mm.h 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. struct mempolicy;
  26. struct anon_vma;
  27. struct anon_vma_chain;
  28. struct file_ra_state;
  29. struct user_struct;
  30. struct writeback_control;
  31. struct bdi_writeback;
  32. void init_mm_internals(void);
  33. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  34. extern unsigned long max_mapnr;
  35. static inline void set_max_mapnr(unsigned long limit)
  36. {
  37. max_mapnr = limit;
  38. }
  39. #else
  40. static inline void set_max_mapnr(unsigned long limit) { }
  41. #endif
  42. extern unsigned long totalram_pages;
  43. extern void * high_memory;
  44. extern int page_cluster;
  45. #ifdef CONFIG_SYSCTL
  46. extern int sysctl_legacy_va_layout;
  47. #else
  48. #define sysctl_legacy_va_layout 0
  49. #endif
  50. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  51. extern const int mmap_rnd_bits_min;
  52. extern const int mmap_rnd_bits_max;
  53. extern int mmap_rnd_bits __read_mostly;
  54. #endif
  55. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  56. extern const int mmap_rnd_compat_bits_min;
  57. extern const int mmap_rnd_compat_bits_max;
  58. extern int mmap_rnd_compat_bits __read_mostly;
  59. #endif
  60. #include <asm/page.h>
  61. #include <asm/pgtable.h>
  62. #include <asm/processor.h>
  63. #ifndef __pa_symbol
  64. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  65. #endif
  66. #ifndef page_to_virt
  67. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  68. #endif
  69. #ifndef lm_alias
  70. #define lm_alias(x) __va(__pa_symbol(x))
  71. #endif
  72. /*
  73. * To prevent common memory management code establishing
  74. * a zero page mapping on a read fault.
  75. * This macro should be defined within <asm/pgtable.h>.
  76. * s390 does this to prevent multiplexing of hardware bits
  77. * related to the physical page in case of virtualization.
  78. */
  79. #ifndef mm_forbids_zeropage
  80. #define mm_forbids_zeropage(X) (0)
  81. #endif
  82. /*
  83. * On some architectures it is expensive to call memset() for small sizes.
  84. * Those architectures should provide their own implementation of "struct page"
  85. * zeroing by defining this macro in <asm/pgtable.h>.
  86. */
  87. #ifndef mm_zero_struct_page
  88. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  89. #endif
  90. /*
  91. * Default maximum number of active map areas, this limits the number of vmas
  92. * per mm struct. Users can overwrite this number by sysctl but there is a
  93. * problem.
  94. *
  95. * When a program's coredump is generated as ELF format, a section is created
  96. * per a vma. In ELF, the number of sections is represented in unsigned short.
  97. * This means the number of sections should be smaller than 65535 at coredump.
  98. * Because the kernel adds some informative sections to a image of program at
  99. * generating coredump, we need some margin. The number of extra sections is
  100. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  101. *
  102. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  103. * not a hard limit any more. Although some userspace tools can be surprised by
  104. * that.
  105. */
  106. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  107. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  108. extern int sysctl_max_map_count;
  109. extern unsigned long sysctl_user_reserve_kbytes;
  110. extern unsigned long sysctl_admin_reserve_kbytes;
  111. extern int sysctl_overcommit_memory;
  112. extern int sysctl_overcommit_ratio;
  113. extern unsigned long sysctl_overcommit_kbytes;
  114. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  115. size_t *, loff_t *);
  116. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  117. size_t *, loff_t *);
  118. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  119. /* to align the pointer to the (next) page boundary */
  120. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  121. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  122. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  123. /*
  124. * Linux kernel virtual memory manager primitives.
  125. * The idea being to have a "virtual" mm in the same way
  126. * we have a virtual fs - giving a cleaner interface to the
  127. * mm details, and allowing different kinds of memory mappings
  128. * (from shared memory to executable loading to arbitrary
  129. * mmap() functions).
  130. */
  131. extern struct kmem_cache *vm_area_cachep;
  132. #ifndef CONFIG_MMU
  133. extern struct rb_root nommu_region_tree;
  134. extern struct rw_semaphore nommu_region_sem;
  135. extern unsigned int kobjsize(const void *objp);
  136. #endif
  137. /*
  138. * vm_flags in vm_area_struct, see mm_types.h.
  139. * When changing, update also include/trace/events/mmflags.h
  140. */
  141. #define VM_NONE 0x00000000
  142. #define VM_READ 0x00000001 /* currently active flags */
  143. #define VM_WRITE 0x00000002
  144. #define VM_EXEC 0x00000004
  145. #define VM_SHARED 0x00000008
  146. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  147. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  148. #define VM_MAYWRITE 0x00000020
  149. #define VM_MAYEXEC 0x00000040
  150. #define VM_MAYSHARE 0x00000080
  151. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  152. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  153. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  154. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  155. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  156. #define VM_LOCKED 0x00002000
  157. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  158. /* Used by sys_madvise() */
  159. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  160. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  161. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  162. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  163. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  164. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  165. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  166. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  167. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  168. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  169. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  170. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  171. #ifdef CONFIG_MEM_SOFT_DIRTY
  172. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  173. #else
  174. # define VM_SOFTDIRTY 0
  175. #endif
  176. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  177. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  178. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  179. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  180. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  181. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  182. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  183. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  184. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  187. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  188. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  189. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  190. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  191. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  192. #if defined(CONFIG_X86)
  193. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  194. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  195. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  196. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  197. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  198. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  199. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  200. #endif
  201. #elif defined(CONFIG_PPC)
  202. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  203. #elif defined(CONFIG_PARISC)
  204. # define VM_GROWSUP VM_ARCH_1
  205. #elif defined(CONFIG_METAG)
  206. # define VM_GROWSUP VM_ARCH_1
  207. #elif defined(CONFIG_IA64)
  208. # define VM_GROWSUP VM_ARCH_1
  209. #elif !defined(CONFIG_MMU)
  210. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  211. #endif
  212. #if defined(CONFIG_X86_INTEL_MPX)
  213. /* MPX specific bounds table or bounds directory */
  214. # define VM_MPX VM_HIGH_ARCH_4
  215. #else
  216. # define VM_MPX VM_NONE
  217. #endif
  218. #ifndef VM_GROWSUP
  219. # define VM_GROWSUP VM_NONE
  220. #endif
  221. /* Bits set in the VMA until the stack is in its final location */
  222. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  223. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  224. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  225. #endif
  226. #ifdef CONFIG_STACK_GROWSUP
  227. #define VM_STACK VM_GROWSUP
  228. #else
  229. #define VM_STACK VM_GROWSDOWN
  230. #endif
  231. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  232. /*
  233. * Special vmas that are non-mergable, non-mlock()able.
  234. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  235. */
  236. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  237. /* This mask defines which mm->def_flags a process can inherit its parent */
  238. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  239. /* This mask is used to clear all the VMA flags used by mlock */
  240. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  241. /*
  242. * mapping from the currently active vm_flags protection bits (the
  243. * low four bits) to a page protection mask..
  244. */
  245. extern pgprot_t protection_map[16];
  246. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  247. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  248. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  249. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  250. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  251. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  252. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  253. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  254. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  255. #define FAULT_FLAG_TRACE \
  256. { FAULT_FLAG_WRITE, "WRITE" }, \
  257. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  258. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  259. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  260. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  261. { FAULT_FLAG_TRIED, "TRIED" }, \
  262. { FAULT_FLAG_USER, "USER" }, \
  263. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  264. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  265. /*
  266. * vm_fault is filled by the the pagefault handler and passed to the vma's
  267. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  268. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  269. *
  270. * MM layer fills up gfp_mask for page allocations but fault handler might
  271. * alter it if its implementation requires a different allocation context.
  272. *
  273. * pgoff should be used in favour of virtual_address, if possible.
  274. */
  275. struct vm_fault {
  276. struct vm_area_struct *vma; /* Target VMA */
  277. unsigned int flags; /* FAULT_FLAG_xxx flags */
  278. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  279. pgoff_t pgoff; /* Logical page offset based on vma */
  280. unsigned long address; /* Faulting virtual address */
  281. pmd_t *pmd; /* Pointer to pmd entry matching
  282. * the 'address' */
  283. pud_t *pud; /* Pointer to pud entry matching
  284. * the 'address'
  285. */
  286. pte_t orig_pte; /* Value of PTE at the time of fault */
  287. struct page *cow_page; /* Page handler may use for COW fault */
  288. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  289. struct page *page; /* ->fault handlers should return a
  290. * page here, unless VM_FAULT_NOPAGE
  291. * is set (which is also implied by
  292. * VM_FAULT_ERROR).
  293. */
  294. /* These three entries are valid only while holding ptl lock */
  295. pte_t *pte; /* Pointer to pte entry matching
  296. * the 'address'. NULL if the page
  297. * table hasn't been allocated.
  298. */
  299. spinlock_t *ptl; /* Page table lock.
  300. * Protects pte page table if 'pte'
  301. * is not NULL, otherwise pmd.
  302. */
  303. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  304. * vm_ops->map_pages() calls
  305. * alloc_set_pte() from atomic context.
  306. * do_fault_around() pre-allocates
  307. * page table to avoid allocation from
  308. * atomic context.
