pid.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_ns.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/sched/task.h>
  41. #include <linux/idr.h>
  42. struct pid init_struct_pid = INIT_STRUCT_PID;
  43. int pid_max = PID_MAX_DEFAULT;
  44. #define RESERVED_PIDS 300
  45. int pid_max_min = RESERVED_PIDS + 1;
  46. int pid_max_max = PID_MAX_LIMIT;
  47. /*
  48. * PID-map pages start out as NULL, they get allocated upon
  49. * first use and are never deallocated. This way a low pid_max
  50. * value does not cause lots of bitmaps to be allocated, but
  51. * the scheme scales to up to 4 million PIDs, runtime.
  52. */
  53. struct pid_namespace init_pid_ns = {
  54. .kref = KREF_INIT(2),
  55. .idr = IDR_INIT,
  56. .pid_allocated = PIDNS_ADDING,
  57. .level = 0,
  58. .child_reaper = &init_task,
  59. .user_ns = &init_user_ns,
  60. .ns.inum = PROC_PID_INIT_INO,
  61. #ifdef CONFIG_PID_NS
  62. .ns.ops = &pidns_operations,
  63. #endif
  64. };
  65. EXPORT_SYMBOL_GPL(init_pid_ns);
  66. /*
  67. * Note: disable interrupts while the pidmap_lock is held as an
  68. * interrupt might come in and do read_lock(&tasklist_lock).
  69. *
  70. * If we don't disable interrupts there is a nasty deadlock between
  71. * detach_pid()->free_pid() and another cpu that does
  72. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  73. * read_lock(&tasklist_lock);
  74. *
  75. * After we clean up the tasklist_lock and know there are no
  76. * irq handlers that take it we can leave the interrupts enabled.
  77. * For now it is easier to be safe than to prove it can't happen.
  78. */
  79. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  80. void put_pid(struct pid *pid)
  81. {
  82. struct pid_namespace *ns;
  83. if (!pid)
  84. return;
  85. ns = pid->numbers[pid->level].ns;
  86. if ((atomic_read(&pid->count) == 1) ||
  87. atomic_dec_and_test(&pid->count)) {
  88. kmem_cache_free(ns->pid_cachep, pid);
  89. put_pid_ns(ns);
  90. }
  91. }
  92. EXPORT_SYMBOL_GPL(put_pid);
  93. static void delayed_put_pid(struct rcu_head *rhp)
  94. {
  95. struct pid *pid = container_of(rhp, struct pid, rcu);
  96. put_pid(pid);
  97. }
  98. void free_pid(struct pid *pid)
  99. {
  100. /* We can be called with write_lock_irq(&tasklist_lock) held */
  101. int i;
  102. unsigned long flags;
  103. spin_lock_irqsave(&pidmap_lock, flags);
  104. for (i = 0; i <= pid->level; i++) {
  105. struct upid *upid = pid->numbers + i;
  106. struct pid_namespace *ns = upid->ns;
  107. switch (--ns->pid_allocated) {
  108. case 2:
  109. case 1:
  110. /* When all that is left in the pid namespace
  111. * is the reaper wake up the reaper. The reaper
  112. * may be sleeping in zap_pid_ns_processes().
  113. */
  114. wake_up_process(ns->child_reaper);
  115. break;
  116. case PIDNS_ADDING:
  117. /* Handle a fork failure of the first process */
  118. WARN_ON(ns->child_reaper);
  119. ns->pid_allocated = 0;
  120. /* fall through */
  121. case 0:
  122. schedule_work(&ns->proc_work);
  123. break;
  124. }
  125. idr_remove(&ns->idr, upid->nr);
  126. }
  127. spin_unlock_irqrestore(&pidmap_lock, flags);
  128. call_rcu(&pid->rcu, delayed_put_pid);
  129. }
  130. struct pid *alloc_pid(struct pid_namespace *ns)
  131. {
  132. struct pid *pid;
  133. enum pid_type type;
  134. int i, nr;
  135. struct pid_namespace *tmp;
  136. struct upid *upid;
  137. int retval = -ENOMEM;
  138. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  139. if (!pid)
  140. return ERR_PTR(retval);
  141. tmp = ns;
  142. pid->level = ns->level;
  143. for (i = ns->level; i >= 0; i--) {
  144. int pid_min = 1;
  145. idr_preload(GFP_KERNEL);
  146. spin_lock_irq(&pidmap_lock);
  147. /*
  148. * init really needs pid 1, but after reaching the maximum
  149. * wrap back to RESERVED_PIDS
  150. */
  151. if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
  152. pid_min = RESERVED_PIDS;
  153. /*
  154. * Store a null pointer so find_pid_ns does not find
  155. * a partially initialized PID (see below).
