. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  976. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  977. }
  978. static inline void set_page_links(struct page *page, enum zone_type zone,
  979. unsigned long node, unsigned long pfn)
  980. {
  981. set_page_zone(page, zone);
  982. set_page_node(page, node);
  983. #ifdef SECTION_IN_PAGE_FLAGS
  984. set_page_section(page, pfn_to_section_nr(pfn));
  985. #endif
  986. }
  987. #ifdef CONFIG_MEMCG
  988. static inline struct mem_cgroup *page_memcg(struct page *page)
  989. {
  990. return page->mem_cgroup;
  991. }
  992. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  993. {
  994. WARN_ON_ONCE(!rcu_read_lock_held());
  995. return READ_ONCE(page->mem_cgroup);
  996. }
  997. #else
  998. static inline struct mem_cgroup *page_memcg(struct page *page)
  999. {
  1000. return NULL;
  1001. }
  1002. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  1003. {
  1004. WARN_ON_ONCE(!rcu_read_lock_held());
  1005. return NULL;
  1006. }
  1007. #endif
  1008. /*
  1009. * Some inline functions in vmstat.h depend on page_zone()
  1010. */
  1011. #include <linux/vmstat.h>
  1012. static __always_inline void *lowmem_page_address(const struct page *page)
  1013. {
  1014. return page_to_virt(page);
  1015. }
  1016. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  1017. #define HASHED_PAGE_VIRTUAL
  1018. #endif
  1019. #if defined(WANT_PAGE_VIRTUAL)
  1020. static inline void *page_address(const struct page *page)
  1021. {
  1022. return page->virtual;
  1023. }
  1024. static inline void set_page_address(struct page *page, void *address)
  1025. {
  1026. page->virtual = address;
  1027. }
  1028. #define page_address_init() do { } while(0)
  1029. #endif
  1030. #if defined(HASHED_PAGE_VIRTUAL)
  1031. void *page_address(const struct page *page);
  1032. void set_page_address(struct page *page, void *virtual);
  1033. void page_address_init(void);
  1034. #endif
  1035. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  1036. #define page_address(page) lowmem_page_address(page)
  1037. #define set_page_address(page, address) do { } while(0)
  1038. #define page_address_init() do { } while(0)
  1039. #endif
  1040. extern void *page_rmapping(struct page *page);
  1041. extern struct anon_vma *page_anon_vma(struct page *page);
  1042. extern struct address_space *page_mapping(struct page *page);
  1043. extern struct address_space *__page_file_mapping(struct page *);
  1044. static inline
  1045. struct address_space *page_file_mapping(struct page *page)
  1046. {
  1047. if (unlikely(PageSwapCache(page)))
  1048. return __page_file_mapping(page);
  1049. return page->mapping;
  1050. }
  1051. extern pgoff_t __page_file_index(struct page *page);
  1052. /*
  1053. * Return the pagecache index of the passed page. Regular pagecache pages
  1054. * use ->index whereas swapcache pages use swp_offset(->private)
  1055. */
  1056. static inline pgoff_t page_index(struct page *page)
  1057. {
  1058. if (unlikely(PageSwapCache(page)))
  1059. return __page_file_index(page);
  1060. return page->index;
  1061. }
  1062. bool page_mapped(struct page *page);
  1063. struct address_space *page_mapping(struct page *page);
  1064. struct address_space *page_mapping_file(struct page *page);
  1065. /*
  1066. * Return true only if the page has been allocated with
  1067. * ALLOC_NO_WATERMARKS and the low watermark was not
  1068. * met implying that the system is under some pressure.
  1069. */
  1070. static inline bool page_is_pfmemalloc(struct page *page)
  1071. {
  1072. /*
  1073. * Page index cannot be this large so this must be
  1074. * a pfmemalloc page.
  1075. */
  1076. return page->index == -1UL;
  1077. }
  1078. /*
  1079. * Only to be called by the page allocator on a freshly allocated
  1080. * page.
  1081. */
  1082. static inline void set_page_pfmemalloc(struct page *page)
  1083. {
  1084. page->index = -1UL;
  1085. }
  1086. static inline void clear_page_pfmemalloc(struct page *page)
  1087. {
  1088. page->index = 0;
  1089. }
  1090. /*
  1091. * Different kinds of faults, as returned by handle_mm_fault().
  1092. * Used to decide whether a process gets delivered SIGBUS or
  1093. * just gets major/minor fault counters bumped up.
  1094. */
  1095. #define VM_FAULT_OOM 0x0001
  1096. #define VM_FAULT_SIGBUS 0x0002
  1097. #define VM_FAULT_MAJOR 0x0004
  1098. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1099. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1100. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1101. #define VM_FAULT_SIGSEGV 0x0040
  1102. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1103. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1104. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1105. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1106. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1107. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1108. * and needs fsync() to complete (for
  1109. * synchronous page faults in DAX) */
  1110. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1111. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1112. VM_FAULT_FALLBACK)
  1113. #define VM_FAULT_RESULT_TRACE \
  1114. { VM_FAULT_OOM, "OOM" }, \
  1115. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1116. { VM_FAULT_MAJOR, "MAJOR" }, \
  1117. { VM_FAULT_WRITE, "WRITE" }, \
  1118. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1119. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1120. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1121. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1122. { VM_FAULT_LOCKED, "LOCKED" }, \
  1123. { VM_FAULT_RETRY, "RETRY" }, \
  1124. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1125. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1126. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1127. /* Encode hstate index for a hwpoisoned large page */
  1128. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1129. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1130. /*
  1131. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1132. */
  1133. extern void pagefault_out_of_memory(void);
  1134. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1135. /*
  1136. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1137. * various contexts.
  1138. */
  1139. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1140. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1141. extern bool can_do_mlock(void);
  1142. extern int user_shm_lock(size_t, struct user_struct *);
  1143. extern void user_shm_unlock(size_t, struct user_struct *);
  1144. /*
  1145. * Parameter block passed down to zap_pte_range in exceptional cases.