  309. */
  310. };
  311. /* page entry size for vm->huge_fault() */
  312. enum page_entry_size {
  313. PE_SIZE_PTE = 0,
  314. PE_SIZE_PMD,
  315. PE_SIZE_PUD,
  316. };
  317. /*
  318. * These are the virtual MM functions - opening of an area, closing and
  319. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  320. * to the functions called when a no-page or a wp-page exception occurs.
  321. */
  322. struct vm_operations_struct {
  323. void (*open)(struct vm_area_struct * area);
  324. void (*close)(struct vm_area_struct * area);
  325. int (*split)(struct vm_area_struct * area, unsigned long addr);
  326. int (*mremap)(struct vm_area_struct * area);
  327. int (*fault)(struct vm_fault *vmf);
  328. int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
  329. void (*map_pages)(struct vm_fault *vmf,
  330. pgoff_t start_pgoff, pgoff_t end_pgoff);
  331. /* notification that a previously read-only page is about to become
  332. * writable, if an error is returned it will cause a SIGBUS */
  333. int (*page_mkwrite)(struct vm_fault *vmf);
  334. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  335. int (*pfn_mkwrite)(struct vm_fault *vmf);
  336. /* called by access_process_vm when get_user_pages() fails, typically
  337. * for use by special VMAs that can switch between memory and hardware
  338. */
  339. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  340. void *buf, int len, int write);
  341. /* Called by the /proc/PID/maps code to ask the vma whether it
  342. * has a special name. Returning non-NULL will also cause this
  343. * vma to be dumped unconditionally. */
  344. const char *(*name)(struct vm_area_struct *vma);
  345. #ifdef CONFIG_NUMA
  346. /*
  347. * set_policy() op must add a reference to any non-NULL @new mempolicy
  348. * to hold the policy upon return. Caller should pass NULL @new to
  349. * remove a policy and fall back to surrounding context--i.e. do not
  350. * install a MPOL_DEFAULT policy, nor the task or system default
  351. * mempolicy.
  352. */
  353. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  354. /*
  355. * get_policy() op must add reference [mpol_get()] to any policy at
  356. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  357. * in mm/mempolicy.c will do this automatically.
  358. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  359. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  360. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  361. * must return NULL--i.e., do not "fallback" to task or system default
  362. * policy.
  363. */
  364. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  365. unsigned long addr);
  366. #endif
  367. /*
  368. * Called by vm_normal_page() for special PTEs to find the
  369. * page for @addr. This is useful if the default behavior
  370. * (using pte_page()) would not find the correct page.
  371. */
  372. struct page *(*find_special_page)(struct vm_area_struct *vma,
  373. unsigned long addr);
  374. };
  375. struct mmu_gather;
  376. struct inode;
  377. #define page_private(page) ((page)->private)
  378. #define set_page_private(page, v) ((page)->private = (v))
  379. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  380. static inline int pmd_devmap(pmd_t pmd)
  381. {
  382. return 0;
  383. }
  384. static inline int pud_devmap(pud_t pud)
  385. {
  386. return 0;
  387. }
  388. static inline int pgd_devmap(pgd_t pgd)
  389. {
  390. return 0;
  391. }
  392. #endif
  393. /*
  394. * FIXME: take this include out, include page-flags.h in
  395. * files which need it (119 of them)
  396. */
  397. #include <linux/page-flags.h>
  398. #include <linux/huge_mm.h>
  399. /*
  400. * Methods to modify the page usage count.
  401. *
  402. * What counts for a page usage:
  403. * - cache mapping (page->mapping)
  404. * - private data (page->private)
  405. * - page mapped in a task's page tables, each mapping
  406. * is counted separately
  407. *
  408. * Also, many kernel routines increase the page count before a critical
  409. * routine so they can be sure the page doesn't go away from under them.
  410. */
  411. /*
  412. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  413. */
  414. static inline int put_page_testzero(struct page *page)
  415. {
  416. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  417. return page_ref_dec_and_test(page);
  418. }
  419. /*
  420. * Try to grab a ref unless the page has a refcount of zero, return false if
  421. * that is the case.
  422. * This can be called when MMU is off so it must not access
  423. * any of the virtual mappings.
  424. */
  425. static inline int get_page_unless_zero(struct page *page)
  426. {
  427. return page_ref_add_unless(page, 1, 0);
  428. }
  429. extern int page_is_ram(unsigned long pfn);
  430. enum {
  431. REGION_INTERSECTS,
  432. REGION_DISJOINT,
  433. REGION_MIXED,
  434. };
  435. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  436. unsigned long desc);
  437. /* Support for virtually mapped pages */
  438. struct page *vmalloc_to_page(const void *addr);
  439. unsigned long vmalloc_to_pfn(const void *addr);
  440. /*
  441. * Determine if an address is within the vmalloc range
  442. *
  443. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  444. * is no special casing required.
  445. */
  446. static inline bool is_vmalloc_addr(const void *x)
  447. {
  448. #ifdef CONFIG_MMU
  449. unsigned long addr = (unsigned long)x;
  450. return addr >= VMALLOC_START && addr < VMALLOC_END;
  451. #else
  452. return false;
  453. #endif
  454. }
  455. #ifdef CONFIG_MMU
  456. extern int is_vmalloc_or_module_addr(const void *x);
  457. #else
  458. static inline int is_vmalloc_or_module_addr(const void *x)
  459. {
  460. return 0;
  461. }
  462. #endif
  463. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  464. static inline void *kvmalloc(size_t size, gfp_t flags)
  465. {
  466. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  467. }
  468. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  469. {
  470. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  471. }
  472. static inline void *kvzalloc(size_t size, gfp_t flags)
  473. {
  474. return kvmalloc(size, flags | __GFP_ZERO);
  475. }
  476. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  477. {
  478. if (size != 0 && n > SIZE_MAX / size)
  479. return NULL;
  480. return kvmalloc(n * size, flags);
  481. }
  482. extern void kvfree(const void *addr);
  483. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  484. {
  485. return &page[1].compound_mapcount;
  486. }
  487. static inline int compound_mapcount(struct page *page)
  488. {
  489. VM_BUG_ON_PAGE(!PageCompound(page), page);
  490. page = compound_head(page);
  491. return atomic_read(compound_mapcount_ptr(page)) + 1;
  492. }
  493. /*
  494. * The atomic page->_mapcount, starts from -1: so that transitions
  495. * both from it and to it can be tracked, using atomic_inc_and_test
  496. * and atomic_add_negative(-1).
  497. */
  498. static inline void page_mapcount_reset(struct page *page)
  499. {
  500. atomic_set(&(page)->_mapcount, -1);
  501. }
  502. int __page_mapcount(struct page *page);
  503. static inline int page_mapcount(struct page *page)
  504. {
  505. VM_BUG_ON_PAGE(PageSlab(page), page);
  506. if (unlikely(PageCompound(page)))
  507. return __page_mapcount(page);
  508. return atomic_read(&page->_mapcount) + 1;
  509. }
  510. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  511. int total_mapcount(struct page *page);
  512. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  513. #else
  514. static inline int total_mapcount(struct page *page)
  515. {
  516. return page_mapcount(page);
  517. }
  518. static inline int page_trans_huge_mapcount(struct page *page,
  519. int *total_mapcount)
  520. {
  521. int mapcount = page_mapcount(page);
  522. if (total_mapcount)
  523. *total_mapcount = mapcount;
  524. return mapcount;
  525. }
  526. #endif
  527. static inline struct page *virt_to_head_page(const void *x)
  528. {
  529. struct page *page = virt_to_page(x);
  530. return compound_head(page);
  531. }
  532. void __put_page(struct page *page);
  533. void put_pages_list(struct list_head *pages);
  534. void split_page(struct page *page, unsigned int order);
  535. /*
  536. * Compound pages have a destructor function. Provide a
  537. * prototype for that function and accessor functions.
  538. * These are _only_ valid on the head of a compound page.
  539. */
  540. typedef void compound_page_dtor(struct page *);
  541. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  542. enum compound_dtor_id {
  543. NULL_COMPOUND_DTOR,
  544. COMPOUND_PAGE_DTOR,
  545. #ifdef CONFIG_HUGETLB_PAGE
  546. HUGETLB_PAGE_DTOR,
  547. #endif
  548. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  549. TRANSHUGE_PAGE_DTOR,
  550. #endif
  551. NR_COMPOUND_DTORS,
  552. };
  553. extern compound_page_dtor * const compound_page_dtors[];
  554. static inline void set_compound_page_dtor(struct page *page,
  555. enum compound_dtor_id compound_dtor)
  556. {
  557. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  558. page[1].compound_dtor = compound_dtor;
  559. }
  560. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  561. {
  562. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  563. return compound_page_dtors[page[1].compound_dtor];
  564. }
  565. static inline unsigned int compound_order(struct page *page)
  566. {
  567. if (!PageHead(page))
  568. return 0;
  569. return page[1].compound_order;
  570. }
  571. static inline void set_compound_order(struct page *page, unsigned int order)
  572. {
  573. page[1].compound_order = order;
  574. }
  575. void free_compound_page(struct page *page);
  576. #ifdef CONFIG_MMU
  577. /*
  578. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  579. * servicing faults for write access. In the normal case, do always want
  580. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  581. * that do not have writing enabled, when used by access_process_vm.
