sdma_v4_0.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616
  1. /*
  2. * Copyright 2016 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/firmware.h>
  24. #include <drm/drmP.h>
  25. #include "amdgpu.h"
  26. #include "amdgpu_ucode.h"
  27. #include "amdgpu_trace.h"
  28. #include "vega10/soc15ip.h"
  29. #include "vega10/SDMA0/sdma0_4_0_offset.h"
  30. #include "vega10/SDMA0/sdma0_4_0_sh_mask.h"
  31. #include "vega10/SDMA1/sdma1_4_0_offset.h"
  32. #include "vega10/SDMA1/sdma1_4_0_sh_mask.h"
  33. #include "vega10/MMHUB/mmhub_1_0_offset.h"
  34. #include "vega10/MMHUB/mmhub_1_0_sh_mask.h"
  35. #include "vega10/HDP/hdp_4_0_offset.h"
  36. #include "soc15_common.h"
  37. #include "soc15.h"
  38. #include "vega10_sdma_pkt_open.h"
  39. MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
  40. MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
  41. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
  45. static const u32 golden_settings_sdma_4[] =
  46. {
  47. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  48. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), 0xff000ff0, 0x3f000100,
  49. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  50. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), 0xfffffff7, 0x00403000,
  51. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  52. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  53. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), 0x003ff006, 0x0003c000,
  54. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  55. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  56. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  57. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  58. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_UTCL1_PAGE), 0x000003ff, 0x000003c0,
  59. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CHICKEN_BITS), 0xfe931f07, 0x02831f07,
  60. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), 0xffffffff, 0x3f000100,
  61. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_IB_CNTL), 0x800f0100, 0x00000100,
  62. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  63. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL), 0x800f0100, 0x00000100,
  64. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  65. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), 0x003ff000, 0x0003c000,
  66. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL), 0x800f0100, 0x00000100,
  67. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  68. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL), 0x800f0100, 0x00000100,
  69. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL), 0x0000fff0, 0x00403000,
  70. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_UTCL1_PAGE), 0x000003ff, 0x000003c0
  71. };
  72. static const u32 golden_settings_sdma_vg10[] =
  73. {
  74. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  75. SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002,
  76. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG), 0x0018773f, 0x00104002,
  77. SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ), 0x0018773f, 0x00104002
  78. };
  79. static u32 sdma_v4_0_get_reg_offset(u32 instance, u32 internal_offset)
  80. {
  81. u32 base = 0;
  82. switch (instance) {
  83. case 0:
  84. base = SDMA0_BASE.instance[0].segment[0];
  85. break;
  86. case 1:
  87. base = SDMA1_BASE.instance[0].segment[0];
  88. break;
  89. default:
  90. BUG();
  91. break;
  92. }
  93. return base + internal_offset;
  94. }
  95. static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
  96. {
  97. switch (adev->asic_type) {
  98. case CHIP_VEGA10:
  99. amdgpu_program_register_sequence(adev,
  100. golden_settings_sdma_4,
  101. (const u32)ARRAY_SIZE(golden_settings_sdma_4));
  102. amdgpu_program_register_sequence(adev,
  103. golden_settings_sdma_vg10,
  104. (const u32)ARRAY_SIZE(golden_settings_sdma_vg10));
  105. break;
  106. default:
  107. break;
  108. }
  109. }
  110. static void sdma_v4_0_print_ucode_regs(void *handle)
  111. {
  112. int i;
  113. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  114. dev_info(adev->dev, "VEGA10 SDMA ucode registers\n");
  115. for (i = 0; i < adev->sdma.num_instances; i++) {
  116. dev_info(adev->dev, " SDMA%d_UCODE_ADDR=0x%08X\n",
  117. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR)));
  118. dev_info(adev->dev, " SDMA%d_UCODE_CHECKSUM=0x%08X\n",
  119. i, RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_CHECKSUM)));
  120. }
  121. }
  122. /**
  123. * sdma_v4_0_init_microcode - load ucode images from disk
  124. *
  125. * @adev: amdgpu_device pointer
  126. *
  127. * Use the firmware interface to load the ucode images into
  128. * the driver (not loaded into hw).
  129. * Returns 0 on success, error on failure.
  130. */
  131. // emulation only, won't work on real chip
  132. // vega10 real chip need to use PSP to load firmware
  133. static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
  134. {
  135. const char *chip_name;
  136. char fw_name[30];
  137. int err = 0, i;
  138. struct amdgpu_firmware_info *info = NULL;
  139. const struct common_firmware_header *header = NULL;
  140. const struct sdma_firmware_header_v1_0 *hdr;
  141. DRM_DEBUG("\n");
  142. switch (adev->asic_type) {
  143. case CHIP_VEGA10:
  144. chip_name = "vega10";
  145. break;
  146. default: BUG();
  147. }
  148. for (i = 0; i < adev->sdma.num_instances; i++) {
  149. if (i == 0)
  150. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  151. else
  152. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  153. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  154. if (err)
  155. goto out;
  156. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  157. if (err)
  158. goto out;
  159. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  160. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  161. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  162. if (adev->sdma.instance[i].feature_version >= 20)
  163. adev->sdma.instance[i].burst_nop = true;
  164. DRM_DEBUG("psp_load == '%s'\n",
  165. adev->firmware.load_type == AMDGPU_FW_LOAD_PSP? "true": "false");
  166. if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
  167. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  168. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  169. info->fw = adev->sdma.instance[i].fw;
  170. header = (const struct common_firmware_header *)info->fw->data;
  171. adev->firmware.fw_size +=
  172. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  173. }
  174. }
  175. out:
  176. if (err) {
  177. printk(KERN_ERR
  178. "sdma_v4_0: Failed to load firmware \"%s\"\n",
  179. fw_name);
  180. for (i = 0; i < adev->sdma.num_instances; i++) {
  181. release_firmware(adev->sdma.instance[i].fw);
  182. adev->sdma.instance[i].fw = NULL;
  183. }
  184. }
  185. return err;
  186. }
  187. /**
  188. * sdma_v4_0_ring_get_rptr - get the current read pointer
  189. *
  190. * @ring: amdgpu ring pointer
  191. *
  192. * Get the current rptr from the hardware (VEGA10+).
