memory-failure.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched/signal.h>
  44. #include <linux/sched/task.h>
  45. #include <linux/ksm.h>
  46. #include <linux/rmap.h>
  47. #include <linux/export.h>
  48. #include <linux/pagemap.h>
  49. #include <linux/swap.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/migrate.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include <linux/ratelimit.h>
  60. #include "internal.h"
  61. #include "ras/ras_event.h"
  62. int sysctl_memory_failure_early_kill __read_mostly = 0;
  63. int sysctl_memory_failure_recovery __read_mostly = 1;
  64. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  65. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  66. u32 hwpoison_filter_enable = 0;
  67. u32 hwpoison_filter_dev_major = ~0U;
  68. u32 hwpoison_filter_dev_minor = ~0U;
  69. u64 hwpoison_filter_flags_mask;
  70. u64 hwpoison_filter_flags_value;
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  75. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  76. static int hwpoison_filter_dev(struct page *p)
  77. {
  78. struct address_space *mapping;
  79. dev_t dev;
  80. if (hwpoison_filter_dev_major == ~0U &&
  81. hwpoison_filter_dev_minor == ~0U)
  82. return 0;
  83. /*
  84. * page_mapping() does not accept slab pages.
  85. */
  86. if (PageSlab(p))
  87. return -EINVAL;
  88. mapping = page_mapping(p);
  89. if (mapping == NULL || mapping->host == NULL)
  90. return -EINVAL;
  91. dev = mapping->host->i_sb->s_dev;
  92. if (hwpoison_filter_dev_major != ~0U &&
  93. hwpoison_filter_dev_major != MAJOR(dev))
  94. return -EINVAL;
  95. if (hwpoison_filter_dev_minor != ~0U &&
  96. hwpoison_filter_dev_minor != MINOR(dev))
  97. return -EINVAL;
  98. return 0;
  99. }
  100. static int hwpoison_filter_flags(struct page *p)
  101. {
  102. if (!hwpoison_filter_flags_mask)
  103. return 0;
  104. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  105. hwpoison_filter_flags_value)
  106. return 0;
  107. else
  108. return -EINVAL;
  109. }
  110. /*
  111. * This allows stress tests to limit test scope to a collection of tasks
  112. * by putting them under some memcg. This prevents killing unrelated/important
  113. * processes such as /sbin/init. Note that the target task may share clean
  114. * pages with init (eg. libc text), which is harmless. If the target task
  115. * share _dirty_ pages with another task B, the test scheme must make sure B
  116. * is also included in the memcg. At last, due to race conditions this filter
  117. * can only guarantee that the page either belongs to the memcg tasks, or is
  118. * a freed page.
  119. */
  120. #ifdef CONFIG_MEMCG
  121. u64 hwpoison_filter_memcg;
  122. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  123. static int hwpoison_filter_task(struct page *p)
  124. {
  125. if (!hwpoison_filter_memcg)
  126. return 0;
  127. if (page_cgroup_ino(p) != hwpoison_filter_memcg)
  128. return -EINVAL;
  129. return 0;
  130. }
  131. #else
  132. static int hwpoison_filter_task(struct page *p) { return 0; }
  133. #endif
  134. int hwpoison_filter(struct page *p)
  135. {
  136. if (!hwpoison_filter_enable)
  137. return 0;
  138. if (hwpoison_filter_dev(p))
  139. return -EINVAL;
  140. if (hwpoison_filter_flags(p))
  141. return -EINVAL;
  142. if (hwpoison_filter_task(p))
  143. return -EINVAL;
  144. return 0;
  145. }
  146. #else
  147. int hwpoison_filter(struct page *p)
  148. {
  149. return 0;
  150. }
  151. #endif
  152. EXPORT_SYMBOL_GPL(hwpoison_filter);
  153. /*
  154. * Send all the processes who have the page mapped a signal.
  155. * ``action optional'' if they are not immediately affected by the error
  156. * ``action required'' if error happened in current execution context
  157. */
  158. static int kill_proc(struct task_struct *t, unsigned long addr,
  159. unsigned long pfn, struct page *page, int flags)
  160. {
  161. struct siginfo si;
  162. int ret;
  163. pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
  164. pfn, t->comm, t->pid);
  165. si.si_signo = SIGBUS;
  166. si.si_errno = 0;
  167. si.si_addr = (void *)addr;
  168. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  169. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  170. si.si_code = BUS_MCEERR_AR;
  171. ret = force_sig_info(SIGBUS, &si, current);
  172. } else {
  173. /*
  174. * Don't use force here, it's convenient if the signal
  175. * can be temporarily blocked.
  176. * This could cause a loop when the user sets SIGBUS
  177. * to SIG_IGN, but hopefully no one will do that?
  178. */
  179. si.si_code = BUS_MCEERR_AO;
  180. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  181. }
  182. if (ret < 0)
  183. pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
  184. t->comm, t->pid, ret);
  185. return ret;
  186. }
  187. /*
  188. * When a unknown page type is encountered drain as many buffers as possible
  189. * in the hope to turn the page into a LRU or free page, which we can handle.
  190. */
  191. void shake_page(struct page *p, int access)
  192. {
  193. if (PageHuge(p))
  194. return;
  195. if (!PageSlab(p)) {
  196. lru_add_drain_all();
  197. if (PageLRU(p))
  198. return;
  199. drain_all_pages(page_zone(p));
  200. if (PageLRU(p) || is_free_buddy_page(p))
  201. return;
  202. }
  203. /*
  204. * Only call shrink_node_slabs here (which would also shrink
  205. * other caches) if access is not potentially fatal.
  206. */
  207. if (access)
  208. drop_slab_node(page_to_nid(p));
  209. }
  210. EXPORT_SYMBOL_GPL(shake_page);
  211. /*
  212. * Kill all processes that have a poisoned page mapped and then isolate
  213. * the page.
  214. *
  215. * General strategy:
  216. * Find all processes having the page mapped and kill them.
  217. * But we keep a page reference around so that the page is not
  218. * actually freed yet.
  219. * Then stash the page away
  220. *
  221. * There's no convenient way to get back to mapped processes
  222. * from the VMAs. So do a brute-force search over all
  223. * running processes.
  224. *
  225. * Remember that machine checks are not common (or rather
  226. * if they are common you have other problems), so this shouldn't
  227. * be a performance issue.
  228. *
  229. * Also there are some races possible while we get from the
  230. * error detection to actually handle it.