  582. */
  583. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  584. {
  585. if (likely(vma->vm_flags & VM_WRITE))
  586. pte = pte_mkwrite(pte);
  587. return pte;
  588. }
  589. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  590. struct page *page);
  591. int finish_fault(struct vm_fault *vmf);
  592. int finish_mkwrite_fault(struct vm_fault *vmf);
  593. #endif
  594. /*
  595. * Multiple processes may "see" the same page. E.g. for untouched
  596. * mappings of /dev/null, all processes see the same page full of
  597. * zeroes, and text pages of executables and shared libraries have
  598. * only one copy in memory, at most, normally.
  599. *
  600. * For the non-reserved pages, page_count(page) denotes a reference count.
  601. * page_count() == 0 means the page is free. page->lru is then used for
  602. * freelist management in the buddy allocator.
  603. * page_count() > 0 means the page has been allocated.
  604. *
  605. * Pages are allocated by the slab allocator in order to provide memory
  606. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  607. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  608. * unless a particular usage is carefully commented. (the responsibility of
  609. * freeing the kmalloc memory is the caller's, of course).
  610. *
  611. * A page may be used by anyone else who does a __get_free_page().
  612. * In this case, page_count still tracks the references, and should only
  613. * be used through the normal accessor functions. The top bits of page->flags
  614. * and page->virtual store page management information, but all other fields
  615. * are unused and could be used privately, carefully. The management of this
  616. * page is the responsibility of the one who allocated it, and those who have
  617. * subsequently been given references to it.
  618. *
  619. * The other pages (we may call them "pagecache pages") are completely
  620. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  621. * The following discussion applies only to them.
  622. *
  623. * A pagecache page contains an opaque `private' member, which belongs to the
  624. * page's address_space. Usually, this is the address of a circular list of
  625. * the page's disk buffers. PG_private must be set to tell the VM to call
  626. * into the filesystem to release these pages.
  627. *
  628. * A page may belong to an inode's memory mapping. In this case, page->mapping
  629. * is the pointer to the inode, and page->index is the file offset of the page,
  630. * in units of PAGE_SIZE.
  631. *
  632. * If pagecache pages are not associated with an inode, they are said to be
  633. * anonymous pages. These may become associated with the swapcache, and in that
  634. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  635. *
  636. * In either case (swapcache or inode backed), the pagecache itself holds one
  637. * reference to the page. Setting PG_private should also increment the
  638. * refcount. The each user mapping also has a reference to the page.
  639. *
  640. * The pagecache pages are stored in a per-mapping radix tree, which is
  641. * rooted at mapping->page_tree, and indexed by offset.
  642. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  643. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  644. *
  645. * All pagecache pages may be subject to I/O:
  646. * - inode pages may need to be read from disk,
  647. * - inode pages which have been modified and are MAP_SHARED may need
  648. * to be written back to the inode on disk,
  649. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  650. * modified may need to be swapped out to swap space and (later) to be read
  651. * back into memory.
  652. */
  653. /*
  654. * The zone field is never updated after free_area_init_core()
  655. * sets it, so none of the operations on it need to be atomic.
  656. */
  657. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  658. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  659. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  660. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  661. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  662. /*
  663. * Define the bit shifts to access each section. For non-existent
  664. * sections we define the shift as 0; that plus a 0 mask ensures
  665. * the compiler will optimise away reference to them.
  666. */
  667. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  668. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  669. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  670. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  671. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  672. #ifdef NODE_NOT_IN_PAGE_FLAGS
  673. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  674. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  675. SECTIONS_PGOFF : ZONES_PGOFF)
  676. #else
  677. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  678. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  679. NODES_PGOFF : ZONES_PGOFF)
  680. #endif
  681. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  682. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  683. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  684. #endif
  685. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  686. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  687. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  688. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  689. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  690. static inline enum zone_type page_zonenum(const struct page *page)
  691. {
  692. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  693. }
  694. #ifdef CONFIG_ZONE_DEVICE
  695. static inline bool is_zone_device_page(const struct page *page)
  696. {
  697. return page_zonenum(page) == ZONE_DEVICE;
  698. }
  699. #else
  700. static inline bool is_zone_device_page(const struct page *page)
  701. {
  702. return false;
  703. }
  704. #endif
  705. #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
  706. void put_zone_device_private_or_public_page(struct page *page);
  707. DECLARE_STATIC_KEY_FALSE(device_private_key);
  708. #define IS_HMM_ENABLED static_branch_unlikely(&device_private_key)
  709. static inline bool is_device_private_page(const struct page *page);
  710. static inline bool is_device_public_page(const struct page *page);
  711. #else /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  712. static inline void put_zone_device_private_or_public_page(struct page *page)
  713. {
  714. }
  715. #define IS_HMM_ENABLED 0
  716. static inline bool is_device_private_page(const struct page *page)
  717. {
  718. return false;
  719. }
  720. static inline bool is_device_public_page(const struct page *page)
  721. {
  722. return false;
  723. }
  724. #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
  725. static inline void get_page(struct page *page)
  726. {
  727. page = compound_head(page);
  728. /*
  729. * Getting a normal page or the head of a compound page
  730. * requires to already have an elevated page->_refcount.
  731. */
  732. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  733. page_ref_inc(page);
  734. }
  735. static inline void put_page(struct page *page)
  736. {
  737. page = compound_head(page);
  738. /*
  739. * For private device pages we need to catch refcount transition from
  740. * 2 to 1, when refcount reach one it means the private device page is
  741. * free and we need to inform the device driver through callback. See
  742. * include/linux/memremap.h and HMM for details.
  743. */
  744. if (IS_HMM_ENABLED && unlikely(is_device_private_page(page) ||
  745. unlikely(is_device_public_page(page)))) {
  746. put_zone_device_private_or_public_page(page);
  747. return;
  748. }
  749. if (put_page_testzero(page))
  750. __put_page(page);
  751. }
  752. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  753. #define SECTION_IN_PAGE_FLAGS
  754. #endif
  755. /*
  756. * The identification function is mainly used by the buddy allocator for
  757. * determining if two pages could be buddies. We are not really identifying
  758. * the zone since we could be using the section number id if we do not have
  759. * node id available in page flags.
  760. * We only guarantee that it will return the same value for two combinable
  761. * pages in a zone.
  762. */
  763. static inline int page_zone_id(struct page *page)
  764. {
  765. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  766. }
  767. static inline int zone_to_nid(struct zone *zone)
  768. {
  769. #ifdef CONFIG_NUMA
  770. return zone->node;
  771. #else
  772. return 0;
  773. #endif
  774. }
  775. #ifdef NODE_NOT_IN_PAGE_FLAGS
  776. extern int page_to_nid(const struct page *page);
  777. #else
  778. static inline int page_to_nid(const struct page *page)
  779. {
  780. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  781. }
  782. #endif
  783. #ifdef CONFIG_NUMA_BALANCING
  784. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  785. {
  786. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  787. }
  788. static inline int cpupid_to_pid(int cpupid)
  789. {
  790. return cpupid & LAST__PID_MASK;
  791. }
  792. static inline int cpupid_to_cpu(int cpupid)
  793. {
  794. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  795. }
  796. static inline int cpupid_to_nid(int cpupid)
  797. {
  798. return cpu_to_node(cpupid_to_cpu(cpupid));
  799. }
  800. static inline bool cpupid_pid_unset(int cpupid)
  801. {
  802. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  803. }
  804. static inline bool cpupid_cpu_unset(int cpupid)
  805. {
  806. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  807. }
  808. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  809. {
  810. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  811. }
  812. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  813. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  814. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  815. {
  816. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  817. }
  818. static inline int page_cpupid_last(struct page *page)
  819. {
  820. return page->_last_cpupid;
  821. }
  822. static inline void page_cpupid_reset_last(struct page *page)
  823. {
  824. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  825. }
  826. #else
  827. static inline int page_cpupid_last(struct page *page)
  828. {
  829. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  830. }
