flow_dissector.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
  1. #include <linux/kernel.h>
  2. #include <linux/skbuff.h>
  3. #include <linux/export.h>
  4. #include <linux/ip.h>
  5. #include <linux/ipv6.h>
  6. #include <linux/if_vlan.h>
  7. #include <net/dsa.h>
  8. #include <net/dst_metadata.h>
  9. #include <net/ip.h>
  10. #include <net/ipv6.h>
  11. #include <net/gre.h>
  12. #include <net/pptp.h>
  13. #include <net/tipc.h>
  14. #include <linux/igmp.h>
  15. #include <linux/icmp.h>
  16. #include <linux/sctp.h>
  17. #include <linux/dccp.h>
  18. #include <linux/if_tunnel.h>
  19. #include <linux/if_pppox.h>
  20. #include <linux/ppp_defs.h>
  21. #include <linux/stddef.h>
  22. #include <linux/if_ether.h>
  23. #include <linux/mpls.h>
  24. #include <linux/tcp.h>
  25. #include <net/flow_dissector.h>
  26. #include <scsi/fc/fc_fcoe.h>
  27. #include <uapi/linux/batadv_packet.h>
  28. static void dissector_set_key(struct flow_dissector *flow_dissector,
  29. enum flow_dissector_key_id key_id)
  30. {
  31. flow_dissector->used_keys |= (1 << key_id);
  32. }
  33. void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
  34. const struct flow_dissector_key *key,
  35. unsigned int key_count)
  36. {
  37. unsigned int i;
  38. memset(flow_dissector, 0, sizeof(*flow_dissector));
  39. for (i = 0; i < key_count; i++, key++) {
  40. /* User should make sure that every key target offset is withing
  41. * boundaries of unsigned short.
  42. */
  43. BUG_ON(key->offset > USHRT_MAX);
  44. BUG_ON(dissector_uses_key(flow_dissector,
  45. key->key_id));
  46. dissector_set_key(flow_dissector, key->key_id);
  47. flow_dissector->offset[key->key_id] = key->offset;
  48. }
  49. /* Ensure that the dissector always includes control and basic key.
  50. * That way we are able to avoid handling lack of these in fast path.
  51. */
  52. BUG_ON(!dissector_uses_key(flow_dissector,
  53. FLOW_DISSECTOR_KEY_CONTROL));
  54. BUG_ON(!dissector_uses_key(flow_dissector,
  55. FLOW_DISSECTOR_KEY_BASIC));
  56. }
  57. EXPORT_SYMBOL(skb_flow_dissector_init);
  58. /**
  59. * skb_flow_get_be16 - extract be16 entity
  60. * @skb: sk_buff to extract from
  61. * @poff: offset to extract at
  62. * @data: raw buffer pointer to the packet
  63. * @hlen: packet header length
  64. *
  65. * The function will try to retrieve a be32 entity at
  66. * offset poff
  67. */
  68. static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
  69. void *data, int hlen)
  70. {
  71. __be16 *u, _u;
  72. u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
  73. if (u)
  74. return *u;
  75. return 0;
  76. }
  77. /**
  78. * __skb_flow_get_ports - extract the upper layer ports and return them
  79. * @skb: sk_buff to extract the ports from
  80. * @thoff: transport header offset
  81. * @ip_proto: protocol for which to get port offset
  82. * @data: raw buffer pointer to the packet, if NULL use skb->data
  83. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  84. *
  85. * The function will try to retrieve the ports at offset thoff + poff where poff
  86. * is the protocol port offset returned from proto_ports_offset
  87. */
  88. __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
  89. void *data, int hlen)
  90. {
  91. int poff = proto_ports_offset(ip_proto);
  92. if (!data) {
  93. data = skb->data;
  94. hlen = skb_headlen(skb);
  95. }
  96. if (poff >= 0) {
  97. __be32 *ports, _ports;
  98. ports = __skb_header_pointer(skb, thoff + poff,
  99. sizeof(_ports), data, hlen, &_ports);
  100. if (ports)
  101. return *ports;
  102. }
  103. return 0;
  104. }
  105. EXPORT_SYMBOL(__skb_flow_get_ports);
  106. static void
  107. skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
  108. struct flow_dissector *flow_dissector,
  109. void *target_container)
  110. {
  111. struct flow_dissector_key_control *ctrl;
  112. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
  113. return;
  114. ctrl = skb_flow_dissector_target(flow_dissector,
  115. FLOW_DISSECTOR_KEY_ENC_CONTROL,
  116. target_container);
  117. ctrl->addr_type = type;
  118. }
  119. void
  120. skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
  121. struct flow_dissector *flow_dissector,
  122. void *target_container)
  123. {
  124. struct ip_tunnel_info *info;
  125. struct ip_tunnel_key *key;
  126. /* A quick check to see if there might be something to do. */
  127. if (!dissector_uses_key(flow_dissector,
  128. FLOW_DISSECTOR_KEY_ENC_KEYID) &&
  129. !dissector_uses_key(flow_dissector,
  130. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
  131. !dissector_uses_key(flow_dissector,
  132. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
  133. !dissector_uses_key(flow_dissector,
  134. FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
  135. !dissector_uses_key(flow_dissector,
  136. FLOW_DISSECTOR_KEY_ENC_PORTS) &&
  137. !dissector_uses_key(flow_dissector,
  138. FLOW_DISSECTOR_KEY_ENC_IP) &&
  139. !dissector_uses_key(flow_dissector,
  140. FLOW_DISSECTOR_KEY_ENC_OPTS))
  141. return;
  142. info = skb_tunnel_info(skb);
  143. if (!info)
  144. return;
  145. key = &info->key;
  146. switch (ip_tunnel_info_af(info)) {
  147. case AF_INET:
  148. skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  149. flow_dissector,
  150. target_container);
  151. if (dissector_uses_key(flow_dissector,
  152. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