  231. */
  232. struct to_kill {
  233. struct list_head nd;
  234. struct task_struct *tsk;
  235. unsigned long addr;
  236. char addr_valid;
  237. };
  238. /*
  239. * Failure handling: if we can't find or can't kill a process there's
  240. * not much we can do. We just print a message and ignore otherwise.
  241. */
  242. /*
  243. * Schedule a process for later kill.
  244. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  245. * TBD would GFP_NOIO be enough?
  246. */
  247. static void add_to_kill(struct task_struct *tsk, struct page *p,
  248. struct vm_area_struct *vma,
  249. struct list_head *to_kill,
  250. struct to_kill **tkc)
  251. {
  252. struct to_kill *tk;
  253. if (*tkc) {
  254. tk = *tkc;
  255. *tkc = NULL;
  256. } else {
  257. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  258. if (!tk) {
  259. pr_err("Memory failure: Out of memory while machine check handling\n");
  260. return;
  261. }
  262. }
  263. tk->addr = page_address_in_vma(p, vma);
  264. tk->addr_valid = 1;
  265. /*
  266. * In theory we don't have to kill when the page was
  267. * munmaped. But it could be also a mremap. Since that's
  268. * likely very rare kill anyways just out of paranoia, but use
  269. * a SIGKILL because the error is not contained anymore.
  270. */
  271. if (tk->addr == -EFAULT) {
  272. pr_info("Memory failure: Unable to find user space address %lx in %s\n",
  273. page_to_pfn(p), tsk->comm);
  274. tk->addr_valid = 0;
  275. }
  276. get_task_struct(tsk);
  277. tk->tsk = tsk;
  278. list_add_tail(&tk->nd, to_kill);
  279. }
  280. /*
  281. * Kill the processes that have been collected earlier.
  282. *
  283. * Only do anything when DOIT is set, otherwise just free the list
  284. * (this is used for clean pages which do not need killing)
  285. * Also when FAIL is set do a force kill because something went
  286. * wrong earlier.
  287. */
  288. static void kill_procs(struct list_head *to_kill, int forcekill,
  289. bool fail, struct page *page, unsigned long pfn,
  290. int flags)
  291. {
  292. struct to_kill *tk, *next;
  293. list_for_each_entry_safe (tk, next, to_kill, nd) {
  294. if (forcekill) {
  295. /*
  296. * In case something went wrong with munmapping
  297. * make sure the process doesn't catch the
  298. * signal and then access the memory. Just kill it.
  299. */
  300. if (fail || tk->addr_valid == 0) {
  301. pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  302. pfn, tk->tsk->comm, tk->tsk->pid);
  303. force_sig(SIGKILL, tk->tsk);
  304. }
  305. /*
  306. * In theory the process could have mapped
  307. * something else on the address in-between. We could
  308. * check for that, but we need to tell the
  309. * process anyways.
  310. */
  311. else if (kill_proc(tk->tsk, tk->addr,
  312. pfn, page, flags) < 0)
  313. pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
  314. pfn, tk->tsk->comm, tk->tsk->pid);
  315. }
  316. put_task_struct(tk->tsk);
  317. kfree(tk);
  318. }
  319. }
  320. /*
  321. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  322. * on behalf of the thread group. Return task_struct of the (first found)
  323. * dedicated thread if found, and return NULL otherwise.
  324. *
  325. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  326. * have to call rcu_read_lock/unlock() in this function.
  327. */
  328. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  329. {
  330. struct task_struct *t;
  331. for_each_thread(tsk, t)
  332. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  333. return t;
  334. return NULL;
  335. }
  336. /*
  337. * Determine whether a given process is "early kill" process which expects
  338. * to be signaled when some page under the process is hwpoisoned.
  339. * Return task_struct of the dedicated thread (main thread unless explicitly
  340. * specified) if the process is "early kill," and otherwise returns NULL.
  341. */
  342. static struct task_struct *task_early_kill(struct task_struct *tsk,
  343. int force_early)
  344. {
  345. struct task_struct *t;
  346. if (!tsk->mm)
  347. return NULL;
  348. if (force_early)
  349. return tsk;
  350. t = find_early_kill_thread(tsk);
  351. if (t)
  352. return t;
  353. if (sysctl_memory_failure_early_kill)
  354. return tsk;
  355. return NULL;
  356. }
  357. /*
  358. * Collect processes when the error hit an anonymous page.
  359. */
  360. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  361. struct to_kill **tkc, int force_early)
  362. {
  363. struct vm_area_struct *vma;
  364. struct task_struct *tsk;
  365. struct anon_vma *av;
  366. pgoff_t pgoff;
  367. av = page_lock_anon_vma_read(page);
  368. if (av == NULL) /* Not actually mapped anymore */
  369. return;
  370. pgoff = page_to_pgoff(page);
  371. read_lock(&tasklist_lock);
  372. for_each_process (tsk) {
  373. struct anon_vma_chain *vmac;
  374. struct task_struct *t = task_early_kill(tsk, force_early);
  375. if (!t)
  376. continue;
  377. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  378. pgoff, pgoff) {
  379. vma = vmac->vma;
  380. if (!page_mapped_in_vma(page, vma))
  381. continue;
  382. if (vma->vm_mm == t->mm)
  383. add_to_kill(t, page, vma, to_kill, tkc);
  384. }
  385. }
  386. read_unlock(&tasklist_lock);
  387. page_unlock_anon_vma_read(av);
  388. }
  389. /*
  390. * Collect processes when the error hit a file mapped page.
  391. */
  392. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  393. struct to_kill **tkc, int force_early)
  394. {
  395. struct vm_area_struct *vma;
  396. struct task_struct *tsk;
  397. struct address_space *mapping = page->mapping;
  398. i_mmap_lock_read(mapping);
  399. read_lock(&tasklist_lock);
  400. for_each_process(tsk) {
  401. pgoff_t pgoff = page_to_pgoff(page);
  402. struct task_struct *t = task_early_kill(tsk, force_early);
  403. if (!t)
  404. continue;
  405. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  406. pgoff) {
  407. /*
  408. * Send early kill signal to tasks where a vma covers
  409. * the page but the corrupted page is not necessarily
  410. * mapped it in its pte.
  411. * Assume applications who requested early kill want
  412. * to be informed of all such data corruptions.
  413. */
  414. if (vma->vm_mm == t->mm)
  415. add_to_kill(t, page, vma, to_kill, tkc);
  416. }
  417. }
  418. read_unlock(&tasklist_lock);
  419. i_mmap_unlock_read(mapping);
  420. }
  421. /*
  422. * Collect the processes who have the corrupted page mapped to kill.