  831. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  832. static inline void page_cpupid_reset_last(struct page *page)
  833. {
  834. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  835. }
  836. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  837. #else /* !CONFIG_NUMA_BALANCING */
  838. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  839. {
  840. return page_to_nid(page); /* XXX */
  841. }
  842. static inline int page_cpupid_last(struct page *page)
  843. {
  844. return page_to_nid(page); /* XXX */
  845. }
  846. static inline int cpupid_to_nid(int cpupid)
  847. {
  848. return -1;
  849. }
  850. static inline int cpupid_to_pid(int cpupid)
  851. {
  852. return -1;
  853. }
  854. static inline int cpupid_to_cpu(int cpupid)
  855. {
  856. return -1;
  857. }
  858. static inline int cpu_pid_to_cpupid(int nid, int pid)
  859. {
  860. return -1;
  861. }
  862. static inline bool cpupid_pid_unset(int cpupid)
  863. {
  864. return 1;
  865. }
  866. static inline void page_cpupid_reset_last(struct page *page)
  867. {
  868. }
  869. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  870. {
  871. return false;
  872. }
  873. #endif /* CONFIG_NUMA_BALANCING */
  874. static inline struct zone *page_zone(const struct page *page)
  875. {
  876. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  877. }
  878. static inline pg_data_t *page_pgdat(const struct page *page)
  879. {
  880. return NODE_DATA(page_to_nid(page));
  881. }
  882. #ifdef SECTION_IN_PAGE_FLAGS
  883. static inline void set_page_section(struct page *page, unsigned long section)
  884. {
  885. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  886. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  887. }
  888. static inline unsigned long page_to_section(const struct page *page)
  889. {
  890. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  891. }
  892. #endif
  893. static inline void set_page_zone(struct page *page, enum zone_type zone)
  894. {
  895. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  896. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  897. }
  898. static inline void set_page_node(struct page *page, unsigned long node)
  899. {
  900. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  901. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  902. }
  903. static inline void set_page_links(struct page *page, enum zone_type zone,
  904. unsigned long node, unsigned long pfn)
  905. {
  906. set_page_zone(page, zone);
  907. set_page_node(page, node);
  908. #ifdef SECTION_IN_PAGE_FLAGS
  909. set_page_section(page, pfn_to_section_nr(pfn));
  910. #endif
  911. }
  912. #ifdef CONFIG_MEMCG
  913. static inline struct mem_cgroup *page_memcg(struct page *page)
  914. {
  915. return page->mem_cgroup;
  916. }
  917. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  918. {
  919. WARN_ON_ONCE(!rcu_read_lock_held());
  920. return READ_ONCE(page->mem_cgroup);
  921. }
  922. #else
  923. static inline struct mem_cgroup *page_memcg(struct page *page)
  924. {
  925. return NULL;
  926. }
  927. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  928. {
  929. WARN_ON_ONCE(!rcu_read_lock_held());
  930. return NULL;
  931. }
  932. #endif
  933. /*
  934. * Some inline functions in vmstat.h depend on page_zone()
  935. */
  936. #include <linux/vmstat.h>
  937. static __always_inline void *lowmem_page_address(const struct page *page)
  938. {
  939. return page_to_virt(page);
  940. }
  941. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  942. #define HASHED_PAGE_VIRTUAL
  943. #endif
  944. #if defined(WANT_PAGE_VIRTUAL)
  945. static inline void *page_address(const struct page *page)
  946. {
  947. return page->virtual;
  948. }
  949. static inline void set_page_address(struct page *page, void *address)
  950. {
  951. page->virtual = address;
  952. }
  953. #define page_address_init() do { } while(0)
  954. #endif
  955. #if defined(HASHED_PAGE_VIRTUAL)
  956. void *page_address(const struct page *page);
  957. void set_page_address(struct page *page, void *virtual);
  958. void page_address_init(void);
  959. #endif
  960. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  961. #define page_address(page) lowmem_page_address(page)
  962. #define set_page_address(page, address) do { } while(0)
  963. #define page_address_init() do { } while(0)
  964. #endif
  965. extern void *page_rmapping(struct page *page);
  966. extern struct anon_vma *page_anon_vma(struct page *page);
  967. extern struct address_space *page_mapping(struct page *page);
  968. extern struct address_space *__page_file_mapping(struct page *);
  969. static inline
  970. struct address_space *page_file_mapping(struct page *page)
  971. {
  972. if (unlikely(PageSwapCache(page)))
  973. return __page_file_mapping(page);
  974. return page->mapping;
  975. }
  976. extern pgoff_t __page_file_index(struct page *page);
  977. /*
  978. * Return the pagecache index of the passed page. Regular pagecache pages
  979. * use ->index whereas swapcache pages use swp_offset(->private)
  980. */
  981. static inline pgoff_t page_index(struct page *page)
  982. {
  983. if (unlikely(PageSwapCache(page)))
  984. return __page_file_index(page);
  985. return page->index;
  986. }
  987. bool page_mapped(struct page *page);
  988. struct address_space *page_mapping(struct page *page);
  989. /*
  990. * Return true only if the page has been allocated with
  991. * ALLOC_NO_WATERMARKS and the low watermark was not
  992. * met implying that the system is under some pressure.
  993. */
  994. static inline bool page_is_pfmemalloc(struct page *page)
  995. {
  996. /*
  997. * Page index cannot be this large so this must be
  998. * a pfmemalloc page.
  999. */
  1000. return page->index == -1UL;
  1001. }
  1002. /*
  1003. * Only to be called by the page allocator on a freshly allocated
  1004. * page.
  1005. */
  1006. static inline void set_page_pfmemalloc(struct page *page)
  1007. {
  1008. page->index = -1UL;
  1009. }
  1010. static inline void clear_page_pfmemalloc(struct page *page)
  1011. {
  1012. page->index = 0;
  1013. }
  1014. /*
  1015. * Different kinds of faults, as returned by handle_mm_fault().
  1016. * Used to decide whether a process gets delivered SIGBUS or
  1017. * just gets major/minor fault counters bumped up.
  1018. */
  1019. #define VM_FAULT_OOM 0x0001
  1020. #define VM_FAULT_SIGBUS 0x0002
  1021. #define VM_FAULT_MAJOR 0x0004
  1022. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1023. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1024. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1025. #define VM_FAULT_SIGSEGV 0x0040
  1026. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1027. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1028. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1029. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1030. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1031. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1032. * and needs fsync() to complete (for
  1033. * synchronous page faults in DAX) */
  1034. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1035. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1036. VM_FAULT_FALLBACK)
  1037. #define VM_FAULT_RESULT_TRACE \
  1038. { VM_FAULT_OOM, "OOM" }, \
  1039. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1040. { VM_FAULT_MAJOR, "MAJOR" }, \
  1041. { VM_FAULT_WRITE, "WRITE" }, \
  1042. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1043. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1044. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1045. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1046. { VM_FAULT_LOCKED, "LOCKED" }, \
  1047. { VM_FAULT_RETRY, "RETRY" }, \
  1048. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1049. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1050. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1051. /* Encode hstate index for a hwpoisoned large page */
  1052. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1053. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1054. /*
  1055. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1056. */
  1057. extern void pagefault_out_of_memory(void);
  1058. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1059. /*
  1060. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1061. * various contexts.
  1062. */
  1063. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1064. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1065. extern bool can_do_mlock(void);
  1066. extern int user_shm_lock(size_t, struct user_struct *);
  1067. extern void user_shm_unlock(size_t, struct user_struct *);
  1068. /*
  1069. * Parameter block passed down to zap_pte_range in exceptional cases.
  1070. */
  1071. struct zap_details {
  1072. struct address_space *check_mapping; /* Check page->mapping if set */
  1073. pgoff_t first_index; /* Lowest page->index to unmap */
  1074. pgoff_t last_index; /* Highest page->index to unmap */
  1075. };
  1076. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1077. pte_t pte, bool with_public_device);
  1078. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1079. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1080. pmd_t pmd);
  1081. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1082. unsigned long size);
  1083. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1084. unsigned long size);
  1085. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1086. unsigned long start, unsigned long end);
  1087. /**
  1088. * mm_walk - callbacks for walk_page_range
  1089. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1090. * this handler should only handle pud_trans_huge() puds.
  1091. * the pmd_entry or pte_entry callbacks will be used for
  1092. * regular PUDs.
  1093. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1094. * this handler is required to be able to handle
  1095. * pmd_trans_huge() pmds. They may simply choose to
  1096. * split_huge_page() instead of handling it explicitly.
  1097. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1098. * @pte_hole: if set, called for each hole at all levels
  1099. * @hugetlb_entry: if set, called for each hugetlb entry
  1100. * @test_walk: caller specific callback function to determine whether
  1101. * we walk over the current vma or not. Returning 0
  1102. * value means "do page table walk over the current vma,"
  1103. * and a negative one means "abort current page table walk
  1104. * right now." 1 means "skip the current vma."