  1146. */
  1147. struct zap_details {
  1148. struct address_space *check_mapping; /* Check page->mapping if set */
  1149. pgoff_t first_index; /* Lowest page->index to unmap */
  1150. pgoff_t last_index; /* Highest page->index to unmap */
  1151. };
  1152. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1153. pte_t pte, bool with_public_device);
  1154. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1155. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1156. pmd_t pmd);
  1157. void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1158. unsigned long size);
  1159. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1160. unsigned long size);
  1161. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1162. unsigned long start, unsigned long end);
  1163. /**
  1164. * mm_walk - callbacks for walk_page_range
  1165. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1166. * this handler should only handle pud_trans_huge() puds.
  1167. * the pmd_entry or pte_entry callbacks will be used for
  1168. * regular PUDs.
  1169. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1170. * this handler is required to be able to handle
  1171. * pmd_trans_huge() pmds. They may simply choose to
  1172. * split_huge_page() instead of handling it explicitly.
  1173. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1174. * @pte_hole: if set, called for each hole at all levels
  1175. * @hugetlb_entry: if set, called for each hugetlb entry
  1176. * @test_walk: caller specific callback function to determine whether
  1177. * we walk over the current vma or not. Returning 0
  1178. * value means "do page table walk over the current vma,"
  1179. * and a negative one means "abort current page table walk
  1180. * right now." 1 means "skip the current vma."
  1181. * @mm: mm_struct representing the target process of page table walk
  1182. * @vma: vma currently walked (NULL if walking outside vmas)
  1183. * @private: private data for callbacks' usage
  1184. *
  1185. * (see the comment on walk_page_range() for more details)
  1186. */
  1187. struct mm_walk {
  1188. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1189. unsigned long next, struct mm_walk *walk);
  1190. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1191. unsigned long next, struct mm_walk *walk);
  1192. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1193. unsigned long next, struct mm_walk *walk);
  1194. int (*pte_hole)(unsigned long addr, unsigned long next,
  1195. struct mm_walk *walk);
  1196. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1197. unsigned long addr, unsigned long next,
  1198. struct mm_walk *walk);
  1199. int (*test_walk)(unsigned long addr, unsigned long next,
  1200. struct mm_walk *walk);
  1201. struct mm_struct *mm;
  1202. struct vm_area_struct *vma;
  1203. void *private;
  1204. };
  1205. int walk_page_range(unsigned long addr, unsigned long end,
  1206. struct mm_walk *walk);
  1207. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1208. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1209. unsigned long end, unsigned long floor, unsigned long ceiling);
  1210. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1211. struct vm_area_struct *vma);
  1212. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1213. unsigned long *start, unsigned long *end,
  1214. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1215. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1216. unsigned long *pfn);
  1217. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1218. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1219. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1220. void *buf, int len, int write);
  1221. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1222. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1223. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1224. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1225. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1226. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1227. int invalidate_inode_page(struct page *page);
  1228. #ifdef CONFIG_MMU
  1229. extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
  1230. unsigned long address, unsigned int flags);
  1231. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1232. unsigned long address, unsigned int fault_flags,
  1233. bool *unlocked);
  1234. void unmap_mapping_pages(struct address_space *mapping,
  1235. pgoff_t start, pgoff_t nr, bool even_cows);
  1236. void unmap_mapping_range(struct address_space *mapping,
  1237. loff_t const holebegin, loff_t const holelen, int even_cows);
  1238. #else
  1239. static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
  1240. unsigned long address, unsigned int flags)
  1241. {
  1242. /* should never happen if there's no MMU */
  1243. BUG();
  1244. return VM_FAULT_SIGBUS;
  1245. }
  1246. static inline int fixup_user_fault(struct task_struct *tsk,
  1247. struct mm_struct *mm, unsigned long address,
  1248. unsigned int fault_flags, bool *unlocked)
  1249. {
  1250. /* should never happen if there's no MMU */
  1251. BUG();
  1252. return -EFAULT;
  1253. }
  1254. static inline void unmap_mapping_pages(struct address_space *mapping,
  1255. pgoff_t start, pgoff_t nr, bool even_cows) { }
  1256. static inline void unmap_mapping_range(struct address_space *mapping,
  1257. loff_t const holebegin, loff_t const holelen, int even_cows) { }
  1258. #endif
  1259. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1260. loff_t const holebegin, loff_t const holelen)
  1261. {
  1262. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1263. }
  1264. extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
  1265. void *buf, int len, unsigned int gup_flags);
  1266. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1267. void *buf, int len, unsigned int gup_flags);
  1268. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1269. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1270. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1271. unsigned long start, unsigned long nr_pages,
  1272. unsigned int gup_flags, struct page **pages,
  1273. struct vm_area_struct **vmas, int *locked);
  1274. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1275. unsigned int gup_flags, struct page **pages,
  1276. struct vm_area_struct **vmas);
  1277. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1278. unsigned int gup_flags, struct page **pages, int *locked);
  1279. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1280. struct page **pages, unsigned int gup_flags);
  1281. #ifdef CONFIG_FS_DAX
  1282. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1283. unsigned int gup_flags, struct page **pages,
  1284. struct vm_area_struct **vmas);
  1285. #else
  1286. static inline long get_user_pages_longterm(unsigned long start,
  1287. unsigned long nr_pages, unsigned int gup_flags,
  1288. struct page **pages, struct vm_area_struct **vmas)
  1289. {
  1290. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1291. }
  1292. #endif /* CONFIG_FS_DAX */
  1293. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1294. struct page **pages);
  1295. /* Container for pinned pfns / pages */
  1296. struct frame_vector {
  1297. unsigned int nr_allocated; /* Number of frames we have space for */
  1298. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1299. bool got_ref; /* Did we pin pages by getting page ref? */
  1300. bool is_pfns; /* Does array contain pages or pfns? */
  1301. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1302. * pfns_vector_pages() or pfns_vector_pfns()
  1303. * for access */
  1304. };
  1305. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1306. void frame_vector_destroy(struct frame_vector *vec);
  1307. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1308. unsigned int gup_flags, struct frame_vector *vec);
  1309. void put_vaddr_frames(struct frame_vector *vec);
  1310. int frame_vector_to_pages(struct frame_vector *vec);
  1311. void frame_vector_to_pfns(struct frame_vector *vec);
  1312. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1313. {
  1314. return vec->nr_frames;
  1315. }
  1316. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1317. {
  1318. if (vec->is_pfns) {
  1319. int err = frame_vector_to_pages(vec);
  1320. if (err)
  1321. return ERR_PTR(err);
  1322. }
  1323. return (struct page **)(vec->ptrs);
  1324. }
  1325. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1326. {
  1327. if (!vec->is_pfns)
  1328. frame_vector_to_pfns(vec);
  1329. return (unsigned long *)(vec->ptrs);
  1330. }
  1331. struct kvec;
  1332. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1333. struct page **pages);
  1334. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1335. struct page *get_dump_page(unsigned long addr);
  1336. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1337. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1338. unsigned int length);
  1339. void __set_page_dirty(struct page *, struct address_space *, int warn);
  1340. int __set_page_dirty_nobuffers(struct page *page);
  1341. int __set_page_dirty_no_writeback(struct page *page);
  1342. int redirty_page_for_writepage(struct writeback_control *wbc,
  1343. struct page *page);
  1344. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1345. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1346. struct bdi_writeback *wb);
  1347. int set_page_dirty(struct page *page);
  1348. int set_page_dirty_lock(struct page *page);
  1349. void __cancel_dirty_page(struct page *page);
  1350. static inline void cancel_dirty_page(struct page *page)
  1351. {
  1352. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1353. if (PageDirty(page))
  1354. __cancel_dirty_page(page);
  1355. }
  1356. int clear_page_dirty_for_io(struct page *page);
  1357. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1358. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1359. {
  1360. return !vma->vm_ops;
  1361. }
  1362. #ifdef CONFIG_SHMEM
  1363. /*
  1364. * The vma_is_shmem is not inline because it is used only by slow
  1365. * paths in userfault.
