nand-controller.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523
  1. /*
  2. * Copyright 2017 ATMEL
  3. * Copyright 2017 Free Electrons
  4. *
  5. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  6. *
  7. * Derived from the atmel_nand.c driver which contained the following
  8. * copyrights:
  9. *
  10. * Copyright 2003 Rick Bronson
  11. *
  12. * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
  13. * Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
  14. *
  15. * Derived from drivers/mtd/spia.c (removed in v3.8)
  16. * Copyright 2000 Steven J. Hill (sjhill@cotw.com)
  17. *
  18. *
  19. * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  20. * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
  21. *
  22. * Derived from Das U-Boot source code
  23. * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  24. * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  25. *
  26. * Add Programmable Multibit ECC support for various AT91 SoC
  27. * Copyright 2012 ATMEL, Hong Xu
  28. *
  29. * Add Nand Flash Controller support for SAMA5 SoC
  30. * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  31. *
  32. * This program is free software; you can redistribute it and/or modify
  33. * it under the terms of the GNU General Public License version 2 as
  34. * published by the Free Software Foundation.
  35. *
  36. * A few words about the naming convention in this file. This convention
  37. * applies to structure and function names.
  38. *
  39. * Prefixes:
  40. *
  41. * - atmel_nand_: all generic structures/functions
  42. * - atmel_smc_nand_: all structures/functions specific to the SMC interface
  43. * (at91sam9 and avr32 SoCs)
  44. * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
  45. * (sama5 SoCs and later)
  46. * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
  47. * that is available in the HSMC block
  48. * - <soc>_nand_: all SoC specific structures/functions
  49. */
  50. #include <linux/clk.h>
  51. #include <linux/dma-mapping.h>
  52. #include <linux/dmaengine.h>
  53. #include <linux/genalloc.h>
  54. #include <linux/gpio/consumer.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/mfd/syscon.h>
  57. #include <linux/mfd/syscon/atmel-matrix.h>
  58. #include <linux/mfd/syscon/atmel-smc.h>
  59. #include <linux/module.h>
  60. #include <linux/mtd/rawnand.h>
  61. #include <linux/of_address.h>
  62. #include <linux/of_irq.h>
  63. #include <linux/of_platform.h>
  64. #include <linux/iopoll.h>
  65. #include <linux/platform_device.h>
  66. #include <linux/regmap.h>
  67. #include "pmecc.h"
  68. #define ATMEL_HSMC_NFC_CFG 0x0
  69. #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
  70. #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
  71. #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
  72. #define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
  73. #define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
  74. #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
  75. #define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
  76. #define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
  77. #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
  78. #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
  79. #define ATMEL_HSMC_NFC_CTRL 0x4
  80. #define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
  81. #define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
  82. #define ATMEL_HSMC_NFC_SR 0x8
  83. #define ATMEL_HSMC_NFC_IER 0xc
  84. #define ATMEL_HSMC_NFC_IDR 0x10
  85. #define ATMEL_HSMC_NFC_IMR 0x14
  86. #define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
  87. #define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
  88. #define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
  89. #define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
  90. #define ATMEL_HSMC_NFC_SR_WR BIT(11)
  91. #define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
  92. #define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
  93. #define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
  94. #define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
  95. #define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
  96. #define ATMEL_HSMC_NFC_SR_AWB BIT(22)
  97. #define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
  98. #define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
  99. ATMEL_HSMC_NFC_SR_UNDEF | \
  100. ATMEL_HSMC_NFC_SR_AWB | \
  101. ATMEL_HSMC_NFC_SR_NFCASE)
  102. #define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