  423. * This is done in two steps for locking reasons.
  424. * First preallocate one tokill structure outside the spin locks,
  425. * so that we can kill at least one process reasonably reliable.
  426. */
  427. static void collect_procs(struct page *page, struct list_head *tokill,
  428. int force_early)
  429. {
  430. struct to_kill *tk;
  431. if (!page->mapping)
  432. return;
  433. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  434. if (!tk)
  435. return;
  436. if (PageAnon(page))
  437. collect_procs_anon(page, tokill, &tk, force_early);
  438. else
  439. collect_procs_file(page, tokill, &tk, force_early);
  440. kfree(tk);
  441. }
  442. static const char *action_name[] = {
  443. [MF_IGNORED] = "Ignored",
  444. [MF_FAILED] = "Failed",
  445. [MF_DELAYED] = "Delayed",
  446. [MF_RECOVERED] = "Recovered",
  447. };
  448. static const char * const action_page_types[] = {
  449. [MF_MSG_KERNEL] = "reserved kernel page",
  450. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  451. [MF_MSG_SLAB] = "kernel slab page",
  452. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  453. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  454. [MF_MSG_HUGE] = "huge page",
  455. [MF_MSG_FREE_HUGE] = "free huge page",
  456. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  457. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  458. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  459. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  460. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  461. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  462. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  463. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  464. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  465. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  466. [MF_MSG_BUDDY] = "free buddy page",
  467. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  468. [MF_MSG_UNKNOWN] = "unknown page",
  469. };
  470. /*
  471. * XXX: It is possible that a page is isolated from LRU cache,
  472. * and then kept in swap cache or failed to remove from page cache.
  473. * The page count will stop it from being freed by unpoison.
  474. * Stress tests should be aware of this memory leak problem.
  475. */
  476. static int delete_from_lru_cache(struct page *p)
  477. {
  478. if (!isolate_lru_page(p)) {
  479. /*
  480. * Clear sensible page flags, so that the buddy system won't
  481. * complain when the page is unpoison-and-freed.
  482. */
  483. ClearPageActive(p);
  484. ClearPageUnevictable(p);
  485. /*
  486. * Poisoned page might never drop its ref count to 0 so we have
  487. * to uncharge it manually from its memcg.
  488. */
  489. mem_cgroup_uncharge(p);
  490. /*
  491. * drop the page count elevated by isolate_lru_page()
  492. */
  493. put_page(p);
  494. return 0;
  495. }
  496. return -EIO;
  497. }
  498. static int truncate_error_page(struct page *p, unsigned long pfn,
  499. struct address_space *mapping)
  500. {
  501. int ret = MF_FAILED;
  502. if (mapping->a_ops->error_remove_page) {
  503. int err = mapping->a_ops->error_remove_page(mapping, p);
  504. if (err != 0) {
  505. pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
  506. pfn, err);
  507. } else if (page_has_private(p) &&
  508. !try_to_release_page(p, GFP_NOIO)) {
  509. pr_info("Memory failure: %#lx: failed to release buffers\n",
  510. pfn);
  511. } else {
  512. ret = MF_RECOVERED;
  513. }
  514. } else {
  515. /*
  516. * If the file system doesn't support it just invalidate
  517. * This fails on dirty or anything with private pages
  518. */
  519. if (invalidate_inode_page(p))
  520. ret = MF_RECOVERED;
  521. else
  522. pr_info("Memory failure: %#lx: Failed to invalidate\n",
  523. pfn);
  524. }
  525. return ret;
  526. }
  527. /*
  528. * Error hit kernel page.
  529. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  530. * could be more sophisticated.
  531. */
  532. static int me_kernel(struct page *p, unsigned long pfn)
  533. {
  534. return MF_IGNORED;
  535. }
  536. /*
  537. * Page in unknown state. Do nothing.
  538. */
  539. static int me_unknown(struct page *p, unsigned long pfn)
  540. {
  541. pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
  542. return MF_FAILED;
  543. }
  544. /*
  545. * Clean (or cleaned) page cache page.
  546. */
  547. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  548. {
  549. struct address_space *mapping;
  550. delete_from_lru_cache(p);
  551. /*
  552. * For anonymous pages we're done the only reference left
  553. * should be the one m_f() holds.
  554. */
  555. if (PageAnon(p))
  556. return MF_RECOVERED;
  557. /*
  558. * Now truncate the page in the page cache. This is really
  559. * more like a "temporary hole punch"
  560. * Don't do this for block devices when someone else
  561. * has a reference, because it could be file system metadata
  562. * and that's not safe to truncate.
  563. */
  564. mapping = page_mapping(p);
  565. if (!mapping) {
  566. /*
  567. * Page has been teared down in the meanwhile
  568. */
  569. return MF_FAILED;
  570. }
  571. /*
  572. * Truncation is a bit tricky. Enable it per file system for now.
  573. *
  574. * Open: to take i_mutex or not for this? Right now we don't.
  575. */
  576. return truncate_error_page(p, pfn, mapping);
  577. }
  578. /*
  579. * Dirty pagecache page
  580. * Issues: when the error hit a hole page the error is not properly
  581. * propagated.
  582. */
  583. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  584. {
  585. struct address_space *mapping = page_mapping(p);
  586. SetPageError(p);
  587. /* TBD: print more information about the file. */
  588. if (mapping) {
  589. /*
  590. * IO error will be reported by write(), fsync(), etc.
  591. * who check the mapping.
  592. * This way the application knows that something went
  593. * wrong with its dirty file data.
  594. *
  595. * There's one open issue:
  596. *
  597. * The EIO will be only reported on the next IO
  598. * operation and then cleared through the IO map.
  599. * Normally Linux has two mechanisms to pass IO error
  600. * first through the AS_EIO flag in the address space
  601. * and then through the PageError flag in the page.
  602. * Since we drop pages on memory failure handling the
  603. * only mechanism open to use is through AS_AIO.
  604. *
  605. * This has the disadvantage that it gets cleared on
  606. * the first operation that returns an error, while
  607. * the PageError bit is more sticky and only cleared
  608. * when the page is reread or dropped. If an
  609. * application assumes it will always get error on
  610. * fsync, but does other operations on the fd before
  611. * and the page is dropped between then the error
  612. * will not be properly reported.
