mm.h 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/bit_spinlock.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/resource.h>
  19. #include <linux/page_ext.h>
  20. struct mempolicy;
  21. struct anon_vma;
  22. struct anon_vma_chain;
  23. struct file_ra_state;
  24. struct user_struct;
  25. struct writeback_control;
  26. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  27. extern unsigned long max_mapnr;
  28. static inline void set_max_mapnr(unsigned long limit)
  29. {
  30. max_mapnr = limit;
  31. }
  32. #else
  33. static inline void set_max_mapnr(unsigned long limit) { }
  34. #endif
  35. extern unsigned long totalram_pages;
  36. extern void * high_memory;
  37. extern int page_cluster;
  38. #ifdef CONFIG_SYSCTL
  39. extern int sysctl_legacy_va_layout;
  40. #else
  41. #define sysctl_legacy_va_layout 0
  42. #endif
  43. #include <asm/page.h>
  44. #include <asm/pgtable.h>
  45. #include <asm/processor.h>
  46. #ifndef __pa_symbol
  47. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  48. #endif
  49. /*
  50. * To prevent common memory management code establishing
  51. * a zero page mapping on a read fault.
  52. * This macro should be defined within <asm/pgtable.h>.
  53. * s390 does this to prevent multiplexing of hardware bits
  54. * related to the physical page in case of virtualization.
  55. */
  56. #ifndef mm_forbids_zeropage
  57. #define mm_forbids_zeropage(X) (0)
  58. #endif
  59. extern unsigned long sysctl_user_reserve_kbytes;
  60. extern unsigned long sysctl_admin_reserve_kbytes;
  61. extern int sysctl_overcommit_memory;
  62. extern int sysctl_overcommit_ratio;
  63. extern unsigned long sysctl_overcommit_kbytes;
  64. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  65. size_t *, loff_t *);
  66. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  67. size_t *, loff_t *);
  68. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  69. /* to align the pointer to the (next) page boundary */
  70. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  71. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  72. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  73. /*
  74. * Linux kernel virtual memory manager primitives.
  75. * The idea being to have a "virtual" mm in the same way
  76. * we have a virtual fs - giving a cleaner interface to the
  77. * mm details, and allowing different kinds of memory mappings
  78. * (from shared memory to executable loading to arbitrary
  79. * mmap() functions).
  80. */
  81. extern struct kmem_cache *vm_area_cachep;
  82. #ifndef CONFIG_MMU
  83. extern struct rb_root nommu_region_tree;
  84. extern struct rw_semaphore nommu_region_sem;
  85. extern unsigned int kobjsize(const void *objp);
  86. #endif
  87. /*
  88. * vm_flags in vm_area_struct, see mm_types.h.
  89. */
  90. #define VM_NONE 0x00000000
  91. #define VM_READ 0x00000001 /* currently active flags */
  92. #define VM_WRITE 0x00000002
  93. #define VM_EXEC 0x00000004
  94. #define VM_SHARED 0x00000008
  95. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  96. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  97. #define VM_MAYWRITE 0x00000020
  98. #define VM_MAYEXEC 0x00000040
  99. #define VM_MAYSHARE 0x00000080
  100. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  101. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  102. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  103. #define VM_LOCKED 0x00002000
  104. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  105. /* Used by sys_madvise() */
  106. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  107. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  108. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  109. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  110. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  111. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  112. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  113. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  114. #define VM_ARCH_2 0x02000000
  115. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  116. #ifdef CONFIG_MEM_SOFT_DIRTY
  117. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  118. #else
  119. # define VM_SOFTDIRTY 0
  120. #endif
  121. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  122. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  123. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  124. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  125. #if defined(CONFIG_X86)
  126. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  127. #elif defined(CONFIG_PPC)
  128. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  129. #elif defined(CONFIG_PARISC)
  130. # define VM_GROWSUP VM_ARCH_1
  131. #elif defined(CONFIG_METAG)
  132. # define VM_GROWSUP VM_ARCH_1
  133. #elif defined(CONFIG_IA64)
  134. # define VM_GROWSUP VM_ARCH_1
  135. #elif !defined(CONFIG_MMU)
  136. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  137. #endif
  138. #if defined(CONFIG_X86)
  139. /* MPX specific bounds table or bounds directory */
  140. # define VM_MPX VM_ARCH_2
  141. #endif
  142. #ifndef VM_GROWSUP
  143. # define VM_GROWSUP VM_NONE
  144. #endif
  145. /* Bits set in the VMA until the stack is in its final location */
  146. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  147. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  148. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  149. #endif
  150. #ifdef CONFIG_STACK_GROWSUP
  151. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  152. #else
  153. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  154. #endif
  155. /*
  156. * Special vmas that are non-mergable, non-mlock()able.
  157. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  158. */
  159. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  160. /* This mask defines which mm->def_flags a process can inherit its parent */
  161. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  162. /*
  163. * mapping from the currently active vm_flags protection bits (the
  164. * low four bits) to a page protection mask..
  165. */
  166. extern pgprot_t protection_map[16];
  167. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  168. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  169. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  170. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  171. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  172. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  173. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  174. /*
  175. * vm_fault is filled by the the pagefault handler and passed to the vma's
  176. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  177. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  178. *
  179. * pgoff should be used in favour of virtual_address, if possible.
  180. */
  181. struct vm_fault {
  182. unsigned int flags; /* FAULT_FLAG_xxx flags */
  183. pgoff_t pgoff; /* Logical page offset based on vma */
  184. void __user *virtual_address; /* Faulting virtual address */
  185. struct page *cow_page; /* Handler may choose to COW */
  186. struct page *page; /* ->fault handlers should return a
  187. * page here, unless VM_FAULT_NOPAGE
  188. * is set (which is also implied by
  189. * VM_FAULT_ERROR).
  190. */
  191. /* for ->map_pages() only */
  192. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  193. * max_pgoff inclusive */
  194. pte_t *pte; /* pte entry associated with ->pgoff */
  195. };
  196. /*
  197. * These are the virtual MM functions - opening of an area, closing and
  198. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  199. * to the functions called when a no-page or a wp-page exception occurs.
  200. */
  201. struct vm_operations_struct {
  202. void (*open)(struct vm_area_struct * area);
  203. void (*close)(struct vm_area_struct * area);
  204. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  205. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  206. /* notification that a previously read-only page is about to become
  207. * writable, if an error is returned it will cause a SIGBUS */
  208. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  209. /* called by access_process_vm when get_user_pages() fails, typically
  210. * for use by special VMAs that can switch between memory and hardware
  211. */
  212. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  213. void *buf, int len, int write);
  214. /* Called by the /proc/PID/maps code to ask the vma whether it
  215. * has a special name. Returning non-NULL will also cause this
  216. * vma to be dumped unconditionally. */
  217. const char *(*name)(struct vm_area_struct *vma);
  218. #ifdef CONFIG_NUMA
  219. /*
  220. * set_policy() op must add a reference to any non-NULL @new mempolicy
  221. * to hold the policy upon return. Caller should pass NULL @new to
  222. * remove a policy and fall back to surrounding context--i.e. do not
  223. * install a MPOL_DEFAULT policy, nor the task or system default
  224. * mempolicy.
  225. */
  226. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  227. /*
  228. * get_policy() op must add reference [mpol_get()] to any policy at
  229. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  230. * in mm/mempolicy.c will do this automatically.
  231. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  232. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  233. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  234. * must return NULL--i.e., do not "fallback" to task or system default
  235. * policy.
  236. */
  237. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  238. unsigned long addr);
  239. #endif
  240. /*
  241. * Called by vm_normal_page() for special PTEs to find the
  242. * page for @addr. This is useful if the default behavior
  243. * (using pte_page()) would not find the correct page.