  103. #define ATMEL_HSMC_NFC_ADDR 0x18
  104. #define ATMEL_HSMC_NFC_BANK 0x1c
  105. #define ATMEL_NFC_MAX_RB_ID 7
  106. #define ATMEL_NFC_SRAM_SIZE 0x2400
  107. #define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
  108. #define ATMEL_NFC_VCMD2 BIT(18)
  109. #define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
  110. #define ATMEL_NFC_CSID(cs) ((cs) << 22)
  111. #define ATMEL_NFC_DATAEN BIT(25)
  112. #define ATMEL_NFC_NFCWR BIT(26)
  113. #define ATMEL_NFC_MAX_ADDR_CYCLES 5
  114. #define ATMEL_NAND_ALE_OFFSET BIT(21)
  115. #define ATMEL_NAND_CLE_OFFSET BIT(22)
  116. #define DEFAULT_TIMEOUT_MS 1000
  117. #define MIN_DMA_LEN 128
  118. static bool atmel_nand_avoid_dma __read_mostly;
  119. MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
  120. module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
  121. enum atmel_nand_rb_type {
  122. ATMEL_NAND_NO_RB,
  123. ATMEL_NAND_NATIVE_RB,
  124. ATMEL_NAND_GPIO_RB,
  125. };
  126. struct atmel_nand_rb {
  127. enum atmel_nand_rb_type type;
  128. union {
  129. struct gpio_desc *gpio;
  130. int id;
  131. };
  132. };
  133. struct atmel_nand_cs {
  134. int id;
  135. struct atmel_nand_rb rb;
  136. struct gpio_desc *csgpio;
  137. struct {
  138. void __iomem *virt;
  139. dma_addr_t dma;
  140. } io;
  141. struct atmel_smc_cs_conf smcconf;
  142. };
  143. struct atmel_nand {
  144. struct list_head node;
  145. struct device *dev;
  146. struct nand_chip base;
  147. struct atmel_nand_cs *activecs;
  148. struct atmel_pmecc_user *pmecc;
  149. struct gpio_desc *cdgpio;
  150. int numcs;
  151. struct atmel_nand_cs cs[];
  152. };
  153. static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
  154. {
  155. return container_of(chip, struct atmel_nand, base);
  156. }
  157. enum atmel_nfc_data_xfer {
  158. ATMEL_NFC_NO_DATA,
  159. ATMEL_NFC_READ_DATA,
  160. ATMEL_NFC_WRITE_DATA,
  161. };
  162. struct atmel_nfc_op {
  163. u8 cs;
  164. u8 ncmds;
  165. u8 cmds[2];
  166. u8 naddrs;
  167. u8 addrs[5];
  168. enum atmel_nfc_data_xfer data;
  169. u32 wait;
  170. u32 errors;
  171. };
  172. struct atmel_nand_controller;
  173. struct atmel_nand_controller_caps;
  174. struct atmel_nand_controller_ops {
  175. int (*probe)(struct platform_device *pdev,
  176. const struct atmel_nand_controller_caps *caps);
  177. int (*remove)(struct atmel_nand_controller *nc);
  178. void (*nand_init)(struct atmel_nand_controller *nc,
  179. struct atmel_nand *nand);
  180. int (*ecc_init)(struct nand_chip *chip);
  181. int (*setup_data_interface)(struct atmel_nand *nand, int csline,
  182. const struct nand_data_interface *conf);
  183. };
  184. struct atmel_nand_controller_caps {
  185. bool has_dma;
  186. bool legacy_of_bindings;
  187. u32 ale_offs;
  188. u32 cle_offs;
  189. const struct atmel_nand_controller_ops *ops;
  190. };
  191. struct atmel_nand_controller {
  192. struct nand_controller base;
  193. const struct atmel_nand_controller_caps *caps;
  194. struct device *dev;
  195. struct regmap *smc;
  196. struct dma_chan *dmac;
  197. struct atmel_pmecc *pmecc;
  198. struct list_head chips;
  199. struct clk *mck;
  200. };
  201. static inline struct atmel_nand_controller *
  202. to_nand_controller(struct nand_controller *ctl)
  203. {
  204. return container_of(ctl, struct atmel_nand_controller, base);
  205. }
  206. struct atmel_smc_nand_controller {
  207. struct atmel_nand_controller base;
  208. struct regmap *matrix;
  209. unsigned int ebi_csa_offs;
  210. };
  211. static inline struct atmel_smc_nand_controller *
  212. to_smc_nand_controller(struct nand_controller *ctl)
  213. {
  214. return container_of(to_nand_controller(ctl),
  215. struct atmel_smc_nand_controller, base);
  216. }
  217. struct atmel_hsmc_nand_controller {
  218. struct atmel_nand_controller base;
  219. struct {
  220. struct gen_pool *pool;
  221. void __iomem *virt;
  222. dma_addr_t dma;
  223. } sram;
  224. const struct atmel_hsmc_reg_layout *hsmc_layout;
  225. struct regmap *io;
  226. struct atmel_nfc_op op;
  227. struct completion complete;
  228. int irq;
  229. /* Only used when instantiating from legacy DT bindings. */
  230. struct clk *clk;
  231. };
  232. static inline struct atmel_hsmc_nand_controller *
  233. to_hsmc_nand_controller(struct nand_controller *ctl)
  234. {
  235. return container_of(to_nand_controller(ctl),
  236. struct atmel_hsmc_nand_controller, base);
  237. }
  238. static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
  239. {
  240. op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