  613. *
  614. * This can already happen even without hwpoisoned
  615. * pages: first on metadata IO errors (which only
  616. * report through AS_EIO) or when the page is dropped
  617. * at the wrong time.
  618. *
  619. * So right now we assume that the application DTRT on
  620. * the first EIO, but we're not worse than other parts
  621. * of the kernel.
  622. */
  623. mapping_set_error(mapping, -EIO);
  624. }
  625. return me_pagecache_clean(p, pfn);
  626. }
  627. /*
  628. * Clean and dirty swap cache.
  629. *
  630. * Dirty swap cache page is tricky to handle. The page could live both in page
  631. * cache and swap cache(ie. page is freshly swapped in). So it could be
  632. * referenced concurrently by 2 types of PTEs:
  633. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  634. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  635. * and then
  636. * - clear dirty bit to prevent IO
  637. * - remove from LRU
  638. * - but keep in the swap cache, so that when we return to it on
  639. * a later page fault, we know the application is accessing
  640. * corrupted data and shall be killed (we installed simple
  641. * interception code in do_swap_page to catch it).
  642. *
  643. * Clean swap cache pages can be directly isolated. A later page fault will
  644. * bring in the known good data from disk.
  645. */
  646. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  647. {
  648. ClearPageDirty(p);
  649. /* Trigger EIO in shmem: */
  650. ClearPageUptodate(p);
  651. if (!delete_from_lru_cache(p))
  652. return MF_DELAYED;
  653. else
  654. return MF_FAILED;
  655. }
  656. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  657. {
  658. delete_from_swap_cache(p);
  659. if (!delete_from_lru_cache(p))
  660. return MF_RECOVERED;
  661. else
  662. return MF_FAILED;
  663. }
  664. /*
  665. * Huge pages. Needs work.
  666. * Issues:
  667. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  668. * To narrow down kill region to one page, we need to break up pmd.
  669. */
  670. static int me_huge_page(struct page *p, unsigned long pfn)
  671. {
  672. int res = 0;
  673. struct page *hpage = compound_head(p);
  674. struct address_space *mapping;
  675. if (!PageHuge(hpage))
  676. return MF_DELAYED;
  677. mapping = page_mapping(hpage);
  678. if (mapping) {
  679. res = truncate_error_page(hpage, pfn, mapping);
  680. } else {
  681. unlock_page(hpage);
  682. /*
  683. * migration entry prevents later access on error anonymous
  684. * hugepage, so we can free and dissolve it into buddy to
  685. * save healthy subpages.
  686. */
  687. if (PageAnon(hpage))
  688. put_page(hpage);
  689. dissolve_free_huge_page(p);
  690. res = MF_RECOVERED;
  691. lock_page(hpage);
  692. }
  693. return res;
  694. }
  695. /*
  696. * Various page states we can handle.
  697. *
  698. * A page state is defined by its current page->flags bits.
  699. * The table matches them in order and calls the right handler.
  700. *
  701. * This is quite tricky because we can access page at any time
  702. * in its live cycle, so all accesses have to be extremely careful.
  703. *
  704. * This is not complete. More states could be added.
  705. * For any missing state don't attempt recovery.
  706. */
  707. #define dirty (1UL << PG_dirty)
  708. #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
  709. #define unevict (1UL << PG_unevictable)
  710. #define mlock (1UL << PG_mlocked)
  711. #define writeback (1UL << PG_writeback)
  712. #define lru (1UL << PG_lru)
  713. #define head (1UL << PG_head)
  714. #define slab (1UL << PG_slab)
  715. #define reserved (1UL << PG_reserved)
  716. static struct page_state {
  717. unsigned long mask;
  718. unsigned long res;
  719. enum mf_action_page_type type;
  720. int (*action)(struct page *p, unsigned long pfn);
  721. } error_states[] = {
  722. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  723. /*
  724. * free pages are specially detected outside this table:
  725. * PG_buddy pages only make a small fraction of all free pages.
  726. */
  727. /*
  728. * Could in theory check if slab page is free or if we can drop
  729. * currently unused objects without touching them. But just
  730. * treat it as standard kernel for now.
  731. */
  732. { slab, slab, MF_MSG_SLAB, me_kernel },
  733. { head, head, MF_MSG_HUGE, me_huge_page },
  734. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  735. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  736. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  737. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  738. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  739. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  740. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  741. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  742. /*
  743. * Catchall entry: must be at end.
  744. */
  745. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  746. };
  747. #undef dirty
  748. #undef sc
  749. #undef unevict
  750. #undef mlock
  751. #undef writeback
  752. #undef lru
  753. #undef head
  754. #undef slab
  755. #undef reserved
  756. /*
  757. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  758. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  759. */
  760. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  761. enum mf_result result)
  762. {
  763. trace_memory_failure_event(pfn, type, result);
  764. pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
  765. pfn, action_page_types[type], action_name[result]);
  766. }
  767. static int page_action(struct page_state *ps, struct page *p,
  768. unsigned long pfn)
  769. {
  770. int result;
  771. int count;
  772. result = ps->action(p, pfn);
  773. count = page_count(p) - 1;
  774. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  775. count--;
  776. if (count > 0) {
  777. pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
  778. pfn, action_page_types[ps->type], count);
  779. result = MF_FAILED;
  780. }
  781. action_result(pfn, ps->type, result);
  782. /* Could do more checks here if page looks ok */
  783. /*
  784. * Could adjust zone counters here to correct for the missing page.
  785. */
  786. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  787. }
  788. /**
  789. * get_hwpoison_page() - Get refcount for memory error handling:
  790. * @page: raw error page (hit by memory error)
  791. *
  792. * Return: return 0 if failed to grab the refcount, otherwise true (some
  793. * non-zero value.)
  794. */
  795. int get_hwpoison_page(struct page *page)
  796. {
  797. struct page *head = compound_head(page);
  798. if (!PageHuge(head) && PageTransHuge(head)) {
  799. /*
  800. * Non anonymous thp exists only in allocation/free time. We
  801. * can't handle such a case correctly, so let's give it up.
  802. * This should be better than triggering BUG_ON when kernel
  803. * tries to touch the "partially handled" page.
  804. */
  805. if (!PageAnon(head)) {
  806. pr_err("Memory failure: %#lx: non anonymous thp\n",
  807. page_to_pfn(page));
  808. return 0;
  809. }
  810. }
  811. if (get_page_unless_zero(head)) {
  812. if (head == compound_head(page))
  813. return 1;
  814. pr_info("Memory failure: %#lx cannot catch tail\n",
  815. page_to_pfn(page));
  816. put_page(head);
  817. }
  818. return 0;
  819. }
  820. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  821. /*
  822. * Do all that is necessary to remove user space mappings. Unmap
  823. * the pages and send SIGBUS to the processes if the data was dirty.