  244. */
  245. struct page *(*find_special_page)(struct vm_area_struct *vma,
  246. unsigned long addr);
  247. };
  248. struct mmu_gather;
  249. struct inode;
  250. #define page_private(page) ((page)->private)
  251. #define set_page_private(page, v) ((page)->private = (v))
  252. /* It's valid only if the page is free path or free_list */
  253. static inline void set_freepage_migratetype(struct page *page, int migratetype)
  254. {
  255. page->index = migratetype;
  256. }
  257. /* It's valid only if the page is free path or free_list */
  258. static inline int get_freepage_migratetype(struct page *page)
  259. {
  260. return page->index;
  261. }
  262. /*
  263. * FIXME: take this include out, include page-flags.h in
  264. * files which need it (119 of them)
  265. */
  266. #include <linux/page-flags.h>
  267. #include <linux/huge_mm.h>
  268. /*
  269. * Methods to modify the page usage count.
  270. *
  271. * What counts for a page usage:
  272. * - cache mapping (page->mapping)
  273. * - private data (page->private)
  274. * - page mapped in a task's page tables, each mapping
  275. * is counted separately
  276. *
  277. * Also, many kernel routines increase the page count before a critical
  278. * routine so they can be sure the page doesn't go away from under them.
  279. */
  280. /*
  281. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  282. */
  283. static inline int put_page_testzero(struct page *page)
  284. {
  285. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  286. return atomic_dec_and_test(&page->_count);
  287. }
  288. /*
  289. * Try to grab a ref unless the page has a refcount of zero, return false if
  290. * that is the case.
  291. * This can be called when MMU is off so it must not access
  292. * any of the virtual mappings.
  293. */
  294. static inline int get_page_unless_zero(struct page *page)
  295. {
  296. return atomic_inc_not_zero(&page->_count);
  297. }
  298. /*
  299. * Try to drop a ref unless the page has a refcount of one, return false if
  300. * that is the case.
  301. * This is to make sure that the refcount won't become zero after this drop.
  302. * This can be called when MMU is off so it must not access
  303. * any of the virtual mappings.
  304. */
  305. static inline int put_page_unless_one(struct page *page)
  306. {
  307. return atomic_add_unless(&page->_count, -1, 1);
  308. }
  309. extern int page_is_ram(unsigned long pfn);
  310. extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
  311. /* Support for virtually mapped pages */
  312. struct page *vmalloc_to_page(const void *addr);
  313. unsigned long vmalloc_to_pfn(const void *addr);
  314. /*
  315. * Determine if an address is within the vmalloc range
  316. *
  317. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  318. * is no special casing required.
  319. */
  320. static inline int is_vmalloc_addr(const void *x)
  321. {
  322. #ifdef CONFIG_MMU
  323. unsigned long addr = (unsigned long)x;
  324. return addr >= VMALLOC_START && addr < VMALLOC_END;
  325. #else
  326. return 0;
  327. #endif
  328. }
  329. #ifdef CONFIG_MMU
  330. extern int is_vmalloc_or_module_addr(const void *x);
  331. #else
  332. static inline int is_vmalloc_or_module_addr(const void *x)
  333. {
  334. return 0;
  335. }
  336. #endif
  337. extern void kvfree(const void *addr);
  338. static inline void compound_lock(struct page *page)
  339. {
  340. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  341. VM_BUG_ON_PAGE(PageSlab(page), page);
  342. bit_spin_lock(PG_compound_lock, &page->flags);
  343. #endif
  344. }
  345. static inline void compound_unlock(struct page *page)
  346. {
  347. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  348. VM_BUG_ON_PAGE(PageSlab(page), page);
  349. bit_spin_unlock(PG_compound_lock, &page->flags);
  350. #endif
  351. }
  352. static inline unsigned long compound_lock_irqsave(struct page *page)
  353. {
  354. unsigned long uninitialized_var(flags);
  355. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  356. local_irq_save(flags);
  357. compound_lock(page);
  358. #endif
  359. return flags;
  360. }
  361. static inline void compound_unlock_irqrestore(struct page *page,
  362. unsigned long flags)
  363. {
  364. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  365. compound_unlock(page);
  366. local_irq_restore(flags);
  367. #endif
  368. }
  369. static inline struct page *compound_head_by_tail(struct page *tail)
  370. {
  371. struct page *head = tail->first_page;
  372. /*
  373. * page->first_page may be a dangling pointer to an old
  374. * compound page, so recheck that it is still a tail
  375. * page before returning.
  376. */
  377. smp_rmb();
  378. if (likely(PageTail(tail)))
  379. return head;
  380. return tail;
  381. }
  382. /*
  383. * Since either compound page could be dismantled asynchronously in THP
  384. * or we access asynchronously arbitrary positioned struct page, there
  385. * would be tail flag race. To handle this race, we should call
  386. * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
  387. */
  388. static inline struct page *compound_head(struct page *page)
  389. {
  390. if (unlikely(PageTail(page)))
  391. return compound_head_by_tail(page);
  392. return page;
  393. }
  394. /*
  395. * If we access compound page synchronously such as access to
  396. * allocated page, there is no need to handle tail flag race, so we can
  397. * check tail flag directly without any synchronization primitive.
  398. */
  399. static inline struct page *compound_head_fast(struct page *page)
  400. {
  401. if (unlikely(PageTail(page)))
  402. return page->first_page;
  403. return page;
  404. }
  405. /*
  406. * The atomic page->_mapcount, starts from -1: so that transitions
  407. * both from it and to it can be tracked, using atomic_inc_and_test
  408. * and atomic_add_negative(-1).
  409. */
  410. static inline void page_mapcount_reset(struct page *page)
  411. {
  412. atomic_set(&(page)->_mapcount, -1);
  413. }
  414. static inline int page_mapcount(struct page *page)
  415. {
  416. VM_BUG_ON_PAGE(PageSlab(page), page);
  417. return atomic_read(&page->_mapcount) + 1;
  418. }
  419. static inline int page_count(struct page *page)
  420. {
  421. return atomic_read(&compound_head(page)->_count);
  422. }
  423. #ifdef CONFIG_HUGETLB_PAGE
  424. extern int PageHeadHuge(struct page *page_head);
  425. #else /* CONFIG_HUGETLB_PAGE */
  426. static inline int PageHeadHuge(struct page *page_head)
  427. {
  428. return 0;
  429. }
  430. #endif /* CONFIG_HUGETLB_PAGE */
  431. static inline bool __compound_tail_refcounted(struct page *page)
  432. {
  433. return !PageSlab(page) && !PageHeadHuge(page);
  434. }
  435. /*
  436. * This takes a head page as parameter and tells if the
  437. * tail page reference counting can be skipped.
  438. *
  439. * For this to be safe, PageSlab and PageHeadHuge must remain true on
  440. * any given page where they return true here, until all tail pins
  441. * have been released.
  442. */
  443. static inline bool compound_tail_refcounted(struct page *page)
  444. {
  445. VM_BUG_ON_PAGE(!PageHead(page), page);
  446. return __compound_tail_refcounted(page);
  447. }
  448. static inline void get_huge_page_tail(struct page *page)
  449. {
  450. /*
  451. * __split_huge_page_refcount() cannot run from under us.
  452. */
  453. VM_BUG_ON_PAGE(!PageTail(page), page);
  454. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  455. VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
  456. if (compound_tail_refcounted(page->first_page))
  457. atomic_inc(&page->_mapcount);
  458. }
  459. extern bool __get_page_tail(struct page *page);
  460. static inline void get_page(struct page *page)
  461. {
  462. if (unlikely(PageTail(page)))
  463. if (likely(__get_page_tail(page)))
  464. return;
  465. /*
  466. * Getting a normal page or the head of a compound page
  467. * requires to already have an elevated page->_count.
  468. */
  469. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  470. atomic_inc(&page->_count);
  471. }
  472. static inline struct page *virt_to_head_page(const void *x)
  473. {
  474. struct page *page = virt_to_page(x);
  475. /*
  476. * We don't need to worry about synchronization of tail flag
  477. * when we call virt_to_head_page() since it is only called for
  478. * already allocated page and this page won't be freed until
  479. * this virt_to_head_page() is finished. So use _fast variant.