  1105. * @mm: mm_struct representing the target process of page table walk
  1106. * @vma: vma currently walked (NULL if walking outside vmas)
  1107. * @private: private data for callbacks' usage
  1108. *
  1109. * (see the comment on walk_page_range() for more details)
  1110. */
  1111. struct mm_walk {
  1112. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1113. unsigned long next, struct mm_walk *walk);
  1114. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1115. unsigned long next, struct mm_walk *walk);
  1116. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1117. unsigned long next, struct mm_walk *walk);
  1118. int (*pte_hole)(unsigned long addr, unsigned long next,
  1119. struct mm_walk *walk);
  1120. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1121. unsigned long addr, unsigned long next,
  1122. struct mm_walk *walk);
  1123. int (*test_walk)(unsigned long addr, unsigned long next,
  1124. struct mm_walk *walk);
  1125. struct mm_struct *mm;
  1126. struct vm_area_struct *vma;
  1127. void *private;
  1128. };
  1129. int walk_page_range(unsigned long addr, unsigned long end,
  1130. struct mm_walk *walk);
  1131. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1132. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1133. unsigned long end, unsigned long floor, unsigned long ceiling);
  1134. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1135. struct vm_area_struct *vma);
  1136. void unmap_mapping_range(struct address_space *mapping,
  1137. loff_t const holebegin, loff_t const holelen, int even_cows);
  1138. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1139. unsigned long *start, unsigned long *end,
  1140. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1141. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1142. unsigned long *pfn);
  1143. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1144. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1145. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1146. void *buf, int len, int write);
  1147. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1148. loff_t const holebegin, loff_t const holelen)
  1149. {
  1150. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1151. }
  1152. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1153. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1154. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1155. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1156. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1157. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1158. int invalidate_inode_page(struct page *page);
  1159. #ifdef CONFIG_MMU
  1160. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1161. unsigned int flags);
  1162. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1163. unsigned long address, unsigned int fault_flags,
  1164. bool *unlocked);
  1165. #else
  1166. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1167. unsigned long address, unsigned int flags)
  1168. {
  1169. /* should never happen if there's no MMU */
  1170. BUG();
  1171. return VM_FAULT_SIGBUS;
  1172. }
  1173. static inline int fixup_user_fault(struct task_struct *tsk,
  1174. struct mm_struct *mm, unsigned long address,
  1175. unsigned int fault_flags, bool *unlocked)
  1176. {
  1177. /* should never happen if there's no MMU */
  1178. BUG();
  1179. return -EFAULT;
  1180. }
  1181. #endif
  1182. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
  1183. unsigned int gup_flags);
  1184. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1185. void *buf, int len, unsigned int gup_flags);
  1186. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1187. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1188. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1189. unsigned long start, unsigned long nr_pages,
  1190. unsigned int gup_flags, struct page **pages,
  1191. struct vm_area_struct **vmas, int *locked);
  1192. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1193. unsigned int gup_flags, struct page **pages,
  1194. struct vm_area_struct **vmas);
  1195. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1196. unsigned int gup_flags, struct page **pages, int *locked);
  1197. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1198. struct page **pages, unsigned int gup_flags);
  1199. #ifdef CONFIG_FS_DAX
  1200. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1201. unsigned int gup_flags, struct page **pages,
  1202. struct vm_area_struct **vmas);
  1203. #else
  1204. static inline long get_user_pages_longterm(unsigned long start,
  1205. unsigned long nr_pages, unsigned int gup_flags,
  1206. struct page **pages, struct vm_area_struct **vmas)
  1207. {
  1208. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1209. }
  1210. #endif /* CONFIG_FS_DAX */
  1211. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1212. struct page **pages);
  1213. /* Container for pinned pfns / pages */
  1214. struct frame_vector {
  1215. unsigned int nr_allocated; /* Number of frames we have space for */
  1216. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1217. bool got_ref; /* Did we pin pages by getting page ref? */
  1218. bool is_pfns; /* Does array contain pages or pfns? */
  1219. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1220. * pfns_vector_pages() or pfns_vector_pfns()
  1221. * for access */
  1222. };
  1223. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1224. void frame_vector_destroy(struct frame_vector *vec);
  1225. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1226. unsigned int gup_flags, struct frame_vector *vec);
  1227. void put_vaddr_frames(struct frame_vector *vec);
  1228. int frame_vector_to_pages(struct frame_vector *vec);
  1229. void frame_vector_to_pfns(struct frame_vector *vec);
  1230. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1231. {
  1232. return vec->nr_frames;
  1233. }
  1234. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1235. {
  1236. if (vec->is_pfns) {
  1237. int err = frame_vector_to_pages(vec);
  1238. if (err)
  1239. return ERR_PTR(err);
  1240. }
  1241. return (struct page **)(vec->ptrs);
  1242. }
  1243. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1244. {
  1245. if (!vec->is_pfns)
  1246. frame_vector_to_pfns(vec);
  1247. return (unsigned long *)(vec->ptrs);
  1248. }
  1249. struct kvec;
  1250. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1251. struct page **pages);
  1252. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1253. struct page *get_dump_page(unsigned long addr);
  1254. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1255. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1256. unsigned int length);
  1257. int __set_page_dirty_nobuffers(struct page *page);
  1258. int __set_page_dirty_no_writeback(struct page *page);
  1259. int redirty_page_for_writepage(struct writeback_control *wbc,
  1260. struct page *page);
  1261. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1262. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1263. struct bdi_writeback *wb);
  1264. int set_page_dirty(struct page *page);
  1265. int set_page_dirty_lock(struct page *page);
  1266. void __cancel_dirty_page(struct page *page);
  1267. static inline void cancel_dirty_page(struct page *page)
  1268. {
  1269. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1270. if (PageDirty(page))
  1271. __cancel_dirty_page(page);
  1272. }
  1273. int clear_page_dirty_for_io(struct page *page);
  1274. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1275. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1276. {
  1277. return !vma->vm_ops;
  1278. }
  1279. #ifdef CONFIG_SHMEM
  1280. /*
  1281. * The vma_is_shmem is not inline because it is used only by slow
  1282. * paths in userfault.
  1283. */
  1284. bool vma_is_shmem(struct vm_area_struct *vma);
  1285. #else
  1286. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1287. #endif
  1288. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1289. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1290. unsigned long old_addr, struct vm_area_struct *new_vma,
  1291. unsigned long new_addr, unsigned long len,
  1292. bool need_rmap_locks);
  1293. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1294. unsigned long end, pgprot_t newprot,
  1295. int dirty_accountable, int prot_numa);
  1296. extern int mprotect_fixup(struct vm_area_struct *vma,
  1297. struct vm_area_struct **pprev, unsigned long start,
  1298. unsigned long end, unsigned long newflags);
  1299. /*
  1300. * doesn't attempt to fault and will return short.
  1301. */
  1302. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1303. struct page **pages);
  1304. /*
  1305. * per-process(per-mm_struct) statistics.
  1306. */
  1307. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1308. {
  1309. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1310. #ifdef SPLIT_RSS_COUNTING
  1311. /*
  1312. * counter is updated in asynchronous manner and may go to minus.
  1313. * But it's never be expected number for users.
  1314. */
  1315. if (val < 0)
  1316. val = 0;
  1317. #endif
  1318. return (unsigned long)val;
  1319. }
  1320. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1321. {
  1322. atomic_long_add(value, &mm->rss_stat.count[member]);
  1323. }
  1324. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1325. {
  1326. atomic_long_inc(&mm->rss_stat.count[member]);
  1327. }
  1328. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1329. {
  1330. atomic_long_dec(&mm->rss_stat.count[member]);
  1331. }
  1332. /* Optimized variant when page is already known not to be PageAnon */
  1333. static inline int mm_counter_file(struct page *page)
  1334. {
  1335. if (PageSwapBacked(page))
  1336. return MM_SHMEMPAGES;
  1337. return MM_FILEPAGES;
  1338. }
  1339. static inline int mm_counter(struct page *page)
  1340. {
  1341. if (PageAnon(page))
  1342. return MM_ANONPAGES;
  1343. return mm_counter_file(page);
  1344. }
  1345. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1346. {
  1347. return get_mm_counter(mm, MM_FILEPAGES) +
  1348. get_mm_counter(mm, MM_ANONPAGES) +
  1349. get_mm_counter(mm, MM_SHMEMPAGES);
  1350. }
  1351. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1352. {
  1353. return max(mm->hiwater_rss, get_mm_rss(mm));
  1354. }
  1355. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1356. {
  1357. return max(mm->hiwater_vm, mm->total_vm);
  1358. }
  1359. static inline void update_hiwater_rss(struct mm_struct *mm)
  1360. {
  1361. unsigned long _rss = get_mm_rss(mm);
  1362. if ((mm)->hiwater_rss < _rss)
  1363. (mm)->hiwater_rss = _rss;
  1364. }
  1365. static inline void update_hiwater_vm(struct mm_struct *mm)
  1366. {
  1367. if (mm->hiwater_vm < mm->total_vm)
  1368. mm->hiwater_vm = mm->total_vm;
  1369. }
  1370. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1371. {
  1372. mm->hiwater_rss = get_mm_rss(mm);
  1373. }
  1374. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1375. struct mm_struct *mm)
  1376. {
  1377. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1378. if (*maxrss < hiwater_rss)
  1379. *maxrss = hiwater_rss;
  1380. }
  1381. #if defined(SPLIT_RSS_COUNTING)
  1382. void sync_mm_rss(struct mm_struct *mm);
  1383. #else
  1384. static inline void sync_mm_rss(struct mm_struct *mm)
  1385. {
  1386. }
  1387. #endif
  1388. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1389. static inline int pte_devmap(pte_t pte)
  1390. {
  1391. return 0;
  1392. }
  1393. #endif
  1394. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1395. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1396. spinlock_t **ptl);
  1397. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1398. spinlock_t **ptl)
  1399. {
  1400. pte_t *ptep;
  1401. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1402. return ptep;
  1403. }
  1404. #ifdef __PAGETABLE_P4D_FOLDED
  1405. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1406. unsigned long address)
  1407. {
  1408. return 0;
  1409. }
  1410. #else
  1411. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1412. #endif
  1413. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1414. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1415. unsigned long address)
  1416. {
  1417. return 0;
  1418. }
  1419. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1420. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1421. #else
  1422. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1423. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1424. {
  1425. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1426. }
  1427. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1428. {
  1429. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1430. }
  1431. #endif
  1432. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1433. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1434. unsigned long address)
  1435. {
  1436. return 0;
  1437. }
  1438. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1439. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1440. #else
  1441. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1442. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1443. {
  1444. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1445. }
  1446. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1447. {
  1448. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1449. }
  1450. #endif
  1451. #ifdef CONFIG_MMU
  1452. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1453. {
  1454. atomic_long_set(&mm->pgtables_bytes, 0);
  1455. }
  1456. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1457. {
  1458. return atomic_long_read(&mm->pgtables_bytes);
  1459. }
  1460. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1461. {
  1462. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1463. }
  1464. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1465. {
  1466. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1467. }
  1468. #else
  1469. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1470. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1471. {
  1472. return 0;
  1473. }
  1474. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1475. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1476. #endif
  1477. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1478. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1479. /*
  1480. * The following ifdef needed to get the 4level-fixup.h header to work.
  1481. * Remove it when 4level-fixup.h has been removed.
