intel_ringbuffer.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int
  279. gen7_render_ring_flush(struct intel_engine_cs *ring,
  280. u32 invalidate_domains, u32 flush_domains)
  281. {
  282. u32 flags = 0;
  283. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  284. int ret;
  285. /*
  286. * Ensure that any following seqno writes only happen when the render
  287. * cache is indeed flushed.
  288. *
  289. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  290. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  291. * don't try to be clever and just set it unconditionally.
  292. */
  293. flags |= PIPE_CONTROL_CS_STALL;
  294. /* Just flush everything. Experiments have shown that reducing the
  295. * number of bits based on the write domains has little performance
  296. * impact.
  297. */
  298. if (flush_domains) {
  299. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  300. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  301. }
  302. if (invalidate_domains) {
  303. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  304. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  305. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  306. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  307. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  310. /*
  311. * TLB invalidate requires a post-sync write.
  312. */
  313. flags |= PIPE_CONTROL_QW_WRITE;
  314. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  315. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  316. /* Workaround: we must issue a pipe_control with CS-stall bit
  317. * set before a pipe_control command that has the state cache
  318. * invalidate bit set. */
  319. gen7_render_ring_cs_stall_wa(ring);
  320. }
  321. ret = intel_ring_begin(ring, 4);
  322. if (ret)
  323. return ret;
  324. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  325. intel_ring_emit(ring, flags);
  326. intel_ring_emit(ring, scratch_addr);
  327. intel_ring_emit(ring, 0);
  328. intel_ring_advance(ring);
  329. return 0;
  330. }
  331. static int
  332. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  333. u32 flags, u32 scratch_addr)
  334. {
  335. int ret;
  336. ret = intel_ring_begin(ring, 6);
  337. if (ret)
  338. return ret;
  339. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  340. intel_ring_emit(ring, flags);
  341. intel_ring_emit(ring, scratch_addr);
  342. intel_ring_emit(ring, 0);
  343. intel_ring_emit(ring, 0);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_advance(ring);
  346. return 0;
  347. }
  348. static int
  349. gen8_render_ring_flush(struct intel_engine_cs *ring,
  350. u32 invalidate_domains, u32 flush_domains)
  351. {
  352. u32 flags = 0;
  353. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  354. int ret;
  355. flags |= PIPE_CONTROL_CS_STALL;
  356. if (flush_domains) {
  357. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  358. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  359. }
  360. if (invalidate_domains) {
  361. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  362. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  367. flags |= PIPE_CONTROL_QW_WRITE;
  368. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  369. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  370. ret = gen8_emit_pipe_control(ring,
  371. PIPE_CONTROL_CS_STALL |
  372. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  373. 0);
  374. if (ret)
  375. return ret;
  376. }
  377. return gen8_emit_pipe_control(ring, flags, scratch_addr);
  378. }
  379. static void ring_write_tail(struct intel_engine_cs *ring,
  380. u32 value)
  381. {
  382. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  383. I915_WRITE_TAIL(ring, value);
  384. }
  385. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  386. {
  387. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  388. u64 acthd;
  389. if (INTEL_INFO(ring->dev)->gen >= 8)
  390. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  391. RING_ACTHD_UDW(ring->mmio_base));
  392. else if (INTEL_INFO(ring->dev)->gen >= 4)
  393. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  394. else
  395. acthd = I915_READ(ACTHD);
  396. return acthd;
  397. }
  398. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  399. {
  400. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  401. u32 addr;
  402. addr = dev_priv->status_page_dmah->busaddr;
  403. if (INTEL_INFO(ring->dev)->gen >= 4)
  404. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  405. I915_WRITE(HWS_PGA, addr);
  406. }
  407. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  408. {
  409. struct drm_device *dev = ring->dev;
  410. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  411. u32 mmio = 0;
  412. /* The ring status page addresses are no longer next to the rest of
  413. * the ring registers as of gen7.
  414. */
  415. if (IS_GEN7(dev)) {
  416. switch (ring->id) {
  417. case RCS:
  418. mmio = RENDER_HWS_PGA_GEN7;
  419. break;
  420. case BCS:
  421. mmio = BLT_HWS_PGA_GEN7;
  422. break;
  423. /*
  424. * VCS2 actually doesn't exist on Gen7. Only shut up
  425. * gcc switch check warning
  426. */
  427. case VCS2:
  428. case VCS:
  429. mmio = BSD_HWS_PGA_GEN7;
  430. break;
  431. case VECS:
  432. mmio = VEBOX_HWS_PGA_GEN7;
  433. break;
  434. }
  435. } else if (IS_GEN6(ring->dev)) {
  436. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  437. } else {
  438. /* XXX: gen8 returns to sanity */
  439. mmio = RING_HWS_PGA(ring->mmio_base);
  440. }
  441. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  442. POSTING_READ(mmio);
  443. /*
  444. * Flush the TLB for this page
  445. *
  446. * FIXME: These two bits have disappeared on gen8, so a question
  447. * arises: do we still need this and if so how should we go about
  448. * invalidating the TLB?
  449. */
  450. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  451. u32 reg = RING_INSTPM(ring->mmio_base);
  452. /* ring should be idle before issuing a sync flush*/
  453. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  454. I915_WRITE(reg,
  455. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  456. INSTPM_SYNC_FLUSH));
  457. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  458. 1000))
  459. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  460. ring->name);
  461. }
  462. }
  463. static bool stop_ring(struct intel_engine_cs *ring)
  464. {
  465. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  466. if (!IS_GEN2(ring->dev)) {
  467. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  468. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  469. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  470. /* Sometimes we observe that the idle flag is not
  471. * set even though the ring is empty. So double
  472. * check before giving up.
  473. */
  474. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  475. return false;
  476. }
  477. }
  478. I915_WRITE_CTL(ring, 0);
  479. I915_WRITE_HEAD(ring, 0);
  480. ring->write_tail(ring, 0);
  481. if (!IS_GEN2(ring->dev)) {
  482. (void)I915_READ_CTL(ring);
  483. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  484. }
  485. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  486. }
  487. static int init_ring_common(struct intel_engine_cs *ring)
  488. {
  489. struct drm_device *dev = ring->dev;
  490. struct drm_i915_private *dev_priv = dev->dev_private;
  491. struct intel_ringbuffer *ringbuf = ring->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(ring)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. ring->name,
  500. I915_READ_CTL(ring),
  501. I915_READ_HEAD(ring),
  502. I915_READ_TAIL(ring),
  503. I915_READ_START(ring));
  504. if (!stop_ring(ring)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. ring->name,
  508. I915_READ_CTL(ring),
  509. I915_READ_HEAD(ring),
  510. I915_READ_TAIL(ring),
  511. I915_READ_START(ring));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev))
  517. intel_ring_setup_status_page(ring);
  518. else
  519. ring_setup_phys_status_page(ring);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(ring);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(ring))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. ring->name, I915_READ_HEAD(ring));
  531. I915_WRITE_HEAD(ring, 0);
  532. (void)I915_READ_HEAD(ring);
  533. I915_WRITE_CTL(ring,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  538. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. ring->name,
  543. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  544. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  545. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  546. ret = -EIO;
  547. goto out;
  548. }
  549. ringbuf->last_retired_head = -1;
  550. ringbuf->head = I915_READ_HEAD(ring);
  551. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  552. intel_ring_update_space(ringbuf);
  553. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  554. out:
  555. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  556. return ret;
  557. }
  558. void
  559. intel_fini_pipe_control(struct intel_engine_cs *ring)
  560. {
  561. struct drm_device *dev = ring->dev;
  562. if (ring->scratch.obj == NULL)
  563. return;
  564. if (INTEL_INFO(dev)->gen >= 5) {
  565. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  566. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  567. }
  568. drm_gem_object_unreference(&ring->scratch.obj->base);
  569. ring->scratch.obj = NULL;
  570. }
  571. int
  572. intel_init_pipe_control(struct intel_engine_cs *ring)
  573. {
  574. int ret;
  575. WARN_ON(ring->scratch.obj);
  576. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  577. if (ring->scratch.obj == NULL) {
  578. DRM_ERROR("Failed to allocate seqno page\n");
  579. ret = -ENOMEM;
  580. goto err;
  581. }
  582. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  583. if (ret)
  584. goto err_unref;
  585. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  586. if (ret)
  587. goto err_unref;
  588. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  589. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  590. if (ring->scratch.cpu_page == NULL) {
  591. ret = -ENOMEM;
  592. goto err_unpin;
  593. }
  594. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  595. ring->name, ring->scratch.gtt_offset);
  596. return 0;
  597. err_unpin:
  598. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  599. err_unref:
  600. drm_gem_object_unreference(&ring->scratch.obj->base);
  601. err:
  602. return ret;
  603. }
  604. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  605. struct intel_context *ctx)
  606. {
  607. int ret, i;
  608. struct drm_device *dev = ring->dev;
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. struct i915_workarounds *w = &dev_priv->workarounds;
  611. if (WARN_ON_ONCE(w->count == 0))
  612. return 0;
  613. ring->gpu_caches_dirty = true;
  614. ret = intel_ring_flush_all_caches(ring);
  615. if (ret)
  616. return ret;
  617. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  618. if (ret)
  619. return ret;
  620. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  621. for (i = 0; i < w->count; i++) {
  622. intel_ring_emit(ring, w->reg[i].addr);
  623. intel_ring_emit(ring, w->reg[i].value);
  624. }
  625. intel_ring_emit(ring, MI_NOOP);
  626. intel_ring_advance(ring);
  627. ring->gpu_caches_dirty = true;
  628. ret = intel_ring_flush_all_caches(ring);
  629. if (ret)
  630. return ret;
  631. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  632. return 0;
  633. }
  634. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  635. struct intel_context *ctx)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(ring, ctx);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(ring);
  642. if (ret)
  643. DRM_ERROR("init render state: %d\n", ret);
  644. return ret;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. const u32 addr, const u32 mask, const u32 val)
  648. {
  649. const u32 idx = dev_priv->workarounds.count;
  650. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  651. return -ENOSPC;
  652. dev_priv->workarounds.reg[idx].addr = addr;
  653. dev_priv->workarounds.reg[idx].value = val;
  654. dev_priv->workarounds.reg[idx].mask = mask;
  655. dev_priv->workarounds.count++;
  656. return 0;
  657. }
  658. #define WA_REG(addr, mask, val) { \
  659. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  660. if (r) \
  661. return r; \
  662. }
  663. #define WA_SET_BIT_MASKED(addr, mask) \
  664. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  665. #define WA_CLR_BIT_MASKED(addr, mask) \
  666. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  667. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  668. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  669. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  670. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  671. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  672. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  673. {
  674. struct drm_device *dev = ring->dev;
  675. struct drm_i915_private *dev_priv = dev->dev_private;
  676. /* WaDisablePartialInstShootdown:bdw */
  677. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  678. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  679. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  680. STALL_DOP_GATING_DISABLE);
  681. /* WaDisableDopClockGating:bdw */
  682. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  683. DOP_CLOCK_GATING_DISABLE);
  684. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  685. GEN8_SAMPLER_POWER_BYPASS_DIS);
  686. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  687. * workaround for for a possible hang in the unlikely event a TLB
  688. * invalidation occurs during a PSD flush.