  480. */
  481. return compound_head_fast(page);
  482. }
  483. /*
  484. * Setup the page count before being freed into the page allocator for
  485. * the first time (boot or memory hotplug)
  486. */
  487. static inline void init_page_count(struct page *page)
  488. {
  489. atomic_set(&page->_count, 1);
  490. }
  491. /*
  492. * PageBuddy() indicate that the page is free and in the buddy system
  493. * (see mm/page_alloc.c).
  494. *
  495. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  496. * -2 so that an underflow of the page_mapcount() won't be mistaken
  497. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  498. * efficiently by most CPU architectures.
  499. */
  500. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  501. static inline int PageBuddy(struct page *page)
  502. {
  503. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  504. }
  505. static inline void __SetPageBuddy(struct page *page)
  506. {
  507. VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
  508. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  509. }
  510. static inline void __ClearPageBuddy(struct page *page)
  511. {
  512. VM_BUG_ON_PAGE(!PageBuddy(page), page);
  513. atomic_set(&page->_mapcount, -1);
  514. }
  515. #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
  516. static inline int PageBalloon(struct page *page)
  517. {
  518. return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
  519. }
  520. static inline void __SetPageBalloon(struct page *page)
  521. {
  522. VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
  523. atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
  524. }
  525. static inline void __ClearPageBalloon(struct page *page)
  526. {
  527. VM_BUG_ON_PAGE(!PageBalloon(page), page);
  528. atomic_set(&page->_mapcount, -1);
  529. }
  530. void put_page(struct page *page);
  531. void put_pages_list(struct list_head *pages);
  532. void split_page(struct page *page, unsigned int order);
  533. int split_free_page(struct page *page);
  534. /*
  535. * Compound pages have a destructor function. Provide a
  536. * prototype for that function and accessor functions.
  537. * These are _only_ valid on the head of a PG_compound page.
  538. */
  539. static inline void set_compound_page_dtor(struct page *page,
  540. compound_page_dtor *dtor)
  541. {
  542. page[1].compound_dtor = dtor;
  543. }
  544. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  545. {
  546. return page[1].compound_dtor;
  547. }
  548. static inline int compound_order(struct page *page)
  549. {
  550. if (!PageHead(page))
  551. return 0;
  552. return page[1].compound_order;
  553. }
  554. static inline void set_compound_order(struct page *page, unsigned long order)
  555. {
  556. page[1].compound_order = order;
  557. }
  558. #ifdef CONFIG_MMU
  559. /*
  560. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  561. * servicing faults for write access. In the normal case, do always want
  562. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  563. * that do not have writing enabled, when used by access_process_vm.
  564. */
  565. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  566. {
  567. if (likely(vma->vm_flags & VM_WRITE))
  568. pte = pte_mkwrite(pte);
  569. return pte;
  570. }
  571. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  572. struct page *page, pte_t *pte, bool write, bool anon);
  573. #endif
  574. /*
  575. * Multiple processes may "see" the same page. E.g. for untouched
  576. * mappings of /dev/null, all processes see the same page full of
  577. * zeroes, and text pages of executables and shared libraries have
  578. * only one copy in memory, at most, normally.
  579. *
  580. * For the non-reserved pages, page_count(page) denotes a reference count.
  581. * page_count() == 0 means the page is free. page->lru is then used for
  582. * freelist management in the buddy allocator.
  583. * page_count() > 0 means the page has been allocated.
  584. *
  585. * Pages are allocated by the slab allocator in order to provide memory
  586. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  587. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  588. * unless a particular usage is carefully commented. (the responsibility of
  589. * freeing the kmalloc memory is the caller's, of course).
  590. *
  591. * A page may be used by anyone else who does a __get_free_page().
  592. * In this case, page_count still tracks the references, and should only
  593. * be used through the normal accessor functions. The top bits of page->flags
  594. * and page->virtual store page management information, but all other fields
  595. * are unused and could be used privately, carefully. The management of this
  596. * page is the responsibility of the one who allocated it, and those who have
  597. * subsequently been given references to it.
  598. *
  599. * The other pages (we may call them "pagecache pages") are completely
  600. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  601. * The following discussion applies only to them.
  602. *
  603. * A pagecache page contains an opaque `private' member, which belongs to the
  604. * page's address_space. Usually, this is the address of a circular list of
  605. * the page's disk buffers. PG_private must be set to tell the VM to call
  606. * into the filesystem to release these pages.
  607. *
  608. * A page may belong to an inode's memory mapping. In this case, page->mapping
  609. * is the pointer to the inode, and page->index is the file offset of the page,
  610. * in units of PAGE_CACHE_SIZE.
  611. *
  612. * If pagecache pages are not associated with an inode, they are said to be
  613. * anonymous pages. These may become associated with the swapcache, and in that
  614. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  615. *
  616. * In either case (swapcache or inode backed), the pagecache itself holds one
  617. * reference to the page. Setting PG_private should also increment the
  618. * refcount. The each user mapping also has a reference to the page.
  619. *
  620. * The pagecache pages are stored in a per-mapping radix tree, which is
  621. * rooted at mapping->page_tree, and indexed by offset.
  622. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  623. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  624. *
  625. * All pagecache pages may be subject to I/O:
  626. * - inode pages may need to be read from disk,
  627. * - inode pages which have been modified and are MAP_SHARED may need
  628. * to be written back to the inode on disk,
  629. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  630. * modified may need to be swapped out to swap space and (later) to be read
  631. * back into memory.
  632. */
  633. /*
  634. * The zone field is never updated after free_area_init_core()
  635. * sets it, so none of the operations on it need to be atomic.
  636. */
  637. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  638. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  639. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  640. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  641. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  642. /*
  643. * Define the bit shifts to access each section. For non-existent
  644. * sections we define the shift as 0; that plus a 0 mask ensures
  645. * the compiler will optimise away reference to them.
  646. */
  647. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  648. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  649. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  650. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  651. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  652. #ifdef NODE_NOT_IN_PAGE_FLAGS
  653. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  654. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  655. SECTIONS_PGOFF : ZONES_PGOFF)
  656. #else
  657. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  658. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  659. NODES_PGOFF : ZONES_PGOFF)
  660. #endif
  661. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  662. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  663. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  664. #endif
  665. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  666. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  667. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  668. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  669. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  670. static inline enum zone_type page_zonenum(const struct page *page)
  671. {
  672. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  673. }
  674. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  675. #define SECTION_IN_PAGE_FLAGS
  676. #endif
  677. /*
  678. * The identification function is mainly used by the buddy allocator for
  679. * determining if two pages could be buddies. We are not really identifying
  680. * the zone since we could be using the section number id if we do not have
  681. * node id available in page flags.
  682. * We only guarantee that it will return the same value for two combinable
  683. * pages in a zone.