  193. */
  194. static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
  195. {
  196. u64* rptr;
  197. /* XXX check if swapping is necessary on BE */
  198. rptr =((u64*)&ring->adev->wb.wb[ring->rptr_offs]);
  199. DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
  200. return ((*rptr) >> 2);
  201. }
  202. /**
  203. * sdma_v4_0_ring_get_wptr - get the current write pointer
  204. *
  205. * @ring: amdgpu ring pointer
  206. *
  207. * Get the current wptr from the hardware (VEGA10+).
  208. */
  209. static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
  210. {
  211. struct amdgpu_device *adev = ring->adev;
  212. u64* wptr = NULL;
  213. uint64_t local_wptr=0;
  214. if (ring->use_doorbell) {
  215. /* XXX check if swapping is necessary on BE */
  216. wptr = ((u64*)&adev->wb.wb[ring->wptr_offs]);
  217. DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
  218. *wptr = (*wptr) >> 2;
  219. DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
  220. } else {
  221. u32 lowbit, highbit;
  222. int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
  223. wptr=&local_wptr;
  224. lowbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR)) >> 2;
  225. highbit = RREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
  226. DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
  227. me, highbit, lowbit);
  228. *wptr = highbit;
  229. *wptr = (*wptr) << 32;
  230. *wptr |= lowbit;
  231. }
  232. return *wptr;
  233. }
  234. /**
  235. * sdma_v4_0_ring_set_wptr - commit the write pointer
  236. *
  237. * @ring: amdgpu ring pointer
  238. *
  239. * Write the wptr back to the hardware (VEGA10+).
  240. */
  241. static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
  242. {
  243. struct amdgpu_device *adev = ring->adev;
  244. DRM_DEBUG("Setting write pointer\n");
  245. if (ring->use_doorbell) {
  246. DRM_DEBUG("Using doorbell -- "
  247. "wptr_offs == 0x%08x "
  248. "lower_32_bits(ring->wptr) << 2 == 0x%08x "
  249. "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
  250. ring->wptr_offs,
  251. lower_32_bits(ring->wptr << 2),
  252. upper_32_bits(ring->wptr << 2));
  253. /* XXX check if swapping is necessary on BE */
  254. adev->wb.wb[ring->wptr_offs] = lower_32_bits(ring->wptr << 2);
  255. adev->wb.wb[ring->wptr_offs + 1] = upper_32_bits(ring->wptr << 2);
  256. DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
  257. ring->doorbell_index, ring->wptr << 2);
  258. WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
  259. } else {
  260. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  261. DRM_DEBUG("Not using doorbell -- "
  262. "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
  263. "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x \n",
  264. me,
  265. me,
  266. lower_32_bits(ring->wptr << 2),
  267. upper_32_bits(ring->wptr << 2));
  268. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
  269. WREG32(sdma_v4_0_get_reg_offset(me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
  270. }
  271. }
  272. static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  273. {
  274. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  275. int i;
  276. for (i = 0; i < count; i++)
  277. if (sdma && sdma->burst_nop && (i == 0))
  278. amdgpu_ring_write(ring, ring->funcs->nop |
  279. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  280. else
  281. amdgpu_ring_write(ring, ring->funcs->nop);
  282. }
  283. /**
  284. * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
  285. *
  286. * @ring: amdgpu ring pointer
  287. * @ib: IB object to schedule
  288. *
  289. * Schedule an IB in the DMA ring (VEGA10).
  290. */
  291. static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
  292. struct amdgpu_ib *ib,
  293. unsigned vm_id, bool ctx_switch)
  294. {
  295. u32 vmid = vm_id & 0xf;
  296. /* IB packet must end on a 8 DW boundary */
  297. sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  298. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  299. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  300. /* base must be 32 byte aligned */
  301. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  302. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  303. amdgpu_ring_write(ring, ib->length_dw);
  304. amdgpu_ring_write(ring, 0);
  305. amdgpu_ring_write(ring, 0);
  306. }
  307. /**
  308. * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  309. *
  310. * @ring: amdgpu ring pointer
  311. *
  312. * Emit an hdp flush packet on the requested DMA ring.
  313. */
  314. static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  315. {
  316. u32 ref_and_mask = 0;
  317. struct nbio_hdp_flush_reg *nbio_hf_reg;
  318. if (ring->adev->asic_type == CHIP_VEGA10)
  319. nbio_hf_reg = &nbio_v6_1_hdp_flush_reg;
  320. if (ring == &ring->adev->sdma.instance[0].ring)
  321. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
  322. else
  323. ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
  324. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  325. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  326. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  327. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_done_offset << 2);
  328. amdgpu_ring_write(ring, nbio_hf_reg->hdp_flush_req_offset << 2);
  329. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  330. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  331. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  332. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  333. }
  334. static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  335. {
  336. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  337. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  338. amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_DEBUG0));
  339. amdgpu_ring_write(ring, 1);
  340. }
  341. /**
  342. * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
  343. *
  344. * @ring: amdgpu ring pointer
  345. * @fence: amdgpu fence object
  346. *
  347. * Add a DMA fence packet to the ring to write
  348. * the fence seq number and DMA trap packet to generate
  349. * an interrupt if needed (VEGA10).