  689. */
  690. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  691. /* WaForceEnableNonCoherent:bdw */
  692. HDC_FORCE_NON_COHERENT |
  693. /* WaForceContextSaveRestoreNonCoherent:bdw */
  694. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  695. /* WaHdcDisableFetchWhenMasked:bdw */
  696. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  697. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  698. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  699. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  700. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  701. * polygons in the same 8x4 pixel/sample area to be processed without
  702. * stalling waiting for the earlier ones to write to Hierarchical Z
  703. * buffer."
  704. *
  705. * This optimization is off by default for Broadwell; turn it on.
  706. */
  707. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  708. /* Wa4x4STCOptimizationDisable:bdw */
  709. WA_SET_BIT_MASKED(CACHE_MODE_1,
  710. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  711. /*
  712. * BSpec recommends 8x4 when MSAA is used,
  713. * however in practice 16x4 seems fastest.
  714. *
  715. * Note that PS/WM thread counts depend on the WIZ hashing
  716. * disable bit, which we don't touch here, but it's good
  717. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  718. */
  719. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  720. GEN6_WIZ_HASHING_MASK,
  721. GEN6_WIZ_HASHING_16x4);
  722. /* WaProgramL3SqcReg1Default:bdw */
  723. WA_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  724. return 0;
  725. }
  726. static int chv_init_workarounds(struct intel_engine_cs *ring)
  727. {
  728. struct drm_device *dev = ring->dev;
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. /* WaDisablePartialInstShootdown:chv */
  731. /* WaDisableThreadStallDopClockGating:chv */
  732. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  733. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  734. STALL_DOP_GATING_DISABLE);
  735. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  736. * workaround for a possible hang in the unlikely event a TLB
  737. * invalidation occurs during a PSD flush.
  738. */
  739. /* WaForceEnableNonCoherent:chv */
  740. /* WaHdcDisableFetchWhenMasked:chv */
  741. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  742. HDC_FORCE_NON_COHERENT |
  743. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  744. /* According to the CACHE_MODE_0 default value documentation, some
  745. * CHV platforms disable this optimization by default. Turn it on.
  746. */
  747. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  748. /* Wa4x4STCOptimizationDisable:chv */
  749. WA_SET_BIT_MASKED(CACHE_MODE_1,
  750. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  751. /* Improve HiZ throughput on CHV. */
  752. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  753. /*
  754. * BSpec recommends 8x4 when MSAA is used,
  755. * however in practice 16x4 seems fastest.
  756. *
  757. * Note that PS/WM thread counts depend on the WIZ hashing
  758. * disable bit, which we don't touch here, but it's good
  759. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  760. */
  761. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  762. GEN6_WIZ_HASHING_MASK,
  763. GEN6_WIZ_HASHING_16x4);
  764. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  765. INTEL_REVID(dev) == SKL_REVID_D0)
  766. /* WaBarrierPerformanceFixDisable:skl */
  767. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  768. HDC_FENCE_DEST_SLM_DISABLE |
  769. HDC_BARRIER_PERFORMANCE_DISABLE);
  770. return 0;
  771. }
  772. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  773. {
  774. struct drm_device *dev = ring->dev;
  775. struct drm_i915_private *dev_priv = dev->dev_private;
  776. /* WaDisablePartialInstShootdown:skl */
  777. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  778. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  779. /* Syncing dependencies between camera and graphics */
  780. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  781. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  782. if (INTEL_REVID(dev) == SKL_REVID_A0 ||
  783. INTEL_REVID(dev) == SKL_REVID_B0) {
  784. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl */
  785. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  786. GEN9_DG_MIRROR_FIX_ENABLE);
  787. }
  788. if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
  789. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
  790. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  791. GEN9_RHWO_OPTIMIZATION_DISABLE);
  792. WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
  793. DISABLE_PIXEL_MASK_CAMMING);
  794. }
  795. if (INTEL_REVID(dev) >= SKL_REVID_C0) {
  796. /* WaEnableYV12BugFixInHalfSliceChicken7:skl */
  797. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  798. GEN9_ENABLE_YV12_BUGFIX);
  799. }
  800. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  801. /*
  802. *Use Force Non-Coherent whenever executing a 3D context. This
  803. * is a workaround for a possible hang in the unlikely event
  804. * a TLB invalidation occurs during a PSD flush.
  805. */
  806. /* WaForceEnableNonCoherent:skl */
  807. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  808. HDC_FORCE_NON_COHERENT);
  809. }
  810. /* Wa4x4STCOptimizationDisable:skl */
  811. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  812. /* WaDisablePartialResolveInVc:skl */
  813. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  814. /* WaCcsTlbPrefetchDisable:skl */
  815. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  816. GEN9_CCS_TLB_PREFETCH_ENABLE);
  817. /*
  818. * FIXME: don't apply the following on BXT for stepping C. On BXT A0
  819. * the flag reads back as 0.