  153. struct flow_dissector_key_ipv4_addrs *ipv4;
  154. ipv4 = skb_flow_dissector_target(flow_dissector,
  155. FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
  156. target_container);
  157. ipv4->src = key->u.ipv4.src;
  158. ipv4->dst = key->u.ipv4.dst;
  159. }
  160. break;
  161. case AF_INET6:
  162. skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  163. flow_dissector,
  164. target_container);
  165. if (dissector_uses_key(flow_dissector,
  166. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
  167. struct flow_dissector_key_ipv6_addrs *ipv6;
  168. ipv6 = skb_flow_dissector_target(flow_dissector,
  169. FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
  170. target_container);
  171. ipv6->src = key->u.ipv6.src;
  172. ipv6->dst = key->u.ipv6.dst;
  173. }
  174. break;
  175. }
  176. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
  177. struct flow_dissector_key_keyid *keyid;
  178. keyid = skb_flow_dissector_target(flow_dissector,
  179. FLOW_DISSECTOR_KEY_ENC_KEYID,
  180. target_container);
  181. keyid->keyid = tunnel_id_to_key32(key->tun_id);
  182. }
  183. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
  184. struct flow_dissector_key_ports *tp;
  185. tp = skb_flow_dissector_target(flow_dissector,
  186. FLOW_DISSECTOR_KEY_ENC_PORTS,
  187. target_container);
  188. tp->src = key->tp_src;
  189. tp->dst = key->tp_dst;
  190. }
  191. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
  192. struct flow_dissector_key_ip *ip;
  193. ip = skb_flow_dissector_target(flow_dissector,
  194. FLOW_DISSECTOR_KEY_ENC_IP,
  195. target_container);
  196. ip->tos = key->tos;
  197. ip->ttl = key->ttl;
  198. }
  199. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
  200. struct flow_dissector_key_enc_opts *enc_opt;
  201. enc_opt = skb_flow_dissector_target(flow_dissector,
  202. FLOW_DISSECTOR_KEY_ENC_OPTS,
  203. target_container);
  204. if (info->options_len) {
  205. enc_opt->len = info->options_len;
  206. ip_tunnel_info_opts_get(enc_opt->data, info);
  207. enc_opt->dst_opt_type = info->key.tun_flags &
  208. TUNNEL_OPTIONS_PRESENT;
  209. }
  210. }
  211. }
  212. EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
  213. static enum flow_dissect_ret
  214. __skb_flow_dissect_mpls(const struct sk_buff *skb,
  215. struct flow_dissector *flow_dissector,
  216. void *target_container, void *data, int nhoff, int hlen)
  217. {
  218. struct flow_dissector_key_keyid *key_keyid;
  219. struct mpls_label *hdr, _hdr[2];
  220. u32 entry, label;
  221. if (!dissector_uses_key(flow_dissector,
  222. FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
  223. !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
  224. return FLOW_DISSECT_RET_OUT_GOOD;
  225. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
  226. hlen, &_hdr);
  227. if (!hdr)
  228. return FLOW_DISSECT_RET_OUT_BAD;
  229. entry = ntohl(hdr[0].entry);
  230. label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
  231. if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
  232. struct flow_dissector_key_mpls *key_mpls;
  233. key_mpls = skb_flow_dissector_target(flow_dissector,
  234. FLOW_DISSECTOR_KEY_MPLS,
  235. target_container);
  236. key_mpls->mpls_label = label;
  237. key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
  238. >> MPLS_LS_TTL_SHIFT;
  239. key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
  240. >> MPLS_LS_TC_SHIFT;
  241. key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
  242. >> MPLS_LS_S_SHIFT;
  243. }
  244. if (label == MPLS_LABEL_ENTROPY) {
  245. key_keyid = skb_flow_dissector_target(flow_dissector,
  246. FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
  247. target_container);
  248. key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
  249. }
  250. return FLOW_DISSECT_RET_OUT_GOOD;
  251. }
  252. static enum flow_dissect_ret
  253. __skb_flow_dissect_arp(const struct sk_buff *skb,
  254. struct flow_dissector *flow_dissector,
  255. void *target_container, void *data, int nhoff, int hlen)
  256. {
  257. struct flow_dissector_key_arp *key_arp;
  258. struct {
  259. unsigned char ar_sha[ETH_ALEN];
  260. unsigned char ar_sip[4];
  261. unsigned char ar_tha[ETH_ALEN];
  262. unsigned char ar_tip[4];
  263. } *arp_eth, _arp_eth;
  264. const struct arphdr *arp;
  265. struct arphdr _arp;
  266. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
  267. return FLOW_DISSECT_RET_OUT_GOOD;
  268. arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
  269. hlen, &_arp);
  270. if (!arp)
  271. return FLOW_DISSECT_RET_OUT_BAD;
  272. if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
  273. arp->ar_pro != htons(ETH_P_IP) ||
  274. arp->ar_hln != ETH_ALEN ||
  275. arp->ar_pln != 4 ||
  276. (arp->ar_op != htons(ARPOP_REPLY) &&
  277. arp->ar_op != htons(ARPOP_REQUEST)))
  278. return FLOW_DISSECT_RET_OUT_BAD;
  279. arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
  280. sizeof(_arp_eth), data,
  281. hlen, &_arp_eth);
  282. if (!arp_eth)
  283. return FLOW_DISSECT_RET_OUT_BAD;
  284. key_arp = skb_flow_dissector_target(flow_dissector,
  285. FLOW_DISSECTOR_KEY_ARP,
  286. target_container);
  287. memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
  288. memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
  289. /* Only store the lower byte of the opcode;
  290. * this covers ARPOP_REPLY and ARPOP_REQUEST.