  350. */
  351. static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  352. unsigned flags)
  353. {
  354. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  355. /* write the fence */
  356. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  357. /* zero in first two bits */
  358. BUG_ON(addr & 0x3);
  359. amdgpu_ring_write(ring, lower_32_bits(addr));
  360. amdgpu_ring_write(ring, upper_32_bits(addr));
  361. amdgpu_ring_write(ring, lower_32_bits(seq));
  362. /* optionally write high bits as well */
  363. if (write64bit) {
  364. addr += 4;
  365. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  366. /* zero in first two bits */
  367. BUG_ON(addr & 0x3);
  368. amdgpu_ring_write(ring, lower_32_bits(addr));
  369. amdgpu_ring_write(ring, upper_32_bits(addr));
  370. amdgpu_ring_write(ring, upper_32_bits(seq));
  371. }
  372. /* generate an interrupt */
  373. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  374. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  375. }
  376. /**
  377. * sdma_v4_0_gfx_stop - stop the gfx async dma engines
  378. *
  379. * @adev: amdgpu_device pointer
  380. *
  381. * Stop the gfx async dma ring buffers (VEGA10).
  382. */
  383. static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
  384. {
  385. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  386. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  387. u32 rb_cntl, ib_cntl;
  388. int i;
  389. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  390. (adev->mman.buffer_funcs_ring == sdma1))
  391. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  392. for (i = 0; i < adev->sdma.num_instances; i++) {
  393. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  394. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  395. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  396. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  397. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  398. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  399. }
  400. sdma0->ready = false;
  401. sdma1->ready = false;
  402. }
  403. /**
  404. * sdma_v4_0_rlc_stop - stop the compute async dma engines
  405. *
  406. * @adev: amdgpu_device pointer
  407. *
  408. * Stop the compute async dma queues (VEGA10).
  409. */
  410. static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
  411. {
  412. /* XXX todo */
  413. }
  414. /**
  415. * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
  416. *
  417. * @adev: amdgpu_device pointer
  418. * @enable: enable/disable the DMA MEs context switch.
  419. *
  420. * Halt or unhalt the async dma engines context switch (VEGA10).
  421. */
  422. static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  423. {
  424. u32 f32_cntl;
  425. int i;
  426. for (i = 0; i < adev->sdma.num_instances; i++) {
  427. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  428. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  429. AUTO_CTXSW_ENABLE, enable ? 1 : 0);
  430. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), f32_cntl);
  431. }
  432. }
  433. /**
  434. * sdma_v4_0_enable - stop the async dma engines
  435. *
  436. * @adev: amdgpu_device pointer
  437. * @enable: enable/disable the DMA MEs.
  438. *
  439. * Halt or unhalt the async dma engines (VEGA10).
  440. */
  441. static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
  442. {
  443. u32 f32_cntl;
  444. int i;
  445. if (enable == false) {
  446. sdma_v4_0_gfx_stop(adev);
  447. sdma_v4_0_rlc_stop(adev);
  448. }
  449. for (i = 0; i < adev->sdma.num_instances; i++) {
  450. f32_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  451. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
  452. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), f32_cntl);
  453. }
  454. }
  455. /**
  456. * sdma_v4_0_gfx_resume - setup and start the async dma engines
  457. *
  458. * @adev: amdgpu_device pointer
  459. *
  460. * Set up the gfx DMA ring buffers and enable them (VEGA10).
  461. * Returns 0 for success, error for failure.
  462. */
  463. static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
  464. {
  465. struct amdgpu_ring *ring;
  466. u32 rb_cntl, ib_cntl;
  467. u32 rb_bufsz;
  468. u32 wb_offset;
  469. u32 doorbell;
  470. u32 doorbell_offset;
  471. u32 temp;
  472. int i,r;
  473. for (i = 0; i < adev->sdma.num_instances; i++) {
  474. ring = &adev->sdma.instance[i].ring;
  475. wb_offset = (ring->rptr_offs * 4);
  476. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
  477. /* Set ring buffer size in dwords */
  478. rb_bufsz = order_base_2(ring->ring_size / 4);
  479. rb_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL));
  480. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  481. #ifdef __BIG_ENDIAN
  482. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  483. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  484. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  485. #endif
  486. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  487. /* Initialize the ring buffer's read and write pointers */
  488. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR), 0);
  489. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_HI), 0);
  490. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), 0);
  491. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), 0);
  492. /* set the wb address whether it's enabled or not */
  493. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
  494. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  495. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
  496. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  497. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  498. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
  499. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
  500. ring->wptr = 0;
  501. /* before programing wptr to a less value, need set minor_ptr_update first */
  502. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
  503. if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
  504. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
  505. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
  506. }
  507. doorbell = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL));
  508. doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET));
  509. if (ring->use_doorbell){
  510. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  511. doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
  512. OFFSET, ring->doorbell_index);
  513. } else {
  514. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  515. }
  516. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL), doorbell);
  517. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
  518. nbio_v6_1_sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index);
  519. if (amdgpu_sriov_vf(adev))
  520. sdma_v4_0_ring_set_wptr(ring);
  521. /* set minor_ptr_update to 0 after wptr programed */
  522. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
  523. /* set utc l1 enable flag always to 1 */
  524. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL));
  525. temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
  526. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_CNTL), temp);
  527. if (!amdgpu_sriov_vf(adev)) {
  528. /* unhalt engine */
  529. temp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL));
  530. temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
  531. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_F32_CNTL), temp);
  532. }
  533. /* enable DMA RB */
  534. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  535. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
  536. ib_cntl = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL));
  537. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  538. #ifdef __BIG_ENDIAN
  539. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  540. #endif
  541. /* enable DMA IBs */
  542. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
  543. ring->ready = true;
  544. if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
  545. sdma_v4_0_ctx_switch_enable(adev, true);
  546. sdma_v4_0_enable(adev, true);
  547. }
  548. r = amdgpu_ring_test_ring(ring);
  549. if (r) {
  550. ring->ready = false;
  551. return r;
  552. }
  553. if (adev->mman.buffer_funcs_ring == ring)
  554. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  555. }
  556. return 0;
  557. }
  558. /**
  559. * sdma_v4_0_rlc_resume - setup and start the async dma engines
  560. *
  561. * @adev: amdgpu_device pointer
  562. *
  563. * Set up the compute DMA queues and enable them (VEGA10).