  156. */
  157. nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
  158. pid_max, GFP_ATOMIC);
  159. spin_unlock_irq(&pidmap_lock);
  160. idr_preload_end();
  161. if (nr < 0) {
  162. retval = nr;
  163. goto out_free;
  164. }
  165. pid->numbers[i].nr = nr;
  166. pid->numbers[i].ns = tmp;
  167. tmp = tmp->parent;
  168. }
  169. if (unlikely(is_child_reaper(pid))) {
  170. if (pid_ns_prepare_proc(ns)) {
  171. disable_pid_allocation(ns);
  172. goto out_free;
  173. }
  174. }
  175. get_pid_ns(ns);
  176. atomic_set(&pid->count, 1);
  177. for (type = 0; type < PIDTYPE_MAX; ++type)
  178. INIT_HLIST_HEAD(&pid->tasks[type]);
  179. upid = pid->numbers + ns->level;
  180. spin_lock_irq(&pidmap_lock);
  181. if (!(ns->pid_allocated & PIDNS_ADDING))
  182. goto out_unlock;
  183. for ( ; upid >= pid->numbers; --upid) {
  184. /* Make the PID visible to find_pid_ns. */
  185. idr_replace(&upid->ns->idr, pid, upid->nr);
  186. upid->ns->pid_allocated++;
  187. }
  188. spin_unlock_irq(&pidmap_lock);
  189. return pid;
  190. out_unlock:
  191. spin_unlock_irq(&pidmap_lock);
  192. put_pid_ns(ns);
  193. out_free:
  194. spin_lock_irq(&pidmap_lock);
  195. while (++i <= ns->level)
  196. idr_remove(&ns->idr, (pid->numbers + i)->nr);
  197. spin_unlock_irq(&pidmap_lock);
  198. kmem_cache_free(ns->pid_cachep, pid);
  199. return ERR_PTR(retval);
  200. }
  201. void disable_pid_allocation(struct pid_namespace *ns)
  202. {
  203. spin_lock_irq(&pidmap_lock);
  204. ns->pid_allocated &= ~PIDNS_ADDING;
  205. spin_unlock_irq(&pidmap_lock);
  206. }
  207. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  208. {
  209. return idr_find(&ns->idr, nr);
  210. }
  211. EXPORT_SYMBOL_GPL(find_pid_ns);
  212. struct pid *find_vpid(int nr)
  213. {
  214. return find_pid_ns(nr, task_active_pid_ns(current));
  215. }
  216. EXPORT_SYMBOL_GPL(find_vpid);
  217. /*
  218. * attach_pid() must be called with the tasklist_lock write-held.
  219. */
  220. void attach_pid(struct task_struct *task, enum pid_type type)
  221. {
  222. struct pid_link *link = &task->pids[type];
  223. hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
  224. }
  225. static void __change_pid(struct task_struct *task, enum pid_type type,
  226. struct pid *new)
  227. {
  228. struct pid_link *link;
  229. struct pid *pid;
  230. int tmp;
  231. link = &task->pids[type];
  232. pid = link->pid;
  233. hlist_del_rcu(&link->node);
  234. link->pid = new;
  235. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  236. if (!hlist_empty(&pid->tasks[tmp]))
  237. return;
  238. free_pid(pid);
  239. }
  240. void detach_pid(struct task_struct *task, enum pid_type type)
  241. {
  242. __change_pid(task, type, NULL);
  243. }
  244. void change_pid(struct task_struct *task, enum pid_type type,
  245. struct pid *pid)
  246. {
  247. __change_pid(task, type, pid);
  248. attach_pid(task, type);
  249. }
  250. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  251. void transfer_pid(struct task_struct *old, struct task_struct *new,
  252. enum pid_type type)
  253. {
  254. new->pids[type].pid = old->pids[type].pid;
  255. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  256. }
  257. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  258. {
  259. struct task_struct *result = NULL;
  260. if (pid) {
  261. struct hlist_node *first;
  262. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  263. lockdep_tasklist_lock_is_held());
  264. if (first)
  265. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  266. }
  267. return result;
  268. }
  269. EXPORT_SYMBOL(pid_task);
  270. /*
  271. * Must be called under rcu_read_lock().