  824. */
  825. static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
  826. int flags, struct page **hpagep)
  827. {
  828. enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  829. struct address_space *mapping;
  830. LIST_HEAD(tokill);
  831. bool unmap_success;
  832. int kill = 1, forcekill;
  833. struct page *hpage = *hpagep;
  834. bool mlocked = PageMlocked(hpage);
  835. /*
  836. * Here we are interested only in user-mapped pages, so skip any
  837. * other types of pages.
  838. */
  839. if (PageReserved(p) || PageSlab(p))
  840. return true;
  841. if (!(PageLRU(hpage) || PageHuge(p)))
  842. return true;
  843. /*
  844. * This check implies we don't kill processes if their pages
  845. * are in the swap cache early. Those are always late kills.
  846. */
  847. if (!page_mapped(hpage))
  848. return true;
  849. if (PageKsm(p)) {
  850. pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
  851. return false;
  852. }
  853. if (PageSwapCache(p)) {
  854. pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
  855. pfn);
  856. ttu |= TTU_IGNORE_HWPOISON;
  857. }
  858. /*
  859. * Propagate the dirty bit from PTEs to struct page first, because we
  860. * need this to decide if we should kill or just drop the page.
  861. * XXX: the dirty test could be racy: set_page_dirty() may not always
  862. * be called inside page lock (it's recommended but not enforced).
  863. */
  864. mapping = page_mapping(hpage);
  865. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  866. mapping_cap_writeback_dirty(mapping)) {
  867. if (page_mkclean(hpage)) {
  868. SetPageDirty(hpage);
  869. } else {
  870. kill = 0;
  871. ttu |= TTU_IGNORE_HWPOISON;
  872. pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
  873. pfn);
  874. }
  875. }
  876. /*
  877. * First collect all the processes that have the page
  878. * mapped in dirty form. This has to be done before try_to_unmap,
  879. * because ttu takes the rmap data structures down.
  880. *
  881. * Error handling: We ignore errors here because
  882. * there's nothing that can be done.
  883. */
  884. if (kill)
  885. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  886. unmap_success = try_to_unmap(hpage, ttu);
  887. if (!unmap_success)
  888. pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
  889. pfn, page_mapcount(hpage));
  890. /*
  891. * try_to_unmap() might put mlocked page in lru cache, so call
  892. * shake_page() again to ensure that it's flushed.
  893. */
  894. if (mlocked)
  895. shake_page(hpage, 0);
  896. /*
  897. * Now that the dirty bit has been propagated to the
  898. * struct page and all unmaps done we can decide if
  899. * killing is needed or not. Only kill when the page
  900. * was dirty or the process is not restartable,
  901. * otherwise the tokill list is merely
  902. * freed. When there was a problem unmapping earlier
  903. * use a more force-full uncatchable kill to prevent
  904. * any accesses to the poisoned memory.
  905. */
  906. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  907. kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
  908. return unmap_success;
  909. }
  910. static int identify_page_state(unsigned long pfn, struct page *p,
  911. unsigned long page_flags)
  912. {
  913. struct page_state *ps;
  914. /*
  915. * The first check uses the current page flags which may not have any
  916. * relevant information. The second check with the saved page flags is
  917. * carried out only if the first check can't determine the page status.
  918. */
  919. for (ps = error_states;; ps++)
  920. if ((p->flags & ps->mask) == ps->res)
  921. break;
  922. page_flags |= (p->flags & (1UL << PG_dirty));
  923. if (!ps->mask)
  924. for (ps = error_states;; ps++)
  925. if ((page_flags & ps->mask) == ps->res)
  926. break;
  927. return page_action(ps, p, pfn);
  928. }
  929. static int memory_failure_hugetlb(unsigned long pfn, int flags)
  930. {
  931. struct page *p = pfn_to_page(pfn);
  932. struct page *head = compound_head(p);
  933. int res;
  934. unsigned long page_flags;
  935. if (TestSetPageHWPoison(head)) {
  936. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  937. pfn);
  938. return 0;
  939. }
  940. num_poisoned_pages_inc();
  941. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  942. /*
  943. * Check "filter hit" and "race with other subpage."
  944. */
  945. lock_page(head);
  946. if (PageHWPoison(head)) {
  947. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  948. || (p != head && TestSetPageHWPoison(head))) {
  949. num_poisoned_pages_dec();
  950. unlock_page(head);
  951. return 0;
  952. }
  953. }
  954. unlock_page(head);
  955. dissolve_free_huge_page(p);
  956. action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
  957. return 0;
  958. }
  959. lock_page(head);
  960. page_flags = head->flags;
  961. if (!PageHWPoison(head)) {
  962. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  963. num_poisoned_pages_dec();
  964. unlock_page(head);
  965. put_hwpoison_page(head);
  966. return 0;
  967. }
  968. if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
  969. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  970. res = -EBUSY;
  971. goto out;
  972. }
  973. res = identify_page_state(pfn, p, page_flags);
  974. out:
  975. unlock_page(head);
  976. return res;
  977. }
  978. /**
  979. * memory_failure - Handle memory failure of a page.
  980. * @pfn: Page Number of the corrupted page
  981. * @flags: fine tune action taken
  982. *
  983. * This function is called by the low level machine check code
  984. * of an architecture when it detects hardware memory corruption
  985. * of a page. It tries its best to recover, which includes
  986. * dropping pages, killing processes etc.
  987. *
  988. * The function is primarily of use for corruptions that
  989. * happen outside the current execution context (e.g. when
  990. * detected by a background scrubber)
  991. *
  992. * Must run in process context (e.g. a work queue) with interrupts
  993. * enabled and no spinlocks hold.
  994. */
  995. int memory_failure(unsigned long pfn, int flags)
  996. {
  997. struct page *p;
  998. struct page *hpage;
  999. struct page *orig_head;
  1000. int res;
  1001. unsigned long page_flags;
  1002. if (!sysctl_memory_failure_recovery)
  1003. panic("Memory failure on page %lx", pfn);
  1004. if (!pfn_valid(pfn)) {
  1005. pr_err("Memory failure: %#lx: memory outside kernel control\n",
  1006. pfn);
  1007. return -ENXIO;
  1008. }
  1009. p = pfn_to_page(pfn);
  1010. if (PageHuge(p))
  1011. return memory_failure_hugetlb(pfn, flags);
  1012. if (TestSetPageHWPoison(p)) {
  1013. pr_err("Memory failure: %#lx: already hardware poisoned\n",
  1014. pfn);
  1015. return 0;
  1016. }
  1017. arch_unmap_kpfn(pfn);
  1018. orig_head = hpage = compound_head(p);
  1019. num_poisoned_pages_inc();
  1020. /*
  1021. * We need/can do nothing about count=0 pages.