  820. */
  821. /* WaDisableMaskBasedCammingInRCC:sklC,bxtA */
  822. if (INTEL_REVID(dev) == SKL_REVID_C0 || IS_BROXTON(dev))
  823. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  824. PIXEL_MASK_CAMMING_DISABLE);
  825. return 0;
  826. }
  827. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  828. {
  829. struct drm_device *dev = ring->dev;
  830. struct drm_i915_private *dev_priv = dev->dev_private;
  831. u8 vals[3] = { 0, 0, 0 };
  832. unsigned int i;
  833. for (i = 0; i < 3; i++) {
  834. u8 ss;
  835. /*
  836. * Only consider slices where one, and only one, subslice has 7
  837. * EUs
  838. */
  839. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  840. continue;
  841. /*
  842. * subslice_7eu[i] != 0 (because of the check above) and
  843. * ss_max == 4 (maximum number of subslices possible per slice)
  844. *
  845. * -> 0 <= ss <= 3;
  846. */
  847. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  848. vals[i] = 3 - ss;
  849. }
  850. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  851. return 0;
  852. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  853. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  854. GEN9_IZ_HASHING_MASK(2) |
  855. GEN9_IZ_HASHING_MASK(1) |
  856. GEN9_IZ_HASHING_MASK(0),
  857. GEN9_IZ_HASHING(2, vals[2]) |
  858. GEN9_IZ_HASHING(1, vals[1]) |
  859. GEN9_IZ_HASHING(0, vals[0]));
  860. return 0;
  861. }
  862. static int skl_init_workarounds(struct intel_engine_cs *ring)
  863. {
  864. struct drm_device *dev = ring->dev;
  865. struct drm_i915_private *dev_priv = dev->dev_private;
  866. gen9_init_workarounds(ring);
  867. /* WaDisablePowerCompilerClockGating:skl */
  868. if (INTEL_REVID(dev) == SKL_REVID_B0)
  869. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  870. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  871. return skl_tune_iz_hashing(ring);
  872. }
  873. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  874. {
  875. struct drm_device *dev = ring->dev;
  876. struct drm_i915_private *dev_priv = dev->dev_private;
  877. gen9_init_workarounds(ring);
  878. /* WaDisableThreadStallDopClockGating:bxt */
  879. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  880. STALL_DOP_GATING_DISABLE);
  881. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  882. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  883. WA_SET_BIT_MASKED(
  884. GEN7_HALF_SLICE_CHICKEN1,
  885. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  886. }
  887. /* WaForceContextSaveRestoreNonCoherent:bxt */
  888. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  889. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT);
  890. return 0;
  891. }
  892. int init_workarounds_ring(struct intel_engine_cs *ring)
  893. {
  894. struct drm_device *dev = ring->dev;
  895. struct drm_i915_private *dev_priv = dev->dev_private;
  896. WARN_ON(ring->id != RCS);
  897. dev_priv->workarounds.count = 0;
  898. if (IS_BROADWELL(dev))
  899. return bdw_init_workarounds(ring);
  900. if (IS_CHERRYVIEW(dev))
  901. return chv_init_workarounds(ring);
  902. if (IS_SKYLAKE(dev))
  903. return skl_init_workarounds(ring);
  904. if (IS_BROXTON(dev))
  905. return bxt_init_workarounds(ring);
  906. return 0;
  907. }
  908. static int init_render_ring(struct intel_engine_cs *ring)
  909. {
  910. struct drm_device *dev = ring->dev;
  911. struct drm_i915_private *dev_priv = dev->dev_private;
  912. int ret = init_ring_common(ring);
  913. if (ret)
  914. return ret;
  915. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  916. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  917. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  918. /* We need to disable the AsyncFlip performance optimisations in order
  919. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  920. * programmed to '1' on all products.
  921. *
  922. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  923. */
  924. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  925. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  926. /* Required for the hardware to program scanline values for waiting */
  927. /* WaEnableFlushTlbInvalidationMode:snb */
  928. if (INTEL_INFO(dev)->gen == 6)
  929. I915_WRITE(GFX_MODE,
  930. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  931. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  932. if (IS_GEN7(dev))
  933. I915_WRITE(GFX_MODE_GEN7,
  934. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  935. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  936. if (IS_GEN6(dev)) {
  937. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  938. * "If this bit is set, STCunit will have LRA as replacement
  939. * policy. [...] This bit must be reset. LRA replacement
  940. * policy is not supported."
  941. */
  942. I915_WRITE(CACHE_MODE_0,
  943. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  944. }
  945. if (INTEL_INFO(dev)->gen >= 6)
  946. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  947. if (HAS_L3_DPF(dev))
  948. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  949. return init_workarounds_ring(ring);
  950. }
  951. static void render_ring_cleanup(struct intel_engine_cs *ring)
  952. {
  953. struct drm_device *dev = ring->dev;
  954. struct drm_i915_private *dev_priv = dev->dev_private;
  955. if (dev_priv->semaphore_obj) {
  956. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  957. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  958. dev_priv->semaphore_obj = NULL;
  959. }
  960. intel_fini_pipe_control(ring);
  961. }
  962. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  963. unsigned int num_dwords)
  964. {
  965. #define MBOX_UPDATE_DWORDS 8
  966. struct drm_device *dev = signaller->dev;
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. struct intel_engine_cs *waiter;
  969. int i, ret, num_rings;
  970. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  971. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  972. #undef MBOX_UPDATE_DWORDS
  973. ret = intel_ring_begin(signaller, num_dwords);
  974. if (ret)
  975. return ret;
  976. for_each_ring(waiter, dev_priv, i) {
  977. u32 seqno;
  978. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  979. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  980. continue;
  981. seqno = i915_gem_request_get_seqno(
  982. signaller->outstanding_lazy_request);
  983. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  984. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  985. PIPE_CONTROL_QW_WRITE |
  986. PIPE_CONTROL_FLUSH_ENABLE);
  987. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  988. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  989. intel_ring_emit(signaller, seqno);
  990. intel_ring_emit(signaller, 0);
  991. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  992. MI_SEMAPHORE_TARGET(waiter->id));
  993. intel_ring_emit(signaller, 0);
  994. }
  995. return 0;
  996. }
  997. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  998. unsigned int num_dwords)
  999. {
  1000. #define MBOX_UPDATE_DWORDS 6
  1001. struct drm_device *dev = signaller->dev;
  1002. struct drm_i915_private *dev_priv = dev->dev_private;
  1003. struct intel_engine_cs *waiter;
  1004. int i, ret, num_rings;
  1005. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1006. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1007. #undef MBOX_UPDATE_DWORDS
  1008. ret = intel_ring_begin(signaller, num_dwords);
  1009. if (ret)
  1010. return ret;
  1011. for_each_ring(waiter, dev_priv, i) {
  1012. u32 seqno;
  1013. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1014. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1015. continue;
  1016. seqno = i915_gem_request_get_seqno(
  1017. signaller->outstanding_lazy_request);
  1018. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1019. MI_FLUSH_DW_OP_STOREDW);
  1020. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1021. MI_FLUSH_DW_USE_GTT);
  1022. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1023. intel_ring_emit(signaller, seqno);
  1024. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1025. MI_SEMAPHORE_TARGET(waiter->id));
  1026. intel_ring_emit(signaller, 0);
  1027. }
  1028. return 0;
  1029. }
  1030. static int gen6_signal(struct intel_engine_cs *signaller,
  1031. unsigned int num_dwords)
  1032. {
  1033. struct drm_device *dev = signaller->dev;
  1034. struct drm_i915_private *dev_priv = dev->dev_private;
  1035. struct intel_engine_cs *useless;
  1036. int i, ret, num_rings;
  1037. #define MBOX_UPDATE_DWORDS 3
  1038. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1039. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1040. #undef MBOX_UPDATE_DWORDS
  1041. ret = intel_ring_begin(signaller, num_dwords);
  1042. if (ret)
  1043. return ret;
  1044. for_each_ring(useless, dev_priv, i) {
  1045. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1046. if (mbox_reg != GEN6_NOSYNC) {
  1047. u32 seqno = i915_gem_request_get_seqno(
  1048. signaller->outstanding_lazy_request);
  1049. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1050. intel_ring_emit(signaller, mbox_reg);
  1051. intel_ring_emit(signaller, seqno);
  1052. }
  1053. }
  1054. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1055. if (num_rings % 2 == 0)
  1056. intel_ring_emit(signaller, MI_NOOP);
  1057. return 0;
  1058. }
  1059. /**
  1060. * gen6_add_request - Update the semaphore mailbox registers
  1061. *
  1062. * @ring - ring that is adding a request
  1063. * @seqno - return seqno stuck into the ring
  1064. *
  1065. * Update the mailbox registers in the *other* rings with the current seqno.
  1066. * This acts like a signal in the canonical semaphore.
  1067. */
  1068. static int
  1069. gen6_add_request(struct intel_engine_cs *ring)
  1070. {
  1071. int ret;
  1072. if (ring->semaphore.signal)
  1073. ret = ring->semaphore.signal(ring, 4);
  1074. else
  1075. ret = intel_ring_begin(ring, 4);
  1076. if (ret)
  1077. return ret;
  1078. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1079. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1080. intel_ring_emit(ring,
  1081. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1082. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1083. __intel_ring_advance(ring);
  1084. return 0;
  1085. }
  1086. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1087. u32 seqno)
  1088. {
  1089. struct drm_i915_private *dev_priv = dev->dev_private;
  1090. return dev_priv->last_seqno < seqno;
  1091. }
  1092. /**
  1093. * intel_ring_sync - sync the waiter to the signaller on seqno
  1094. *
  1095. * @waiter - ring that is waiting
  1096. * @signaller - ring which has, or will signal
  1097. * @seqno - seqno which the waiter will block on
  1098. */
  1099. static int
  1100. gen8_ring_sync(struct intel_engine_cs *waiter,
  1101. struct intel_engine_cs *signaller,
  1102. u32 seqno)
  1103. {
  1104. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1105. int ret;
  1106. ret = intel_ring_begin(waiter, 4);
  1107. if (ret)
  1108. return ret;
  1109. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1110. MI_SEMAPHORE_GLOBAL_GTT |
  1111. MI_SEMAPHORE_POLL |
  1112. MI_SEMAPHORE_SAD_GTE_SDD);
  1113. intel_ring_emit(waiter, seqno);
  1114. intel_ring_emit(waiter,
  1115. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1116. intel_ring_emit(waiter,
  1117. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1118. intel_ring_advance(waiter);
  1119. return 0;
  1120. }
  1121. static int
  1122. gen6_ring_sync(struct intel_engine_cs *waiter,
  1123. struct intel_engine_cs *signaller,
  1124. u32 seqno)
  1125. {
  1126. u32 dw1 = MI_SEMAPHORE_MBOX |
  1127. MI_SEMAPHORE_COMPARE |
  1128. MI_SEMAPHORE_REGISTER;
  1129. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1130. int ret;
  1131. /* Throughout all of the GEM code, seqno passed implies our current
  1132. * seqno is >= the last seqno executed. However for hardware the
  1133. * comparison is strictly greater than.