  272. */
  273. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  274. {
  275. RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
  276. "find_task_by_pid_ns() needs rcu_read_lock() protection");
  277. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  278. }
  279. struct task_struct *find_task_by_vpid(pid_t vnr)
  280. {
  281. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  282. }
  283. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  284. {
  285. struct pid *pid;
  286. rcu_read_lock();
  287. if (type != PIDTYPE_PID)
  288. task = task->group_leader;
  289. pid = get_pid(rcu_dereference(task->pids[type].pid));
  290. rcu_read_unlock();
  291. return pid;
  292. }
  293. EXPORT_SYMBOL_GPL(get_task_pid);
  294. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  295. {
  296. struct task_struct *result;
  297. rcu_read_lock();
  298. result = pid_task(pid, type);
  299. if (result)
  300. get_task_struct(result);
  301. rcu_read_unlock();
  302. return result;
  303. }
  304. EXPORT_SYMBOL_GPL(get_pid_task);
  305. struct pid *find_get_pid(pid_t nr)
  306. {
  307. struct pid *pid;
  308. rcu_read_lock();
  309. pid = get_pid(find_vpid(nr));
  310. rcu_read_unlock();
  311. return pid;
  312. }
  313. EXPORT_SYMBOL_GPL(find_get_pid);
  314. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  315. {
  316. struct upid *upid;
  317. pid_t nr = 0;
  318. if (pid && ns->level <= pid->level) {
  319. upid = &pid->numbers[ns->level];
  320. if (upid->ns == ns)
  321. nr = upid->nr;
  322. }
  323. return nr;
  324. }
  325. EXPORT_SYMBOL_GPL(pid_nr_ns);
  326. pid_t pid_vnr(struct pid *pid)
  327. {
  328. return pid_nr_ns(pid, task_active_pid_ns(current));
  329. }
  330. EXPORT_SYMBOL_GPL(pid_vnr);
  331. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  332. struct pid_namespace *ns)
  333. {
  334. pid_t nr = 0;
  335. rcu_read_lock();
  336. if (!ns)
  337. ns = task_active_pid_ns(current);
  338. if (likely(pid_alive(task))) {
  339. if (type != PIDTYPE_PID) {
  340. if (type == __PIDTYPE_TGID)
  341. type = PIDTYPE_PID;
  342. task = task->group_leader;
  343. }
  344. nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
  345. }
  346. rcu_read_unlock();
  347. return nr;
  348. }
  349. EXPORT_SYMBOL(__task_pid_nr_ns);
  350. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  351. {
  352. return ns_of_pid(task_pid(tsk));
  353. }
  354. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  355. /*
  356. * Used by proc to find the first pid that is greater than or equal to nr.
  357. *
  358. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  359. */
  360. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  361. {
  362. return idr_get_next(&ns->idr, &nr);
  363. }
  364. void __init pid_idr_init(void)
  365. {
  366. /* Verify no one has done anything silly: */
  367. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
  368. /* bump default and minimum pid_max based on number of cpus */
  369. pid_max = min(pid_max_max, max_t(int, pid_max,
  370. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  371. pid_max_min = max_t(int, pid_max_min,
  372. PIDS_PER_CPU_MIN * num_possible_cpus());
  373. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  374. idr_init(&init_pid_ns.idr);
  375. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  376. SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
  377. }