  241. op->wait ^= status & op->wait;
  242. return !op->wait || op->errors;
  243. }
  244. static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
  245. {
  246. struct atmel_hsmc_nand_controller *nc = data;
  247. u32 sr, rcvd;
  248. bool done;
  249. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
  250. rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  251. done = atmel_nfc_op_done(&nc->op, sr);
  252. if (rcvd)
  253. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
  254. if (done)
  255. complete(&nc->complete);
  256. return rcvd ? IRQ_HANDLED : IRQ_NONE;
  257. }
  258. static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
  259. unsigned int timeout_ms)
  260. {
  261. int ret;
  262. if (!timeout_ms)
  263. timeout_ms = DEFAULT_TIMEOUT_MS;
  264. if (poll) {
  265. u32 status;
  266. ret = regmap_read_poll_timeout(nc->base.smc,
  267. ATMEL_HSMC_NFC_SR, status,
  268. atmel_nfc_op_done(&nc->op,
  269. status),
  270. 0, timeout_ms * 1000);
  271. } else {
  272. init_completion(&nc->complete);
  273. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
  274. nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
  275. ret = wait_for_completion_timeout(&nc->complete,
  276. msecs_to_jiffies(timeout_ms));
  277. if (!ret)
  278. ret = -ETIMEDOUT;
  279. else
  280. ret = 0;
  281. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  282. }
  283. if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
  284. dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
  285. ret = -ETIMEDOUT;
  286. }
  287. if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
  288. dev_err(nc->base.dev, "Access to an undefined area\n");
  289. ret = -EIO;
  290. }
  291. if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
  292. dev_err(nc->base.dev, "Access while busy\n");
  293. ret = -EIO;
  294. }
  295. if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
  296. dev_err(nc->base.dev, "Wrong access size\n");
  297. ret = -EIO;
  298. }
  299. return ret;
  300. }
  301. static void atmel_nand_dma_transfer_finished(void *data)
  302. {
  303. struct completion *finished = data;
  304. complete(finished);
  305. }
  306. static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
  307. void *buf, dma_addr_t dev_dma, size_t len,
  308. enum dma_data_direction dir)
  309. {
  310. DECLARE_COMPLETION_ONSTACK(finished);
  311. dma_addr_t src_dma, dst_dma, buf_dma;
  312. struct dma_async_tx_descriptor *tx;
  313. dma_cookie_t cookie;
  314. buf_dma = dma_map_single(nc->dev, buf, len, dir);
  315. if (dma_mapping_error(nc->dev, dev_dma)) {
  316. dev_err(nc->dev,
  317. "Failed to prepare a buffer for DMA access\n");
  318. goto err;
  319. }
  320. if (dir == DMA_FROM_DEVICE) {
  321. src_dma = dev_dma;
  322. dst_dma = buf_dma;
  323. } else {
  324. src_dma = buf_dma;
  325. dst_dma = dev_dma;
  326. }
  327. tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
  328. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  329. if (!tx) {
  330. dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
  331. goto err_unmap;
  332. }
  333. tx->callback = atmel_nand_dma_transfer_finished;
  334. tx->callback_param = &finished;
  335. cookie = dmaengine_submit(tx);
  336. if (dma_submit_error(cookie)) {
  337. dev_err(nc->dev, "Failed to do DMA tx_submit\n");
  338. goto err_unmap;
  339. }
  340. dma_async_issue_pending(nc->dmac);
  341. wait_for_completion(&finished);
  342. return 0;
  343. err_unmap:
  344. dma_unmap_single(nc->dev, buf_dma, len, dir);
  345. err:
  346. dev_dbg(nc->dev, "Fall back to CPU I/O\n");
  347. return -EIO;
  348. }
  349. static u8 atmel_nand_read_byte(struct nand_chip *chip)
  350. {
  351. struct atmel_nand *nand = to_atmel_nand(chip);
  352. return ioread8(nand->activecs->io.virt);
  353. }
  354. static void atmel_nand_write_byte(struct nand_chip *chip, u8 byte)
  355. {
  356. struct atmel_nand *nand = to_atmel_nand(chip);
  357. if (chip->options & NAND_BUSWIDTH_16)
  358. iowrite16(byte | (byte << 8), nand->activecs->io.virt);
  359. else
  360. iowrite8(byte, nand->activecs->io.virt);
  361. }
  362. static void atmel_nand_read_buf(struct nand_chip *chip, u8 *buf, int len)
  363. {
  364. struct atmel_nand *nand = to_atmel_nand(chip);
  365. struct atmel_nand_controller *nc;
  366. nc = to_nand_controller(chip->controller);
  367. /*
  368. * If the controller supports DMA, the buffer address is DMA-able and
  369. * len is long enough to make DMA transfers profitable, let's trigger
  370. * a DMA transfer. If it fails, fallback to PIO mode.