  1134. */
  1135. seqno -= 1;
  1136. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1137. ret = intel_ring_begin(waiter, 4);
  1138. if (ret)
  1139. return ret;
  1140. /* If seqno wrap happened, omit the wait with no-ops */
  1141. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1142. intel_ring_emit(waiter, dw1 | wait_mbox);
  1143. intel_ring_emit(waiter, seqno);
  1144. intel_ring_emit(waiter, 0);
  1145. intel_ring_emit(waiter, MI_NOOP);
  1146. } else {
  1147. intel_ring_emit(waiter, MI_NOOP);
  1148. intel_ring_emit(waiter, MI_NOOP);
  1149. intel_ring_emit(waiter, MI_NOOP);
  1150. intel_ring_emit(waiter, MI_NOOP);
  1151. }
  1152. intel_ring_advance(waiter);
  1153. return 0;
  1154. }
  1155. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1156. do { \
  1157. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1158. PIPE_CONTROL_DEPTH_STALL); \
  1159. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1160. intel_ring_emit(ring__, 0); \
  1161. intel_ring_emit(ring__, 0); \
  1162. } while (0)
  1163. static int
  1164. pc_render_add_request(struct intel_engine_cs *ring)
  1165. {
  1166. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1167. int ret;
  1168. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1169. * incoherent with writes to memory, i.e. completely fubar,
  1170. * so we need to use PIPE_NOTIFY instead.
  1171. *
  1172. * However, we also need to workaround the qword write
  1173. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1174. * memory before requesting an interrupt.
  1175. */
  1176. ret = intel_ring_begin(ring, 32);
  1177. if (ret)
  1178. return ret;
  1179. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1180. PIPE_CONTROL_WRITE_FLUSH |
  1181. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1182. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1183. intel_ring_emit(ring,
  1184. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1185. intel_ring_emit(ring, 0);
  1186. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1187. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1188. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1189. scratch_addr += 2 * CACHELINE_BYTES;
  1190. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1191. scratch_addr += 2 * CACHELINE_BYTES;
  1192. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1193. scratch_addr += 2 * CACHELINE_BYTES;
  1194. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1195. scratch_addr += 2 * CACHELINE_BYTES;
  1196. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1198. PIPE_CONTROL_WRITE_FLUSH |
  1199. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1200. PIPE_CONTROL_NOTIFY);
  1201. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1202. intel_ring_emit(ring,
  1203. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1204. intel_ring_emit(ring, 0);
  1205. __intel_ring_advance(ring);
  1206. return 0;
  1207. }
  1208. static u32
  1209. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1210. {
  1211. /* Workaround to force correct ordering between irq and seqno writes on
  1212. * ivb (and maybe also on snb) by reading from a CS register (like
  1213. * ACTHD) before reading the status page. */
  1214. if (!lazy_coherency) {
  1215. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1216. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1217. }
  1218. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1219. }
  1220. static u32
  1221. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1222. {
  1223. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1224. }
  1225. static void
  1226. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1227. {
  1228. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1229. }
  1230. static u32
  1231. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1232. {
  1233. return ring->scratch.cpu_page[0];
  1234. }
  1235. static void
  1236. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1237. {
  1238. ring->scratch.cpu_page[0] = seqno;
  1239. }
  1240. static bool
  1241. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1242. {
  1243. struct drm_device *dev = ring->dev;
  1244. struct drm_i915_private *dev_priv = dev->dev_private;
  1245. unsigned long flags;
  1246. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1247. return false;
  1248. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1249. if (ring->irq_refcount++ == 0)
  1250. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1251. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1252. return true;
  1253. }
  1254. static void
  1255. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1256. {
  1257. struct drm_device *dev = ring->dev;
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. unsigned long flags;
  1260. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1261. if (--ring->irq_refcount == 0)
  1262. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1263. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1264. }
  1265. static bool
  1266. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1267. {
  1268. struct drm_device *dev = ring->dev;
  1269. struct drm_i915_private *dev_priv = dev->dev_private;
  1270. unsigned long flags;
  1271. if (!intel_irqs_enabled(dev_priv))
  1272. return false;
  1273. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1274. if (ring->irq_refcount++ == 0) {
  1275. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1276. I915_WRITE(IMR, dev_priv->irq_mask);
  1277. POSTING_READ(IMR);
  1278. }
  1279. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1280. return true;
  1281. }
  1282. static void
  1283. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1284. {
  1285. struct drm_device *dev = ring->dev;
  1286. struct drm_i915_private *dev_priv = dev->dev_private;
  1287. unsigned long flags;
  1288. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1289. if (--ring->irq_refcount == 0) {
  1290. dev_priv->irq_mask |= ring->irq_enable_mask;
  1291. I915_WRITE(IMR, dev_priv->irq_mask);
  1292. POSTING_READ(IMR);
  1293. }
  1294. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1295. }
  1296. static bool
  1297. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1298. {
  1299. struct drm_device *dev = ring->dev;
  1300. struct drm_i915_private *dev_priv = dev->dev_private;
  1301. unsigned long flags;
  1302. if (!intel_irqs_enabled(dev_priv))
  1303. return false;
  1304. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1305. if (ring->irq_refcount++ == 0) {
  1306. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1307. I915_WRITE16(IMR, dev_priv->irq_mask);
  1308. POSTING_READ16(IMR);
  1309. }
  1310. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1311. return true;
  1312. }
  1313. static void
  1314. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1315. {
  1316. struct drm_device *dev = ring->dev;
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. unsigned long flags;
  1319. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1320. if (--ring->irq_refcount == 0) {
  1321. dev_priv->irq_mask |= ring->irq_enable_mask;
  1322. I915_WRITE16(IMR, dev_priv->irq_mask);
  1323. POSTING_READ16(IMR);
  1324. }
  1325. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1326. }
  1327. static int
  1328. bsd_ring_flush(struct intel_engine_cs *ring,
  1329. u32 invalidate_domains,
  1330. u32 flush_domains)
  1331. {
  1332. int ret;
  1333. ret = intel_ring_begin(ring, 2);
  1334. if (ret)
  1335. return ret;
  1336. intel_ring_emit(ring, MI_FLUSH);
  1337. intel_ring_emit(ring, MI_NOOP);
  1338. intel_ring_advance(ring);
  1339. return 0;
  1340. }
  1341. static int
  1342. i9xx_add_request(struct intel_engine_cs *ring)
  1343. {
  1344. int ret;
  1345. ret = intel_ring_begin(ring, 4);
  1346. if (ret)
  1347. return ret;
  1348. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1349. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1350. intel_ring_emit(ring,
  1351. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1352. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1353. __intel_ring_advance(ring);
  1354. return 0;
  1355. }
  1356. static bool
  1357. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1358. {
  1359. struct drm_device *dev = ring->dev;
  1360. struct drm_i915_private *dev_priv = dev->dev_private;
  1361. unsigned long flags;
  1362. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1363. return false;
  1364. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1365. if (ring->irq_refcount++ == 0) {
  1366. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1367. I915_WRITE_IMR(ring,
  1368. ~(ring->irq_enable_mask |
  1369. GT_PARITY_ERROR(dev)));
  1370. else
  1371. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1372. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1373. }
  1374. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1375. return true;
  1376. }
  1377. static void
  1378. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1379. {
  1380. struct drm_device *dev = ring->dev;
  1381. struct drm_i915_private *dev_priv = dev->dev_private;
  1382. unsigned long flags;
  1383. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1384. if (--ring->irq_refcount == 0) {
  1385. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1386. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1387. else
  1388. I915_WRITE_IMR(ring, ~0);
  1389. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1390. }
  1391. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1392. }
  1393. static bool
  1394. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1395. {
  1396. struct drm_device *dev = ring->dev;
  1397. struct drm_i915_private *dev_priv = dev->dev_private;
  1398. unsigned long flags;
  1399. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1400. return false;
  1401. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1402. if (ring->irq_refcount++ == 0) {
  1403. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1404. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1405. }
  1406. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1407. return true;
  1408. }
  1409. static void
  1410. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1411. {
  1412. struct drm_device *dev = ring->dev;
  1413. struct drm_i915_private *dev_priv = dev->dev_private;
  1414. unsigned long flags;
  1415. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1416. if (--ring->irq_refcount == 0) {
  1417. I915_WRITE_IMR(ring, ~0);
  1418. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1419. }
  1420. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1421. }
  1422. static bool
  1423. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1424. {
  1425. struct drm_device *dev = ring->dev;
  1426. struct drm_i915_private *dev_priv = dev->dev_private;
  1427. unsigned long flags;
  1428. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1429. return false;
  1430. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1431. if (ring->irq_refcount++ == 0) {
  1432. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1433. I915_WRITE_IMR(ring,
  1434. ~(ring->irq_enable_mask |
  1435. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1436. } else {
  1437. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1438. }
  1439. POSTING_READ(RING_IMR(ring->mmio_base));
  1440. }
  1441. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1442. return true;
  1443. }
  1444. static void
  1445. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1446. {
  1447. struct drm_device *dev = ring->dev;
  1448. struct drm_i915_private *dev_priv = dev->dev_private;
  1449. unsigned long flags;
  1450. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1451. if (--ring->irq_refcount == 0) {
  1452. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1453. I915_WRITE_IMR(ring,
  1454. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1455. } else {
  1456. I915_WRITE_IMR(ring, ~0);
  1457. }
  1458. POSTING_READ(RING_IMR(ring->mmio_base));
  1459. }
  1460. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1461. }
  1462. static int
  1463. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1464. u64 offset, u32 length,
  1465. unsigned dispatch_flags)
  1466. {
  1467. int ret;
  1468. ret = intel_ring_begin(ring, 2);
  1469. if (ret)
  1470. return ret;
  1471. intel_ring_emit(ring,
  1472. MI_BATCH_BUFFER_START |
  1473. MI_BATCH_GTT |
  1474. (dispatch_flags & I915_DISPATCH_SECURE ?