  684. */
  685. static inline int page_zone_id(struct page *page)
  686. {
  687. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  688. }
  689. static inline int zone_to_nid(struct zone *zone)
  690. {
  691. #ifdef CONFIG_NUMA
  692. return zone->node;
  693. #else
  694. return 0;
  695. #endif
  696. }
  697. #ifdef NODE_NOT_IN_PAGE_FLAGS
  698. extern int page_to_nid(const struct page *page);
  699. #else
  700. static inline int page_to_nid(const struct page *page)
  701. {
  702. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  703. }
  704. #endif
  705. #ifdef CONFIG_NUMA_BALANCING
  706. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  707. {
  708. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  709. }
  710. static inline int cpupid_to_pid(int cpupid)
  711. {
  712. return cpupid & LAST__PID_MASK;
  713. }
  714. static inline int cpupid_to_cpu(int cpupid)
  715. {
  716. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  717. }
  718. static inline int cpupid_to_nid(int cpupid)
  719. {
  720. return cpu_to_node(cpupid_to_cpu(cpupid));
  721. }
  722. static inline bool cpupid_pid_unset(int cpupid)
  723. {
  724. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  725. }
  726. static inline bool cpupid_cpu_unset(int cpupid)
  727. {
  728. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  729. }
  730. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  731. {
  732. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  733. }
  734. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  735. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  736. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  737. {
  738. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  739. }
  740. static inline int page_cpupid_last(struct page *page)
  741. {
  742. return page->_last_cpupid;
  743. }
  744. static inline void page_cpupid_reset_last(struct page *page)
  745. {
  746. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  747. }
  748. #else
  749. static inline int page_cpupid_last(struct page *page)
  750. {
  751. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  752. }
  753. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  754. static inline void page_cpupid_reset_last(struct page *page)
  755. {
  756. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  757. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  758. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  759. }
  760. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  761. #else /* !CONFIG_NUMA_BALANCING */
  762. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  763. {
  764. return page_to_nid(page); /* XXX */
  765. }
  766. static inline int page_cpupid_last(struct page *page)
  767. {
  768. return page_to_nid(page); /* XXX */
  769. }
  770. static inline int cpupid_to_nid(int cpupid)
  771. {
  772. return -1;
  773. }
  774. static inline int cpupid_to_pid(int cpupid)
  775. {
  776. return -1;
  777. }
  778. static inline int cpupid_to_cpu(int cpupid)
  779. {
  780. return -1;
  781. }
  782. static inline int cpu_pid_to_cpupid(int nid, int pid)
  783. {
  784. return -1;
  785. }
  786. static inline bool cpupid_pid_unset(int cpupid)
  787. {
  788. return 1;
  789. }
  790. static inline void page_cpupid_reset_last(struct page *page)
  791. {
  792. }
  793. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  794. {
  795. return false;
  796. }
  797. #endif /* CONFIG_NUMA_BALANCING */
  798. static inline struct zone *page_zone(const struct page *page)
  799. {
  800. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  801. }
  802. #ifdef SECTION_IN_PAGE_FLAGS
  803. static inline void set_page_section(struct page *page, unsigned long section)
  804. {
  805. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  806. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  807. }
  808. static inline unsigned long page_to_section(const struct page *page)
  809. {
  810. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  811. }
  812. #endif
  813. static inline void set_page_zone(struct page *page, enum zone_type zone)
  814. {
  815. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  816. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  817. }
  818. static inline void set_page_node(struct page *page, unsigned long node)
  819. {
  820. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  821. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  822. }
  823. static inline void set_page_links(struct page *page, enum zone_type zone,
  824. unsigned long node, unsigned long pfn)
  825. {
  826. set_page_zone(page, zone);
  827. set_page_node(page, node);
  828. #ifdef SECTION_IN_PAGE_FLAGS
  829. set_page_section(page, pfn_to_section_nr(pfn));
  830. #endif
  831. }
  832. /*
  833. * Some inline functions in vmstat.h depend on page_zone()
  834. */
  835. #include <linux/vmstat.h>
  836. static __always_inline void *lowmem_page_address(const struct page *page)
  837. {
  838. return __va(PFN_PHYS(page_to_pfn(page)));
  839. }
  840. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  841. #define HASHED_PAGE_VIRTUAL
  842. #endif
  843. #if defined(WANT_PAGE_VIRTUAL)
  844. static inline void *page_address(const struct page *page)
  845. {
  846. return page->virtual;
  847. }
  848. static inline void set_page_address(struct page *page, void *address)
  849. {
  850. page->virtual = address;
  851. }
  852. #define page_address_init() do { } while(0)
  853. #endif
  854. #if defined(HASHED_PAGE_VIRTUAL)
  855. void *page_address(const struct page *page);
  856. void set_page_address(struct page *page, void *virtual);
  857. void page_address_init(void);
  858. #endif
  859. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  860. #define page_address(page) lowmem_page_address(page)
  861. #define set_page_address(page, address) do { } while(0)
  862. #define page_address_init() do { } while(0)
  863. #endif
  864. /*
  865. * On an anonymous page mapped into a user virtual memory area,
  866. * page->mapping points to its anon_vma, not to a struct address_space;
  867. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  868. *
  869. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  870. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  871. * and then page->mapping points, not to an anon_vma, but to a private
  872. * structure which KSM associates with that merged page. See ksm.h.
  873. *
  874. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  875. *
  876. * Please note that, confusingly, "page_mapping" refers to the inode
  877. * address_space which maps the page from disk; whereas "page_mapped"
  878. * refers to user virtual address space into which the page is mapped.
  879. */
  880. #define PAGE_MAPPING_ANON 1
  881. #define PAGE_MAPPING_KSM 2
  882. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  883. extern struct address_space *page_mapping(struct page *page);
  884. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  885. static inline void *page_rmapping(struct page *page)
  886. {
  887. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  888. }
  889. extern struct address_space *__page_file_mapping(struct page *);
  890. static inline
  891. struct address_space *page_file_mapping(struct page *page)
  892. {
  893. if (unlikely(PageSwapCache(page)))
  894. return __page_file_mapping(page);
  895. return page->mapping;
  896. }
  897. static inline int PageAnon(struct page *page)
  898. {
  899. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  900. }
  901. /*
  902. * Return the pagecache index of the passed page. Regular pagecache pages
  903. * use ->index whereas swapcache pages use ->private
  904. */
  905. static inline pgoff_t page_index(struct page *page)
  906. {
  907. if (unlikely(PageSwapCache(page)))
  908. return page_private(page);
  909. return page->index;
  910. }
  911. extern pgoff_t __page_file_index(struct page *page);
  912. /*
  913. * Return the file index of the page. Regular pagecache pages use ->index
  914. * whereas swapcache pages use swp_offset(->private)
  915. */
  916. static inline pgoff_t page_file_index(struct page *page)
  917. {
  918. if (unlikely(PageSwapCache(page)))
  919. return __page_file_index(page);
  920. return page->index;
  921. }
  922. /*
  923. * Return true if this page is mapped into pagetables.
  924. */
  925. static inline int page_mapped(struct page *page)
  926. {
  927. return atomic_read(&(page)->_mapcount) >= 0;
  928. }
  929. /*
  930. * Different kinds of faults, as returned by handle_mm_fault().
  931. * Used to decide whether a process gets delivered SIGBUS or
  932. * just gets major/minor fault counters bumped up.
  933. */
  934. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  935. #define VM_FAULT_OOM 0x0001
  936. #define VM_FAULT_SIGBUS 0x0002
  937. #define VM_FAULT_MAJOR 0x0004
  938. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  939. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  940. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  941. #define VM_FAULT_SIGSEGV 0x0040
  942. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  943. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  944. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  945. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  946. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  947. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  948. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  949. VM_FAULT_FALLBACK)
  950. /* Encode hstate index for a hwpoisoned large page */
  951. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  952. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  953. /*
  954. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  955. */
  956. extern void pagefault_out_of_memory(void);
  957. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  958. /*
  959. * Flags passed to show_mem() and show_free_areas() to suppress output in
  960. * various contexts.
  961. */
  962. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  963. extern void show_free_areas(unsigned int flags);
  964. extern bool skip_free_areas_node(unsigned int flags, int nid);
  965. int shmem_zero_setup(struct vm_area_struct *);
  966. #ifdef CONFIG_SHMEM
  967. bool shmem_mapping(struct address_space *mapping);
  968. #else
  969. static inline bool shmem_mapping(struct address_space *mapping)
  970. {
  971. return false;
  972. }
  973. #endif
  974. extern int can_do_mlock(void);
  975. extern int user_shm_lock(size_t, struct user_struct *);
  976. extern void user_shm_unlock(size_t, struct user_struct *);
  977. /*
  978. * Parameter block passed down to zap_pte_range in exceptional cases.
  979. */
  980. struct zap_details {
  981. struct address_space *check_mapping; /* Check page->mapping if set */
  982. pgoff_t first_index; /* Lowest page->index to unmap */
  983. pgoff_t last_index; /* Highest page->index to unmap */
  984. };
  985. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  986. pte_t pte);
  987. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  988. unsigned long size);
  989. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  990. unsigned long size, struct zap_details *);
  991. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  992. unsigned long start, unsigned long end);
  993. /**
  994. * mm_walk - callbacks for walk_page_range
  995. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  996. * this handler is required to be able to handle
  997. * pmd_trans_huge() pmds. They may simply choose to
  998. * split_huge_page() instead of handling it explicitly.