  371. */
  372. if (nc->dmac && virt_addr_valid(buf) &&
  373. len >= MIN_DMA_LEN &&
  374. !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
  375. DMA_FROM_DEVICE))
  376. return;
  377. if (chip->options & NAND_BUSWIDTH_16)
  378. ioread16_rep(nand->activecs->io.virt, buf, len / 2);
  379. else
  380. ioread8_rep(nand->activecs->io.virt, buf, len);
  381. }
  382. static void atmel_nand_write_buf(struct nand_chip *chip, const u8 *buf, int len)
  383. {
  384. struct atmel_nand *nand = to_atmel_nand(chip);
  385. struct atmel_nand_controller *nc;
  386. nc = to_nand_controller(chip->controller);
  387. /*
  388. * If the controller supports DMA, the buffer address is DMA-able and
  389. * len is long enough to make DMA transfers profitable, let's trigger
  390. * a DMA transfer. If it fails, fallback to PIO mode.
  391. */
  392. if (nc->dmac && virt_addr_valid(buf) &&
  393. len >= MIN_DMA_LEN &&
  394. !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
  395. len, DMA_TO_DEVICE))
  396. return;
  397. if (chip->options & NAND_BUSWIDTH_16)
  398. iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
  399. else
  400. iowrite8_rep(nand->activecs->io.virt, buf, len);
  401. }
  402. static int atmel_nand_dev_ready(struct nand_chip *chip)
  403. {
  404. struct atmel_nand *nand = to_atmel_nand(chip);
  405. return gpiod_get_value(nand->activecs->rb.gpio);
  406. }
  407. static void atmel_nand_select_chip(struct nand_chip *chip, int cs)
  408. {
  409. struct atmel_nand *nand = to_atmel_nand(chip);
  410. if (cs < 0 || cs >= nand->numcs) {
  411. nand->activecs = NULL;
  412. chip->legacy.dev_ready = NULL;
  413. return;
  414. }
  415. nand->activecs = &nand->cs[cs];
  416. if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
  417. chip->legacy.dev_ready = atmel_nand_dev_ready;
  418. }
  419. static int atmel_hsmc_nand_dev_ready(struct nand_chip *chip)
  420. {
  421. struct atmel_nand *nand = to_atmel_nand(chip);
  422. struct atmel_hsmc_nand_controller *nc;
  423. u32 status;
  424. nc = to_hsmc_nand_controller(chip->controller);
  425. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
  426. return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
  427. }
  428. static void atmel_hsmc_nand_select_chip(struct nand_chip *chip, int cs)
  429. {
  430. struct mtd_info *mtd = nand_to_mtd(chip);
  431. struct atmel_nand *nand = to_atmel_nand(chip);
  432. struct atmel_hsmc_nand_controller *nc;
  433. nc = to_hsmc_nand_controller(chip->controller);
  434. atmel_nand_select_chip(chip, cs);
  435. if (!nand->activecs) {
  436. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  437. ATMEL_HSMC_NFC_CTRL_DIS);
  438. return;
  439. }
  440. if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
  441. chip->legacy.dev_ready = atmel_hsmc_nand_dev_ready;
  442. regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  443. ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
  444. ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
  445. ATMEL_HSMC_NFC_CFG_RSPARE |
  446. ATMEL_HSMC_NFC_CFG_WSPARE,
  447. ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
  448. ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
  449. ATMEL_HSMC_NFC_CFG_RSPARE);
  450. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
  451. ATMEL_HSMC_NFC_CTRL_EN);
  452. }
  453. static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
  454. {
  455. u8 *addrs = nc->op.addrs;
  456. unsigned int op = 0;
  457. u32 addr, val;
  458. int i, ret;
  459. nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
  460. for (i = 0; i < nc->op.ncmds; i++)
  461. op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
  462. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  463. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
  464. op |= ATMEL_NFC_CSID(nc->op.cs) |
  465. ATMEL_NFC_ACYCLE(nc->op.naddrs);
  466. if (nc->op.ncmds > 1)
  467. op |= ATMEL_NFC_VCMD2;
  468. addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
  469. (addrs[3] << 24);
  470. if (nc->op.data != ATMEL_NFC_NO_DATA) {
  471. op |= ATMEL_NFC_DATAEN;
  472. nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
  473. if (nc->op.data == ATMEL_NFC_WRITE_DATA)
  474. op |= ATMEL_NFC_NFCWR;
  475. }
  476. /* Clear all flags. */
  477. regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
  478. /* Send the command. */
  479. regmap_write(nc->io, op, addr);
  480. ret = atmel_nfc_wait(nc, poll, 0);
  481. if (ret)
  482. dev_err(nc->base.dev,
  483. "Failed to send NAND command (err = %d)!",
  484. ret);
  485. /* Reset the op state. */
  486. memset(&nc->op, 0, sizeof(nc->op));
  487. return ret;
  488. }
  489. static void atmel_hsmc_nand_cmd_ctrl(struct nand_chip *chip, int dat,
  490. unsigned int ctrl)
  491. {
  492. struct atmel_nand *nand = to_atmel_nand(chip);