  1475. 0 : MI_BATCH_NON_SECURE_I965));
  1476. intel_ring_emit(ring, offset);
  1477. intel_ring_advance(ring);
  1478. return 0;
  1479. }
  1480. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1481. #define I830_BATCH_LIMIT (256*1024)
  1482. #define I830_TLB_ENTRIES (2)
  1483. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1484. static int
  1485. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1486. u64 offset, u32 len,
  1487. unsigned dispatch_flags)
  1488. {
  1489. u32 cs_offset = ring->scratch.gtt_offset;
  1490. int ret;
  1491. ret = intel_ring_begin(ring, 6);
  1492. if (ret)
  1493. return ret;
  1494. /* Evict the invalid PTE TLBs */
  1495. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1496. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1497. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1498. intel_ring_emit(ring, cs_offset);
  1499. intel_ring_emit(ring, 0xdeadbeef);
  1500. intel_ring_emit(ring, MI_NOOP);
  1501. intel_ring_advance(ring);
  1502. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1503. if (len > I830_BATCH_LIMIT)
  1504. return -ENOSPC;
  1505. ret = intel_ring_begin(ring, 6 + 2);
  1506. if (ret)
  1507. return ret;
  1508. /* Blit the batch (which has now all relocs applied) to the
  1509. * stable batch scratch bo area (so that the CS never
  1510. * stumbles over its tlb invalidation bug) ...
  1511. */
  1512. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1513. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1514. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1515. intel_ring_emit(ring, cs_offset);
  1516. intel_ring_emit(ring, 4096);
  1517. intel_ring_emit(ring, offset);
  1518. intel_ring_emit(ring, MI_FLUSH);
  1519. intel_ring_emit(ring, MI_NOOP);
  1520. intel_ring_advance(ring);
  1521. /* ... and execute it. */
  1522. offset = cs_offset;
  1523. }
  1524. ret = intel_ring_begin(ring, 4);
  1525. if (ret)
  1526. return ret;
  1527. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1528. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1529. 0 : MI_BATCH_NON_SECURE));
  1530. intel_ring_emit(ring, offset + len - 8);
  1531. intel_ring_emit(ring, MI_NOOP);
  1532. intel_ring_advance(ring);
  1533. return 0;
  1534. }
  1535. static int
  1536. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1537. u64 offset, u32 len,
  1538. unsigned dispatch_flags)
  1539. {
  1540. int ret;
  1541. ret = intel_ring_begin(ring, 2);
  1542. if (ret)
  1543. return ret;
  1544. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1545. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1546. 0 : MI_BATCH_NON_SECURE));
  1547. intel_ring_advance(ring);
  1548. return 0;
  1549. }
  1550. static void cleanup_status_page(struct intel_engine_cs *ring)
  1551. {
  1552. struct drm_i915_gem_object *obj;
  1553. obj = ring->status_page.obj;
  1554. if (obj == NULL)
  1555. return;
  1556. kunmap(sg_page(obj->pages->sgl));
  1557. i915_gem_object_ggtt_unpin(obj);
  1558. drm_gem_object_unreference(&obj->base);
  1559. ring->status_page.obj = NULL;
  1560. }
  1561. static int init_status_page(struct intel_engine_cs *ring)
  1562. {
  1563. struct drm_i915_gem_object *obj;
  1564. if ((obj = ring->status_page.obj) == NULL) {
  1565. unsigned flags;
  1566. int ret;
  1567. obj = i915_gem_alloc_object(ring->dev, 4096);
  1568. if (obj == NULL) {
  1569. DRM_ERROR("Failed to allocate status page\n");
  1570. return -ENOMEM;
  1571. }
  1572. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1573. if (ret)
  1574. goto err_unref;
  1575. flags = 0;
  1576. if (!HAS_LLC(ring->dev))
  1577. /* On g33, we cannot place HWS above 256MiB, so
  1578. * restrict its pinning to the low mappable arena.
  1579. * Though this restriction is not documented for
  1580. * gen4, gen5, or byt, they also behave similarly
  1581. * and hang if the HWS is placed at the top of the
  1582. * GTT. To generalise, it appears that all !llc
  1583. * platforms have issues with us placing the HWS
  1584. * above the mappable region (even though we never
  1585. * actualy map it).
  1586. */
  1587. flags |= PIN_MAPPABLE;
  1588. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1589. if (ret) {
  1590. err_unref:
  1591. drm_gem_object_unreference(&obj->base);
  1592. return ret;
  1593. }
  1594. ring->status_page.obj = obj;
  1595. }
  1596. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1597. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1598. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1599. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1600. ring->name, ring->status_page.gfx_addr);
  1601. return 0;
  1602. }
  1603. static int init_phys_status_page(struct intel_engine_cs *ring)
  1604. {
  1605. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1606. if (!dev_priv->status_page_dmah) {
  1607. dev_priv->status_page_dmah =
  1608. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1609. if (!dev_priv->status_page_dmah)
  1610. return -ENOMEM;
  1611. }
  1612. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1613. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1614. return 0;
  1615. }
  1616. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1617. {
  1618. iounmap(ringbuf->virtual_start);
  1619. ringbuf->virtual_start = NULL;
  1620. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1621. }
  1622. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1623. struct intel_ringbuffer *ringbuf)
  1624. {
  1625. struct drm_i915_private *dev_priv = to_i915(dev);
  1626. struct drm_i915_gem_object *obj = ringbuf->obj;
  1627. int ret;
  1628. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1629. if (ret)
  1630. return ret;
  1631. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1632. if (ret) {
  1633. i915_gem_object_ggtt_unpin(obj);
  1634. return ret;
  1635. }
  1636. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1637. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1638. if (ringbuf->virtual_start == NULL) {
  1639. i915_gem_object_ggtt_unpin(obj);
  1640. return -EINVAL;
  1641. }
  1642. return 0;
  1643. }
  1644. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1645. {
  1646. drm_gem_object_unreference(&ringbuf->obj->base);
  1647. ringbuf->obj = NULL;
  1648. }
  1649. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1650. struct intel_ringbuffer *ringbuf)
  1651. {
  1652. struct drm_i915_gem_object *obj;
  1653. obj = NULL;
  1654. if (!HAS_LLC(dev))
  1655. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1656. if (obj == NULL)
  1657. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1658. if (obj == NULL)
  1659. return -ENOMEM;
  1660. /* mark ring buffers as read-only from GPU side by default */
  1661. obj->gt_ro = 1;
  1662. ringbuf->obj = obj;
  1663. return 0;
  1664. }
  1665. static int intel_init_ring_buffer(struct drm_device *dev,
  1666. struct intel_engine_cs *ring)
  1667. {
  1668. struct intel_ringbuffer *ringbuf;
  1669. int ret;
  1670. WARN_ON(ring->buffer);
  1671. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1672. if (!ringbuf)
  1673. return -ENOMEM;
  1674. ring->buffer = ringbuf;
  1675. ring->dev = dev;
  1676. INIT_LIST_HEAD(&ring->active_list);
  1677. INIT_LIST_HEAD(&ring->request_list);
  1678. INIT_LIST_HEAD(&ring->execlist_queue);
  1679. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1680. ringbuf->size = 32 * PAGE_SIZE;
  1681. ringbuf->ring = ring;
  1682. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1683. init_waitqueue_head(&ring->irq_queue);
  1684. if (I915_NEED_GFX_HWS(dev)) {
  1685. ret = init_status_page(ring);
  1686. if (ret)
  1687. goto error;
  1688. } else {
  1689. BUG_ON(ring->id != RCS);
  1690. ret = init_phys_status_page(ring);
  1691. if (ret)
  1692. goto error;
  1693. }
  1694. WARN_ON(ringbuf->obj);
  1695. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1696. if (ret) {
  1697. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1698. ring->name, ret);
  1699. goto error;
  1700. }
  1701. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1702. if (ret) {
  1703. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1704. ring->name, ret);
  1705. intel_destroy_ringbuffer_obj(ringbuf);
  1706. goto error;
  1707. }
  1708. /* Workaround an erratum on the i830 which causes a hang if
  1709. * the TAIL pointer points to within the last 2 cachelines
  1710. * of the buffer.