  564. * Returns 0 for success, error for failure.
  565. */
  566. static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
  567. {
  568. /* XXX todo */
  569. return 0;
  570. }
  571. /**
  572. * sdma_v4_0_load_microcode - load the sDMA ME ucode
  573. *
  574. * @adev: amdgpu_device pointer
  575. *
  576. * Loads the sDMA0/1 ucode.
  577. * Returns 0 for success, -EINVAL if the ucode is not available.
  578. */
  579. static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
  580. {
  581. const struct sdma_firmware_header_v1_0 *hdr;
  582. const __le32 *fw_data;
  583. u32 fw_size;
  584. u32 digest_size = 0;
  585. int i, j;
  586. /* halt the MEs */
  587. sdma_v4_0_enable(adev, false);
  588. for (i = 0; i < adev->sdma.num_instances; i++) {
  589. uint16_t version_major;
  590. uint16_t version_minor;
  591. if (!adev->sdma.instance[i].fw)
  592. return -EINVAL;
  593. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  594. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  595. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  596. version_major = le16_to_cpu(hdr->header.header_version_major);
  597. version_minor = le16_to_cpu(hdr->header.header_version_minor);
  598. if (version_major == 1 && version_minor >= 1) {
  599. const struct sdma_firmware_header_v1_1 *sdma_v1_1_hdr = (const struct sdma_firmware_header_v1_1 *) hdr;
  600. digest_size = le32_to_cpu(sdma_v1_1_hdr->digest_size);
  601. }
  602. fw_size -= digest_size;
  603. fw_data = (const __le32 *)
  604. (adev->sdma.instance[i].fw->data +
  605. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  606. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), 0);
  607. for (j = 0; j < fw_size; j++)
  608. {
  609. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
  610. }
  611. WREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
  612. }
  613. sdma_v4_0_print_ucode_regs(adev);
  614. return 0;
  615. }
  616. /**
  617. * sdma_v4_0_start - setup and start the async dma engines
  618. *
  619. * @adev: amdgpu_device pointer
  620. *
  621. * Set up the DMA engines and enable them (VEGA10).
  622. * Returns 0 for success, error for failure.
  623. */
  624. static int sdma_v4_0_start(struct amdgpu_device *adev)
  625. {
  626. int r = 0;
  627. if (amdgpu_sriov_vf(adev)) {
  628. sdma_v4_0_ctx_switch_enable(adev, false);
  629. sdma_v4_0_enable(adev, false);
  630. /* set RB registers */
  631. r = sdma_v4_0_gfx_resume(adev);
  632. return r;
  633. }
  634. if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
  635. DRM_INFO("Loading via direct write\n");
  636. r = sdma_v4_0_load_microcode(adev);
  637. if (r)
  638. return r;
  639. }
  640. /* unhalt the MEs */
  641. sdma_v4_0_enable(adev, true);
  642. /* enable sdma ring preemption */
  643. sdma_v4_0_ctx_switch_enable(adev, true);
  644. /* start the gfx rings and rlc compute queues */
  645. r = sdma_v4_0_gfx_resume(adev);
  646. if (r)
  647. return r;
  648. r = sdma_v4_0_rlc_resume(adev);
  649. if (r)
  650. return r;
  651. return 0;
  652. }
  653. /**
  654. * sdma_v4_0_ring_test_ring - simple async dma engine test
  655. *
  656. * @ring: amdgpu_ring structure holding ring information
  657. *
  658. * Test the DMA engine by writing using it to write an
  659. * value to memory. (VEGA10).
  660. * Returns 0 for success, error for failure.
  661. */
  662. static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
  663. {
  664. struct amdgpu_device *adev = ring->adev;
  665. unsigned i;
  666. unsigned index;
  667. int r;
  668. u32 tmp;
  669. u64 gpu_addr;
  670. DRM_INFO("In Ring test func\n");
  671. r = amdgpu_wb_get(adev, &index);
  672. if (r) {
  673. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  674. return r;
  675. }
  676. gpu_addr = adev->wb.gpu_addr + (index * 4);
  677. tmp = 0xCAFEDEAD;
  678. adev->wb.wb[index] = cpu_to_le32(tmp);
  679. r = amdgpu_ring_alloc(ring, 5);
  680. if (r) {
  681. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  682. amdgpu_wb_free(adev, index);
  683. return r;
  684. }
  685. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  686. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  687. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  688. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  689. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
  690. amdgpu_ring_write(ring, 0xDEADBEEF);
  691. amdgpu_ring_commit(ring);
  692. for (i = 0; i < adev->usec_timeout; i++) {
  693. tmp = le32_to_cpu(adev->wb.wb[index]);
  694. if (tmp == 0xDEADBEEF) {
  695. break;
  696. }
  697. DRM_UDELAY(1);
  698. }
  699. if (i < adev->usec_timeout) {
  700. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  701. } else {
  702. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  703. ring->idx, tmp);
  704. r = -EINVAL;
  705. }
  706. amdgpu_wb_free(adev, index);
  707. return r;
  708. }
  709. /**
  710. * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
  711. *
  712. * @ring: amdgpu_ring structure holding ring information
  713. *
  714. * Test a simple IB in the DMA ring (VEGA10).