  493. struct atmel_hsmc_nand_controller *nc;
  494. nc = to_hsmc_nand_controller(chip->controller);
  495. if (ctrl & NAND_ALE) {
  496. if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
  497. return;
  498. nc->op.addrs[nc->op.naddrs++] = dat;
  499. } else if (ctrl & NAND_CLE) {
  500. if (nc->op.ncmds > 1)
  501. return;
  502. nc->op.cmds[nc->op.ncmds++] = dat;
  503. }
  504. if (dat == NAND_CMD_NONE) {
  505. nc->op.cs = nand->activecs->id;
  506. atmel_nfc_exec_op(nc, true);
  507. }
  508. }
  509. static void atmel_nand_cmd_ctrl(struct nand_chip *chip, int cmd,
  510. unsigned int ctrl)
  511. {
  512. struct atmel_nand *nand = to_atmel_nand(chip);
  513. struct atmel_nand_controller *nc;
  514. nc = to_nand_controller(chip->controller);
  515. if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
  516. if (ctrl & NAND_NCE)
  517. gpiod_set_value(nand->activecs->csgpio, 0);
  518. else
  519. gpiod_set_value(nand->activecs->csgpio, 1);
  520. }
  521. if (ctrl & NAND_ALE)
  522. writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
  523. else if (ctrl & NAND_CLE)
  524. writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
  525. }
  526. static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
  527. bool oob_required)
  528. {
  529. struct mtd_info *mtd = nand_to_mtd(chip);
  530. struct atmel_hsmc_nand_controller *nc;
  531. int ret = -EIO;
  532. nc = to_hsmc_nand_controller(chip->controller);
  533. if (nc->base.dmac)
  534. ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
  535. nc->sram.dma, mtd->writesize,
  536. DMA_TO_DEVICE);
  537. /* Falling back to CPU copy. */
  538. if (ret)
  539. memcpy_toio(nc->sram.virt, buf, mtd->writesize);
  540. if (oob_required)
  541. memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
  542. mtd->oobsize);
  543. }
  544. static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
  545. bool oob_required)
  546. {
  547. struct mtd_info *mtd = nand_to_mtd(chip);
  548. struct atmel_hsmc_nand_controller *nc;
  549. int ret = -EIO;
  550. nc = to_hsmc_nand_controller(chip->controller);
  551. if (nc->base.dmac)
  552. ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
  553. mtd->writesize, DMA_FROM_DEVICE);
  554. /* Falling back to CPU copy. */
  555. if (ret)
  556. memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
  557. if (oob_required)
  558. memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
  559. mtd->oobsize);
  560. }
  561. static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
  562. {
  563. struct mtd_info *mtd = nand_to_mtd(chip);
  564. struct atmel_hsmc_nand_controller *nc;
  565. nc = to_hsmc_nand_controller(chip->controller);
  566. if (column >= 0) {
  567. nc->op.addrs[nc->op.naddrs++] = column;
  568. /*
  569. * 2 address cycles for the column offset on large page NANDs.
  570. */
  571. if (mtd->writesize > 512)
  572. nc->op.addrs[nc->op.naddrs++] = column >> 8;
  573. }
  574. if (page >= 0) {
  575. nc->op.addrs[nc->op.naddrs++] = page;
  576. nc->op.addrs[nc->op.naddrs++] = page >> 8;
  577. if (chip->options & NAND_ROW_ADDR_3)
  578. nc->op.addrs[nc->op.naddrs++] = page >> 16;
  579. }
  580. }
  581. static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
  582. {
  583. struct atmel_nand *nand = to_atmel_nand(chip);
  584. struct atmel_nand_controller *nc;
  585. int ret;
  586. nc = to_nand_controller(chip->controller);
  587. if (raw)
  588. return 0;
  589. ret = atmel_pmecc_enable(nand->pmecc, op);
  590. if (ret)
  591. dev_err(nc->dev,
  592. "Failed to enable ECC engine (err = %d)\n", ret);
  593. return ret;
  594. }
  595. static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
  596. {
  597. struct atmel_nand *nand = to_atmel_nand(chip);
  598. if (!raw)
  599. atmel_pmecc_disable(nand->pmecc);
  600. }
  601. static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
  602. {
  603. struct atmel_nand *nand = to_atmel_nand(chip);
  604. struct mtd_info *mtd = nand_to_mtd(chip);
  605. struct atmel_nand_controller *nc;
  606. struct mtd_oob_region oobregion;
  607. void *eccbuf;
  608. int ret, i;
  609. nc = to_nand_controller(chip->controller);
  610. if (raw)
  611. return 0;
  612. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  613. if (ret) {
  614. dev_err(nc->dev,
  615. "Failed to transfer NAND page data (err = %d)\n",
  616. ret);
  617. return ret;
  618. }
  619. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  620. eccbuf = chip->oob_poi + oobregion.offset;
  621. for (i = 0; i < chip->ecc.steps; i++) {
  622. atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
  623. eccbuf);
  624. eccbuf += chip->ecc.bytes;
  625. }
  626. return 0;
  627. }
  628. static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