  1711. */
  1712. ringbuf->effective_size = ringbuf->size;
  1713. if (IS_I830(dev) || IS_845G(dev))
  1714. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1715. ret = i915_cmd_parser_init_ring(ring);
  1716. if (ret)
  1717. goto error;
  1718. return 0;
  1719. error:
  1720. kfree(ringbuf);
  1721. ring->buffer = NULL;
  1722. return ret;
  1723. }
  1724. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1725. {
  1726. struct drm_i915_private *dev_priv;
  1727. struct intel_ringbuffer *ringbuf;
  1728. if (!intel_ring_initialized(ring))
  1729. return;
  1730. dev_priv = to_i915(ring->dev);
  1731. ringbuf = ring->buffer;
  1732. intel_stop_ring_buffer(ring);
  1733. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1734. intel_unpin_ringbuffer_obj(ringbuf);
  1735. intel_destroy_ringbuffer_obj(ringbuf);
  1736. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1737. if (ring->cleanup)
  1738. ring->cleanup(ring);
  1739. cleanup_status_page(ring);
  1740. i915_cmd_parser_fini_ring(ring);
  1741. i915_gem_batch_pool_fini(&ring->batch_pool);
  1742. kfree(ringbuf);
  1743. ring->buffer = NULL;
  1744. }
  1745. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1746. {
  1747. struct intel_ringbuffer *ringbuf = ring->buffer;
  1748. struct drm_i915_gem_request *request;
  1749. int ret, new_space;
  1750. if (intel_ring_space(ringbuf) >= n)
  1751. return 0;
  1752. list_for_each_entry(request, &ring->request_list, list) {
  1753. new_space = __intel_ring_space(request->postfix, ringbuf->tail,
  1754. ringbuf->size);
  1755. if (new_space >= n)
  1756. break;
  1757. }
  1758. if (WARN_ON(&request->list == &ring->request_list))
  1759. return -ENOSPC;
  1760. ret = i915_wait_request(request);
  1761. if (ret)
  1762. return ret;
  1763. i915_gem_retire_requests_ring(ring);
  1764. WARN_ON(intel_ring_space(ringbuf) < new_space);
  1765. return 0;
  1766. }
  1767. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1768. {
  1769. uint32_t __iomem *virt;
  1770. struct intel_ringbuffer *ringbuf = ring->buffer;
  1771. int rem = ringbuf->size - ringbuf->tail;
  1772. if (ringbuf->space < rem) {
  1773. int ret = ring_wait_for_space(ring, rem);
  1774. if (ret)
  1775. return ret;
  1776. }
  1777. virt = ringbuf->virtual_start + ringbuf->tail;
  1778. rem /= 4;
  1779. while (rem--)
  1780. iowrite32(MI_NOOP, virt++);
  1781. ringbuf->tail = 0;
  1782. intel_ring_update_space(ringbuf);
  1783. return 0;
  1784. }
  1785. int intel_ring_idle(struct intel_engine_cs *ring)
  1786. {
  1787. struct drm_i915_gem_request *req;
  1788. int ret;
  1789. /* We need to add any requests required to flush the objects and ring */
  1790. if (ring->outstanding_lazy_request) {
  1791. ret = i915_add_request(ring);
  1792. if (ret)
  1793. return ret;
  1794. }
  1795. /* Wait upon the last request to be completed */
  1796. if (list_empty(&ring->request_list))
  1797. return 0;
  1798. req = list_entry(ring->request_list.prev,
  1799. struct drm_i915_gem_request,
  1800. list);
  1801. return i915_wait_request(req);
  1802. }
  1803. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1804. {
  1805. request->ringbuf = request->ring->buffer;
  1806. return 0;
  1807. }
  1808. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1809. int bytes)
  1810. {
  1811. struct intel_ringbuffer *ringbuf = ring->buffer;
  1812. int ret;
  1813. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1814. ret = intel_wrap_ring_buffer(ring);
  1815. if (unlikely(ret))
  1816. return ret;
  1817. }
  1818. if (unlikely(ringbuf->space < bytes)) {
  1819. ret = ring_wait_for_space(ring, bytes);
  1820. if (unlikely(ret))
  1821. return ret;
  1822. }
  1823. return 0;
  1824. }
  1825. int intel_ring_begin(struct intel_engine_cs *ring,
  1826. int num_dwords)
  1827. {
  1828. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1829. int ret;
  1830. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1831. dev_priv->mm.interruptible);
  1832. if (ret)
  1833. return ret;
  1834. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1835. if (ret)
  1836. return ret;
  1837. /* Preallocate the olr before touching the ring */
  1838. ret = i915_gem_request_alloc(ring, ring->default_context);
  1839. if (ret)
  1840. return ret;
  1841. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1842. return 0;
  1843. }
  1844. /* Align the ring tail to a cacheline boundary */
  1845. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1846. {
  1847. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1848. int ret;
  1849. if (num_dwords == 0)
  1850. return 0;
  1851. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1852. ret = intel_ring_begin(ring, num_dwords);
  1853. if (ret)
  1854. return ret;
  1855. while (num_dwords--)
  1856. intel_ring_emit(ring, MI_NOOP);
  1857. intel_ring_advance(ring);
  1858. return 0;
  1859. }
  1860. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1861. {
  1862. struct drm_device *dev = ring->dev;
  1863. struct drm_i915_private *dev_priv = dev->dev_private;
  1864. BUG_ON(ring->outstanding_lazy_request);
  1865. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1866. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1867. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1868. if (HAS_VEBOX(dev))
  1869. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1870. }
  1871. ring->set_seqno(ring, seqno);
  1872. ring->hangcheck.seqno = seqno;
  1873. }
  1874. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1875. u32 value)
  1876. {
  1877. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1878. /* Every tail move must follow the sequence below */
  1879. /* Disable notification that the ring is IDLE. The GT
  1880. * will then assume that it is busy and bring it out of rc6.
  1881. */
  1882. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1883. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1884. /* Clear the context id. Here be magic! */
  1885. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1886. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1887. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1888. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1889. 50))
  1890. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1891. /* Now that the ring is fully powered up, update the tail */
  1892. I915_WRITE_TAIL(ring, value);
  1893. POSTING_READ(RING_TAIL(ring->mmio_base));
  1894. /* Let the ring send IDLE messages to the GT again,
  1895. * and so let it sleep to conserve power when idle.
  1896. */
  1897. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1898. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1899. }
  1900. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1901. u32 invalidate, u32 flush)
  1902. {
  1903. uint32_t cmd;
  1904. int ret;
  1905. ret = intel_ring_begin(ring, 4);
  1906. if (ret)
  1907. return ret;
  1908. cmd = MI_FLUSH_DW;
  1909. if (INTEL_INFO(ring->dev)->gen >= 8)
  1910. cmd += 1;
  1911. /* We always require a command barrier so that subsequent
  1912. * commands, such as breadcrumb interrupts, are strictly ordered
  1913. * wrt the contents of the write cache being flushed to memory
  1914. * (and thus being coherent from the CPU).
  1915. */
  1916. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1917. /*
  1918. * Bspec vol 1c.5 - video engine command streamer:
  1919. * "If ENABLED, all TLBs will be invalidated once the flush
  1920. * operation is complete. This bit is only valid when the
  1921. * Post-Sync Operation field is a value of 1h or 3h."