  1366. */
  1367. bool vma_is_shmem(struct vm_area_struct *vma);
  1368. #else
  1369. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1370. #endif
  1371. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1372. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1373. unsigned long old_addr, struct vm_area_struct *new_vma,
  1374. unsigned long new_addr, unsigned long len,
  1375. bool need_rmap_locks);
  1376. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1377. unsigned long end, pgprot_t newprot,
  1378. int dirty_accountable, int prot_numa);
  1379. extern int mprotect_fixup(struct vm_area_struct *vma,
  1380. struct vm_area_struct **pprev, unsigned long start,
  1381. unsigned long end, unsigned long newflags);
  1382. /*
  1383. * doesn't attempt to fault and will return short.
  1384. */
  1385. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1386. struct page **pages);
  1387. /*
  1388. * per-process(per-mm_struct) statistics.
  1389. */
  1390. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1391. {
  1392. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1393. #ifdef SPLIT_RSS_COUNTING
  1394. /*
  1395. * counter is updated in asynchronous manner and may go to minus.
  1396. * But it's never be expected number for users.
  1397. */
  1398. if (val < 0)
  1399. val = 0;
  1400. #endif
  1401. return (unsigned long)val;
  1402. }
  1403. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1404. {
  1405. atomic_long_add(value, &mm->rss_stat.count[member]);
  1406. }
  1407. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1408. {
  1409. atomic_long_inc(&mm->rss_stat.count[member]);
  1410. }
  1411. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1412. {
  1413. atomic_long_dec(&mm->rss_stat.count[member]);
  1414. }
  1415. /* Optimized variant when page is already known not to be PageAnon */
  1416. static inline int mm_counter_file(struct page *page)
  1417. {
  1418. if (PageSwapBacked(page))
  1419. return MM_SHMEMPAGES;
  1420. return MM_FILEPAGES;
  1421. }
  1422. static inline int mm_counter(struct page *page)
  1423. {
  1424. if (PageAnon(page))
  1425. return MM_ANONPAGES;
  1426. return mm_counter_file(page);
  1427. }
  1428. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1429. {
  1430. return get_mm_counter(mm, MM_FILEPAGES) +
  1431. get_mm_counter(mm, MM_ANONPAGES) +
  1432. get_mm_counter(mm, MM_SHMEMPAGES);
  1433. }
  1434. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1435. {
  1436. return max(mm->hiwater_rss, get_mm_rss(mm));
  1437. }
  1438. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1439. {
  1440. return max(mm->hiwater_vm, mm->total_vm);
  1441. }
  1442. static inline void update_hiwater_rss(struct mm_struct *mm)
  1443. {
  1444. unsigned long _rss = get_mm_rss(mm);
  1445. if ((mm)->hiwater_rss < _rss)
  1446. (mm)->hiwater_rss = _rss;
  1447. }
  1448. static inline void update_hiwater_vm(struct mm_struct *mm)
  1449. {
  1450. if (mm->hiwater_vm < mm->total_vm)
  1451. mm->hiwater_vm = mm->total_vm;
  1452. }
  1453. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1454. {
  1455. mm->hiwater_rss = get_mm_rss(mm);
  1456. }
  1457. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1458. struct mm_struct *mm)
  1459. {
  1460. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1461. if (*maxrss < hiwater_rss)
  1462. *maxrss = hiwater_rss;
  1463. }
  1464. #if defined(SPLIT_RSS_COUNTING)
  1465. void sync_mm_rss(struct mm_struct *mm);
  1466. #else
  1467. static inline void sync_mm_rss(struct mm_struct *mm)
  1468. {
  1469. }
  1470. #endif
  1471. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1472. static inline int pte_devmap(pte_t pte)
  1473. {
  1474. return 0;
  1475. }
  1476. #endif
  1477. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1478. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1479. spinlock_t **ptl);
  1480. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1481. spinlock_t **ptl)
  1482. {
  1483. pte_t *ptep;
  1484. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1485. return ptep;
  1486. }
  1487. #ifdef __PAGETABLE_P4D_FOLDED
  1488. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1489. unsigned long address)
  1490. {
  1491. return 0;
  1492. }
  1493. #else
  1494. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1495. #endif
  1496. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1497. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1498. unsigned long address)
  1499. {
  1500. return 0;
  1501. }
  1502. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1503. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1504. #else
  1505. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1506. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1507. {
  1508. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1509. }
  1510. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1511. {
  1512. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1513. }
  1514. #endif
  1515. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1516. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1517. unsigned long address)
  1518. {
  1519. return 0;
  1520. }
  1521. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1522. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1523. #else
  1524. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1525. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1526. {
  1527. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1528. }
  1529. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1530. {
  1531. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1532. }
  1533. #endif
  1534. #ifdef CONFIG_MMU
  1535. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1536. {
  1537. atomic_long_set(&mm->pgtables_bytes, 0);
  1538. }
  1539. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1540. {
  1541. return atomic_long_read(&mm->pgtables_bytes);
  1542. }
  1543. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1544. {
  1545. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1546. }
  1547. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1548. {
  1549. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1550. }
  1551. #else
  1552. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1553. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1554. {
  1555. return 0;
  1556. }
  1557. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1558. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1559. #endif
  1560. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1561. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1562. /*
  1563. * The following ifdef needed to get the 4level-fixup.h header to work.