  1022. * 1) it's a free page, and therefore in safe hand:
  1023. * prep_new_page() will be the gate keeper.
  1024. * 2) it's part of a non-compound high order page.
  1025. * Implies some kernel user: cannot stop them from
  1026. * R/W the page; let's pray that the page has been
  1027. * used and will be freed some time later.
  1028. * In fact it's dangerous to directly bump up page count from 0,
  1029. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  1030. */
  1031. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  1032. if (is_free_buddy_page(p)) {
  1033. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1034. return 0;
  1035. } else {
  1036. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  1037. return -EBUSY;
  1038. }
  1039. }
  1040. if (PageTransHuge(hpage)) {
  1041. lock_page(p);
  1042. if (!PageAnon(p) || unlikely(split_huge_page(p))) {
  1043. unlock_page(p);
  1044. if (!PageAnon(p))
  1045. pr_err("Memory failure: %#lx: non anonymous thp\n",
  1046. pfn);
  1047. else
  1048. pr_err("Memory failure: %#lx: thp split failed\n",
  1049. pfn);
  1050. if (TestClearPageHWPoison(p))
  1051. num_poisoned_pages_dec();
  1052. put_hwpoison_page(p);
  1053. return -EBUSY;
  1054. }
  1055. unlock_page(p);
  1056. VM_BUG_ON_PAGE(!page_count(p), p);
  1057. hpage = compound_head(p);
  1058. }
  1059. /*
  1060. * We ignore non-LRU pages for good reasons.
  1061. * - PG_locked is only well defined for LRU pages and a few others
  1062. * - to avoid races with __SetPageLocked()
  1063. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1064. * The check (unnecessarily) ignores LRU pages being isolated and
  1065. * walked by the page reclaim code, however that's not a big loss.
  1066. */
  1067. shake_page(p, 0);
  1068. /* shake_page could have turned it free. */
  1069. if (!PageLRU(p) && is_free_buddy_page(p)) {
  1070. if (flags & MF_COUNT_INCREASED)
  1071. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1072. else
  1073. action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
  1074. return 0;
  1075. }
  1076. lock_page(p);
  1077. /*
  1078. * The page could have changed compound pages during the locking.
  1079. * If this happens just bail out.
  1080. */
  1081. if (PageCompound(p) && compound_head(p) != orig_head) {
  1082. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1083. res = -EBUSY;
  1084. goto out;
  1085. }
  1086. /*
  1087. * We use page flags to determine what action should be taken, but
  1088. * the flags can be modified by the error containment action. One
  1089. * example is an mlocked page, where PG_mlocked is cleared by
  1090. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1091. * correctly, we save a copy of the page flags at this time.
  1092. */
  1093. if (PageHuge(p))
  1094. page_flags = hpage->flags;
  1095. else
  1096. page_flags = p->flags;
  1097. /*
  1098. * unpoison always clear PG_hwpoison inside page lock
  1099. */
  1100. if (!PageHWPoison(p)) {
  1101. pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
  1102. num_poisoned_pages_dec();
  1103. unlock_page(p);
  1104. put_hwpoison_page(p);
  1105. return 0;
  1106. }
  1107. if (hwpoison_filter(p)) {
  1108. if (TestClearPageHWPoison(p))
  1109. num_poisoned_pages_dec();
  1110. unlock_page(p);
  1111. put_hwpoison_page(p);
  1112. return 0;
  1113. }
  1114. if (!PageTransTail(p) && !PageLRU(p))
  1115. goto identify_page_state;
  1116. /*
  1117. * It's very difficult to mess with pages currently under IO
  1118. * and in many cases impossible, so we just avoid it here.
  1119. */
  1120. wait_on_page_writeback(p);
  1121. /*
  1122. * Now take care of user space mappings.
  1123. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1124. *
  1125. * When the raw error page is thp tail page, hpage points to the raw
  1126. * page after thp split.
  1127. */
  1128. if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
  1129. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1130. res = -EBUSY;
  1131. goto out;
  1132. }
  1133. /*
  1134. * Torn down by someone else?
  1135. */
  1136. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1137. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1138. res = -EBUSY;
  1139. goto out;
  1140. }
  1141. identify_page_state:
  1142. res = identify_page_state(pfn, p, page_flags);
  1143. out:
  1144. unlock_page(p);
  1145. return res;
  1146. }
  1147. EXPORT_SYMBOL_GPL(memory_failure);
  1148. #define MEMORY_FAILURE_FIFO_ORDER 4
  1149. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1150. struct memory_failure_entry {
  1151. unsigned long pfn;
  1152. int flags;
  1153. };
  1154. struct memory_failure_cpu {
  1155. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1156. MEMORY_FAILURE_FIFO_SIZE);
  1157. spinlock_t lock;
  1158. struct work_struct work;
  1159. };
  1160. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1161. /**
  1162. * memory_failure_queue - Schedule handling memory failure of a page.
  1163. * @pfn: Page Number of the corrupted page
  1164. * @flags: Flags for memory failure handling
  1165. *
  1166. * This function is called by the low level hardware error handler
  1167. * when it detects hardware memory corruption of a page. It schedules
  1168. * the recovering of error page, including dropping pages, killing
  1169. * processes etc.
  1170. *
  1171. * The function is primarily of use for corruptions that
  1172. * happen outside the current execution context (e.g. when
  1173. * detected by a background scrubber)
  1174. *
  1175. * Can run in IRQ context.