  1482. */
  1483. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1484. #ifndef __ARCH_HAS_5LEVEL_HACK
  1485. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1486. unsigned long address)
  1487. {
  1488. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1489. NULL : p4d_offset(pgd, address);
  1490. }
  1491. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1492. unsigned long address)
  1493. {
  1494. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1495. NULL : pud_offset(p4d, address);
  1496. }
  1497. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1498. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1499. {
  1500. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1501. NULL: pmd_offset(pud, address);
  1502. }
  1503. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1504. #if USE_SPLIT_PTE_PTLOCKS
  1505. #if ALLOC_SPLIT_PTLOCKS
  1506. void __init ptlock_cache_init(void);
  1507. extern bool ptlock_alloc(struct page *page);
  1508. extern void ptlock_free(struct page *page);
  1509. static inline spinlock_t *ptlock_ptr(struct page *page)
  1510. {
  1511. return page->ptl;
  1512. }
  1513. #else /* ALLOC_SPLIT_PTLOCKS */
  1514. static inline void ptlock_cache_init(void)
  1515. {
  1516. }
  1517. static inline bool ptlock_alloc(struct page *page)
  1518. {
  1519. return true;
  1520. }
  1521. static inline void ptlock_free(struct page *page)
  1522. {
  1523. }
  1524. static inline spinlock_t *ptlock_ptr(struct page *page)
  1525. {
  1526. return &page->ptl;
  1527. }
  1528. #endif /* ALLOC_SPLIT_PTLOCKS */
  1529. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1530. {
  1531. return ptlock_ptr(pmd_page(*pmd));
  1532. }
  1533. static inline bool ptlock_init(struct page *page)
  1534. {
  1535. /*
  1536. * prep_new_page() initialize page->private (and therefore page->ptl)
  1537. * with 0. Make sure nobody took it in use in between.
  1538. *
  1539. * It can happen if arch try to use slab for page table allocation:
  1540. * slab code uses page->slab_cache, which share storage with page->ptl.
  1541. */
  1542. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1543. if (!ptlock_alloc(page))
  1544. return false;
  1545. spin_lock_init(ptlock_ptr(page));
  1546. return true;
  1547. }
  1548. /* Reset page->mapping so free_pages_check won't complain. */
  1549. static inline void pte_lock_deinit(struct page *page)
  1550. {
  1551. page->mapping = NULL;
  1552. ptlock_free(page);
  1553. }
  1554. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1555. /*
  1556. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1557. */
  1558. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1559. {
  1560. return &mm->page_table_lock;
  1561. }
  1562. static inline void ptlock_cache_init(void) {}
  1563. static inline bool ptlock_init(struct page *page) { return true; }
  1564. static inline void pte_lock_deinit(struct page *page) {}
  1565. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1566. static inline void pgtable_init(void)
  1567. {
  1568. ptlock_cache_init();
  1569. pgtable_cache_init();
  1570. }
  1571. static inline bool pgtable_page_ctor(struct page *page)
  1572. {
  1573. if (!ptlock_init(page))
  1574. return false;
  1575. inc_zone_page_state(page, NR_PAGETABLE);
  1576. return true;
  1577. }
  1578. static inline void pgtable_page_dtor(struct page *page)
  1579. {
  1580. pte_lock_deinit(page);
  1581. dec_zone_page_state(page, NR_PAGETABLE);
  1582. }
  1583. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1584. ({ \
  1585. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1586. pte_t *__pte = pte_offset_map(pmd, address); \
  1587. *(ptlp) = __ptl; \
  1588. spin_lock(__ptl); \
  1589. __pte; \
  1590. })
  1591. #define pte_unmap_unlock(pte, ptl) do { \
  1592. spin_unlock(ptl); \
  1593. pte_unmap(pte); \
  1594. } while (0)
  1595. #define pte_alloc(mm, pmd, address) \
  1596. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1597. #define pte_alloc_map(mm, pmd, address) \
  1598. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1599. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1600. (pte_alloc(mm, pmd, address) ? \
  1601. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1602. #define pte_alloc_kernel(pmd, address) \
  1603. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1604. NULL: pte_offset_kernel(pmd, address))
  1605. #if USE_SPLIT_PMD_PTLOCKS
  1606. static struct page *pmd_to_page(pmd_t *pmd)
  1607. {
  1608. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1609. return virt_to_page((void *)((unsigned long) pmd & mask));
  1610. }
  1611. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1612. {
  1613. return ptlock_ptr(pmd_to_page(pmd));
  1614. }
  1615. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1616. {
  1617. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1618. page->pmd_huge_pte = NULL;
  1619. #endif
  1620. return ptlock_init(page);
  1621. }
  1622. static inline void pgtable_pmd_page_dtor(struct page *page)
  1623. {
  1624. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1625. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1626. #endif
  1627. ptlock_free(page);
  1628. }
  1629. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1630. #else
  1631. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1632. {
  1633. return &mm->page_table_lock;
  1634. }
  1635. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1636. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1637. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1638. #endif
  1639. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1640. {
  1641. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1642. spin_lock(ptl);
  1643. return ptl;
  1644. }
  1645. /*
  1646. * No scalability reason to split PUD locks yet, but follow the same pattern
  1647. * as the PMD locks to make it easier if we decide to. The VM should not be
  1648. * considered ready to switch to split PUD locks yet; there may be places
  1649. * which need to be converted from page_table_lock.
  1650. */
  1651. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1652. {
  1653. return &mm->page_table_lock;
  1654. }
  1655. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1656. {
  1657. spinlock_t *ptl = pud_lockptr(mm, pud);
  1658. spin_lock(ptl);
  1659. return ptl;
  1660. }
  1661. extern void __init pagecache_init(void);
  1662. extern void free_area_init(unsigned long * zones_size);
  1663. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1664. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1665. extern void free_initmem(void);
  1666. /*
  1667. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1668. * into the buddy system. The freed pages will be poisoned with pattern
  1669. * "poison" if it's within range [0, UCHAR_MAX].
  1670. * Return pages freed into the buddy system.
  1671. */
  1672. extern unsigned long free_reserved_area(void *start, void *end,
  1673. int poison, char *s);
  1674. #ifdef CONFIG_HIGHMEM
  1675. /*
  1676. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1677. * and totalram_pages.
  1678. */
  1679. extern void free_highmem_page(struct page *page);
  1680. #endif
  1681. extern void adjust_managed_page_count(struct page *page, long count);
  1682. extern void mem_init_print_info(const char *str);
  1683. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1684. /* Free the reserved page into the buddy system, so it gets managed. */
  1685. static inline void __free_reserved_page(struct page *page)
  1686. {
  1687. ClearPageReserved(page);
  1688. init_page_count(page);
  1689. __free_page(page);
  1690. }
  1691. static inline void free_reserved_page(struct page *page)
  1692. {
  1693. __free_reserved_page(page);
  1694. adjust_managed_page_count(page, 1);
  1695. }
  1696. static inline void mark_page_reserved(struct page *page)
  1697. {
  1698. SetPageReserved(page);
  1699. adjust_managed_page_count(page, -1);
  1700. }
  1701. /*
  1702. * Default method to free all the __init memory into the buddy system.
  1703. * The freed pages will be poisoned with pattern "poison" if it's within
  1704. * range [0, UCHAR_MAX].
  1705. * Return pages freed into the buddy system.
  1706. */
  1707. static inline unsigned long free_initmem_default(int poison)
  1708. {
  1709. extern char __init_begin[], __init_end[];
  1710. return free_reserved_area(&__init_begin, &__init_end,
  1711. poison, "unused kernel");
  1712. }
  1713. static inline unsigned long get_num_physpages(void)
  1714. {
  1715. int nid;
  1716. unsigned long phys_pages = 0;
  1717. for_each_online_node(nid)
  1718. phys_pages += node_present_pages(nid);
  1719. return phys_pages;
  1720. }
  1721. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1722. /*
  1723. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1724. * zones, allocate the backing mem_map and account for memory holes in a more
  1725. * architecture independent manner. This is a substitute for creating the
  1726. * zone_sizes[] and zholes_size[] arrays and passing them to
  1727. * free_area_init_node()
  1728. *
  1729. * An architecture is expected to register range of page frames backed by
  1730. * physical memory with memblock_add[_node]() before calling
  1731. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1732. * usage, an architecture is expected to do something like
  1733. *
  1734. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1735. * max_highmem_pfn};
  1736. * for_each_valid_physical_page_range()
  1737. * memblock_add_node(base, size, nid)
  1738. * free_area_init_nodes(max_zone_pfns);
  1739. *
  1740. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1741. * registered physical page range. Similarly
  1742. * sparse_memory_present_with_active_regions() calls memory_present() for
  1743. * each range when SPARSEMEM is enabled.