  999. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1000. * @pte_hole: if set, called for each hole at all levels
  1001. * @hugetlb_entry: if set, called for each hugetlb entry
  1002. * @test_walk: caller specific callback function to determine whether
  1003. * we walk over the current vma or not. A positive returned
  1004. * value means "do page table walk over the current vma,"
  1005. * and a negative one means "abort current page table walk
  1006. * right now." 0 means "skip the current vma."
  1007. * @mm: mm_struct representing the target process of page table walk
  1008. * @vma: vma currently walked (NULL if walking outside vmas)
  1009. * @private: private data for callbacks' usage
  1010. *
  1011. * (see the comment on walk_page_range() for more details)
  1012. */
  1013. struct mm_walk {
  1014. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1015. unsigned long next, struct mm_walk *walk);
  1016. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1017. unsigned long next, struct mm_walk *walk);
  1018. int (*pte_hole)(unsigned long addr, unsigned long next,
  1019. struct mm_walk *walk);
  1020. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1021. unsigned long addr, unsigned long next,
  1022. struct mm_walk *walk);
  1023. int (*test_walk)(unsigned long addr, unsigned long next,
  1024. struct mm_walk *walk);
  1025. struct mm_struct *mm;
  1026. struct vm_area_struct *vma;
  1027. void *private;
  1028. };
  1029. int walk_page_range(unsigned long addr, unsigned long end,
  1030. struct mm_walk *walk);
  1031. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1032. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1033. unsigned long end, unsigned long floor, unsigned long ceiling);
  1034. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1035. struct vm_area_struct *vma);
  1036. void unmap_mapping_range(struct address_space *mapping,
  1037. loff_t const holebegin, loff_t const holelen, int even_cows);
  1038. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1039. unsigned long *pfn);
  1040. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1041. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1042. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1043. void *buf, int len, int write);
  1044. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1045. loff_t const holebegin, loff_t const holelen)
  1046. {
  1047. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1048. }
  1049. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1050. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1051. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1052. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1053. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1054. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1055. int invalidate_inode_page(struct page *page);
  1056. #ifdef CONFIG_MMU
  1057. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1058. unsigned long address, unsigned int flags);
  1059. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1060. unsigned long address, unsigned int fault_flags);
  1061. #else
  1062. static inline int handle_mm_fault(struct mm_struct *mm,
  1063. struct vm_area_struct *vma, unsigned long address,
  1064. unsigned int flags)
  1065. {
  1066. /* should never happen if there's no MMU */
  1067. BUG();
  1068. return VM_FAULT_SIGBUS;
  1069. }
  1070. static inline int fixup_user_fault(struct task_struct *tsk,
  1071. struct mm_struct *mm, unsigned long address,
  1072. unsigned int fault_flags)
  1073. {
  1074. /* should never happen if there's no MMU */
  1075. BUG();
  1076. return -EFAULT;
  1077. }
  1078. #endif
  1079. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1080. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1081. void *buf, int len, int write);
  1082. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1083. unsigned long start, unsigned long nr_pages,
  1084. unsigned int foll_flags, struct page **pages,
  1085. struct vm_area_struct **vmas, int *nonblocking);
  1086. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1087. unsigned long start, unsigned long nr_pages,
  1088. int write, int force, struct page **pages,
  1089. struct vm_area_struct **vmas);
  1090. long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
  1091. unsigned long start, unsigned long nr_pages,
  1092. int write, int force, struct page **pages,
  1093. int *locked);
  1094. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1095. unsigned long start, unsigned long nr_pages,
  1096. int write, int force, struct page **pages,
  1097. unsigned int gup_flags);
  1098. long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1099. unsigned long start, unsigned long nr_pages,
  1100. int write, int force, struct page **pages);
  1101. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1102. struct page **pages);
  1103. struct kvec;
  1104. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1105. struct page **pages);
  1106. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1107. struct page *get_dump_page(unsigned long addr);
  1108. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1109. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1110. unsigned int length);
  1111. int __set_page_dirty_nobuffers(struct page *page);
  1112. int __set_page_dirty_no_writeback(struct page *page);
  1113. int redirty_page_for_writepage(struct writeback_control *wbc,
  1114. struct page *page);
  1115. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1116. int set_page_dirty(struct page *page);
  1117. int set_page_dirty_lock(struct page *page);
  1118. int clear_page_dirty_for_io(struct page *page);
  1119. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1120. /* Is the vma a continuation of the stack vma above it? */
  1121. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1122. {
  1123. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1124. }
  1125. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1126. unsigned long addr)
  1127. {
  1128. return (vma->vm_flags & VM_GROWSDOWN) &&
  1129. (vma->vm_start == addr) &&
  1130. !vma_growsdown(vma->vm_prev, addr);
  1131. }
  1132. /* Is the vma a continuation of the stack vma below it? */
  1133. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1134. {
  1135. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1136. }
  1137. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1138. unsigned long addr)
  1139. {
  1140. return (vma->vm_flags & VM_GROWSUP) &&
  1141. (vma->vm_end == addr) &&
  1142. !vma_growsup(vma->vm_next, addr);
  1143. }
  1144. extern struct task_struct *task_of_stack(struct task_struct *task,
  1145. struct vm_area_struct *vma, bool in_group);
  1146. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1147. unsigned long old_addr, struct vm_area_struct *new_vma,
  1148. unsigned long new_addr, unsigned long len,
  1149. bool need_rmap_locks);
  1150. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1151. unsigned long end, pgprot_t newprot,
  1152. int dirty_accountable, int prot_numa);
  1153. extern int mprotect_fixup(struct vm_area_struct *vma,
  1154. struct vm_area_struct **pprev, unsigned long start,
  1155. unsigned long end, unsigned long newflags);
  1156. /*
  1157. * doesn't attempt to fault and will return short.
  1158. */
  1159. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1160. struct page **pages);
  1161. /*
  1162. * per-process(per-mm_struct) statistics.
  1163. */
  1164. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1165. {
  1166. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1167. #ifdef SPLIT_RSS_COUNTING
  1168. /*
  1169. * counter is updated in asynchronous manner and may go to minus.
  1170. * But it's never be expected number for users.
  1171. */
  1172. if (val < 0)
  1173. val = 0;
  1174. #endif
  1175. return (unsigned long)val;
  1176. }
  1177. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1178. {
  1179. atomic_long_add(value, &mm->rss_stat.count[member]);
  1180. }
  1181. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1182. {
  1183. atomic_long_inc(&mm->rss_stat.count[member]);
  1184. }
  1185. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1186. {
  1187. atomic_long_dec(&mm->rss_stat.count[member]);
  1188. }
  1189. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1190. {
  1191. return get_mm_counter(mm, MM_FILEPAGES) +
  1192. get_mm_counter(mm, MM_ANONPAGES);
  1193. }
  1194. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1195. {
  1196. return max(mm->hiwater_rss, get_mm_rss(mm));
  1197. }
  1198. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1199. {
  1200. return max(mm->hiwater_vm, mm->total_vm);
  1201. }
  1202. static inline void update_hiwater_rss(struct mm_struct *mm)
  1203. {
  1204. unsigned long _rss = get_mm_rss(mm);
  1205. if ((mm)->hiwater_rss < _rss)
  1206. (mm)->hiwater_rss = _rss;
  1207. }
  1208. static inline void update_hiwater_vm(struct mm_struct *mm)
  1209. {
  1210. if (mm->hiwater_vm < mm->total_vm)
  1211. mm->hiwater_vm = mm->total_vm;
  1212. }
  1213. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1214. {
  1215. mm->hiwater_rss = get_mm_rss(mm);
  1216. }
  1217. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1218. struct mm_struct *mm)
  1219. {
  1220. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1221. if (*maxrss < hiwater_rss)
  1222. *maxrss = hiwater_rss;
  1223. }
  1224. #if defined(SPLIT_RSS_COUNTING)
  1225. void sync_mm_rss(struct mm_struct *mm);
  1226. #else
  1227. static inline void sync_mm_rss(struct mm_struct *mm)
  1228. {
  1229. }
  1230. #endif
  1231. int vma_wants_writenotify(struct vm_area_struct *vma);
  1232. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1233. spinlock_t **ptl);
  1234. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1235. spinlock_t **ptl)
  1236. {
  1237. pte_t *ptep;
  1238. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1239. return ptep;
  1240. }
  1241. #ifdef __PAGETABLE_PUD_FOLDED
  1242. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1243. unsigned long address)
  1244. {
  1245. return 0;
  1246. }
  1247. #else
  1248. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1249. #endif
  1250. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1251. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1252. unsigned long address)
  1253. {
  1254. return 0;
  1255. }
  1256. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1257. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1258. {
  1259. return 0;
  1260. }
  1261. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1262. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1263. #else
  1264. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1265. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1266. {
  1267. atomic_long_set(&mm->nr_pmds, 0);
  1268. }
  1269. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1270. {
  1271. return atomic_long_read(&mm->nr_pmds);
  1272. }
  1273. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1274. {
  1275. atomic_long_inc(&mm->nr_pmds);
  1276. }
  1277. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1278. {
  1279. atomic_long_dec(&mm->nr_pmds);
  1280. }
  1281. #endif
  1282. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1283. pmd_t *pmd, unsigned long address);
  1284. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1285. /*
  1286. * The following ifdef needed to get the 4level-fixup.h header to work.