  715. * Returns 0 on success, error on failure.
  716. */
  717. static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  718. {
  719. struct amdgpu_device *adev = ring->adev;
  720. struct amdgpu_ib ib;
  721. struct dma_fence *f = NULL;
  722. unsigned index;
  723. long r;
  724. u32 tmp = 0;
  725. u64 gpu_addr;
  726. r = amdgpu_wb_get(adev, &index);
  727. if (r) {
  728. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  729. return r;
  730. }
  731. gpu_addr = adev->wb.gpu_addr + (index * 4);
  732. tmp = 0xCAFEDEAD;
  733. adev->wb.wb[index] = cpu_to_le32(tmp);
  734. memset(&ib, 0, sizeof(ib));
  735. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  736. if (r) {
  737. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  738. goto err0;
  739. }
  740. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  741. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  742. ib.ptr[1] = lower_32_bits(gpu_addr);
  743. ib.ptr[2] = upper_32_bits(gpu_addr);
  744. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
  745. ib.ptr[4] = 0xDEADBEEF;
  746. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  747. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  748. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  749. ib.length_dw = 8;
  750. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  751. if (r)
  752. goto err1;
  753. r = dma_fence_wait_timeout(f, false, timeout);
  754. if (r == 0) {
  755. DRM_ERROR("amdgpu: IB test timed out\n");
  756. r = -ETIMEDOUT;
  757. goto err1;
  758. } else if (r < 0) {
  759. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  760. goto err1;
  761. }
  762. tmp = le32_to_cpu(adev->wb.wb[index]);
  763. if (tmp == 0xDEADBEEF) {
  764. DRM_INFO("ib test on ring %d succeeded\n", ring->idx);
  765. r = 0;
  766. } else {
  767. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  768. r = -EINVAL;
  769. }
  770. err1:
  771. amdgpu_ib_free(adev, &ib, NULL);
  772. dma_fence_put(f);
  773. err0:
  774. amdgpu_wb_free(adev, index);
  775. return r;
  776. }
  777. /**
  778. * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
  779. *
  780. * @ib: indirect buffer to fill with commands
  781. * @pe: addr of the page entry
  782. * @src: src addr to copy from
  783. * @count: number of page entries to update
  784. *
  785. * Update PTEs by copying them from the GART using sDMA (VEGA10).
  786. */
  787. static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
  788. uint64_t pe, uint64_t src,
  789. unsigned count)
  790. {
  791. unsigned bytes = count * 8;
  792. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  793. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  794. ib->ptr[ib->length_dw++] = bytes - 1;
  795. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  796. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  797. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  798. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  799. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  800. }
  801. /**
  802. * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
  803. *
  804. * @ib: indirect buffer to fill with commands
  805. * @pe: addr of the page entry
  806. * @addr: dst addr to write into pe
  807. * @count: number of page entries to update
  808. * @incr: increase next addr by incr bytes
  809. * @flags: access flags
  810. *
  811. * Update PTEs by writing them manually using sDMA (VEGA10).
  812. */
  813. static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  814. uint64_t value, unsigned count,
  815. uint32_t incr)
  816. {
  817. unsigned ndw = count * 2;
  818. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  819. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  820. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  821. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  822. ib->ptr[ib->length_dw++] = ndw - 1;
  823. for (; ndw > 0; ndw -= 2) {
  824. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  825. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  826. value += incr;
  827. }
  828. }
  829. /**
  830. * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
  831. *
  832. * @ib: indirect buffer to fill with commands
  833. * @pe: addr of the page entry
  834. * @addr: dst addr to write into pe
  835. * @count: number of page entries to update
  836. * @incr: increase next addr by incr bytes
  837. * @flags: access flags
  838. *
  839. * Update the page tables using sDMA (VEGA10).
  840. */
  841. static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  842. uint64_t pe,
  843. uint64_t addr, unsigned count,
  844. uint32_t incr, uint64_t flags)
  845. {
  846. /* for physically contiguous pages (vram) */
  847. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
  848. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  849. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  850. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  851. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  852. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  853. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  854. ib->ptr[ib->length_dw++] = incr; /* increment size */
  855. ib->ptr[ib->length_dw++] = 0;
  856. ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
  857. }
  858. /**
  859. * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
  860. *
  861. * @ib: indirect buffer to fill with padding
  862. *
  863. */
  864. static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  865. {
  866. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  867. u32 pad_count;
  868. int i;
  869. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  870. for (i = 0; i < pad_count; i++)
  871. if (sdma && sdma->burst_nop && (i == 0))
  872. ib->ptr[ib->length_dw++] =
  873. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  874. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  875. else
  876. ib->ptr[ib->length_dw++] =
  877. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  878. }
  879. /**
  880. * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
  881. *
  882. * @ring: amdgpu_ring pointer
  883. *
  884. * Make sure all previous operations are completed (CIK).