  1744. *
  1745. * See mm/page_alloc.c for more information on each function exposed by
  1746. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1747. */
  1748. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1749. unsigned long node_map_pfn_alignment(void);
  1750. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1751. unsigned long end_pfn);
  1752. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1753. unsigned long end_pfn);
  1754. extern void get_pfn_range_for_nid(unsigned int nid,
  1755. unsigned long *start_pfn, unsigned long *end_pfn);
  1756. extern unsigned long find_min_pfn_with_active_regions(void);
  1757. extern void free_bootmem_with_active_regions(int nid,
  1758. unsigned long max_low_pfn);
  1759. extern void sparse_memory_present_with_active_regions(int nid);
  1760. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1761. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1762. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1763. static inline int __early_pfn_to_nid(unsigned long pfn,
  1764. struct mminit_pfnnid_cache *state)
  1765. {
  1766. return 0;
  1767. }
  1768. #else
  1769. /* please see mm/page_alloc.c */
  1770. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1771. /* there is a per-arch backend function. */
  1772. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1773. struct mminit_pfnnid_cache *state);
  1774. #endif
  1775. #ifdef CONFIG_HAVE_MEMBLOCK
  1776. void zero_resv_unavail(void);
  1777. #else
  1778. static inline void zero_resv_unavail(void) {}
  1779. #endif
  1780. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1781. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1782. unsigned long, enum memmap_context);
  1783. extern void setup_per_zone_wmarks(void);
  1784. extern int __meminit init_per_zone_wmark_min(void);
  1785. extern void mem_init(void);
  1786. extern void __init mmap_init(void);
  1787. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1788. extern long si_mem_available(void);
  1789. extern void si_meminfo(struct sysinfo * val);
  1790. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1791. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1792. extern unsigned long arch_reserved_kernel_pages(void);
  1793. #endif
  1794. extern __printf(3, 4)
  1795. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1796. extern void setup_per_cpu_pageset(void);
  1797. extern void zone_pcp_update(struct zone *zone);
  1798. extern void zone_pcp_reset(struct zone *zone);
  1799. /* page_alloc.c */
  1800. extern int min_free_kbytes;
  1801. extern int watermark_scale_factor;
  1802. /* nommu.c */
  1803. extern atomic_long_t mmap_pages_allocated;
  1804. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1805. /* interval_tree.c */
  1806. void vma_interval_tree_insert(struct vm_area_struct *node,
  1807. struct rb_root_cached *root);
  1808. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1809. struct vm_area_struct *prev,
  1810. struct rb_root_cached *root);
  1811. void vma_interval_tree_remove(struct vm_area_struct *node,
  1812. struct rb_root_cached *root);
  1813. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1814. unsigned long start, unsigned long last);
  1815. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1816. unsigned long start, unsigned long last);
  1817. #define vma_interval_tree_foreach(vma, root, start, last) \
  1818. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1819. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1820. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1821. struct rb_root_cached *root);
  1822. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1823. struct rb_root_cached *root);
  1824. struct anon_vma_chain *
  1825. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1826. unsigned long start, unsigned long last);
  1827. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1828. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1829. #ifdef CONFIG_DEBUG_VM_RB
  1830. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1831. #endif
  1832. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1833. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1834. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1835. /* mmap.c */
  1836. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1837. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1838. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1839. struct vm_area_struct *expand);
  1840. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1841. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1842. {
  1843. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1844. }
  1845. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1846. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1847. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1848. struct mempolicy *, struct vm_userfaultfd_ctx);
  1849. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1850. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1851. unsigned long addr, int new_below);
  1852. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1853. unsigned long addr, int new_below);
  1854. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1855. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1856. struct rb_node **, struct rb_node *);
  1857. extern void unlink_file_vma(struct vm_area_struct *);
  1858. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1859. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1860. bool *need_rmap_locks);
  1861. extern void exit_mmap(struct mm_struct *);
  1862. static inline int check_data_rlimit(unsigned long rlim,
  1863. unsigned long new,
  1864. unsigned long start,
  1865. unsigned long end_data,
  1866. unsigned long start_data)
  1867. {
  1868. if (rlim < RLIM_INFINITY) {
  1869. if (((new - start) + (end_data - start_data)) > rlim)
  1870. return -ENOSPC;
  1871. }
  1872. return 0;
  1873. }
  1874. extern int mm_take_all_locks(struct mm_struct *mm);
  1875. extern void mm_drop_all_locks(struct mm_struct *mm);
  1876. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1877. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1878. extern struct file *get_task_exe_file(struct task_struct *task);
  1879. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1880. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1881. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1882. const struct vm_special_mapping *sm);
  1883. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1884. unsigned long addr, unsigned long len,
  1885. unsigned long flags,
  1886. const struct vm_special_mapping *spec);
  1887. /* This is an obsolete alternative to _install_special_mapping. */
  1888. extern int install_special_mapping(struct mm_struct *mm,
  1889. unsigned long addr, unsigned long len,
  1890. unsigned long flags, struct page **pages);
  1891. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1892. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1893. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1894. struct list_head *uf);
  1895. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1896. unsigned long len, unsigned long prot, unsigned long flags,
  1897. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1898. struct list_head *uf);
  1899. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1900. struct list_head *uf);
  1901. static inline unsigned long
  1902. do_mmap_pgoff(struct file *file, unsigned long addr,
  1903. unsigned long len, unsigned long prot, unsigned long flags,
  1904. unsigned long pgoff, unsigned long *populate,
  1905. struct list_head *uf)
  1906. {
  1907. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1908. }
  1909. #ifdef CONFIG_MMU
  1910. extern int __mm_populate(unsigned long addr, unsigned long len,
  1911. int ignore_errors);
  1912. static inline void mm_populate(unsigned long addr, unsigned long len)
  1913. {
  1914. /* Ignore errors */
  1915. (void) __mm_populate(addr, len, 1);
  1916. }
  1917. #else
  1918. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1919. #endif
  1920. /* These take the mm semaphore themselves */
  1921. extern int __must_check vm_brk(unsigned long, unsigned long);
  1922. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1923. extern int vm_munmap(unsigned long, size_t);
  1924. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1925. unsigned long, unsigned long,
  1926. unsigned long, unsigned long);
  1927. struct vm_unmapped_area_info {
  1928. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1929. unsigned long flags;
  1930. unsigned long length;
  1931. unsigned long low_limit;
  1932. unsigned long high_limit;
  1933. unsigned long align_mask;
  1934. unsigned long align_offset;
  1935. };
  1936. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1937. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1938. /*
  1939. * Search for an unmapped address range.
  1940. *
  1941. * We are looking for a range that:
  1942. * - does not intersect with any VMA;
  1943. * - is contained within the [low_limit, high_limit) interval;
  1944. * - is at least the desired size.
  1945. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1946. */
  1947. static inline unsigned long
  1948. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1949. {
  1950. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1951. return unmapped_area_topdown(info);
  1952. else
  1953. return unmapped_area(info);
  1954. }
  1955. /* truncate.c */
  1956. extern void truncate_inode_pages(struct address_space *, loff_t);
  1957. extern void truncate_inode_pages_range(struct address_space *,
  1958. loff_t lstart, loff_t lend);
  1959. extern void truncate_inode_pages_final(struct address_space *);
  1960. /* generic vm_area_ops exported for stackable file systems */
  1961. extern int filemap_fault(struct vm_fault *vmf);
  1962. extern void filemap_map_pages(struct vm_fault *vmf,
  1963. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1964. extern int filemap_page_mkwrite(struct vm_fault *vmf);
  1965. /* mm/page-writeback.c */
  1966. int __must_check write_one_page(struct page *page);
  1967. void task_dirty_inc(struct task_struct *tsk);
  1968. /* readahead.c */
  1969. #define VM_MAX_READAHEAD 128 /* kbytes */
  1970. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1971. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1972. pgoff_t offset, unsigned long nr_to_read);
  1973. void page_cache_sync_readahead(struct address_space *mapping,
  1974. struct file_ra_state *ra,
  1975. struct file *filp,
  1976. pgoff_t offset,
  1977. unsigned long size);
  1978. void page_cache_async_readahead(struct address_space *mapping,
  1979. struct file_ra_state *ra,
  1980. struct file *filp,
  1981. struct page *pg,
  1982. pgoff_t offset,
  1983. unsigned long size);
  1984. extern unsigned long stack_guard_gap;
  1985. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1986. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1987. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1988. extern int expand_downwards(struct vm_area_struct *vma,
  1989. unsigned long address);
  1990. #if VM_GROWSUP
  1991. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1992. #else
  1993. #define expand_upwards(vma, address) (0)
  1994. #endif
  1995. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1996. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1997. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1998. struct vm_area_struct **pprev);
  1999. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2000. NULL if none. Assume start_addr < end_addr. */
  2001. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2002. {
  2003. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2004. if (vma && end_addr <= vma->vm_start)