  1564. * Remove it when 4level-fixup.h has been removed.
  1565. */
  1566. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1567. #ifndef __ARCH_HAS_5LEVEL_HACK
  1568. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1569. unsigned long address)
  1570. {
  1571. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1572. NULL : p4d_offset(pgd, address);
  1573. }
  1574. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1575. unsigned long address)
  1576. {
  1577. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1578. NULL : pud_offset(p4d, address);
  1579. }
  1580. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1581. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1582. {
  1583. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1584. NULL: pmd_offset(pud, address);
  1585. }
  1586. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1587. #if USE_SPLIT_PTE_PTLOCKS
  1588. #if ALLOC_SPLIT_PTLOCKS
  1589. void __init ptlock_cache_init(void);
  1590. extern bool ptlock_alloc(struct page *page);
  1591. extern void ptlock_free(struct page *page);
  1592. static inline spinlock_t *ptlock_ptr(struct page *page)
  1593. {
  1594. return page->ptl;
  1595. }
  1596. #else /* ALLOC_SPLIT_PTLOCKS */
  1597. static inline void ptlock_cache_init(void)
  1598. {
  1599. }
  1600. static inline bool ptlock_alloc(struct page *page)
  1601. {
  1602. return true;
  1603. }
  1604. static inline void ptlock_free(struct page *page)
  1605. {
  1606. }
  1607. static inline spinlock_t *ptlock_ptr(struct page *page)
  1608. {
  1609. return &page->ptl;
  1610. }
  1611. #endif /* ALLOC_SPLIT_PTLOCKS */
  1612. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1613. {
  1614. return ptlock_ptr(pmd_page(*pmd));
  1615. }
  1616. static inline bool ptlock_init(struct page *page)
  1617. {
  1618. /*
  1619. * prep_new_page() initialize page->private (and therefore page->ptl)
  1620. * with 0. Make sure nobody took it in use in between.
  1621. *
  1622. * It can happen if arch try to use slab for page table allocation:
  1623. * slab code uses page->slab_cache, which share storage with page->ptl.
  1624. */
  1625. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1626. if (!ptlock_alloc(page))
  1627. return false;
  1628. spin_lock_init(ptlock_ptr(page));
  1629. return true;
  1630. }
  1631. /* Reset page->mapping so free_pages_check won't complain. */
  1632. static inline void pte_lock_deinit(struct page *page)
  1633. {
  1634. page->mapping = NULL;
  1635. ptlock_free(page);
  1636. }
  1637. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1638. /*
  1639. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1640. */
  1641. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1642. {
  1643. return &mm->page_table_lock;
  1644. }
  1645. static inline void ptlock_cache_init(void) {}
  1646. static inline bool ptlock_init(struct page *page) { return true; }
  1647. static inline void pte_lock_deinit(struct page *page) {}
  1648. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1649. static inline void pgtable_init(void)
  1650. {
  1651. ptlock_cache_init();
  1652. pgtable_cache_init();
  1653. }
  1654. static inline bool pgtable_page_ctor(struct page *page)
  1655. {
  1656. if (!ptlock_init(page))
  1657. return false;
  1658. __SetPageTable(page);
  1659. inc_zone_page_state(page, NR_PAGETABLE);
  1660. return true;
  1661. }
  1662. static inline void pgtable_page_dtor(struct page *page)
  1663. {
  1664. pte_lock_deinit(page);
  1665. __ClearPageTable(page);
  1666. dec_zone_page_state(page, NR_PAGETABLE);
  1667. }
  1668. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1669. ({ \
  1670. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1671. pte_t *__pte = pte_offset_map(pmd, address); \
  1672. *(ptlp) = __ptl; \
  1673. spin_lock(__ptl); \
  1674. __pte; \
  1675. })
  1676. #define pte_unmap_unlock(pte, ptl) do { \
  1677. spin_unlock(ptl); \
  1678. pte_unmap(pte); \
  1679. } while (0)
  1680. #define pte_alloc(mm, pmd, address) \
  1681. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1682. #define pte_alloc_map(mm, pmd, address) \
  1683. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1684. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1685. (pte_alloc(mm, pmd, address) ? \
  1686. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1687. #define pte_alloc_kernel(pmd, address) \
  1688. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1689. NULL: pte_offset_kernel(pmd, address))
  1690. #if USE_SPLIT_PMD_PTLOCKS
  1691. static struct page *pmd_to_page(pmd_t *pmd)
  1692. {
  1693. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1694. return virt_to_page((void *)((unsigned long) pmd & mask));
  1695. }
  1696. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1697. {
  1698. return ptlock_ptr(pmd_to_page(pmd));
  1699. }
  1700. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1701. {
  1702. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1703. page->pmd_huge_pte = NULL;
  1704. #endif
  1705. return ptlock_init(page);
  1706. }
  1707. static inline void pgtable_pmd_page_dtor(struct page *page)
  1708. {
  1709. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1710. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1711. #endif
  1712. ptlock_free(page);
  1713. }
  1714. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1715. #else
  1716. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1717. {
  1718. return &mm->page_table_lock;
  1719. }
  1720. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1721. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1722. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1723. #endif
  1724. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1725. {
  1726. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1727. spin_lock(ptl);
  1728. return ptl;
  1729. }
  1730. /*
  1731. * No scalability reason to split PUD locks yet, but follow the same pattern
  1732. * as the PMD locks to make it easier if we decide to. The VM should not be
  1733. * considered ready to switch to split PUD locks yet; there may be places
  1734. * which need to be converted from page_table_lock.