  1922. */
  1923. if (invalidate & I915_GEM_GPU_DOMAINS)
  1924. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1925. intel_ring_emit(ring, cmd);
  1926. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1927. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1928. intel_ring_emit(ring, 0); /* upper addr */
  1929. intel_ring_emit(ring, 0); /* value */
  1930. } else {
  1931. intel_ring_emit(ring, 0);
  1932. intel_ring_emit(ring, MI_NOOP);
  1933. }
  1934. intel_ring_advance(ring);
  1935. return 0;
  1936. }
  1937. static int
  1938. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1939. u64 offset, u32 len,
  1940. unsigned dispatch_flags)
  1941. {
  1942. bool ppgtt = USES_PPGTT(ring->dev) &&
  1943. !(dispatch_flags & I915_DISPATCH_SECURE);
  1944. int ret;
  1945. ret = intel_ring_begin(ring, 4);
  1946. if (ret)
  1947. return ret;
  1948. /* FIXME(BDW): Address space and security selectors. */
  1949. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1950. intel_ring_emit(ring, lower_32_bits(offset));
  1951. intel_ring_emit(ring, upper_32_bits(offset));
  1952. intel_ring_emit(ring, MI_NOOP);
  1953. intel_ring_advance(ring);
  1954. return 0;
  1955. }
  1956. static int
  1957. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1958. u64 offset, u32 len,
  1959. unsigned dispatch_flags)
  1960. {
  1961. int ret;
  1962. ret = intel_ring_begin(ring, 2);
  1963. if (ret)
  1964. return ret;
  1965. intel_ring_emit(ring,
  1966. MI_BATCH_BUFFER_START |
  1967. (dispatch_flags & I915_DISPATCH_SECURE ?
  1968. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1969. /* bit0-7 is the length on GEN6+ */
  1970. intel_ring_emit(ring, offset);
  1971. intel_ring_advance(ring);
  1972. return 0;
  1973. }
  1974. static int
  1975. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1976. u64 offset, u32 len,
  1977. unsigned dispatch_flags)
  1978. {
  1979. int ret;
  1980. ret = intel_ring_begin(ring, 2);
  1981. if (ret)
  1982. return ret;
  1983. intel_ring_emit(ring,
  1984. MI_BATCH_BUFFER_START |
  1985. (dispatch_flags & I915_DISPATCH_SECURE ?
  1986. 0 : MI_BATCH_NON_SECURE_I965));
  1987. /* bit0-7 is the length on GEN6+ */
  1988. intel_ring_emit(ring, offset);
  1989. intel_ring_advance(ring);
  1990. return 0;
  1991. }
  1992. /* Blitter support (SandyBridge+) */
  1993. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1994. u32 invalidate, u32 flush)
  1995. {
  1996. struct drm_device *dev = ring->dev;
  1997. uint32_t cmd;
  1998. int ret;
  1999. ret = intel_ring_begin(ring, 4);
  2000. if (ret)
  2001. return ret;
  2002. cmd = MI_FLUSH_DW;
  2003. if (INTEL_INFO(dev)->gen >= 8)
  2004. cmd += 1;
  2005. /* We always require a command barrier so that subsequent
  2006. * commands, such as breadcrumb interrupts, are strictly ordered
  2007. * wrt the contents of the write cache being flushed to memory
  2008. * (and thus being coherent from the CPU).
  2009. */
  2010. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2011. /*
  2012. * Bspec vol 1c.3 - blitter engine command streamer:
  2013. * "If ENABLED, all TLBs will be invalidated once the flush
  2014. * operation is complete. This bit is only valid when the
  2015. * Post-Sync Operation field is a value of 1h or 3h."
  2016. */
  2017. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2018. cmd |= MI_INVALIDATE_TLB;
  2019. intel_ring_emit(ring, cmd);
  2020. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2021. if (INTEL_INFO(dev)->gen >= 8) {
  2022. intel_ring_emit(ring, 0); /* upper addr */
  2023. intel_ring_emit(ring, 0); /* value */
  2024. } else {
  2025. intel_ring_emit(ring, 0);
  2026. intel_ring_emit(ring, MI_NOOP);
  2027. }
  2028. intel_ring_advance(ring);
  2029. return 0;
  2030. }
  2031. int intel_init_render_ring_buffer(struct drm_device *dev)
  2032. {
  2033. struct drm_i915_private *dev_priv = dev->dev_private;
  2034. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2035. struct drm_i915_gem_object *obj;
  2036. int ret;
  2037. ring->name = "render ring";
  2038. ring->id = RCS;
  2039. ring->mmio_base = RENDER_RING_BASE;
  2040. if (INTEL_INFO(dev)->gen >= 8) {
  2041. if (i915_semaphore_is_enabled(dev)) {
  2042. obj = i915_gem_alloc_object(dev, 4096);
  2043. if (obj == NULL) {
  2044. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2045. i915.semaphores = 0;
  2046. } else {
  2047. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2048. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2049. if (ret != 0) {
  2050. drm_gem_object_unreference(&obj->base);
  2051. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2052. i915.semaphores = 0;
  2053. } else
  2054. dev_priv->semaphore_obj = obj;
  2055. }
  2056. }
  2057. ring->init_context = intel_rcs_ctx_init;
  2058. ring->add_request = gen6_add_request;
  2059. ring->flush = gen8_render_ring_flush;
  2060. ring->irq_get = gen8_ring_get_irq;
  2061. ring->irq_put = gen8_ring_put_irq;
  2062. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2063. ring->get_seqno = gen6_ring_get_seqno;
  2064. ring->set_seqno = ring_set_seqno;
  2065. if (i915_semaphore_is_enabled(dev)) {
  2066. WARN_ON(!dev_priv->semaphore_obj);
  2067. ring->semaphore.sync_to = gen8_ring_sync;
  2068. ring->semaphore.signal = gen8_rcs_signal;
  2069. GEN8_RING_SEMAPHORE_INIT;
  2070. }
  2071. } else if (INTEL_INFO(dev)->gen >= 6) {
  2072. ring->add_request = gen6_add_request;
  2073. ring->flush = gen7_render_ring_flush;
  2074. if (INTEL_INFO(dev)->gen == 6)
  2075. ring->flush = gen6_render_ring_flush;
  2076. ring->irq_get = gen6_ring_get_irq;
  2077. ring->irq_put = gen6_ring_put_irq;
  2078. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2079. ring->get_seqno = gen6_ring_get_seqno;
  2080. ring->set_seqno = ring_set_seqno;
  2081. if (i915_semaphore_is_enabled(dev)) {
  2082. ring->semaphore.sync_to = gen6_ring_sync;
  2083. ring->semaphore.signal = gen6_signal;
  2084. /*
  2085. * The current semaphore is only applied on pre-gen8
  2086. * platform. And there is no VCS2 ring on the pre-gen8
  2087. * platform. So the semaphore between RCS and VCS2 is
  2088. * initialized as INVALID. Gen8 will initialize the
  2089. * sema between VCS2 and RCS later.