  291. */
  292. key_arp->op = ntohs(arp->ar_op) & 0xff;
  293. ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
  294. ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
  295. return FLOW_DISSECT_RET_OUT_GOOD;
  296. }
  297. static enum flow_dissect_ret
  298. __skb_flow_dissect_gre(const struct sk_buff *skb,
  299. struct flow_dissector_key_control *key_control,
  300. struct flow_dissector *flow_dissector,
  301. void *target_container, void *data,
  302. __be16 *p_proto, int *p_nhoff, int *p_hlen,
  303. unsigned int flags)
  304. {
  305. struct flow_dissector_key_keyid *key_keyid;
  306. struct gre_base_hdr *hdr, _hdr;
  307. int offset = 0;
  308. u16 gre_ver;
  309. hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
  310. data, *p_hlen, &_hdr);
  311. if (!hdr)
  312. return FLOW_DISSECT_RET_OUT_BAD;
  313. /* Only look inside GRE without routing */
  314. if (hdr->flags & GRE_ROUTING)
  315. return FLOW_DISSECT_RET_OUT_GOOD;
  316. /* Only look inside GRE for version 0 and 1 */
  317. gre_ver = ntohs(hdr->flags & GRE_VERSION);
  318. if (gre_ver > 1)
  319. return FLOW_DISSECT_RET_OUT_GOOD;
  320. *p_proto = hdr->protocol;
  321. if (gre_ver) {
  322. /* Version1 must be PPTP, and check the flags */
  323. if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
  324. return FLOW_DISSECT_RET_OUT_GOOD;
  325. }
  326. offset += sizeof(struct gre_base_hdr);
  327. if (hdr->flags & GRE_CSUM)
  328. offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
  329. sizeof(((struct gre_full_hdr *) 0)->reserved1);
  330. if (hdr->flags & GRE_KEY) {
  331. const __be32 *keyid;
  332. __be32 _keyid;
  333. keyid = __skb_header_pointer(skb, *p_nhoff + offset,
  334. sizeof(_keyid),
  335. data, *p_hlen, &_keyid);
  336. if (!keyid)
  337. return FLOW_DISSECT_RET_OUT_BAD;
  338. if (dissector_uses_key(flow_dissector,
  339. FLOW_DISSECTOR_KEY_GRE_KEYID)) {
  340. key_keyid = skb_flow_dissector_target(flow_dissector,
  341. FLOW_DISSECTOR_KEY_GRE_KEYID,
  342. target_container);
  343. if (gre_ver == 0)
  344. key_keyid->keyid = *keyid;
  345. else
  346. key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
  347. }
  348. offset += sizeof(((struct gre_full_hdr *) 0)->key);
  349. }
  350. if (hdr->flags & GRE_SEQ)
  351. offset += sizeof(((struct pptp_gre_header *) 0)->seq);
  352. if (gre_ver == 0) {
  353. if (*p_proto == htons(ETH_P_TEB)) {
  354. const struct ethhdr *eth;
  355. struct ethhdr _eth;
  356. eth = __skb_header_pointer(skb, *p_nhoff + offset,
  357. sizeof(_eth),
  358. data, *p_hlen, &_eth);
  359. if (!eth)
  360. return FLOW_DISSECT_RET_OUT_BAD;
  361. *p_proto = eth->h_proto;
  362. offset += sizeof(*eth);
  363. /* Cap headers that we access via pointers at the
  364. * end of the Ethernet header as our maximum alignment
  365. * at that point is only 2 bytes.
  366. */
  367. if (NET_IP_ALIGN)
  368. *p_hlen = *p_nhoff + offset;
  369. }
  370. } else { /* version 1, must be PPTP */
  371. u8 _ppp_hdr[PPP_HDRLEN];
  372. u8 *ppp_hdr;
  373. if (hdr->flags & GRE_ACK)
  374. offset += sizeof(((struct pptp_gre_header *) 0)->ack);
  375. ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
  376. sizeof(_ppp_hdr),
  377. data, *p_hlen, _ppp_hdr);
  378. if (!ppp_hdr)
  379. return FLOW_DISSECT_RET_OUT_BAD;
  380. switch (PPP_PROTOCOL(ppp_hdr)) {
  381. case PPP_IP:
  382. *p_proto = htons(ETH_P_IP);
  383. break;
  384. case PPP_IPV6:
  385. *p_proto = htons(ETH_P_IPV6);
  386. break;
  387. default:
  388. /* Could probably catch some more like MPLS */
  389. break;
  390. }
  391. offset += PPP_HDRLEN;
  392. }
  393. *p_nhoff += offset;
  394. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  395. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  396. return FLOW_DISSECT_RET_OUT_GOOD;
  397. return FLOW_DISSECT_RET_PROTO_AGAIN;
  398. }
  399. /**
  400. * __skb_flow_dissect_batadv() - dissect batman-adv header
  401. * @skb: sk_buff to with the batman-adv header
  402. * @key_control: flow dissectors control key
  403. * @data: raw buffer pointer to the packet, if NULL use skb->data
  404. * @p_proto: pointer used to update the protocol to process next
  405. * @p_nhoff: pointer used to update inner network header offset
  406. * @hlen: packet header length
  407. * @flags: any combination of FLOW_DISSECTOR_F_*
  408. *
  409. * ETH_P_BATMAN packets are tried to be dissected. Only
  410. * &struct batadv_unicast packets are actually processed because they contain an
  411. * inner ethernet header and are usually followed by actual network header. This
  412. * allows the flow dissector to continue processing the packet.