  1735. */
  1736. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1737. {
  1738. return &mm->page_table_lock;
  1739. }
  1740. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1741. {
  1742. spinlock_t *ptl = pud_lockptr(mm, pud);
  1743. spin_lock(ptl);
  1744. return ptl;
  1745. }
  1746. extern void __init pagecache_init(void);
  1747. extern void free_area_init(unsigned long * zones_size);
  1748. extern void __init free_area_init_node(int nid, unsigned long * zones_size,
  1749. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1750. extern void free_initmem(void);
  1751. /*
  1752. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1753. * into the buddy system. The freed pages will be poisoned with pattern
  1754. * "poison" if it's within range [0, UCHAR_MAX].
  1755. * Return pages freed into the buddy system.
  1756. */
  1757. extern unsigned long free_reserved_area(void *start, void *end,
  1758. int poison, char *s);
  1759. #ifdef CONFIG_HIGHMEM
  1760. /*
  1761. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1762. * and totalram_pages.
  1763. */
  1764. extern void free_highmem_page(struct page *page);
  1765. #endif
  1766. extern void adjust_managed_page_count(struct page *page, long count);
  1767. extern void mem_init_print_info(const char *str);
  1768. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1769. /* Free the reserved page into the buddy system, so it gets managed. */
  1770. static inline void __free_reserved_page(struct page *page)
  1771. {
  1772. ClearPageReserved(page);
  1773. init_page_count(page);
  1774. __free_page(page);
  1775. }
  1776. static inline void free_reserved_page(struct page *page)
  1777. {
  1778. __free_reserved_page(page);
  1779. adjust_managed_page_count(page, 1);
  1780. }
  1781. static inline void mark_page_reserved(struct page *page)
  1782. {
  1783. SetPageReserved(page);
  1784. adjust_managed_page_count(page, -1);
  1785. }
  1786. /*
  1787. * Default method to free all the __init memory into the buddy system.
  1788. * The freed pages will be poisoned with pattern "poison" if it's within
  1789. * range [0, UCHAR_MAX].
  1790. * Return pages freed into the buddy system.
  1791. */
  1792. static inline unsigned long free_initmem_default(int poison)
  1793. {
  1794. extern char __init_begin[], __init_end[];
  1795. return free_reserved_area(&__init_begin, &__init_end,
  1796. poison, "unused kernel");
  1797. }
  1798. static inline unsigned long get_num_physpages(void)
  1799. {
  1800. int nid;
  1801. unsigned long phys_pages = 0;
  1802. for_each_online_node(nid)
  1803. phys_pages += node_present_pages(nid);
  1804. return phys_pages;
  1805. }
  1806. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1807. /*
  1808. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1809. * zones, allocate the backing mem_map and account for memory holes in a more
  1810. * architecture independent manner. This is a substitute for creating the
  1811. * zone_sizes[] and zholes_size[] arrays and passing them to
  1812. * free_area_init_node()
  1813. *
  1814. * An architecture is expected to register range of page frames backed by
  1815. * physical memory with memblock_add[_node]() before calling
  1816. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1817. * usage, an architecture is expected to do something like
  1818. *
  1819. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1820. * max_highmem_pfn};
  1821. * for_each_valid_physical_page_range()
  1822. * memblock_add_node(base, size, nid)
  1823. * free_area_init_nodes(max_zone_pfns);
  1824. *
  1825. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1826. * registered physical page range. Similarly
  1827. * sparse_memory_present_with_active_regions() calls memory_present() for
  1828. * each range when SPARSEMEM is enabled.
  1829. *
  1830. * See mm/page_alloc.c for more information on each function exposed by
  1831. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1832. */
  1833. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1834. unsigned long node_map_pfn_alignment(void);
  1835. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1836. unsigned long end_pfn);
  1837. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1838. unsigned long end_pfn);
  1839. extern void get_pfn_range_for_nid(unsigned int nid,
  1840. unsigned long *start_pfn, unsigned long *end_pfn);
  1841. extern unsigned long find_min_pfn_with_active_regions(void);
  1842. extern void free_bootmem_with_active_regions(int nid,
  1843. unsigned long max_low_pfn);
  1844. extern void sparse_memory_present_with_active_regions(int nid);
  1845. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1846. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1847. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1848. static inline int __early_pfn_to_nid(unsigned long pfn,
  1849. struct mminit_pfnnid_cache *state)
  1850. {
  1851. return 0;
  1852. }
  1853. #else
  1854. /* please see mm/page_alloc.c */
  1855. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1856. /* there is a per-arch backend function. */
  1857. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1858. struct mminit_pfnnid_cache *state);
  1859. #endif
  1860. #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
  1861. void zero_resv_unavail(void);
  1862. #else
  1863. static inline void zero_resv_unavail(void) {}
  1864. #endif
  1865. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1866. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
  1867. enum memmap_context, struct vmem_altmap *);
  1868. extern void setup_per_zone_wmarks(void);
  1869. extern int __meminit init_per_zone_wmark_min(void);
  1870. extern void mem_init(void);
  1871. extern void __init mmap_init(void);
  1872. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1873. extern long si_mem_available(void);
  1874. extern void si_meminfo(struct sysinfo * val);
  1875. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1876. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1877. extern unsigned long arch_reserved_kernel_pages(void);
  1878. #endif
  1879. extern __printf(3, 4)
  1880. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1881. extern void setup_per_cpu_pageset(void);
  1882. extern void zone_pcp_update(struct zone *zone);
  1883. extern void zone_pcp_reset(struct zone *zone);
  1884. /* page_alloc.c */
  1885. extern int min_free_kbytes;
  1886. extern int watermark_scale_factor;
  1887. /* nommu.c */
  1888. extern atomic_long_t mmap_pages_allocated;