  885. */
  886. static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  887. {
  888. uint32_t seq = ring->fence_drv.sync_seq;
  889. uint64_t addr = ring->fence_drv.gpu_addr;
  890. /* wait for idle */
  891. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  892. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  893. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  894. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  895. amdgpu_ring_write(ring, addr & 0xfffffffc);
  896. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  897. amdgpu_ring_write(ring, seq); /* reference */
  898. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  899. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  900. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  901. }
  902. /**
  903. * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
  904. *
  905. * @ring: amdgpu_ring pointer
  906. * @vm: amdgpu_vm pointer
  907. *
  908. * Update the page table base and flush the VM TLB
  909. * using sDMA (VEGA10).
  910. */
  911. static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  912. unsigned vm_id, uint64_t pd_addr)
  913. {
  914. unsigned eng = ring->idx;
  915. unsigned i;
  916. pd_addr = pd_addr | 0x1; /* valid bit */
  917. /* now only use physical base address of PDE and valid */
  918. BUG_ON(pd_addr & 0xFFFF00000000003EULL);
  919. for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
  920. struct amdgpu_vmhub *hub = &ring->adev->vmhub[i];
  921. uint32_t req = hub->get_invalidate_req(vm_id);
  922. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  923. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  924. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
  925. amdgpu_ring_write(ring, lower_32_bits(pd_addr));
  926. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  927. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  928. amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
  929. amdgpu_ring_write(ring, upper_32_bits(pd_addr));
  930. /* flush TLB */
  931. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  932. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  933. amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
  934. amdgpu_ring_write(ring, req);
  935. /* wait for flush */
  936. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  937. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  938. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
  939. amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
  940. amdgpu_ring_write(ring, 0);
  941. amdgpu_ring_write(ring, 1 << vm_id); /* reference */
  942. amdgpu_ring_write(ring, 1 << vm_id); /* mask */
  943. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  944. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
  945. }
  946. }
  947. static int sdma_v4_0_early_init(void *handle)
  948. {
  949. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  950. adev->sdma.num_instances = 2;
  951. sdma_v4_0_set_ring_funcs(adev);
  952. sdma_v4_0_set_buffer_funcs(adev);
  953. sdma_v4_0_set_vm_pte_funcs(adev);
  954. sdma_v4_0_set_irq_funcs(adev);
  955. return 0;
  956. }
  957. static int sdma_v4_0_sw_init(void *handle)
  958. {
  959. struct amdgpu_ring *ring;
  960. int r, i;
  961. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  962. /* SDMA trap event */
  963. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
  964. &adev->sdma.trap_irq);
  965. if (r)
  966. return r;
  967. /* SDMA trap event */
  968. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
  969. &adev->sdma.trap_irq);
  970. if (r)
  971. return r;
  972. r = sdma_v4_0_init_microcode(adev);
  973. if (r) {
  974. DRM_ERROR("Failed to load sdma firmware!\n");
  975. return r;
  976. }
  977. for (i = 0; i < adev->sdma.num_instances; i++) {
  978. ring = &adev->sdma.instance[i].ring;
  979. ring->ring_obj = NULL;
  980. ring->use_doorbell = true;
  981. DRM_INFO("use_doorbell being set to: [%s]\n",
  982. ring->use_doorbell?"true":"false");
  983. ring->doorbell_index = (i == 0) ?
  984. (AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
  985. : (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset
  986. sprintf(ring->name, "sdma%d", i);
  987. r = amdgpu_ring_init(adev, ring, 1024,
  988. &adev->sdma.trap_irq,
  989. (i == 0) ?
  990. AMDGPU_SDMA_IRQ_TRAP0 :
  991. AMDGPU_SDMA_IRQ_TRAP1);
  992. if (r)
  993. return r;
  994. }
  995. return r;
  996. }
  997. static int sdma_v4_0_sw_fini(void *handle)
  998. {
  999. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1000. int i;
  1001. for (i = 0; i < adev->sdma.num_instances; i++)
  1002. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1003. return 0;
  1004. }
  1005. static int sdma_v4_0_hw_init(void *handle)
  1006. {
  1007. int r;
  1008. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1009. sdma_v4_0_init_golden_registers(adev);
  1010. r = sdma_v4_0_start(adev);
  1011. if (r)
  1012. return r;
  1013. return r;
  1014. }
  1015. static int sdma_v4_0_hw_fini(void *handle)
  1016. {
  1017. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1018. if (amdgpu_sriov_vf(adev))
  1019. return 0;
  1020. sdma_v4_0_ctx_switch_enable(adev, false);
  1021. sdma_v4_0_enable(adev, false);
  1022. return 0;
  1023. }
  1024. static int sdma_v4_0_suspend(void *handle)
  1025. {
  1026. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1027. return sdma_v4_0_hw_fini(adev);
  1028. }
  1029. static int sdma_v4_0_resume(void *handle)
  1030. {
  1031. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1032. return sdma_v4_0_hw_init(adev);
  1033. }
  1034. static bool sdma_v4_0_is_idle(void *handle)
  1035. {
  1036. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1037. u32 i;
  1038. for (i = 0; i < adev->sdma.num_instances; i++) {
  1039. u32 tmp = RREG32(sdma_v4_0_get_reg_offset(i, mmSDMA0_STATUS_REG));
  1040. if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
  1041. return false;
  1042. }
  1043. return true;
  1044. }
  1045. static int sdma_v4_0_wait_for_idle(void *handle)
  1046. {
  1047. unsigned i;
  1048. u32 sdma0,sdma1;
  1049. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1050. for (i = 0; i < adev->usec_timeout; i++) {
  1051. sdma0 = RREG32(sdma_v4_0_get_reg_offset(0, mmSDMA0_STATUS_REG));
  1052. sdma1 = RREG32(sdma_v4_0_get_reg_offset(1, mmSDMA0_STATUS_REG));
  1053. if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
  1054. return 0;
  1055. udelay(1);
  1056. }
  1057. return -ETIMEDOUT;
  1058. }
  1059. static int sdma_v4_0_soft_reset(void *handle)
  1060. {
  1061. /* todo */
  1062. return 0;
  1063. }
  1064. static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
  1065. struct amdgpu_irq_src *source,
  1066. unsigned type,
  1067. enum amdgpu_interrupt_state state)