  413. *
  414. * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
  415. * FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
  416. * otherwise FLOW_DISSECT_RET_OUT_BAD
  417. */
  418. static enum flow_dissect_ret
  419. __skb_flow_dissect_batadv(const struct sk_buff *skb,
  420. struct flow_dissector_key_control *key_control,
  421. void *data, __be16 *p_proto, int *p_nhoff, int hlen,
  422. unsigned int flags)
  423. {
  424. struct {
  425. struct batadv_unicast_packet batadv_unicast;
  426. struct ethhdr eth;
  427. } *hdr, _hdr;
  428. hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
  429. &_hdr);
  430. if (!hdr)
  431. return FLOW_DISSECT_RET_OUT_BAD;
  432. if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
  433. return FLOW_DISSECT_RET_OUT_BAD;
  434. if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
  435. return FLOW_DISSECT_RET_OUT_BAD;
  436. *p_proto = hdr->eth.h_proto;
  437. *p_nhoff += sizeof(*hdr);
  438. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  439. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
  440. return FLOW_DISSECT_RET_OUT_GOOD;
  441. return FLOW_DISSECT_RET_PROTO_AGAIN;
  442. }
  443. static void
  444. __skb_flow_dissect_tcp(const struct sk_buff *skb,
  445. struct flow_dissector *flow_dissector,
  446. void *target_container, void *data, int thoff, int hlen)
  447. {
  448. struct flow_dissector_key_tcp *key_tcp;
  449. struct tcphdr *th, _th;
  450. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
  451. return;
  452. th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
  453. if (!th)
  454. return;
  455. if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
  456. return;
  457. key_tcp = skb_flow_dissector_target(flow_dissector,
  458. FLOW_DISSECTOR_KEY_TCP,
  459. target_container);
  460. key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
  461. }
  462. static void
  463. __skb_flow_dissect_ipv4(const struct sk_buff *skb,
  464. struct flow_dissector *flow_dissector,
  465. void *target_container, void *data, const struct iphdr *iph)
  466. {
  467. struct flow_dissector_key_ip *key_ip;
  468. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
  469. return;
  470. key_ip = skb_flow_dissector_target(flow_dissector,
  471. FLOW_DISSECTOR_KEY_IP,
  472. target_container);
  473. key_ip->tos = iph->tos;
  474. key_ip->ttl = iph->ttl;
  475. }
  476. static void
  477. __skb_flow_dissect_ipv6(const struct sk_buff *skb,
  478. struct flow_dissector *flow_dissector,
  479. void *target_container, void *data, const struct ipv6hdr *iph)
  480. {
  481. struct flow_dissector_key_ip *key_ip;
  482. if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
  483. return;
  484. key_ip = skb_flow_dissector_target(flow_dissector,
  485. FLOW_DISSECTOR_KEY_IP,
  486. target_container);
  487. key_ip->tos = ipv6_get_dsfield(iph);
  488. key_ip->ttl = iph->hop_limit;
  489. }
  490. /* Maximum number of protocol headers that can be parsed in
  491. * __skb_flow_dissect
  492. */
  493. #define MAX_FLOW_DISSECT_HDRS 15
  494. static bool skb_flow_dissect_allowed(int *num_hdrs)
  495. {
  496. ++*num_hdrs;
  497. return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
  498. }
  499. /**
  500. * __skb_flow_dissect - extract the flow_keys struct and return it
  501. * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
  502. * @flow_dissector: list of keys to dissect
  503. * @target_container: target structure to put dissected values into
  504. * @data: raw buffer pointer to the packet, if NULL use skb->data
  505. * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
  506. * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
  507. * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
  508. *
  509. * The function will try to retrieve individual keys into target specified
  510. * by flow_dissector from either the skbuff or a raw buffer specified by the
  511. * rest parameters.
  512. *
  513. * Caller must take care of zeroing target container memory.
  514. */
  515. bool __skb_flow_dissect(const struct sk_buff *skb,
  516. struct flow_dissector *flow_dissector,
  517. void *target_container,
  518. void *data, __be16 proto, int nhoff, int hlen,
  519. unsigned int flags)
  520. {
  521. struct flow_dissector_key_control *key_control;
  522. struct flow_dissector_key_basic *key_basic;
  523. struct flow_dissector_key_addrs *key_addrs;
  524. struct flow_dissector_key_ports *key_ports;
  525. struct flow_dissector_key_icmp *key_icmp;
  526. struct flow_dissector_key_tags *key_tags;
  527. struct flow_dissector_key_vlan *key_vlan;
  528. enum flow_dissect_ret fdret;
  529. enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
  530. int num_hdrs = 0;
  531. u8 ip_proto = 0;
  532. bool ret;
  533. if (!data) {
  534. data = skb->data;
  535. proto = skb_vlan_tag_present(skb) ?
  536. skb->vlan_proto : skb->protocol;
  537. nhoff = skb_network_offset(skb);
  538. hlen = skb_headlen(skb);
  539. #if IS_ENABLED(CONFIG_NET_DSA)
  540. if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
  541. const struct dsa_device_ops *ops;
  542. int offset;
  543. ops = skb->dev->dsa_ptr->tag_ops;
  544. if (ops->flow_dissect &&
  545. !ops->flow_dissect(skb, &proto, &offset)) {
  546. hlen -= offset;
  547. nhoff += offset;
  548. }
  549. }
  550. #endif
  551. }
  552. /* It is ensured by skb_flow_dissector_init() that control key will
  553. * be always present.
  554. */
  555. key_control = skb_flow_dissector_target(flow_dissector,
  556. FLOW_DISSECTOR_KEY_CONTROL,
  557. target_container);
  558. /* It is ensured by skb_flow_dissector_init() that basic key will
  559. * be always present.