  1176. */
  1177. void memory_failure_queue(unsigned long pfn, int flags)
  1178. {
  1179. struct memory_failure_cpu *mf_cpu;
  1180. unsigned long proc_flags;
  1181. struct memory_failure_entry entry = {
  1182. .pfn = pfn,
  1183. .flags = flags,
  1184. };
  1185. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1186. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1187. if (kfifo_put(&mf_cpu->fifo, entry))
  1188. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1189. else
  1190. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1191. pfn);
  1192. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1193. put_cpu_var(memory_failure_cpu);
  1194. }
  1195. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1196. static void memory_failure_work_func(struct work_struct *work)
  1197. {
  1198. struct memory_failure_cpu *mf_cpu;
  1199. struct memory_failure_entry entry = { 0, };
  1200. unsigned long proc_flags;
  1201. int gotten;
  1202. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1203. for (;;) {
  1204. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1205. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1206. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1207. if (!gotten)
  1208. break;
  1209. if (entry.flags & MF_SOFT_OFFLINE)
  1210. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1211. else
  1212. memory_failure(entry.pfn, entry.flags);
  1213. }
  1214. }
  1215. static int __init memory_failure_init(void)
  1216. {
  1217. struct memory_failure_cpu *mf_cpu;
  1218. int cpu;
  1219. for_each_possible_cpu(cpu) {
  1220. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1221. spin_lock_init(&mf_cpu->lock);
  1222. INIT_KFIFO(mf_cpu->fifo);
  1223. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1224. }
  1225. return 0;
  1226. }
  1227. core_initcall(memory_failure_init);
  1228. #define unpoison_pr_info(fmt, pfn, rs) \
  1229. ({ \
  1230. if (__ratelimit(rs)) \
  1231. pr_info(fmt, pfn); \
  1232. })
  1233. /**
  1234. * unpoison_memory - Unpoison a previously poisoned page
  1235. * @pfn: Page number of the to be unpoisoned page
  1236. *
  1237. * Software-unpoison a page that has been poisoned by
  1238. * memory_failure() earlier.
  1239. *
  1240. * This is only done on the software-level, so it only works
  1241. * for linux injected failures, not real hardware failures
  1242. *
  1243. * Returns 0 for success, otherwise -errno.
  1244. */
  1245. int unpoison_memory(unsigned long pfn)
  1246. {
  1247. struct page *page;
  1248. struct page *p;
  1249. int freeit = 0;
  1250. static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
  1251. DEFAULT_RATELIMIT_BURST);
  1252. if (!pfn_valid(pfn))
  1253. return -ENXIO;
  1254. p = pfn_to_page(pfn);
  1255. page = compound_head(p);
  1256. if (!PageHWPoison(p)) {
  1257. unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
  1258. pfn, &unpoison_rs);
  1259. return 0;
  1260. }
  1261. if (page_count(page) > 1) {
  1262. unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
  1263. pfn, &unpoison_rs);
  1264. return 0;
  1265. }
  1266. if (page_mapped(page)) {
  1267. unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
  1268. pfn, &unpoison_rs);
  1269. return 0;
  1270. }
  1271. if (page_mapping(page)) {
  1272. unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
  1273. pfn, &unpoison_rs);
  1274. return 0;
  1275. }
  1276. /*
  1277. * unpoison_memory() can encounter thp only when the thp is being
  1278. * worked by memory_failure() and the page lock is not held yet.
  1279. * In such case, we yield to memory_failure() and make unpoison fail.
  1280. */
  1281. if (!PageHuge(page) && PageTransHuge(page)) {
  1282. unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
  1283. pfn, &unpoison_rs);
  1284. return 0;
  1285. }
  1286. if (!get_hwpoison_page(p)) {
  1287. if (TestClearPageHWPoison(p))
  1288. num_poisoned_pages_dec();
  1289. unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
  1290. pfn, &unpoison_rs);
  1291. return 0;
  1292. }
  1293. lock_page(page);
  1294. /*
  1295. * This test is racy because PG_hwpoison is set outside of page lock.
  1296. * That's acceptable because that won't trigger kernel panic. Instead,
  1297. * the PG_hwpoison page will be caught and isolated on the entrance to
  1298. * the free buddy page pool.
  1299. */
  1300. if (TestClearPageHWPoison(page)) {
  1301. unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
  1302. pfn, &unpoison_rs);
  1303. num_poisoned_pages_dec();
  1304. freeit = 1;
  1305. }
  1306. unlock_page(page);
  1307. put_hwpoison_page(page);
  1308. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1309. put_hwpoison_page(page);
  1310. return 0;
  1311. }
  1312. EXPORT_SYMBOL(unpoison_memory);
  1313. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1314. {
  1315. int nid = page_to_nid(p);
  1316. return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
  1317. }
  1318. /*
  1319. * Safely get reference count of an arbitrary page.
  1320. * Returns 0 for a free page, -EIO for a zero refcount page
  1321. * that is not free, and 1 for any other page type.
  1322. * For 1 the page is returned with increased page count, otherwise not.
  1323. */
  1324. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1325. {
  1326. int ret;
  1327. if (flags & MF_COUNT_INCREASED)
  1328. return 1;
  1329. /*
  1330. * When the target page is a free hugepage, just remove it
  1331. * from free hugepage list.
  1332. */
  1333. if (!get_hwpoison_page(p)) {
  1334. if (PageHuge(p)) {
  1335. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1336. ret = 0;
  1337. } else if (is_free_buddy_page(p)) {
  1338. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1339. ret = 0;
  1340. } else {
  1341. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1342. __func__, pfn, p->flags);
  1343. ret = -EIO;
  1344. }
  1345. } else {
  1346. /* Not a free page */
  1347. ret = 1;
  1348. }
  1349. return ret;
  1350. }
  1351. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1352. {
  1353. int ret = __get_any_page(page, pfn, flags);
  1354. if (ret == 1 && !PageHuge(page) &&
  1355. !PageLRU(page) && !__PageMovable(page)) {
  1356. /*
  1357. * Try to free it.
  1358. */
  1359. put_hwpoison_page(page);
  1360. shake_page(page, 1);
  1361. /*
  1362. * Did it turn free?
  1363. */
  1364. ret = __get_any_page(page, pfn, 0);
  1365. if (ret == 1 && !PageLRU(page)) {
  1366. /* Drop page reference which is from __get_any_page() */
  1367. put_hwpoison_page(page);
  1368. pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
  1369. pfn, page->flags, &page->flags);
  1370. return -EIO;
  1371. }
  1372. }
  1373. return ret;
  1374. }
  1375. static int soft_offline_huge_page(struct page *page, int flags)
  1376. {
  1377. int ret;
  1378. unsigned long pfn = page_to_pfn(page);
  1379. struct page *hpage = compound_head(page);
  1380. LIST_HEAD(pagelist);
  1381. /*
  1382. * This double-check of PageHWPoison is to avoid the race with
  1383. * memory_failure(). See also comment in __soft_offline_page().