  1068. {
  1069. u32 sdma_cntl;
  1070. u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
  1071. sdma_v4_0_get_reg_offset(0, mmSDMA0_CNTL) :
  1072. sdma_v4_0_get_reg_offset(1, mmSDMA0_CNTL);
  1073. sdma_cntl = RREG32(reg_offset);
  1074. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
  1075. state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
  1076. WREG32(reg_offset, sdma_cntl);
  1077. return 0;
  1078. }
  1079. static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
  1080. struct amdgpu_irq_src *source,
  1081. struct amdgpu_iv_entry *entry)
  1082. {
  1083. DRM_DEBUG("IH: SDMA trap\n");
  1084. switch (entry->client_id) {
  1085. case AMDGPU_IH_CLIENTID_SDMA0:
  1086. switch (entry->ring_id) {
  1087. case 0:
  1088. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1089. break;
  1090. case 1:
  1091. /* XXX compute */
  1092. break;
  1093. case 2:
  1094. /* XXX compute */
  1095. break;
  1096. case 3:
  1097. /* XXX page queue*/
  1098. break;
  1099. }
  1100. break;
  1101. case AMDGPU_IH_CLIENTID_SDMA1:
  1102. switch (entry->ring_id) {
  1103. case 0:
  1104. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1105. break;
  1106. case 1:
  1107. /* XXX compute */
  1108. break;
  1109. case 2:
  1110. /* XXX compute */
  1111. break;
  1112. case 3:
  1113. /* XXX page queue*/
  1114. break;
  1115. }
  1116. break;
  1117. }
  1118. return 0;
  1119. }
  1120. static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1121. struct amdgpu_irq_src *source,
  1122. struct amdgpu_iv_entry *entry)
  1123. {
  1124. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1125. schedule_work(&adev->reset_work);
  1126. return 0;
  1127. }
  1128. static void sdma_v4_0_update_medium_grain_clock_gating(
  1129. struct amdgpu_device *adev,
  1130. bool enable)
  1131. {
  1132. uint32_t data, def;
  1133. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1134. /* enable sdma0 clock gating */
  1135. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1136. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1137. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1138. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1139. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1140. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1141. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1142. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1143. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1144. if (def != data)
  1145. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1146. if (adev->asic_type == CHIP_VEGA10) {
  1147. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1148. data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1149. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1150. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1151. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1152. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1153. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1154. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1155. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1156. if(def != data)
  1157. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1158. }
  1159. } else {
  1160. /* disable sdma0 clock gating */
  1161. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1162. data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1163. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1164. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1165. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1166. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1167. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1168. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1169. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1170. if (def != data)
  1171. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
  1172. if (adev->asic_type == CHIP_VEGA10) {
  1173. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
  1174. data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1175. SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1176. SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1177. SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1178. SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1179. SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1180. SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1181. SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1182. if (def != data)
  1183. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
  1184. }
  1185. }
  1186. }
  1187. static void sdma_v4_0_update_medium_grain_light_sleep(
  1188. struct amdgpu_device *adev,
  1189. bool enable)
  1190. {
  1191. uint32_t data, def;
  1192. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1193. /* 1-not override: enable sdma0 mem light sleep */
  1194. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1195. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1196. if (def != data)
  1197. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1198. /* 1-not override: enable sdma1 mem light sleep */
  1199. if (adev->asic_type == CHIP_VEGA10) {
  1200. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1201. data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1202. if (def != data)
  1203. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1204. }
  1205. } else {
  1206. /* 0-override:disable sdma0 mem light sleep */
  1207. def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1208. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1209. if (def != data)
  1210. WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
  1211. /* 0-override:disable sdma1 mem light sleep */
  1212. if (adev->asic_type == CHIP_VEGA10) {
  1213. def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
  1214. data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1215. if (def != data)
  1216. WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
  1217. }
  1218. }
  1219. }
  1220. static int sdma_v4_0_set_clockgating_state(void *handle,
  1221. enum amd_clockgating_state state)
  1222. {
  1223. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1224. if (amdgpu_sriov_vf(adev))
  1225. return 0;
  1226. switch (adev->asic_type) {
  1227. case CHIP_VEGA10:
  1228. sdma_v4_0_update_medium_grain_clock_gating(adev,
  1229. state == AMD_CG_STATE_GATE ? true : false);
  1230. sdma_v4_0_update_medium_grain_light_sleep(adev,
  1231. state == AMD_CG_STATE_GATE ? true : false);
  1232. break;
  1233. default:
  1234. break;
  1235. }
  1236. return 0;
  1237. }
  1238. static int sdma_v4_0_set_powergating_state(void *handle,
  1239. enum amd_powergating_state state)
  1240. {
  1241. return 0;
  1242. }
  1243. static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