  560. */
  561. key_basic = skb_flow_dissector_target(flow_dissector,
  562. FLOW_DISSECTOR_KEY_BASIC,
  563. target_container);
  564. if (dissector_uses_key(flow_dissector,
  565. FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
  566. struct ethhdr *eth = eth_hdr(skb);
  567. struct flow_dissector_key_eth_addrs *key_eth_addrs;
  568. key_eth_addrs = skb_flow_dissector_target(flow_dissector,
  569. FLOW_DISSECTOR_KEY_ETH_ADDRS,
  570. target_container);
  571. memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
  572. }
  573. proto_again:
  574. fdret = FLOW_DISSECT_RET_CONTINUE;
  575. switch (proto) {
  576. case htons(ETH_P_IP): {
  577. const struct iphdr *iph;
  578. struct iphdr _iph;
  579. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  580. if (!iph || iph->ihl < 5) {
  581. fdret = FLOW_DISSECT_RET_OUT_BAD;
  582. break;
  583. }
  584. nhoff += iph->ihl * 4;
  585. ip_proto = iph->protocol;
  586. if (dissector_uses_key(flow_dissector,
  587. FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
  588. key_addrs = skb_flow_dissector_target(flow_dissector,
  589. FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  590. target_container);
  591. memcpy(&key_addrs->v4addrs, &iph->saddr,
  592. sizeof(key_addrs->v4addrs));
  593. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
  594. }
  595. if (ip_is_fragment(iph)) {
  596. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  597. if (iph->frag_off & htons(IP_OFFSET)) {
  598. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  599. break;
  600. } else {
  601. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  602. if (!(flags &
  603. FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
  604. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  605. break;
  606. }
  607. }
  608. }
  609. __skb_flow_dissect_ipv4(skb, flow_dissector,
  610. target_container, data, iph);
  611. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
  612. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  613. break;
  614. }
  615. break;
  616. }
  617. case htons(ETH_P_IPV6): {
  618. const struct ipv6hdr *iph;
  619. struct ipv6hdr _iph;
  620. iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
  621. if (!iph) {
  622. fdret = FLOW_DISSECT_RET_OUT_BAD;
  623. break;
  624. }
  625. ip_proto = iph->nexthdr;
  626. nhoff += sizeof(struct ipv6hdr);
  627. if (dissector_uses_key(flow_dissector,
  628. FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
  629. key_addrs = skb_flow_dissector_target(flow_dissector,
  630. FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  631. target_container);
  632. memcpy(&key_addrs->v6addrs, &iph->saddr,
  633. sizeof(key_addrs->v6addrs));
  634. key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  635. }
  636. if ((dissector_uses_key(flow_dissector,
  637. FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
  638. (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
  639. ip6_flowlabel(iph)) {
  640. __be32 flow_label = ip6_flowlabel(iph);
  641. if (dissector_uses_key(flow_dissector,
  642. FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
  643. key_tags = skb_flow_dissector_target(flow_dissector,
  644. FLOW_DISSECTOR_KEY_FLOW_LABEL,
  645. target_container);
  646. key_tags->flow_label = ntohl(flow_label);
  647. }
  648. if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
  649. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  650. break;
  651. }
  652. }
  653. __skb_flow_dissect_ipv6(skb, flow_dissector,
  654. target_container, data, iph);
  655. if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
  656. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  657. break;
  658. }
  659. case htons(ETH_P_8021AD):
  660. case htons(ETH_P_8021Q): {
  661. const struct vlan_hdr *vlan = NULL;
  662. struct vlan_hdr _vlan;
  663. __be16 saved_vlan_tpid = proto;
  664. if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
  665. skb && skb_vlan_tag_present(skb)) {
  666. proto = skb->protocol;
  667. } else {
  668. vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
  669. data, hlen, &_vlan);
  670. if (!vlan) {
  671. fdret = FLOW_DISSECT_RET_OUT_BAD;
  672. break;
  673. }
  674. proto = vlan->h_vlan_encapsulated_proto;
  675. nhoff += sizeof(*vlan);
  676. }
  677. if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
  678. dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
  679. } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
  680. dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
  681. } else {
  682. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  683. break;
  684. }
  685. if (dissector_uses_key(flow_dissector, dissector_vlan)) {
  686. key_vlan = skb_flow_dissector_target(flow_dissector,
  687. dissector_vlan,
  688. target_container);
  689. if (!vlan) {
  690. key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
  691. key_vlan->vlan_priority =
  692. (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
  693. } else {
  694. key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
  695. VLAN_VID_MASK;
  696. key_vlan->vlan_priority =
  697. (ntohs(vlan->h_vlan_TCI) &
  698. VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
  699. }
  700. key_vlan->vlan_tpid = saved_vlan_tpid;
  701. }
  702. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  703. break;
  704. }
  705. case htons(ETH_P_PPP_SES): {
  706. struct {
  707. struct pppoe_hdr hdr;
  708. __be16 proto;
  709. } *hdr, _hdr;
  710. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
  711. if (!hdr) {
  712. fdret = FLOW_DISSECT_RET_OUT_BAD;
  713. break;
  714. }
  715. proto = hdr->proto;
  716. nhoff += PPPOE_SES_HLEN;
  717. switch (proto) {
  718. case htons(PPP_IP):
  719. proto = htons(ETH_P_IP);
  720. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  721. break;
  722. case htons(PPP_IPV6):
  723. proto = htons(ETH_P_IPV6);