  629. bool raw)
  630. {
  631. struct atmel_nand *nand = to_atmel_nand(chip);
  632. struct mtd_info *mtd = nand_to_mtd(chip);
  633. struct atmel_nand_controller *nc;
  634. struct mtd_oob_region oobregion;
  635. int ret, i, max_bitflips = 0;
  636. void *databuf, *eccbuf;
  637. nc = to_nand_controller(chip->controller);
  638. if (raw)
  639. return 0;
  640. ret = atmel_pmecc_wait_rdy(nand->pmecc);
  641. if (ret) {
  642. dev_err(nc->dev,
  643. "Failed to read NAND page data (err = %d)\n",
  644. ret);
  645. return ret;
  646. }
  647. mtd_ooblayout_ecc(mtd, 0, &oobregion);
  648. eccbuf = chip->oob_poi + oobregion.offset;
  649. databuf = buf;
  650. for (i = 0; i < chip->ecc.steps; i++) {
  651. ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
  652. eccbuf);
  653. if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
  654. ret = nand_check_erased_ecc_chunk(databuf,
  655. chip->ecc.size,
  656. eccbuf,
  657. chip->ecc.bytes,
  658. NULL, 0,
  659. chip->ecc.strength);
  660. if (ret >= 0)
  661. max_bitflips = max(ret, max_bitflips);
  662. else
  663. mtd->ecc_stats.failed++;
  664. databuf += chip->ecc.size;
  665. eccbuf += chip->ecc.bytes;
  666. }
  667. return max_bitflips;
  668. }
  669. static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
  670. bool oob_required, int page, bool raw)
  671. {
  672. struct mtd_info *mtd = nand_to_mtd(chip);
  673. struct atmel_nand *nand = to_atmel_nand(chip);
  674. int ret;
  675. nand_prog_page_begin_op(chip, page, 0, NULL, 0);
  676. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  677. if (ret)
  678. return ret;
  679. atmel_nand_write_buf(chip, buf, mtd->writesize);
  680. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  681. if (ret) {
  682. atmel_pmecc_disable(nand->pmecc);
  683. return ret;
  684. }
  685. atmel_nand_pmecc_disable(chip, raw);
  686. atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
  687. return nand_prog_page_end_op(chip);
  688. }
  689. static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
  690. int oob_required, int page)
  691. {
  692. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
  693. }
  694. static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
  695. const u8 *buf, int oob_required,
  696. int page)
  697. {
  698. return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
  699. }
  700. static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  701. bool oob_required, int page, bool raw)
  702. {
  703. struct mtd_info *mtd = nand_to_mtd(chip);
  704. int ret;
  705. nand_read_page_op(chip, page, 0, NULL, 0);
  706. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  707. if (ret)
  708. return ret;
  709. atmel_nand_read_buf(chip, buf, mtd->writesize);
  710. atmel_nand_read_buf(chip, chip->oob_poi, mtd->oobsize);
  711. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  712. atmel_nand_pmecc_disable(chip, raw);
  713. return ret;
  714. }
  715. static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
  716. int oob_required, int page)
  717. {
  718. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
  719. }
  720. static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
  721. int oob_required, int page)
  722. {
  723. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
  724. }
  725. static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
  726. const u8 *buf, bool oob_required,
  727. int page, bool raw)
  728. {
  729. struct mtd_info *mtd = nand_to_mtd(chip);
  730. struct atmel_nand *nand = to_atmel_nand(chip);
  731. struct atmel_hsmc_nand_controller *nc;
  732. int ret, status;
  733. nc = to_hsmc_nand_controller(chip->controller);
  734. atmel_nfc_copy_to_sram(chip, buf, false);
  735. nc->op.cmds[0] = NAND_CMD_SEQIN;
  736. nc->op.ncmds = 1;
  737. atmel_nfc_set_op_addr(chip, page, 0x0);
  738. nc->op.cs = nand->activecs->id;
  739. nc->op.data = ATMEL_NFC_WRITE_DATA;
  740. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
  741. if (ret)
  742. return ret;
  743. ret = atmel_nfc_exec_op(nc, false);
  744. if (ret) {
  745. atmel_nand_pmecc_disable(chip, raw);
  746. dev_err(nc->base.dev,
  747. "Failed to transfer NAND page data (err = %d)\n",
  748. ret);
  749. return ret;
  750. }
  751. ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
  752. atmel_nand_pmecc_disable(chip, raw);
  753. if (ret)
  754. return ret;
  755. atmel_nand_write_buf(chip, chip->oob_poi, mtd->oobsize);
  756. nc->op.cmds[0] = NAND_CMD_PAGEPROG;
  757. nc->op.ncmds = 1;
  758. nc->op.cs = nand->activecs->id;
  759. ret = atmel_nfc_exec_op(nc, false);
  760. if (ret)
  761. dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
  762. ret);
  763. status = chip->legacy.waitfunc(chip);
  764. if (status & NAND_STATUS_FAIL)
  765. return -EIO;
  766. return ret;