  2090. */
  2091. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2092. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2093. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2094. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2095. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2096. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2097. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2098. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2099. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2100. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2101. }
  2102. } else if (IS_GEN5(dev)) {
  2103. ring->add_request = pc_render_add_request;
  2104. ring->flush = gen4_render_ring_flush;
  2105. ring->get_seqno = pc_render_get_seqno;
  2106. ring->set_seqno = pc_render_set_seqno;
  2107. ring->irq_get = gen5_ring_get_irq;
  2108. ring->irq_put = gen5_ring_put_irq;
  2109. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2110. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2111. } else {
  2112. ring->add_request = i9xx_add_request;
  2113. if (INTEL_INFO(dev)->gen < 4)
  2114. ring->flush = gen2_render_ring_flush;
  2115. else
  2116. ring->flush = gen4_render_ring_flush;
  2117. ring->get_seqno = ring_get_seqno;
  2118. ring->set_seqno = ring_set_seqno;
  2119. if (IS_GEN2(dev)) {
  2120. ring->irq_get = i8xx_ring_get_irq;
  2121. ring->irq_put = i8xx_ring_put_irq;
  2122. } else {
  2123. ring->irq_get = i9xx_ring_get_irq;
  2124. ring->irq_put = i9xx_ring_put_irq;
  2125. }
  2126. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2127. }
  2128. ring->write_tail = ring_write_tail;
  2129. if (IS_HASWELL(dev))
  2130. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2131. else if (IS_GEN8(dev))
  2132. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2133. else if (INTEL_INFO(dev)->gen >= 6)
  2134. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2135. else if (INTEL_INFO(dev)->gen >= 4)
  2136. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2137. else if (IS_I830(dev) || IS_845G(dev))
  2138. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2139. else
  2140. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2141. ring->init_hw = init_render_ring;
  2142. ring->cleanup = render_ring_cleanup;
  2143. /* Workaround batchbuffer to combat CS tlb bug. */
  2144. if (HAS_BROKEN_CS_TLB(dev)) {
  2145. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2146. if (obj == NULL) {
  2147. DRM_ERROR("Failed to allocate batch bo\n");
  2148. return -ENOMEM;
  2149. }
  2150. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2151. if (ret != 0) {
  2152. drm_gem_object_unreference(&obj->base);
  2153. DRM_ERROR("Failed to ping batch bo\n");
  2154. return ret;
  2155. }
  2156. ring->scratch.obj = obj;
  2157. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2158. }
  2159. ret = intel_init_ring_buffer(dev, ring);
  2160. if (ret)
  2161. return ret;
  2162. if (INTEL_INFO(dev)->gen >= 5) {
  2163. ret = intel_init_pipe_control(ring);
  2164. if (ret)
  2165. return ret;
  2166. }
  2167. return 0;
  2168. }
  2169. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2170. {
  2171. struct drm_i915_private *dev_priv = dev->dev_private;
  2172. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2173. ring->name = "bsd ring";
  2174. ring->id = VCS;
  2175. ring->write_tail = ring_write_tail;
  2176. if (INTEL_INFO(dev)->gen >= 6) {
  2177. ring->mmio_base = GEN6_BSD_RING_BASE;
  2178. /* gen6 bsd needs a special wa for tail updates */
  2179. if (IS_GEN6(dev))
  2180. ring->write_tail = gen6_bsd_ring_write_tail;
  2181. ring->flush = gen6_bsd_ring_flush;
  2182. ring->add_request = gen6_add_request;
  2183. ring->get_seqno = gen6_ring_get_seqno;
  2184. ring->set_seqno = ring_set_seqno;
  2185. if (INTEL_INFO(dev)->gen >= 8) {
  2186. ring->irq_enable_mask =
  2187. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2188. ring->irq_get = gen8_ring_get_irq;
  2189. ring->irq_put = gen8_ring_put_irq;
  2190. ring->dispatch_execbuffer =
  2191. gen8_ring_dispatch_execbuffer;
  2192. if (i915_semaphore_is_enabled(dev)) {
  2193. ring->semaphore.sync_to = gen8_ring_sync;
  2194. ring->semaphore.signal = gen8_xcs_signal;
  2195. GEN8_RING_SEMAPHORE_INIT;
  2196. }
  2197. } else {
  2198. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2199. ring->irq_get = gen6_ring_get_irq;
  2200. ring->irq_put = gen6_ring_put_irq;
  2201. ring->dispatch_execbuffer =
  2202. gen6_ring_dispatch_execbuffer;
  2203. if (i915_semaphore_is_enabled(dev)) {
  2204. ring->semaphore.sync_to = gen6_ring_sync;
  2205. ring->semaphore.signal = gen6_signal;
  2206. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2207. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2208. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2209. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2210. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2211. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2212. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2213. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2214. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2215. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2216. }
  2217. }
  2218. } else {
  2219. ring->mmio_base = BSD_RING_BASE;
  2220. ring->flush = bsd_ring_flush;
  2221. ring->add_request = i9xx_add_request;
  2222. ring->get_seqno = ring_get_seqno;
  2223. ring->set_seqno = ring_set_seqno;
  2224. if (IS_GEN5(dev)) {
  2225. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2226. ring->irq_get = gen5_ring_get_irq;
  2227. ring->irq_put = gen5_ring_put_irq;
  2228. } else {
  2229. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2230. ring->irq_get = i9xx_ring_get_irq;
  2231. ring->irq_put = i9xx_ring_put_irq;
  2232. }
  2233. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2234. }
  2235. ring->init_hw = init_ring_common;
  2236. return intel_init_ring_buffer(dev, ring);
  2237. }
  2238. /**
  2239. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2240. */
  2241. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2242. {
  2243. struct drm_i915_private *dev_priv = dev->dev_private;
  2244. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2245. ring->name = "bsd2 ring";
  2246. ring->id = VCS2;
  2247. ring->write_tail = ring_write_tail;
  2248. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2249. ring->flush = gen6_bsd_ring_flush;
  2250. ring->add_request = gen6_add_request;
  2251. ring->get_seqno = gen6_ring_get_seqno;
  2252. ring->set_seqno = ring_set_seqno;
  2253. ring->irq_enable_mask =
  2254. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2255. ring->irq_get = gen8_ring_get_irq;
  2256. ring->irq_put = gen8_ring_put_irq;
  2257. ring->dispatch_execbuffer =
  2258. gen8_ring_dispatch_execbuffer;
  2259. if (i915_semaphore_is_enabled(dev)) {
  2260. ring->semaphore.sync_to = gen8_ring_sync;
  2261. ring->semaphore.signal = gen8_xcs_signal;
  2262. GEN8_RING_SEMAPHORE_INIT;
  2263. }
  2264. ring->init_hw = init_ring_common;
  2265. return intel_init_ring_buffer(dev, ring);
  2266. }
  2267. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2268. {
  2269. struct drm_i915_private *dev_priv = dev->dev_private;
  2270. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2271. ring->name = "blitter ring";
  2272. ring->id = BCS;
  2273. ring->mmio_base = BLT_RING_BASE;
  2274. ring->write_tail = ring_write_tail;
  2275. ring->flush = gen6_ring_flush;
  2276. ring->add_request = gen6_add_request;
  2277. ring->get_seqno = gen6_ring_get_seqno;
  2278. ring->set_seqno = ring_set_seqno;
  2279. if (INTEL_INFO(dev)->gen >= 8) {
  2280. ring->irq_enable_mask =
  2281. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2282. ring->irq_get = gen8_ring_get_irq;
  2283. ring->irq_put = gen8_ring_put_irq;
  2284. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2285. if (i915_semaphore_is_enabled(dev)) {
  2286. ring->semaphore.sync_to = gen8_ring_sync;
  2287. ring->semaphore.signal = gen8_xcs_signal;
  2288. GEN8_RING_SEMAPHORE_INIT;
  2289. }
  2290. } else {
  2291. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2292. ring->irq_get = gen6_ring_get_irq;
  2293. ring->irq_put = gen6_ring_put_irq;
  2294. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2295. if (i915_semaphore_is_enabled(dev)) {
  2296. ring->semaphore.signal = gen6_signal;
  2297. ring->semaphore.sync_to = gen6_ring_sync;
  2298. /*
  2299. * The current semaphore is only applied on pre-gen8
  2300. * platform. And there is no VCS2 ring on the pre-gen8
  2301. * platform. So the semaphore between BCS and VCS2 is
  2302. * initialized as INVALID. Gen8 will initialize the
  2303. * sema between BCS and VCS2 later.
  2304. */
  2305. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2306. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2307. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2308. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2309. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2310. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2311. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2312. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2313. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2314. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2315. }
  2316. }
  2317. ring->init_hw = init_ring_common;
  2318. return intel_init_ring_buffer(dev, ring);
  2319. }
  2320. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2321. {
  2322. struct drm_i915_private *dev_priv = dev->dev_private;
  2323. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2324. ring->name = "video enhancement ring";
  2325. ring->id = VECS;
  2326. ring->mmio_base = VEBOX_RING_BASE;
  2327. ring->write_tail = ring_write_tail;
  2328. ring->flush = gen6_ring_flush;
  2329. ring->add_request = gen6_add_request;
  2330. ring->get_seqno = gen6_ring_get_seqno;
  2331. ring->set_seqno = ring_set_seqno;
  2332. if (INTEL_INFO(dev)->gen >= 8) {
  2333. ring->irq_enable_mask =
  2334. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2335. ring->irq_get = gen8_ring_get_irq;
  2336. ring->irq_put = gen8_ring_put_irq;
  2337. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2338. if (i915_semaphore_is_enabled(dev)) {
  2339. ring->semaphore.sync_to = gen8_ring_sync;
  2340. ring->semaphore.signal = gen8_xcs_signal;
  2341. GEN8_RING_SEMAPHORE_INIT;
  2342. }
  2343. } else {
  2344. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2345. ring->irq_get = hsw_vebox_get_irq;
  2346. ring->irq_put = hsw_vebox_put_irq;
  2347. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2348. if (i915_semaphore_is_enabled(dev)) {
  2349. ring->semaphore.sync_to = gen6_ring_sync;
  2350. ring->semaphore.signal = gen6_signal;
  2351. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2352. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2353. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2354. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2355. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2356. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2357. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2358. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2359. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2360. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2361. }
  2362. }
  2363. ring->init_hw = init_ring_common;
  2364. return intel_init_ring_buffer(dev, ring);
  2365. }
  2366. int
  2367. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2368. {
  2369. int ret;
  2370. if (!ring->gpu_caches_dirty)
  2371. return 0;
  2372. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2373. if (ret)
  2374. return ret;
  2375. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2376. ring->gpu_caches_dirty = false;
  2377. return 0;
  2378. }
  2379. int
  2380. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2381. {
  2382. uint32_t flush_domains;
  2383. int ret;
  2384. flush_domains = 0;
  2385. if (ring->gpu_caches_dirty)
  2386. flush_domains = I915_GEM_GPU_DOMAINS;
  2387. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2388. if (ret)
  2389. return ret;
  2390. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2391. ring->gpu_caches_dirty = false;
  2392. return 0;
  2393. }
  2394. void
  2395. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2396. {
  2397. int ret;
  2398. if (!intel_ring_initialized(ring))
  2399. return;
  2400. ret = intel_ring_idle(ring);
  2401. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2402. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2403. ring->name, ret);
  2404. stop_ring(ring);
  2405. }