  1287. * Remove it when 4level-fixup.h has been removed.
  1288. */
  1289. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1290. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1291. {
  1292. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1293. NULL: pud_offset(pgd, address);
  1294. }
  1295. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1296. {
  1297. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1298. NULL: pmd_offset(pud, address);
  1299. }
  1300. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1301. #if USE_SPLIT_PTE_PTLOCKS
  1302. #if ALLOC_SPLIT_PTLOCKS
  1303. void __init ptlock_cache_init(void);
  1304. extern bool ptlock_alloc(struct page *page);
  1305. extern void ptlock_free(struct page *page);
  1306. static inline spinlock_t *ptlock_ptr(struct page *page)
  1307. {
  1308. return page->ptl;
  1309. }
  1310. #else /* ALLOC_SPLIT_PTLOCKS */
  1311. static inline void ptlock_cache_init(void)
  1312. {
  1313. }
  1314. static inline bool ptlock_alloc(struct page *page)
  1315. {
  1316. return true;
  1317. }
  1318. static inline void ptlock_free(struct page *page)
  1319. {
  1320. }
  1321. static inline spinlock_t *ptlock_ptr(struct page *page)
  1322. {
  1323. return &page->ptl;
  1324. }
  1325. #endif /* ALLOC_SPLIT_PTLOCKS */
  1326. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1327. {
  1328. return ptlock_ptr(pmd_page(*pmd));
  1329. }
  1330. static inline bool ptlock_init(struct page *page)
  1331. {
  1332. /*
  1333. * prep_new_page() initialize page->private (and therefore page->ptl)
  1334. * with 0. Make sure nobody took it in use in between.
  1335. *
  1336. * It can happen if arch try to use slab for page table allocation:
  1337. * slab code uses page->slab_cache and page->first_page (for tail
  1338. * pages), which share storage with page->ptl.
  1339. */
  1340. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1341. if (!ptlock_alloc(page))
  1342. return false;
  1343. spin_lock_init(ptlock_ptr(page));
  1344. return true;
  1345. }
  1346. /* Reset page->mapping so free_pages_check won't complain. */
  1347. static inline void pte_lock_deinit(struct page *page)
  1348. {
  1349. page->mapping = NULL;
  1350. ptlock_free(page);
  1351. }
  1352. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1353. /*
  1354. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1355. */
  1356. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1357. {
  1358. return &mm->page_table_lock;
  1359. }
  1360. static inline void ptlock_cache_init(void) {}
  1361. static inline bool ptlock_init(struct page *page) { return true; }
  1362. static inline void pte_lock_deinit(struct page *page) {}
  1363. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1364. static inline void pgtable_init(void)
  1365. {
  1366. ptlock_cache_init();
  1367. pgtable_cache_init();
  1368. }
  1369. static inline bool pgtable_page_ctor(struct page *page)
  1370. {
  1371. inc_zone_page_state(page, NR_PAGETABLE);
  1372. return ptlock_init(page);
  1373. }
  1374. static inline void pgtable_page_dtor(struct page *page)
  1375. {
  1376. pte_lock_deinit(page);
  1377. dec_zone_page_state(page, NR_PAGETABLE);
  1378. }
  1379. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1380. ({ \
  1381. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1382. pte_t *__pte = pte_offset_map(pmd, address); \
  1383. *(ptlp) = __ptl; \
  1384. spin_lock(__ptl); \
  1385. __pte; \
  1386. })
  1387. #define pte_unmap_unlock(pte, ptl) do { \
  1388. spin_unlock(ptl); \
  1389. pte_unmap(pte); \
  1390. } while (0)
  1391. #define pte_alloc_map(mm, vma, pmd, address) \
  1392. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1393. pmd, address))? \
  1394. NULL: pte_offset_map(pmd, address))
  1395. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1396. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1397. pmd, address))? \
  1398. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1399. #define pte_alloc_kernel(pmd, address) \
  1400. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1401. NULL: pte_offset_kernel(pmd, address))
  1402. #if USE_SPLIT_PMD_PTLOCKS
  1403. static struct page *pmd_to_page(pmd_t *pmd)
  1404. {
  1405. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1406. return virt_to_page((void *)((unsigned long) pmd & mask));
  1407. }
  1408. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1409. {
  1410. return ptlock_ptr(pmd_to_page(pmd));
  1411. }
  1412. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1413. {
  1414. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1415. page->pmd_huge_pte = NULL;
  1416. #endif
  1417. return ptlock_init(page);
  1418. }
  1419. static inline void pgtable_pmd_page_dtor(struct page *page)
  1420. {
  1421. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1422. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1423. #endif
  1424. ptlock_free(page);
  1425. }
  1426. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1427. #else
  1428. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1429. {
  1430. return &mm->page_table_lock;
  1431. }
  1432. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1433. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1434. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1435. #endif
  1436. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1437. {
  1438. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1439. spin_lock(ptl);
  1440. return ptl;
  1441. }
  1442. extern void free_area_init(unsigned long * zones_size);
  1443. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1444. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1445. extern void free_initmem(void);
  1446. /*
  1447. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1448. * into the buddy system. The freed pages will be poisoned with pattern
  1449. * "poison" if it's within range [0, UCHAR_MAX].
  1450. * Return pages freed into the buddy system.
  1451. */
  1452. extern unsigned long free_reserved_area(void *start, void *end,
  1453. int poison, char *s);
  1454. #ifdef CONFIG_HIGHMEM
  1455. /*
  1456. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1457. * and totalram_pages.
  1458. */
  1459. extern void free_highmem_page(struct page *page);
  1460. #endif
  1461. extern void adjust_managed_page_count(struct page *page, long count);
  1462. extern void mem_init_print_info(const char *str);
  1463. /* Free the reserved page into the buddy system, so it gets managed. */
  1464. static inline void __free_reserved_page(struct page *page)
  1465. {
  1466. ClearPageReserved(page);
  1467. init_page_count(page);
  1468. __free_page(page);
  1469. }
  1470. static inline void free_reserved_page(struct page *page)
  1471. {
  1472. __free_reserved_page(page);
  1473. adjust_managed_page_count(page, 1);
  1474. }
  1475. static inline void mark_page_reserved(struct page *page)
  1476. {
  1477. SetPageReserved(page);
  1478. adjust_managed_page_count(page, -1);
  1479. }
  1480. /*
  1481. * Default method to free all the __init memory into the buddy system.
  1482. * The freed pages will be poisoned with pattern "poison" if it's within
  1483. * range [0, UCHAR_MAX].
  1484. * Return pages freed into the buddy system.