  1244. {
  1245. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1246. int data;
  1247. if (amdgpu_sriov_vf(adev))
  1248. *flags = 0;
  1249. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1250. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
  1251. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
  1252. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1253. /* AMD_CG_SUPPORT_SDMA_LS */
  1254. data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
  1255. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1256. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1257. }
  1258. const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
  1259. .name = "sdma_v4_0",
  1260. .early_init = sdma_v4_0_early_init,
  1261. .late_init = NULL,
  1262. .sw_init = sdma_v4_0_sw_init,
  1263. .sw_fini = sdma_v4_0_sw_fini,
  1264. .hw_init = sdma_v4_0_hw_init,
  1265. .hw_fini = sdma_v4_0_hw_fini,
  1266. .suspend = sdma_v4_0_suspend,
  1267. .resume = sdma_v4_0_resume,
  1268. .is_idle = sdma_v4_0_is_idle,
  1269. .wait_for_idle = sdma_v4_0_wait_for_idle,
  1270. .soft_reset = sdma_v4_0_soft_reset,
  1271. .set_clockgating_state = sdma_v4_0_set_clockgating_state,
  1272. .set_powergating_state = sdma_v4_0_set_powergating_state,
  1273. .get_clockgating_state = sdma_v4_0_get_clockgating_state,
  1274. };
  1275. static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
  1276. .type = AMDGPU_RING_TYPE_SDMA,
  1277. .align_mask = 0xf,
  1278. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1279. .support_64bit_ptrs = true,
  1280. .get_rptr = sdma_v4_0_ring_get_rptr,
  1281. .get_wptr = sdma_v4_0_ring_get_wptr,
  1282. .set_wptr = sdma_v4_0_ring_set_wptr,
  1283. .emit_frame_size =
  1284. 6 + /* sdma_v4_0_ring_emit_hdp_flush */
  1285. 3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
  1286. 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
  1287. 36 + /* sdma_v4_0_ring_emit_vm_flush */
  1288. 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
  1289. .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
  1290. .emit_ib = sdma_v4_0_ring_emit_ib,
  1291. .emit_fence = sdma_v4_0_ring_emit_fence,
  1292. .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
  1293. .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
  1294. .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
  1295. .emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
  1296. .test_ring = sdma_v4_0_ring_test_ring,
  1297. .test_ib = sdma_v4_0_ring_test_ib,
  1298. .insert_nop = sdma_v4_0_ring_insert_nop,
  1299. .pad_ib = sdma_v4_0_ring_pad_ib,
  1300. };
  1301. static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
  1302. {
  1303. int i;
  1304. for (i = 0; i < adev->sdma.num_instances; i++)
  1305. adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
  1306. }
  1307. static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
  1308. .set = sdma_v4_0_set_trap_irq_state,
  1309. .process = sdma_v4_0_process_trap_irq,
  1310. };
  1311. static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
  1312. .process = sdma_v4_0_process_illegal_inst_irq,
  1313. };
  1314. static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
  1315. {
  1316. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1317. adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
  1318. adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
  1319. }
  1320. /**
  1321. * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
  1322. *
  1323. * @ring: amdgpu_ring structure holding ring information
  1324. * @src_offset: src GPU address
  1325. * @dst_offset: dst GPU address
  1326. * @byte_count: number of bytes to xfer
  1327. *
  1328. * Copy GPU buffers using the DMA engine (VEGA10).
  1329. * Used by the amdgpu ttm implementation to move pages if
  1330. * registered as the asic copy callback.
  1331. */
  1332. static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1333. uint64_t src_offset,
  1334. uint64_t dst_offset,
  1335. uint32_t byte_count)
  1336. {
  1337. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1338. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1339. ib->ptr[ib->length_dw++] = byte_count - 1;
  1340. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1341. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1342. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1343. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1344. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1345. }
  1346. /**
  1347. * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
  1348. *
  1349. * @ring: amdgpu_ring structure holding ring information
  1350. * @src_data: value to write to buffer
  1351. * @dst_offset: dst GPU address
  1352. * @byte_count: number of bytes to xfer
  1353. *
  1354. * Fill GPU buffers using the DMA engine (VEGA10).
  1355. */
  1356. static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1357. uint32_t src_data,
  1358. uint64_t dst_offset,
  1359. uint32_t byte_count)
  1360. {
  1361. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1362. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1363. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1364. ib->ptr[ib->length_dw++] = src_data;
  1365. ib->ptr[ib->length_dw++] = byte_count - 1;
  1366. }
  1367. static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
  1368. .copy_max_bytes = 0x400000,
  1369. .copy_num_dw = 7,
  1370. .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
  1371. .fill_max_bytes = 0x400000,
  1372. .fill_num_dw = 5,
  1373. .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
  1374. };
  1375. static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
  1376. {
  1377. if (adev->mman.buffer_funcs == NULL) {
  1378. adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
  1379. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1380. }
  1381. }
  1382. static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
  1383. .copy_pte = sdma_v4_0_vm_copy_pte,
  1384. .write_pte = sdma_v4_0_vm_write_pte,
  1385. .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
  1386. };
  1387. static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1388. {
  1389. unsigned i;
  1390. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1391. adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
  1392. for (i = 0; i < adev->sdma.num_instances; i++)
  1393. adev->vm_manager.vm_pte_rings[i] =
  1394. &adev->sdma.instance[i].ring;
  1395. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1396. }
  1397. }
  1398. const struct amdgpu_ip_block_version sdma_v4_0_ip_block =
  1399. {
  1400. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1401. .major = 4,
  1402. .minor = 0,
  1403. .rev = 0,
  1404. .funcs = &sdma_v4_0_ip_funcs,
  1405. };