  1889. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1890. /* interval_tree.c */
  1891. void vma_interval_tree_insert(struct vm_area_struct *node,
  1892. struct rb_root_cached *root);
  1893. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1894. struct vm_area_struct *prev,
  1895. struct rb_root_cached *root);
  1896. void vma_interval_tree_remove(struct vm_area_struct *node,
  1897. struct rb_root_cached *root);
  1898. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1899. unsigned long start, unsigned long last);
  1900. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1901. unsigned long start, unsigned long last);
  1902. #define vma_interval_tree_foreach(vma, root, start, last) \
  1903. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1904. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1905. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1906. struct rb_root_cached *root);
  1907. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1908. struct rb_root_cached *root);
  1909. struct anon_vma_chain *
  1910. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1911. unsigned long start, unsigned long last);
  1912. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1913. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1914. #ifdef CONFIG_DEBUG_VM_RB
  1915. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1916. #endif
  1917. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1918. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1919. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1920. /* mmap.c */
  1921. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1922. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1923. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1924. struct vm_area_struct *expand);
  1925. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1926. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1927. {
  1928. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1929. }
  1930. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1931. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1932. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1933. struct mempolicy *, struct vm_userfaultfd_ctx);
  1934. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1935. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1936. unsigned long addr, int new_below);
  1937. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1938. unsigned long addr, int new_below);
  1939. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1940. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1941. struct rb_node **, struct rb_node *);
  1942. extern void unlink_file_vma(struct vm_area_struct *);
  1943. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1944. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1945. bool *need_rmap_locks);
  1946. extern void exit_mmap(struct mm_struct *);
  1947. static inline int check_data_rlimit(unsigned long rlim,
  1948. unsigned long new,
  1949. unsigned long start,
  1950. unsigned long end_data,
  1951. unsigned long start_data)
  1952. {
  1953. if (rlim < RLIM_INFINITY) {
  1954. if (((new - start) + (end_data - start_data)) > rlim)
  1955. return -ENOSPC;
  1956. }
  1957. return 0;
  1958. }
  1959. extern int mm_take_all_locks(struct mm_struct *mm);
  1960. extern void mm_drop_all_locks(struct mm_struct *mm);
  1961. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1962. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1963. extern struct file *get_task_exe_file(struct task_struct *task);
  1964. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1965. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1966. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1967. const struct vm_special_mapping *sm);
  1968. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1969. unsigned long addr, unsigned long len,
  1970. unsigned long flags,
  1971. const struct vm_special_mapping *spec);
  1972. /* This is an obsolete alternative to _install_special_mapping. */
  1973. extern int install_special_mapping(struct mm_struct *mm,
  1974. unsigned long addr, unsigned long len,
  1975. unsigned long flags, struct page **pages);
  1976. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1977. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1978. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1979. struct list_head *uf);
  1980. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1981. unsigned long len, unsigned long prot, unsigned long flags,
  1982. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1983. struct list_head *uf);
  1984. extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
  1985. struct list_head *uf, bool downgrade);
  1986. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1987. struct list_head *uf);
  1988. static inline unsigned long
  1989. do_mmap_pgoff(struct file *file, unsigned long addr,
  1990. unsigned long len, unsigned long prot, unsigned long flags,
  1991. unsigned long pgoff, unsigned long *populate,
  1992. struct list_head *uf)
  1993. {
  1994. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1995. }
  1996. #ifdef CONFIG_MMU
  1997. extern int __mm_populate(unsigned long addr, unsigned long len,
  1998. int ignore_errors);
  1999. static inline void mm_populate(unsigned long addr, unsigned long len)
  2000. {
  2001. /* Ignore errors */
  2002. (void) __mm_populate(addr, len, 1);
  2003. }
  2004. #else
  2005. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  2006. #endif
  2007. /* These take the mm semaphore themselves */
  2008. extern int __must_check vm_brk(unsigned long, unsigned long);
  2009. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  2010. extern int vm_munmap(unsigned long, size_t);
  2011. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  2012. unsigned long, unsigned long,
  2013. unsigned long, unsigned long);
  2014. struct vm_unmapped_area_info {
  2015. #define VM_UNMAPPED_AREA_TOPDOWN 1
  2016. unsigned long flags;
  2017. unsigned long length;
  2018. unsigned long low_limit;
  2019. unsigned long high_limit;
  2020. unsigned long align_mask;
  2021. unsigned long align_offset;
  2022. };
  2023. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  2024. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  2025. /*
  2026. * Search for an unmapped address range.
  2027. *
  2028. * We are looking for a range that:
  2029. * - does not intersect with any VMA;
  2030. * - is contained within the [low_limit, high_limit) interval;
  2031. * - is at least the desired size.