  1485. */
  1486. static inline unsigned long free_initmem_default(int poison)
  1487. {
  1488. extern char __init_begin[], __init_end[];
  1489. return free_reserved_area(&__init_begin, &__init_end,
  1490. poison, "unused kernel");
  1491. }
  1492. static inline unsigned long get_num_physpages(void)
  1493. {
  1494. int nid;
  1495. unsigned long phys_pages = 0;
  1496. for_each_online_node(nid)
  1497. phys_pages += node_present_pages(nid);
  1498. return phys_pages;
  1499. }
  1500. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1501. /*
  1502. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1503. * zones, allocate the backing mem_map and account for memory holes in a more
  1504. * architecture independent manner. This is a substitute for creating the
  1505. * zone_sizes[] and zholes_size[] arrays and passing them to
  1506. * free_area_init_node()
  1507. *
  1508. * An architecture is expected to register range of page frames backed by
  1509. * physical memory with memblock_add[_node]() before calling
  1510. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1511. * usage, an architecture is expected to do something like
  1512. *
  1513. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1514. * max_highmem_pfn};
  1515. * for_each_valid_physical_page_range()
  1516. * memblock_add_node(base, size, nid)
  1517. * free_area_init_nodes(max_zone_pfns);
  1518. *
  1519. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1520. * registered physical page range. Similarly
  1521. * sparse_memory_present_with_active_regions() calls memory_present() for
  1522. * each range when SPARSEMEM is enabled.
  1523. *
  1524. * See mm/page_alloc.c for more information on each function exposed by
  1525. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1526. */
  1527. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1528. unsigned long node_map_pfn_alignment(void);
  1529. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1530. unsigned long end_pfn);
  1531. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1532. unsigned long end_pfn);
  1533. extern void get_pfn_range_for_nid(unsigned int nid,
  1534. unsigned long *start_pfn, unsigned long *end_pfn);
  1535. extern unsigned long find_min_pfn_with_active_regions(void);
  1536. extern void free_bootmem_with_active_regions(int nid,
  1537. unsigned long max_low_pfn);
  1538. extern void sparse_memory_present_with_active_regions(int nid);
  1539. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1540. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1541. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1542. static inline int __early_pfn_to_nid(unsigned long pfn)
  1543. {
  1544. return 0;
  1545. }
  1546. #else
  1547. /* please see mm/page_alloc.c */
  1548. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1549. /* there is a per-arch backend function. */
  1550. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1551. #endif
  1552. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1553. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1554. unsigned long, enum memmap_context);
  1555. extern void setup_per_zone_wmarks(void);
  1556. extern int __meminit init_per_zone_wmark_min(void);
  1557. extern void mem_init(void);
  1558. extern void __init mmap_init(void);
  1559. extern void show_mem(unsigned int flags);
  1560. extern void si_meminfo(struct sysinfo * val);
  1561. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1562. extern __printf(3, 4)
  1563. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1564. extern void setup_per_cpu_pageset(void);
  1565. extern void zone_pcp_update(struct zone *zone);
  1566. extern void zone_pcp_reset(struct zone *zone);
  1567. /* page_alloc.c */
  1568. extern int min_free_kbytes;
  1569. /* nommu.c */
  1570. extern atomic_long_t mmap_pages_allocated;
  1571. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1572. /* interval_tree.c */
  1573. void vma_interval_tree_insert(struct vm_area_struct *node,
  1574. struct rb_root *root);
  1575. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1576. struct vm_area_struct *prev,
  1577. struct rb_root *root);
  1578. void vma_interval_tree_remove(struct vm_area_struct *node,
  1579. struct rb_root *root);
  1580. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1581. unsigned long start, unsigned long last);
  1582. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1583. unsigned long start, unsigned long last);
  1584. #define vma_interval_tree_foreach(vma, root, start, last) \
  1585. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1586. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1587. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1588. struct rb_root *root);
  1589. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1590. struct rb_root *root);
  1591. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1592. struct rb_root *root, unsigned long start, unsigned long last);
  1593. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1594. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1595. #ifdef CONFIG_DEBUG_VM_RB
  1596. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1597. #endif
  1598. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1599. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1600. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1601. /* mmap.c */
  1602. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1603. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1604. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1605. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1606. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1607. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1608. struct mempolicy *);
  1609. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1610. extern int split_vma(struct mm_struct *,
  1611. struct vm_area_struct *, unsigned long addr, int new_below);
  1612. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1613. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1614. struct rb_node **, struct rb_node *);
  1615. extern void unlink_file_vma(struct vm_area_struct *);
  1616. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1617. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1618. bool *need_rmap_locks);
  1619. extern void exit_mmap(struct mm_struct *);
  1620. static inline int check_data_rlimit(unsigned long rlim,
  1621. unsigned long new,
  1622. unsigned long start,
  1623. unsigned long end_data,
  1624. unsigned long start_data)
  1625. {
  1626. if (rlim < RLIM_INFINITY) {
  1627. if (((new - start) + (end_data - start_data)) > rlim)
  1628. return -ENOSPC;
  1629. }
  1630. return 0;
  1631. }
  1632. extern int mm_take_all_locks(struct mm_struct *mm);
  1633. extern void mm_drop_all_locks(struct mm_struct *mm);
  1634. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1635. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1636. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1637. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1638. unsigned long addr, unsigned long len,
  1639. unsigned long flags,
  1640. const struct vm_special_mapping *spec);
  1641. /* This is an obsolete alternative to _install_special_mapping. */
  1642. extern int install_special_mapping(struct mm_struct *mm,
  1643. unsigned long addr, unsigned long len,
  1644. unsigned long flags, struct page **pages);
  1645. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1646. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1647. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1648. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1649. unsigned long len, unsigned long prot, unsigned long flags,
  1650. unsigned long pgoff, unsigned long *populate);
  1651. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1652. #ifdef CONFIG_MMU
  1653. extern int __mm_populate(unsigned long addr, unsigned long len,
  1654. int ignore_errors);
  1655. static inline void mm_populate(unsigned long addr, unsigned long len)
  1656. {
  1657. /* Ignore errors */
  1658. (void) __mm_populate(addr, len, 1);
  1659. }
  1660. #else
  1661. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1662. #endif
  1663. /* These take the mm semaphore themselves */
  1664. extern unsigned long vm_brk(unsigned long, unsigned long);
  1665. extern int vm_munmap(unsigned long, size_t);
  1666. extern unsigned long vm_mmap(struct file *, unsigned long,
  1667. unsigned long, unsigned long,
  1668. unsigned long, unsigned long);
  1669. struct vm_unmapped_area_info {
  1670. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1671. unsigned long flags;
  1672. unsigned long length;
  1673. unsigned long low_limit;
  1674. unsigned long high_limit;
  1675. unsigned long align_mask;
  1676. unsigned long align_offset;
  1677. };
  1678. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1679. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1680. /*
  1681. * Search for an unmapped address range.
  1682. *
  1683. * We are looking for a range that:
  1684. * - does not intersect with any VMA;
  1685. * - is contained within the [low_limit, high_limit) interval;
  1686. * - is at least the desired size.