  767. }
  768. static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
  769. const u8 *buf, int oob_required,
  770. int page)
  771. {
  772. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  773. false);
  774. }
  775. static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
  776. const u8 *buf,
  777. int oob_required, int page)
  778. {
  779. return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
  780. true);
  781. }
  782. static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
  783. bool oob_required, int page,
  784. bool raw)
  785. {
  786. struct mtd_info *mtd = nand_to_mtd(chip);
  787. struct atmel_nand *nand = to_atmel_nand(chip);
  788. struct atmel_hsmc_nand_controller *nc;
  789. int ret;
  790. nc = to_hsmc_nand_controller(chip->controller);
  791. /*
  792. * Optimized read page accessors only work when the NAND R/B pin is
  793. * connected to a native SoC R/B pin. If that's not the case, fallback
  794. * to the non-optimized one.
  795. */
  796. if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
  797. nand_read_page_op(chip, page, 0, NULL, 0);
  798. return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
  799. raw);
  800. }
  801. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
  802. if (mtd->writesize > 512)
  803. nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
  804. atmel_nfc_set_op_addr(chip, page, 0x0);
  805. nc->op.cs = nand->activecs->id;
  806. nc->op.data = ATMEL_NFC_READ_DATA;
  807. ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
  808. if (ret)
  809. return ret;
  810. ret = atmel_nfc_exec_op(nc, false);
  811. if (ret) {
  812. atmel_nand_pmecc_disable(chip, raw);
  813. dev_err(nc->base.dev,
  814. "Failed to load NAND page data (err = %d)\n",
  815. ret);
  816. return ret;
  817. }
  818. atmel_nfc_copy_from_sram(chip, buf, true);
  819. ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
  820. atmel_nand_pmecc_disable(chip, raw);
  821. return ret;
  822. }
  823. static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
  824. int oob_required, int page)
  825. {
  826. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  827. false);
  828. }
  829. static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
  830. u8 *buf, int oob_required,
  831. int page)
  832. {
  833. return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
  834. true);
  835. }
  836. static int atmel_nand_pmecc_init(struct nand_chip *chip)
  837. {
  838. struct mtd_info *mtd = nand_to_mtd(chip);
  839. struct atmel_nand *nand = to_atmel_nand(chip);
  840. struct atmel_nand_controller *nc;
  841. struct atmel_pmecc_user_req req;
  842. nc = to_nand_controller(chip->controller);
  843. if (!nc->pmecc) {
  844. dev_err(nc->dev, "HW ECC not supported\n");
  845. return -ENOTSUPP;
  846. }
  847. if (nc->caps->legacy_of_bindings) {
  848. u32 val;
  849. if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
  850. &val))
  851. chip->ecc.strength = val;
  852. if (!of_property_read_u32(nc->dev->of_node,
  853. "atmel,pmecc-sector-size",
  854. &val))
  855. chip->ecc.size = val;
  856. }
  857. if (chip->ecc.options & NAND_ECC_MAXIMIZE)
  858. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  859. else if (chip->ecc.strength)
  860. req.ecc.strength = chip->ecc.strength;
  861. else if (chip->ecc_strength_ds)
  862. req.ecc.strength = chip->ecc_strength_ds;
  863. else
  864. req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
  865. if (chip->ecc.size)
  866. req.ecc.sectorsize = chip->ecc.size;
  867. else if (chip->ecc_step_ds)
  868. req.ecc.sectorsize = chip->ecc_step_ds;
  869. else
  870. req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
  871. req.pagesize = mtd->writesize;
  872. req.oobsize = mtd->oobsize;
  873. if (mtd->writesize <= 512) {
  874. req.ecc.bytes = 4;
  875. req.ecc.ooboffset = 0;
  876. } else {
  877. req.ecc.bytes = mtd->oobsize - 2;
  878. req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
  879. }
  880. nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
  881. if (IS_ERR(nand->pmecc))
  882. return PTR_ERR(nand->pmecc);
  883. chip->ecc.algo = NAND_ECC_BCH;
  884. chip->ecc.size = req.ecc.sectorsize;
  885. chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
  886. chip->ecc.strength = req.ecc.strength;
  887. chip->options |= NAND_NO_SUBPAGE_WRITE;
  888. mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
  889. return 0;
  890. }
  891. static int atmel_nand_ecc_init(struct nand_chip *chip)
  892. {
  893. struct atmel_nand_controller *nc;
  894. int ret;
  895. nc = to_nand_controller(chip->controller);
  896. switch (chip->ecc.mode) {
  897. case NAND_ECC_NONE:
  898. case NAND_ECC_SOFT:
  899. /*
  900. * Nothing to do, the core will initialize everything for us.