  2032. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  2033. */
  2034. static inline unsigned long
  2035. vm_unmapped_area(struct vm_unmapped_area_info *info)
  2036. {
  2037. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  2038. return unmapped_area_topdown(info);
  2039. else
  2040. return unmapped_area(info);
  2041. }
  2042. /* truncate.c */
  2043. extern void truncate_inode_pages(struct address_space *, loff_t);
  2044. extern void truncate_inode_pages_range(struct address_space *,
  2045. loff_t lstart, loff_t lend);
  2046. extern void truncate_inode_pages_final(struct address_space *);
  2047. /* generic vm_area_ops exported for stackable file systems */
  2048. extern vm_fault_t filemap_fault(struct vm_fault *vmf);
  2049. extern void filemap_map_pages(struct vm_fault *vmf,
  2050. pgoff_t start_pgoff, pgoff_t end_pgoff);
  2051. extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
  2052. /* mm/page-writeback.c */
  2053. int __must_check write_one_page(struct page *page);
  2054. void task_dirty_inc(struct task_struct *tsk);
  2055. /* readahead.c */
  2056. #define VM_MAX_READAHEAD 128 /* kbytes */
  2057. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  2058. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  2059. pgoff_t offset, unsigned long nr_to_read);
  2060. void page_cache_sync_readahead(struct address_space *mapping,
  2061. struct file_ra_state *ra,
  2062. struct file *filp,
  2063. pgoff_t offset,
  2064. unsigned long size);
  2065. void page_cache_async_readahead(struct address_space *mapping,
  2066. struct file_ra_state *ra,
  2067. struct file *filp,
  2068. struct page *pg,
  2069. pgoff_t offset,
  2070. unsigned long size);
  2071. extern unsigned long stack_guard_gap;
  2072. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  2073. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  2074. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  2075. extern int expand_downwards(struct vm_area_struct *vma,
  2076. unsigned long address);
  2077. #if VM_GROWSUP
  2078. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  2079. #else
  2080. #define expand_upwards(vma, address) (0)
  2081. #endif
  2082. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  2083. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  2084. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  2085. struct vm_area_struct **pprev);
  2086. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2087. NULL if none. Assume start_addr < end_addr. */
  2088. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2089. {
  2090. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2091. if (vma && end_addr <= vma->vm_start)
  2092. vma = NULL;
  2093. return vma;
  2094. }
  2095. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2096. {
  2097. unsigned long vm_start = vma->vm_start;
  2098. if (vma->vm_flags & VM_GROWSDOWN) {
  2099. vm_start -= stack_guard_gap;
  2100. if (vm_start > vma->vm_start)
  2101. vm_start = 0;
  2102. }
  2103. return vm_start;
  2104. }
  2105. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2106. {
  2107. unsigned long vm_end = vma->vm_end;
  2108. if (vma->vm_flags & VM_GROWSUP) {
  2109. vm_end += stack_guard_gap;
  2110. if (vm_end < vma->vm_end)
  2111. vm_end = -PAGE_SIZE;
  2112. }
  2113. return vm_end;
  2114. }
  2115. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2116. {
  2117. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2118. }
  2119. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2120. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2121. unsigned long vm_start, unsigned long vm_end)
  2122. {
  2123. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2124. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2125. vma = NULL;
  2126. return vma;
  2127. }
  2128. static inline bool range_in_vma(struct vm_area_struct *vma,
  2129. unsigned long start, unsigned long end)
  2130. {
  2131. return (vma && vma->vm_start <= start && end <= vma->vm_end);
  2132. }
  2133. #ifdef CONFIG_MMU
  2134. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2135. void vma_set_page_prot(struct vm_area_struct *vma);
  2136. #else
  2137. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2138. {
  2139. return __pgprot(0);
  2140. }
  2141. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2142. {
  2143. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2144. }
  2145. #endif
  2146. #ifdef CONFIG_NUMA_BALANCING
  2147. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2148. unsigned long start, unsigned long end);
  2149. #endif
  2150. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2151. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2152. unsigned long pfn, unsigned long size, pgprot_t);
  2153. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2154. vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2155. unsigned long pfn);
  2156. vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2157. unsigned long pfn, pgprot_t pgprot);
  2158. vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2159. pfn_t pfn);
  2160. vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
  2161. unsigned long addr, pfn_t pfn);
  2162. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2163. static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
  2164. unsigned long addr, struct page *page)
  2165. {
  2166. int err = vm_insert_page(vma, addr, page);
  2167. if (err == -ENOMEM)
  2168. return VM_FAULT_OOM;
  2169. if (err < 0 && err != -EBUSY)
  2170. return VM_FAULT_SIGBUS;
  2171. return VM_FAULT_NOPAGE;
  2172. }
  2173. static inline vm_fault_t vmf_error(int err)
  2174. {
  2175. if (err == -ENOMEM)
  2176. return VM_FAULT_OOM;
  2177. return VM_FAULT_SIGBUS;
  2178. }
  2179. struct page *follow_page_mask(struct vm_area_struct *vma,
  2180. unsigned long address, unsigned int foll_flags,
  2181. unsigned int *page_mask);
  2182. static inline struct page *follow_page(struct vm_area_struct *vma,
  2183. unsigned long address, unsigned int foll_flags)
  2184. {
  2185. unsigned int unused_page_mask;
  2186. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2187. }
  2188. #define FOLL_WRITE 0x01 /* check pte is writable */
  2189. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2190. #define FOLL_GET 0x04 /* do get_page on page */
  2191. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2192. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2193. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2194. * and return without waiting upon it */
  2195. #define FOLL_POPULATE 0x40 /* fault in page */
  2196. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2197. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2198. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2199. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2200. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2201. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2202. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2203. #define FOLL_COW 0x4000 /* internal GUP flag */
  2204. #define FOLL_ANON 0x8000 /* don't do file mappings */
  2205. static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
  2206. {
  2207. if (vm_fault & VM_FAULT_OOM)
  2208. return -ENOMEM;
  2209. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2210. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2211. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2212. return -EFAULT;
  2213. return 0;
  2214. }