  724. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  725. break;
  726. default:
  727. fdret = FLOW_DISSECT_RET_OUT_BAD;
  728. break;
  729. }
  730. break;
  731. }
  732. case htons(ETH_P_TIPC): {
  733. struct tipc_basic_hdr *hdr, _hdr;
  734. hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
  735. data, hlen, &_hdr);
  736. if (!hdr) {
  737. fdret = FLOW_DISSECT_RET_OUT_BAD;
  738. break;
  739. }
  740. if (dissector_uses_key(flow_dissector,
  741. FLOW_DISSECTOR_KEY_TIPC)) {
  742. key_addrs = skb_flow_dissector_target(flow_dissector,
  743. FLOW_DISSECTOR_KEY_TIPC,
  744. target_container);
  745. key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
  746. key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
  747. }
  748. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  749. break;
  750. }
  751. case htons(ETH_P_MPLS_UC):
  752. case htons(ETH_P_MPLS_MC):
  753. fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
  754. target_container, data,
  755. nhoff, hlen);
  756. break;
  757. case htons(ETH_P_FCOE):
  758. if ((hlen - nhoff) < FCOE_HEADER_LEN) {
  759. fdret = FLOW_DISSECT_RET_OUT_BAD;
  760. break;
  761. }
  762. nhoff += FCOE_HEADER_LEN;
  763. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  764. break;
  765. case htons(ETH_P_ARP):
  766. case htons(ETH_P_RARP):
  767. fdret = __skb_flow_dissect_arp(skb, flow_dissector,
  768. target_container, data,
  769. nhoff, hlen);
  770. break;
  771. case htons(ETH_P_BATMAN):
  772. fdret = __skb_flow_dissect_batadv(skb, key_control, data,
  773. &proto, &nhoff, hlen, flags);
  774. break;
  775. default:
  776. fdret = FLOW_DISSECT_RET_OUT_BAD;
  777. break;
  778. }
  779. /* Process result of proto processing */
  780. switch (fdret) {
  781. case FLOW_DISSECT_RET_OUT_GOOD:
  782. goto out_good;
  783. case FLOW_DISSECT_RET_PROTO_AGAIN:
  784. if (skb_flow_dissect_allowed(&num_hdrs))
  785. goto proto_again;
  786. goto out_good;
  787. case FLOW_DISSECT_RET_CONTINUE:
  788. case FLOW_DISSECT_RET_IPPROTO_AGAIN:
  789. break;
  790. case FLOW_DISSECT_RET_OUT_BAD:
  791. default:
  792. goto out_bad;
  793. }
  794. ip_proto_again:
  795. fdret = FLOW_DISSECT_RET_CONTINUE;
  796. switch (ip_proto) {
  797. case IPPROTO_GRE:
  798. fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
  799. target_container, data,
  800. &proto, &nhoff, &hlen, flags);
  801. break;
  802. case NEXTHDR_HOP:
  803. case NEXTHDR_ROUTING:
  804. case NEXTHDR_DEST: {
  805. u8 _opthdr[2], *opthdr;
  806. if (proto != htons(ETH_P_IPV6))
  807. break;
  808. opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
  809. data, hlen, &_opthdr);
  810. if (!opthdr) {
  811. fdret = FLOW_DISSECT_RET_OUT_BAD;
  812. break;
  813. }
  814. ip_proto = opthdr[0];
  815. nhoff += (opthdr[1] + 1) << 3;
  816. fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
  817. break;
  818. }
  819. case NEXTHDR_FRAGMENT: {
  820. struct frag_hdr _fh, *fh;
  821. if (proto != htons(ETH_P_IPV6))
  822. break;
  823. fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
  824. data, hlen, &_fh);
  825. if (!fh) {
  826. fdret = FLOW_DISSECT_RET_OUT_BAD;
  827. break;
  828. }
  829. key_control->flags |= FLOW_DIS_IS_FRAGMENT;
  830. nhoff += sizeof(_fh);
  831. ip_proto = fh->nexthdr;
  832. if (!(fh->frag_off & htons(IP6_OFFSET))) {
  833. key_control->flags |= FLOW_DIS_FIRST_FRAG;
  834. if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
  835. fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
  836. break;
  837. }
  838. }
  839. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  840. break;
  841. }
  842. case IPPROTO_IPIP:
  843. proto = htons(ETH_P_IP);
  844. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  845. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
  846. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  847. break;
  848. }
  849. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  850. break;
  851. case IPPROTO_IPV6:
  852. proto = htons(ETH_P_IPV6);
  853. key_control->flags |= FLOW_DIS_ENCAPSULATION;
  854. if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
  855. fdret = FLOW_DISSECT_RET_OUT_GOOD;
  856. break;
  857. }
  858. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  859. break;
  860. case IPPROTO_MPLS:
  861. proto = htons(ETH_P_MPLS_UC);
  862. fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
  863. break;
  864. case IPPROTO_TCP:
  865. __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
  866. data, nhoff, hlen);
  867. break;
  868. default:
  869. break;
  870. }
  871. if (dissector_uses_key(flow_dissector,
  872. FLOW_DISSECTOR_KEY_PORTS)) {
  873. key_ports = skb_flow_dissector_target(flow_dissector,
  874. FLOW_DISSECTOR_KEY_PORTS,
  875. target_container);
  876. key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
  877. data, hlen);
  878. }
  879. if (dissector_uses_key(flow_dissector,
  880. FLOW_DISSECTOR_KEY_ICMP)) {
  881. key_icmp = skb_flow_dissector_target(flow_dissector,
  882. FLOW_DISSECTOR_KEY_ICMP,
  883. target_container);
  884. key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
  885. }
  886. /* Process result of IP proto processing */
  887. switch (fdret) {
  888. case FLOW_DISSECT_RET_PROTO_AGAIN:
  889. if (skb_flow_dissect_allowed(&num_hdrs))
  890. goto proto_again;
  891. break;
  892. case FLOW_DISSECT_RET_IPPROTO_AGAIN:
  893. if (skb_flow_dissect_allowed(&num_hdrs))
  894. goto ip_proto_again;
  895. break;
  896. case FLOW_DISSECT_RET_OUT_GOOD:
  897. case FLOW_DISSECT_RET_CONTINUE:
  898. break;
  899. case FLOW_DISSECT_RET_OUT_BAD:
  900. default:
  901. goto out_bad;
  902. }
  903. out_good:
  904. ret = true;
  905. out:
  906. key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
  907. key_basic->n_proto = proto;
  908. key_basic->ip_proto = ip_proto;
  909. return ret;
  910. out_bad:
  911. ret = false;
  912. goto out;
  913. }
  914. EXPORT_SYMBOL(__skb_flow_dissect);