  1687. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1688. */
  1689. static inline unsigned long
  1690. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1691. {
  1692. if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
  1693. return unmapped_area(info);
  1694. else
  1695. return unmapped_area_topdown(info);
  1696. }
  1697. /* truncate.c */
  1698. extern void truncate_inode_pages(struct address_space *, loff_t);
  1699. extern void truncate_inode_pages_range(struct address_space *,
  1700. loff_t lstart, loff_t lend);
  1701. extern void truncate_inode_pages_final(struct address_space *);
  1702. /* generic vm_area_ops exported for stackable file systems */
  1703. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1704. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1705. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1706. /* mm/page-writeback.c */
  1707. int write_one_page(struct page *page, int wait);
  1708. void task_dirty_inc(struct task_struct *tsk);
  1709. /* readahead.c */
  1710. #define VM_MAX_READAHEAD 128 /* kbytes */
  1711. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1712. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1713. pgoff_t offset, unsigned long nr_to_read);
  1714. void page_cache_sync_readahead(struct address_space *mapping,
  1715. struct file_ra_state *ra,
  1716. struct file *filp,
  1717. pgoff_t offset,
  1718. unsigned long size);
  1719. void page_cache_async_readahead(struct address_space *mapping,
  1720. struct file_ra_state *ra,
  1721. struct file *filp,
  1722. struct page *pg,
  1723. pgoff_t offset,
  1724. unsigned long size);
  1725. unsigned long max_sane_readahead(unsigned long nr);
  1726. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1727. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1728. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1729. extern int expand_downwards(struct vm_area_struct *vma,
  1730. unsigned long address);
  1731. #if VM_GROWSUP
  1732. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1733. #else
  1734. #define expand_upwards(vma, address) (0)
  1735. #endif
  1736. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1737. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1738. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1739. struct vm_area_struct **pprev);
  1740. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1741. NULL if none. Assume start_addr < end_addr. */
  1742. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1743. {
  1744. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1745. if (vma && end_addr <= vma->vm_start)
  1746. vma = NULL;
  1747. return vma;
  1748. }
  1749. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1750. {
  1751. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1752. }
  1753. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1754. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1755. unsigned long vm_start, unsigned long vm_end)
  1756. {
  1757. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1758. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1759. vma = NULL;
  1760. return vma;
  1761. }
  1762. #ifdef CONFIG_MMU
  1763. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1764. void vma_set_page_prot(struct vm_area_struct *vma);
  1765. #else
  1766. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1767. {
  1768. return __pgprot(0);
  1769. }
  1770. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1771. {
  1772. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1773. }
  1774. #endif
  1775. #ifdef CONFIG_NUMA_BALANCING
  1776. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1777. unsigned long start, unsigned long end);
  1778. #endif
  1779. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1780. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1781. unsigned long pfn, unsigned long size, pgprot_t);
  1782. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1783. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1784. unsigned long pfn);
  1785. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1786. unsigned long pfn);
  1787. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1788. struct page *follow_page_mask(struct vm_area_struct *vma,
  1789. unsigned long address, unsigned int foll_flags,
  1790. unsigned int *page_mask);
  1791. static inline struct page *follow_page(struct vm_area_struct *vma,
  1792. unsigned long address, unsigned int foll_flags)
  1793. {
  1794. unsigned int unused_page_mask;
  1795. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1796. }
  1797. #define FOLL_WRITE 0x01 /* check pte is writable */
  1798. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1799. #define FOLL_GET 0x04 /* do get_page on page */
  1800. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1801. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1802. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1803. * and return without waiting upon it */
  1804. #define FOLL_POPULATE 0x40 /* fault in page */
  1805. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1806. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1807. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1808. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1809. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1810. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1811. void *data);
  1812. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1813. unsigned long size, pte_fn_t fn, void *data);
  1814. #ifdef CONFIG_PROC_FS
  1815. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1816. #else
  1817. static inline void vm_stat_account(struct mm_struct *mm,
  1818. unsigned long flags, struct file *file, long pages)
  1819. {
  1820. mm->total_vm += pages;
  1821. }
  1822. #endif /* CONFIG_PROC_FS */
  1823. #ifdef CONFIG_DEBUG_PAGEALLOC
  1824. extern bool _debug_pagealloc_enabled;
  1825. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1826. static inline bool debug_pagealloc_enabled(void)
  1827. {
  1828. return _debug_pagealloc_enabled;
  1829. }
  1830. static inline void
  1831. kernel_map_pages(struct page *page, int numpages, int enable)
  1832. {
  1833. if (!debug_pagealloc_enabled())
  1834. return;
  1835. __kernel_map_pages(page, numpages, enable);
  1836. }
  1837. #ifdef CONFIG_HIBERNATION
  1838. extern bool kernel_page_present(struct page *page);
  1839. #endif /* CONFIG_HIBERNATION */
  1840. #else
  1841. static inline void
  1842. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1843. #ifdef CONFIG_HIBERNATION
  1844. static inline bool kernel_page_present(struct page *page) { return true; }
  1845. #endif /* CONFIG_HIBERNATION */
  1846. #endif
  1847. #ifdef __HAVE_ARCH_GATE_AREA
  1848. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1849. extern int in_gate_area_no_mm(unsigned long addr);
  1850. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1851. #else
  1852. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1853. {
  1854. return NULL;
  1855. }
  1856. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1857. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1858. {
  1859. return 0;
  1860. }
  1861. #endif /* __HAVE_ARCH_GATE_AREA */
  1862. #ifdef CONFIG_SYSCTL
  1863. extern int sysctl_drop_caches;
  1864. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1865. void __user *, size_t *, loff_t *);
  1866. #endif
  1867. void drop_slab(void);
  1868. void drop_slab_node(int nid);
  1869. #ifndef CONFIG_MMU
  1870. #define randomize_va_space 0
  1871. #else
  1872. extern int randomize_va_space;
  1873. #endif
  1874. const char * arch_vma_name(struct vm_area_struct *vma);
  1875. void print_vma_addr(char *prefix, unsigned long rip);
  1876. void sparse_mem_maps_populate_node(struct page **map_map,
  1877. unsigned long pnum_begin,
  1878. unsigned long pnum_end,
  1879. unsigned long map_count,
  1880. int nodeid);
  1881. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1882. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1883. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1884. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1885. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1886. void *vmemmap_alloc_block(unsigned long size, int node);
  1887. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1888. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1889. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1890. int node);
  1891. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1892. void vmemmap_populate_print_last(void);
  1893. #ifdef CONFIG_MEMORY_HOTPLUG
  1894. void vmemmap_free(unsigned long start, unsigned long end);
  1895. #endif
  1896. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1897. unsigned long size);
  1898. enum mf_flags {
  1899. MF_COUNT_INCREASED = 1 << 0,
  1900. MF_ACTION_REQUIRED = 1 << 1,
  1901. MF_MUST_KILL = 1 << 2,
  1902. MF_SOFT_OFFLINE = 1 << 3,
  1903. };
  1904. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1905. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1906. extern int unpoison_memory(unsigned long pfn);
  1907. extern int sysctl_memory_failure_early_kill;
  1908. extern int sysctl_memory_failure_recovery;
  1909. extern void shake_page(struct page *p, int access);
  1910. extern atomic_long_t num_poisoned_pages;
  1911. extern int soft_offline_page(struct page *page, int flags);
  1912. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1913. extern void clear_huge_page(struct page *page,
  1914. unsigned long addr,
  1915. unsigned int pages_per_huge_page);
  1916. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1917. unsigned long addr, struct vm_area_struct *vma,
  1918. unsigned int pages_per_huge_page);
  1919. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1920. extern struct page_ext_operations debug_guardpage_ops;
  1921. extern struct page_ext_operations page_poisoning_ops;
  1922. #ifdef CONFIG_DEBUG_PAGEALLOC
  1923. extern unsigned int _debug_guardpage_minorder;
  1924. extern bool _debug_guardpage_enabled;
  1925. static inline unsigned int debug_guardpage_minorder(void)
  1926. {
  1927. return _debug_guardpage_minorder;
  1928. }
  1929. static inline bool debug_guardpage_enabled(void)
  1930. {
  1931. return _debug_guardpage_enabled;
  1932. }
  1933. static inline bool page_is_guard(struct page *page)
  1934. {
  1935. struct page_ext *page_ext;
  1936. if (!debug_guardpage_enabled())
  1937. return false;
  1938. page_ext = lookup_page_ext(page);
  1939. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  1940. }
  1941. #else
  1942. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1943. static inline bool debug_guardpage_enabled(void) { return false; }
  1944. static inline bool page_is_guard(struct page *page) { return false; }
  1945. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1946. #if MAX_NUMNODES > 1
  1947. void __init setup_nr_node_ids(void);
  1948. #else
  1949. static inline void setup_nr_node_ids(void) {}
  1950. #endif
  1951. #endif /* __KERNEL__ */
  1952. #endif /* _LINUX_MM_H */