  2215. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2216. void *data);
  2217. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2218. unsigned long size, pte_fn_t fn, void *data);
  2219. #ifdef CONFIG_PAGE_POISONING
  2220. extern bool page_poisoning_enabled(void);
  2221. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2222. #else
  2223. static inline bool page_poisoning_enabled(void) { return false; }
  2224. static inline void kernel_poison_pages(struct page *page, int numpages,
  2225. int enable) { }
  2226. #endif
  2227. #ifdef CONFIG_DEBUG_PAGEALLOC
  2228. extern bool _debug_pagealloc_enabled;
  2229. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2230. static inline bool debug_pagealloc_enabled(void)
  2231. {
  2232. return _debug_pagealloc_enabled;
  2233. }
  2234. static inline void
  2235. kernel_map_pages(struct page *page, int numpages, int enable)
  2236. {
  2237. if (!debug_pagealloc_enabled())
  2238. return;
  2239. __kernel_map_pages(page, numpages, enable);
  2240. }
  2241. #ifdef CONFIG_HIBERNATION
  2242. extern bool kernel_page_present(struct page *page);
  2243. #endif /* CONFIG_HIBERNATION */
  2244. #else /* CONFIG_DEBUG_PAGEALLOC */
  2245. static inline void
  2246. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2247. #ifdef CONFIG_HIBERNATION
  2248. static inline bool kernel_page_present(struct page *page) { return true; }
  2249. #endif /* CONFIG_HIBERNATION */
  2250. static inline bool debug_pagealloc_enabled(void)
  2251. {
  2252. return false;
  2253. }
  2254. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2255. #ifdef __HAVE_ARCH_GATE_AREA
  2256. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2257. extern int in_gate_area_no_mm(unsigned long addr);
  2258. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2259. #else
  2260. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2261. {
  2262. return NULL;
  2263. }
  2264. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2265. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2266. {
  2267. return 0;
  2268. }
  2269. #endif /* __HAVE_ARCH_GATE_AREA */
  2270. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2271. #ifdef CONFIG_SYSCTL
  2272. extern int sysctl_drop_caches;
  2273. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2274. void __user *, size_t *, loff_t *);
  2275. #endif
  2276. void drop_slab(void);
  2277. void drop_slab_node(int nid);
  2278. #ifndef CONFIG_MMU
  2279. #define randomize_va_space 0
  2280. #else
  2281. extern int randomize_va_space;
  2282. #endif
  2283. const char * arch_vma_name(struct vm_area_struct *vma);
  2284. void print_vma_addr(char *prefix, unsigned long rip);
  2285. void *sparse_buffer_alloc(unsigned long size);
  2286. struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
  2287. struct vmem_altmap *altmap);
  2288. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2289. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2290. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2291. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2292. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2293. void *vmemmap_alloc_block(unsigned long size, int node);
  2294. struct vmem_altmap;
  2295. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  2296. void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
  2297. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2298. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2299. int node);
  2300. int vmemmap_populate(unsigned long start, unsigned long end, int node,
  2301. struct vmem_altmap *altmap);
  2302. void vmemmap_populate_print_last(void);
  2303. #ifdef CONFIG_MEMORY_HOTPLUG
  2304. void vmemmap_free(unsigned long start, unsigned long end,
  2305. struct vmem_altmap *altmap);
  2306. #endif
  2307. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2308. unsigned long nr_pages);
  2309. enum mf_flags {
  2310. MF_COUNT_INCREASED = 1 << 0,
  2311. MF_ACTION_REQUIRED = 1 << 1,
  2312. MF_MUST_KILL = 1 << 2,
  2313. MF_SOFT_OFFLINE = 1 << 3,
  2314. };
  2315. extern int memory_failure(unsigned long pfn, int flags);
  2316. extern void memory_failure_queue(unsigned long pfn, int flags);
  2317. extern int unpoison_memory(unsigned long pfn);
  2318. extern int get_hwpoison_page(struct page *page);
  2319. #define put_hwpoison_page(page) put_page(page)
  2320. extern int sysctl_memory_failure_early_kill;
  2321. extern int sysctl_memory_failure_recovery;
  2322. extern void shake_page(struct page *p, int access);
  2323. extern atomic_long_t num_poisoned_pages __read_mostly;
  2324. extern int soft_offline_page(struct page *page, int flags);
  2325. /*
  2326. * Error handlers for various types of pages.
  2327. */
  2328. enum mf_result {
  2329. MF_IGNORED, /* Error: cannot be handled */
  2330. MF_FAILED, /* Error: handling failed */
  2331. MF_DELAYED, /* Will be handled later */
  2332. MF_RECOVERED, /* Successfully recovered */
  2333. };
  2334. enum mf_action_page_type {
  2335. MF_MSG_KERNEL,
  2336. MF_MSG_KERNEL_HIGH_ORDER,
  2337. MF_MSG_SLAB,
  2338. MF_MSG_DIFFERENT_COMPOUND,
  2339. MF_MSG_POISONED_HUGE,
  2340. MF_MSG_HUGE,
  2341. MF_MSG_FREE_HUGE,
  2342. MF_MSG_NON_PMD_HUGE,
  2343. MF_MSG_UNMAP_FAILED,
  2344. MF_MSG_DIRTY_SWAPCACHE,
  2345. MF_MSG_CLEAN_SWAPCACHE,
  2346. MF_MSG_DIRTY_MLOCKED_LRU,
  2347. MF_MSG_CLEAN_MLOCKED_LRU,
  2348. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2349. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2350. MF_MSG_DIRTY_LRU,
  2351. MF_MSG_CLEAN_LRU,
  2352. MF_MSG_TRUNCATED_LRU,
  2353. MF_MSG_BUDDY,
  2354. MF_MSG_BUDDY_2ND,
  2355. MF_MSG_DAX,
  2356. MF_MSG_UNKNOWN,
  2357. };
  2358. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2359. extern void clear_huge_page(struct page *page,
  2360. unsigned long addr_hint,
  2361. unsigned int pages_per_huge_page);
  2362. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2363. unsigned long addr_hint,
  2364. struct vm_area_struct *vma,
  2365. unsigned int pages_per_huge_page);
  2366. extern long copy_huge_page_from_user(struct page *dst_page,
  2367. const void __user *usr_src,
  2368. unsigned int pages_per_huge_page,
  2369. bool allow_pagefault);
  2370. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2371. extern struct page_ext_operations debug_guardpage_ops;
  2372. #ifdef CONFIG_DEBUG_PAGEALLOC
  2373. extern unsigned int _debug_guardpage_minorder;
  2374. extern bool _debug_guardpage_enabled;
  2375. static inline unsigned int debug_guardpage_minorder(void)
  2376. {
  2377. return _debug_guardpage_minorder;
  2378. }
  2379. static inline bool debug_guardpage_enabled(void)
  2380. {
  2381. return _debug_guardpage_enabled;
  2382. }
  2383. static inline bool page_is_guard(struct page *page)
  2384. {
  2385. struct page_ext *page_ext;
  2386. if (!debug_guardpage_enabled())
  2387. return false;
  2388. page_ext = lookup_page_ext(page);
  2389. if (unlikely(!page_ext))
  2390. return false;
  2391. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2392. }
  2393. #else
  2394. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2395. static inline bool debug_guardpage_enabled(void) { return false; }
  2396. static inline bool page_is_guard(struct page *page) { return false; }
  2397. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2398. #if MAX_NUMNODES > 1
  2399. void __init setup_nr_node_ids(void);
  2400. #else
  2401. static inline void setup_nr_node_ids(void) {}
  2402. #endif
  2403. #endif /* __KERNEL__ */
  2404. #endif /* _LINUX_MM_H */