  915. static u32 hashrnd __read_mostly;
  916. static __always_inline void __flow_hash_secret_init(void)
  917. {
  918. net_get_random_once(&hashrnd, sizeof(hashrnd));
  919. }
  920. static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
  921. u32 keyval)
  922. {
  923. return jhash2(words, length, keyval);
  924. }
  925. static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
  926. {
  927. const void *p = flow;
  928. BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
  929. return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
  930. }
  931. static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
  932. {
  933. size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
  934. BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
  935. BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
  936. sizeof(*flow) - sizeof(flow->addrs));
  937. switch (flow->control.addr_type) {
  938. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  939. diff -= sizeof(flow->addrs.v4addrs);
  940. break;
  941. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  942. diff -= sizeof(flow->addrs.v6addrs);
  943. break;
  944. case FLOW_DISSECTOR_KEY_TIPC:
  945. diff -= sizeof(flow->addrs.tipckey);
  946. break;
  947. }
  948. return (sizeof(*flow) - diff) / sizeof(u32);
  949. }
  950. __be32 flow_get_u32_src(const struct flow_keys *flow)
  951. {
  952. switch (flow->control.addr_type) {
  953. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  954. return flow->addrs.v4addrs.src;
  955. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  956. return (__force __be32)ipv6_addr_hash(
  957. &flow->addrs.v6addrs.src);
  958. case FLOW_DISSECTOR_KEY_TIPC:
  959. return flow->addrs.tipckey.key;
  960. default:
  961. return 0;
  962. }
  963. }
  964. EXPORT_SYMBOL(flow_get_u32_src);
  965. __be32 flow_get_u32_dst(const struct flow_keys *flow)
  966. {
  967. switch (flow->control.addr_type) {
  968. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  969. return flow->addrs.v4addrs.dst;
  970. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  971. return (__force __be32)ipv6_addr_hash(
  972. &flow->addrs.v6addrs.dst);
  973. default:
  974. return 0;
  975. }
  976. }
  977. EXPORT_SYMBOL(flow_get_u32_dst);
  978. static inline void __flow_hash_consistentify(struct flow_keys *keys)
  979. {
  980. int addr_diff, i;
  981. switch (keys->control.addr_type) {
  982. case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
  983. addr_diff = (__force u32)keys->addrs.v4addrs.dst -
  984. (__force u32)keys->addrs.v4addrs.src;
  985. if ((addr_diff < 0) ||
  986. (addr_diff == 0 &&
  987. ((__force u16)keys->ports.dst <
  988. (__force u16)keys->ports.src))) {
  989. swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
  990. swap(keys->ports.src, keys->ports.dst);
  991. }
  992. break;
  993. case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
  994. addr_diff = memcmp(&keys->addrs.v6addrs.dst,
  995. &keys->addrs.v6addrs.src,
  996. sizeof(keys->addrs.v6addrs.dst));
  997. if ((addr_diff < 0) ||
  998. (addr_diff == 0 &&
  999. ((__force u16)keys->ports.dst <
  1000. (__force u16)keys->ports.src))) {
  1001. for (i = 0; i < 4; i++)
  1002. swap(keys->addrs.v6addrs.src.s6_addr32[i],
  1003. keys->addrs.v6addrs.dst.s6_addr32[i]);
  1004. swap(keys->ports.src, keys->ports.dst);
  1005. }
  1006. break;
  1007. }
  1008. }
  1009. static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
  1010. {
  1011. u32 hash;
  1012. __flow_hash_consistentify(keys);
  1013. hash = __flow_hash_words(flow_keys_hash_start(keys),
  1014. flow_keys_hash_length(keys), keyval);
  1015. if (!hash)
  1016. hash = 1;
  1017. return hash;
  1018. }
  1019. u32 flow_hash_from_keys(struct flow_keys *keys)
  1020. {
  1021. __flow_hash_secret_init();
  1022. return __flow_hash_from_keys(keys, hashrnd);
  1023. }
  1024. EXPORT_SYMBOL(flow_hash_from_keys);
  1025. static inline u32 ___skb_get_hash(const struct sk_buff *skb,
  1026. struct flow_keys *keys, u32 keyval)
  1027. {
  1028. skb_flow_dissect_flow_keys(skb, keys,
  1029. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  1030. return __flow_hash_from_keys(keys, keyval);
  1031. }
  1032. struct _flow_keys_digest_data {
  1033. __be16 n_proto;
  1034. u8 ip_proto;
  1035. u8 padding;
  1036. __be32 ports;
  1037. __be32 src;
  1038. __be32 dst;
  1039. };
  1040. void make_flow_keys_digest(struct flow_keys_digest *digest,
  1041. const struct flow_keys *flow)
  1042. {
  1043. struct _flow_keys_digest_data *data =
  1044. (struct _flow_keys_digest_data *)digest;
  1045. BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
  1046. memset(digest, 0, sizeof(*digest));
  1047. data->n_proto = flow->basic.n_proto;
  1048. data->ip_proto = flow->basic.ip_proto;
  1049. data->ports = flow->ports.ports;
  1050. data->src = flow->addrs.v4addrs.src;
  1051. data->dst = flow->addrs.v4addrs.dst;
  1052. }
  1053. EXPORT_SYMBOL(make_flow_keys_digest);
  1054. static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
  1055. u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
  1056. {
  1057. struct flow_keys keys;
  1058. __flow_hash_secret_init();
  1059. memset(&keys, 0, sizeof(keys));
  1060. __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
  1061. NULL, 0, 0, 0,
  1062. FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
  1063. return __flow_hash_from_keys(&keys, hashrnd);
  1064. }
  1065. EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
  1066. /**
  1067. * __skb_get_hash: calculate a flow hash
  1068. * @skb: sk_buff to calculate flow hash from
  1069. *
  1070. * This function calculates a flow hash based on src/dst addresses
  1071. * and src/dst port numbers. Sets hash in skb to non-zero hash value
  1072. * on success, zero indicates no valid hash. Also, sets l4_hash in skb
  1073. * if hash is a canonical 4-tuple hash over transport ports.