  1384. */
  1385. lock_page(hpage);
  1386. if (PageHWPoison(hpage)) {
  1387. unlock_page(hpage);
  1388. put_hwpoison_page(hpage);
  1389. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1390. return -EBUSY;
  1391. }
  1392. unlock_page(hpage);
  1393. ret = isolate_huge_page(hpage, &pagelist);
  1394. /*
  1395. * get_any_page() and isolate_huge_page() takes a refcount each,
  1396. * so need to drop one here.
  1397. */
  1398. put_hwpoison_page(hpage);
  1399. if (!ret) {
  1400. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1401. return -EBUSY;
  1402. }
  1403. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1404. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1405. if (ret) {
  1406. pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
  1407. pfn, ret, page->flags, &page->flags);
  1408. if (!list_empty(&pagelist))
  1409. putback_movable_pages(&pagelist);
  1410. if (ret > 0)
  1411. ret = -EIO;
  1412. } else {
  1413. if (PageHuge(page))
  1414. dissolve_free_huge_page(page);
  1415. }
  1416. return ret;
  1417. }
  1418. static int __soft_offline_page(struct page *page, int flags)
  1419. {
  1420. int ret;
  1421. unsigned long pfn = page_to_pfn(page);
  1422. /*
  1423. * Check PageHWPoison again inside page lock because PageHWPoison
  1424. * is set by memory_failure() outside page lock. Note that
  1425. * memory_failure() also double-checks PageHWPoison inside page lock,
  1426. * so there's no race between soft_offline_page() and memory_failure().
  1427. */
  1428. lock_page(page);
  1429. wait_on_page_writeback(page);
  1430. if (PageHWPoison(page)) {
  1431. unlock_page(page);
  1432. put_hwpoison_page(page);
  1433. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1434. return -EBUSY;
  1435. }
  1436. /*
  1437. * Try to invalidate first. This should work for
  1438. * non dirty unmapped page cache pages.
  1439. */
  1440. ret = invalidate_inode_page(page);
  1441. unlock_page(page);
  1442. /*
  1443. * RED-PEN would be better to keep it isolated here, but we
  1444. * would need to fix isolation locking first.
  1445. */
  1446. if (ret == 1) {
  1447. put_hwpoison_page(page);
  1448. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1449. SetPageHWPoison(page);
  1450. num_poisoned_pages_inc();
  1451. return 0;
  1452. }
  1453. /*
  1454. * Simple invalidation didn't work.
  1455. * Try to migrate to a new page instead. migrate.c
  1456. * handles a large number of cases for us.
  1457. */
  1458. if (PageLRU(page))
  1459. ret = isolate_lru_page(page);
  1460. else
  1461. ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
  1462. /*
  1463. * Drop page reference which is came from get_any_page()
  1464. * successful isolate_lru_page() already took another one.
  1465. */
  1466. put_hwpoison_page(page);
  1467. if (!ret) {
  1468. LIST_HEAD(pagelist);
  1469. /*
  1470. * After isolated lru page, the PageLRU will be cleared,
  1471. * so use !__PageMovable instead for LRU page's mapping
  1472. * cannot have PAGE_MAPPING_MOVABLE.
  1473. */
  1474. if (!__PageMovable(page))
  1475. inc_node_page_state(page, NR_ISOLATED_ANON +
  1476. page_is_file_cache(page));
  1477. list_add(&page->lru, &pagelist);
  1478. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1479. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1480. if (ret) {
  1481. if (!list_empty(&pagelist))
  1482. putback_movable_pages(&pagelist);
  1483. pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
  1484. pfn, ret, page->flags, &page->flags);
  1485. if (ret > 0)
  1486. ret = -EIO;
  1487. }
  1488. } else {
  1489. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
  1490. pfn, ret, page_count(page), page->flags, &page->flags);
  1491. }
  1492. return ret;
  1493. }
  1494. static int soft_offline_in_use_page(struct page *page, int flags)
  1495. {
  1496. int ret;
  1497. struct page *hpage = compound_head(page);
  1498. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1499. lock_page(hpage);
  1500. if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
  1501. unlock_page(hpage);
  1502. if (!PageAnon(hpage))
  1503. pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
  1504. else
  1505. pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
  1506. put_hwpoison_page(hpage);
  1507. return -EBUSY;
  1508. }
  1509. unlock_page(hpage);
  1510. get_hwpoison_page(page);
  1511. put_hwpoison_page(hpage);
  1512. }
  1513. if (PageHuge(page))
  1514. ret = soft_offline_huge_page(page, flags);
  1515. else
  1516. ret = __soft_offline_page(page, flags);
  1517. return ret;
  1518. }
  1519. static void soft_offline_free_page(struct page *page)
  1520. {
  1521. struct page *head = compound_head(page);
  1522. if (!TestSetPageHWPoison(head)) {
  1523. num_poisoned_pages_inc();
  1524. if (PageHuge(head))
  1525. dissolve_free_huge_page(page);
  1526. }
  1527. }
  1528. /**
  1529. * soft_offline_page - Soft offline a page.
  1530. * @page: page to offline
  1531. * @flags: flags. Same as memory_failure().
  1532. *
  1533. * Returns 0 on success, otherwise negated errno.
  1534. *
  1535. * Soft offline a page, by migration or invalidation,
  1536. * without killing anything. This is for the case when
  1537. * a page is not corrupted yet (so it's still valid to access),
  1538. * but has had a number of corrected errors and is better taken
  1539. * out.
  1540. *
  1541. * The actual policy on when to do that is maintained by
  1542. * user space.
  1543. *
  1544. * This should never impact any application or cause data loss,
  1545. * however it might take some time.
  1546. *
  1547. * This is not a 100% solution for all memory, but tries to be
  1548. * ``good enough'' for the majority of memory.
  1549. */
  1550. int soft_offline_page(struct page *page, int flags)
  1551. {
  1552. int ret;
  1553. unsigned long pfn = page_to_pfn(page);
  1554. if (PageHWPoison(page)) {
  1555. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1556. if (flags & MF_COUNT_INCREASED)
  1557. put_hwpoison_page(page);
  1558. return -EBUSY;
  1559. }
  1560. get_online_mems();
  1561. ret = get_any_page(page, pfn, flags);
  1562. put_online_mems();
  1563. if (ret > 0)
  1564. ret = soft_offline_in_use_page(page, flags);
  1565. else if (ret == 0)
  1566. soft_offline_free_page(page);
  1567. return ret;
  1568. }