  2005. vma = NULL;
  2006. return vma;
  2007. }
  2008. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2009. {
  2010. unsigned long vm_start = vma->vm_start;
  2011. if (vma->vm_flags & VM_GROWSDOWN) {
  2012. vm_start -= stack_guard_gap;
  2013. if (vm_start > vma->vm_start)
  2014. vm_start = 0;
  2015. }
  2016. return vm_start;
  2017. }
  2018. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2019. {
  2020. unsigned long vm_end = vma->vm_end;
  2021. if (vma->vm_flags & VM_GROWSUP) {
  2022. vm_end += stack_guard_gap;
  2023. if (vm_end < vma->vm_end)
  2024. vm_end = -PAGE_SIZE;
  2025. }
  2026. return vm_end;
  2027. }
  2028. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2029. {
  2030. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2031. }
  2032. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2033. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2034. unsigned long vm_start, unsigned long vm_end)
  2035. {
  2036. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2037. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2038. vma = NULL;
  2039. return vma;
  2040. }
  2041. #ifdef CONFIG_MMU
  2042. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2043. void vma_set_page_prot(struct vm_area_struct *vma);
  2044. #else
  2045. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2046. {
  2047. return __pgprot(0);
  2048. }
  2049. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2050. {
  2051. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2052. }
  2053. #endif
  2054. #ifdef CONFIG_NUMA_BALANCING
  2055. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2056. unsigned long start, unsigned long end);
  2057. #endif
  2058. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2059. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2060. unsigned long pfn, unsigned long size, pgprot_t);
  2061. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2062. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2063. unsigned long pfn);
  2064. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2065. unsigned long pfn, pgprot_t pgprot);
  2066. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2067. pfn_t pfn);
  2068. int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
  2069. pfn_t pfn);
  2070. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2071. struct page *follow_page_mask(struct vm_area_struct *vma,
  2072. unsigned long address, unsigned int foll_flags,
  2073. unsigned int *page_mask);
  2074. static inline struct page *follow_page(struct vm_area_struct *vma,
  2075. unsigned long address, unsigned int foll_flags)
  2076. {
  2077. unsigned int unused_page_mask;
  2078. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2079. }
  2080. #define FOLL_WRITE 0x01 /* check pte is writable */
  2081. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2082. #define FOLL_GET 0x04 /* do get_page on page */
  2083. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2084. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2085. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2086. * and return without waiting upon it */
  2087. #define FOLL_POPULATE 0x40 /* fault in page */
  2088. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2089. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2090. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2091. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2092. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2093. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2094. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2095. #define FOLL_COW 0x4000 /* internal GUP flag */
  2096. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2097. {
  2098. if (vm_fault & VM_FAULT_OOM)
  2099. return -ENOMEM;
  2100. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2101. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2102. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2103. return -EFAULT;
  2104. return 0;
  2105. }
  2106. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2107. void *data);
  2108. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2109. unsigned long size, pte_fn_t fn, void *data);
  2110. #ifdef CONFIG_PAGE_POISONING
  2111. extern bool page_poisoning_enabled(void);
  2112. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2113. extern bool page_is_poisoned(struct page *page);
  2114. #else
  2115. static inline bool page_poisoning_enabled(void) { return false; }
  2116. static inline void kernel_poison_pages(struct page *page, int numpages,
  2117. int enable) { }
  2118. static inline bool page_is_poisoned(struct page *page) { return false; }
  2119. #endif
  2120. #ifdef CONFIG_DEBUG_PAGEALLOC
  2121. extern bool _debug_pagealloc_enabled;
  2122. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2123. static inline bool debug_pagealloc_enabled(void)
  2124. {
  2125. return _debug_pagealloc_enabled;
  2126. }
  2127. static inline void
  2128. kernel_map_pages(struct page *page, int numpages, int enable)
  2129. {
  2130. if (!debug_pagealloc_enabled())
  2131. return;
  2132. __kernel_map_pages(page, numpages, enable);
  2133. }
  2134. #ifdef CONFIG_HIBERNATION
  2135. extern bool kernel_page_present(struct page *page);
  2136. #endif /* CONFIG_HIBERNATION */
  2137. #else /* CONFIG_DEBUG_PAGEALLOC */
  2138. static inline void
  2139. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2140. #ifdef CONFIG_HIBERNATION
  2141. static inline bool kernel_page_present(struct page *page) { return true; }
  2142. #endif /* CONFIG_HIBERNATION */
  2143. static inline bool debug_pagealloc_enabled(void)
  2144. {
  2145. return false;
  2146. }
  2147. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2148. #ifdef __HAVE_ARCH_GATE_AREA
  2149. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2150. extern int in_gate_area_no_mm(unsigned long addr);
  2151. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2152. #else
  2153. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2154. {
  2155. return NULL;
  2156. }
  2157. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2158. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2159. {
  2160. return 0;
  2161. }
  2162. #endif /* __HAVE_ARCH_GATE_AREA */
  2163. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2164. #ifdef CONFIG_SYSCTL
  2165. extern int sysctl_drop_caches;
  2166. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2167. void __user *, size_t *, loff_t *);
  2168. #endif
  2169. void drop_slab(void);
  2170. void drop_slab_node(int nid);
  2171. #ifndef CONFIG_MMU
  2172. #define randomize_va_space 0
  2173. #else
  2174. extern int randomize_va_space;
  2175. #endif
  2176. const char * arch_vma_name(struct vm_area_struct *vma);
  2177. void print_vma_addr(char *prefix, unsigned long rip);
  2178. void sparse_mem_maps_populate_node(struct page **map_map,
  2179. unsigned long pnum_begin,
  2180. unsigned long pnum_end,
  2181. unsigned long map_count,
  2182. int nodeid);
  2183. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  2184. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2185. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2186. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2187. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2188. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2189. void *vmemmap_alloc_block(unsigned long size, int node);
  2190. struct vmem_altmap;
  2191. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  2192. struct vmem_altmap *altmap);
  2193. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  2194. {
  2195. return __vmemmap_alloc_block_buf(size, node, NULL);
  2196. }
  2197. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2198. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2199. int node);
  2200. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  2201. void vmemmap_populate_print_last(void);
  2202. #ifdef CONFIG_MEMORY_HOTPLUG
  2203. void vmemmap_free(unsigned long start, unsigned long end);
  2204. #endif
  2205. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2206. unsigned long nr_pages);
  2207. enum mf_flags {
  2208. MF_COUNT_INCREASED = 1 << 0,
  2209. MF_ACTION_REQUIRED = 1 << 1,
  2210. MF_MUST_KILL = 1 << 2,
  2211. MF_SOFT_OFFLINE = 1 << 3,
  2212. };
  2213. extern int memory_failure(unsigned long pfn, int flags);
  2214. extern void memory_failure_queue(unsigned long pfn, int flags);
  2215. extern int unpoison_memory(unsigned long pfn);
  2216. extern int get_hwpoison_page(struct page *page);
  2217. #define put_hwpoison_page(page) put_page(page)
  2218. extern int sysctl_memory_failure_early_kill;
  2219. extern int sysctl_memory_failure_recovery;
  2220. extern void shake_page(struct page *p, int access);
  2221. extern atomic_long_t num_poisoned_pages;
  2222. extern int soft_offline_page(struct page *page, int flags);
  2223. /*
  2224. * Error handlers for various types of pages.
  2225. */
  2226. enum mf_result {
  2227. MF_IGNORED, /* Error: cannot be handled */
  2228. MF_FAILED, /* Error: handling failed */
  2229. MF_DELAYED, /* Will be handled later */
  2230. MF_RECOVERED, /* Successfully recovered */
  2231. };
  2232. enum mf_action_page_type {
  2233. MF_MSG_KERNEL,
  2234. MF_MSG_KERNEL_HIGH_ORDER,
  2235. MF_MSG_SLAB,
  2236. MF_MSG_DIFFERENT_COMPOUND,
  2237. MF_MSG_POISONED_HUGE,
  2238. MF_MSG_HUGE,
  2239. MF_MSG_FREE_HUGE,
  2240. MF_MSG_UNMAP_FAILED,
  2241. MF_MSG_DIRTY_SWAPCACHE,
  2242. MF_MSG_CLEAN_SWAPCACHE,
  2243. MF_MSG_DIRTY_MLOCKED_LRU,
  2244. MF_MSG_CLEAN_MLOCKED_LRU,
  2245. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2246. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2247. MF_MSG_DIRTY_LRU,
  2248. MF_MSG_CLEAN_LRU,
  2249. MF_MSG_TRUNCATED_LRU,
  2250. MF_MSG_BUDDY,
  2251. MF_MSG_BUDDY_2ND,
  2252. MF_MSG_UNKNOWN,
  2253. };
  2254. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2255. extern void clear_huge_page(struct page *page,
  2256. unsigned long addr_hint,
  2257. unsigned int pages_per_huge_page);
  2258. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2259. unsigned long addr, struct vm_area_struct *vma,
  2260. unsigned int pages_per_huge_page);
  2261. extern long copy_huge_page_from_user(struct page *dst_page,
  2262. const void __user *usr_src,
  2263. unsigned int pages_per_huge_page,
  2264. bool allow_pagefault);
  2265. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2266. extern struct page_ext_operations debug_guardpage_ops;
  2267. #ifdef CONFIG_DEBUG_PAGEALLOC
  2268. extern unsigned int _debug_guardpage_minorder;
  2269. extern bool _debug_guardpage_enabled;
  2270. static inline unsigned int debug_guardpage_minorder(void)
  2271. {
  2272. return _debug_guardpage_minorder;
  2273. }
  2274. static inline bool debug_guardpage_enabled(void)
  2275. {
  2276. return _debug_guardpage_enabled;
  2277. }
  2278. static inline bool page_is_guard(struct page *page)
  2279. {
  2280. struct page_ext *page_ext;
  2281. if (!debug_guardpage_enabled())
  2282. return false;
  2283. page_ext = lookup_page_ext(page);
  2284. if (unlikely(!page_ext))
  2285. return false;
  2286. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2287. }
  2288. #else
  2289. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2290. static inline bool debug_guardpage_enabled(void) { return false; }
  2291. static inline bool page_is_guard(struct page *page) { return false; }
  2292. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2293. #if MAX_NUMNODES > 1
  2294. void __init setup_nr_node_ids(void);
  2295. #else
  2296. static inline void setup_nr_node_ids(void) {}
  2297. #endif
  2298. #endif /* __KERNEL__ */
  2299. #endif /* _LINUX_MM_H */