  1074. */
  1075. void __skb_get_hash(struct sk_buff *skb)
  1076. {
  1077. struct flow_keys keys;
  1078. u32 hash;
  1079. __flow_hash_secret_init();
  1080. hash = ___skb_get_hash(skb, &keys, hashrnd);
  1081. __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
  1082. }
  1083. EXPORT_SYMBOL(__skb_get_hash);
  1084. __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
  1085. {
  1086. struct flow_keys keys;
  1087. return ___skb_get_hash(skb, &keys, perturb);
  1088. }
  1089. EXPORT_SYMBOL(skb_get_hash_perturb);
  1090. u32 __skb_get_poff(const struct sk_buff *skb, void *data,
  1091. const struct flow_keys_basic *keys, int hlen)
  1092. {
  1093. u32 poff = keys->control.thoff;
  1094. /* skip L4 headers for fragments after the first */
  1095. if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
  1096. !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
  1097. return poff;
  1098. switch (keys->basic.ip_proto) {
  1099. case IPPROTO_TCP: {
  1100. /* access doff as u8 to avoid unaligned access */
  1101. const u8 *doff;
  1102. u8 _doff;
  1103. doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
  1104. data, hlen, &_doff);
  1105. if (!doff)
  1106. return poff;
  1107. poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
  1108. break;
  1109. }
  1110. case IPPROTO_UDP:
  1111. case IPPROTO_UDPLITE:
  1112. poff += sizeof(struct udphdr);
  1113. break;
  1114. /* For the rest, we do not really care about header
  1115. * extensions at this point for now.
  1116. */
  1117. case IPPROTO_ICMP:
  1118. poff += sizeof(struct icmphdr);
  1119. break;
  1120. case IPPROTO_ICMPV6:
  1121. poff += sizeof(struct icmp6hdr);
  1122. break;
  1123. case IPPROTO_IGMP:
  1124. poff += sizeof(struct igmphdr);
  1125. break;
  1126. case IPPROTO_DCCP:
  1127. poff += sizeof(struct dccp_hdr);
  1128. break;
  1129. case IPPROTO_SCTP:
  1130. poff += sizeof(struct sctphdr);
  1131. break;
  1132. }
  1133. return poff;
  1134. }
  1135. /**
  1136. * skb_get_poff - get the offset to the payload
  1137. * @skb: sk_buff to get the payload offset from
  1138. *
  1139. * The function will get the offset to the payload as far as it could
  1140. * be dissected. The main user is currently BPF, so that we can dynamically
  1141. * truncate packets without needing to push actual payload to the user
  1142. * space and can analyze headers only, instead.
  1143. */
  1144. u32 skb_get_poff(const struct sk_buff *skb)
  1145. {
  1146. struct flow_keys_basic keys;
  1147. if (!skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
  1148. return 0;
  1149. return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
  1150. }
  1151. __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
  1152. {
  1153. memset(keys, 0, sizeof(*keys));
  1154. memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
  1155. sizeof(keys->addrs.v6addrs.src));
  1156. memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
  1157. sizeof(keys->addrs.v6addrs.dst));
  1158. keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  1159. keys->ports.src = fl6->fl6_sport;
  1160. keys->ports.dst = fl6->fl6_dport;
  1161. keys->keyid.keyid = fl6->fl6_gre_key;
  1162. keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
  1163. keys->basic.ip_proto = fl6->flowi6_proto;
  1164. return flow_hash_from_keys(keys);
  1165. }
  1166. EXPORT_SYMBOL(__get_hash_from_flowi6);
  1167. static const struct flow_dissector_key flow_keys_dissector_keys[] = {
  1168. {
  1169. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1170. .offset = offsetof(struct flow_keys, control),
  1171. },
  1172. {
  1173. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1174. .offset = offsetof(struct flow_keys, basic),
  1175. },
  1176. {
  1177. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  1178. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  1179. },
  1180. {
  1181. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  1182. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  1183. },
  1184. {
  1185. .key_id = FLOW_DISSECTOR_KEY_TIPC,
  1186. .offset = offsetof(struct flow_keys, addrs.tipckey),
  1187. },
  1188. {
  1189. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  1190. .offset = offsetof(struct flow_keys, ports),
  1191. },
  1192. {
  1193. .key_id = FLOW_DISSECTOR_KEY_VLAN,
  1194. .offset = offsetof(struct flow_keys, vlan),
  1195. },
  1196. {
  1197. .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
  1198. .offset = offsetof(struct flow_keys, tags),
  1199. },
  1200. {
  1201. .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
  1202. .offset = offsetof(struct flow_keys, keyid),
  1203. },
  1204. };
  1205. static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
  1206. {
  1207. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1208. .offset = offsetof(struct flow_keys, control),
  1209. },
  1210. {
  1211. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1212. .offset = offsetof(struct flow_keys, basic),
  1213. },
  1214. {
  1215. .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
  1216. .offset = offsetof(struct flow_keys, addrs.v4addrs),
  1217. },
  1218. {
  1219. .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
  1220. .offset = offsetof(struct flow_keys, addrs.v6addrs),
  1221. },
  1222. {
  1223. .key_id = FLOW_DISSECTOR_KEY_PORTS,
  1224. .offset = offsetof(struct flow_keys, ports),
  1225. },
  1226. };
  1227. static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
  1228. {
  1229. .key_id = FLOW_DISSECTOR_KEY_CONTROL,
  1230. .offset = offsetof(struct flow_keys, control),
  1231. },
  1232. {
  1233. .key_id = FLOW_DISSECTOR_KEY_BASIC,
  1234. .offset = offsetof(struct flow_keys, basic),
  1235. },
  1236. };
  1237. struct flow_dissector flow_keys_dissector __read_mostly;
  1238. EXPORT_SYMBOL(flow_keys_dissector);
  1239. struct flow_dissector flow_keys_basic_dissector __read_mostly;
  1240. EXPORT_SYMBOL(flow_keys_basic_dissector);
  1241. static int __init init_default_flow_dissectors(void)
  1242. {
  1243. skb_flow_dissector_init(&flow_keys_dissector,
  1244. flow_keys_dissector_keys,
  1245. ARRAY_SIZE(flow_keys_dissector_keys));
  1246. skb_flow_dissector_init(&flow_keys_dissector_symmetric,
  1247. flow_keys_dissector_symmetric_keys,
  1248. ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
  1249. skb_flow_dissector_init(&flow_keys_basic_dissector,
  1250. flow_keys_basic_dissector_keys,
  1251. ARRAY_SIZE(flow_keys_basic_dissector_keys));
  1252. return 0;
  1253. }
  1254. core_initcall(init_default_flow_dissectors);