  901. */
  902. break;
  903. case NAND_ECC_HW:
  904. ret = atmel_nand_pmecc_init(chip);
  905. if (ret)
  906. return ret;
  907. chip->ecc.read_page = atmel_nand_pmecc_read_page;
  908. chip->ecc.write_page = atmel_nand_pmecc_write_page;
  909. chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
  910. chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
  911. break;
  912. default:
  913. /* Other modes are not supported. */
  914. dev_err(nc->dev, "Unsupported ECC mode: %d\n",
  915. chip->ecc.mode);
  916. return -ENOTSUPP;
  917. }
  918. return 0;
  919. }
  920. static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
  921. {
  922. int ret;
  923. ret = atmel_nand_ecc_init(chip);
  924. if (ret)
  925. return ret;
  926. if (chip->ecc.mode != NAND_ECC_HW)
  927. return 0;
  928. /* Adjust the ECC operations for the HSMC IP. */
  929. chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
  930. chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
  931. chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
  932. chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
  933. return 0;
  934. }
  935. static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
  936. const struct nand_data_interface *conf,
  937. struct atmel_smc_cs_conf *smcconf)
  938. {
  939. u32 ncycles, totalcycles, timeps, mckperiodps;
  940. struct atmel_nand_controller *nc;
  941. int ret;
  942. nc = to_nand_controller(nand->base.controller);
  943. /* DDR interface not supported. */
  944. if (conf->type != NAND_SDR_IFACE)
  945. return -ENOTSUPP;
  946. /*
  947. * tRC < 30ns implies EDO mode. This controller does not support this
  948. * mode.
  949. */
  950. if (conf->timings.sdr.tRC_min < 30000)
  951. return -ENOTSUPP;
  952. atmel_smc_cs_conf_init(smcconf);
  953. mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
  954. mckperiodps *= 1000;
  955. /*
  956. * Set write pulse timing. This one is easy to extract:
  957. *
  958. * NWE_PULSE = tWP
  959. */
  960. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
  961. totalcycles = ncycles;
  962. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
  963. ncycles);
  964. if (ret)
  965. return ret;
  966. /*
  967. * The write setup timing depends on the operation done on the NAND.
  968. * All operations goes through the same data bus, but the operation
  969. * type depends on the address we are writing to (ALE/CLE address
  970. * lines).
  971. * Since we have no way to differentiate the different operations at
  972. * the SMC level, we must consider the worst case (the biggest setup
  973. * time among all operation types):
  974. *
  975. * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
  976. */
  977. timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
  978. conf->timings.sdr.tALS_min);
  979. timeps = max(timeps, conf->timings.sdr.tDS_min);
  980. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  981. ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
  982. totalcycles += ncycles;
  983. ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
  984. ncycles);
  985. if (ret)
  986. return ret;
  987. /*
  988. * As for the write setup timing, the write hold timing depends on the
  989. * operation done on the NAND:
  990. *
  991. * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
  992. */
  993. timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
  994. conf->timings.sdr.tALH_min);
  995. timeps = max3(timeps, conf->timings.sdr.tDH_min,
  996. conf->timings.sdr.tWH_min);
  997. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  998. totalcycles += ncycles;
  999. /*
  1000. * The write cycle timing is directly matching tWC, but is also
  1001. * dependent on the other timings on the setup and hold timings we
  1002. * calculated earlier, which gives:
  1003. *
  1004. * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
  1005. */
  1006. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
  1007. ncycles = max(totalcycles, ncycles);
  1008. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
  1009. ncycles);
  1010. if (ret)
  1011. return ret;
  1012. /*
  1013. * We don't want the CS line to be toggled between each byte/word
  1014. * transfer to the NAND. The only way to guarantee that is to have the
  1015. * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1016. *
  1017. * NCS_WR_PULSE = NWE_CYCLE
  1018. */
  1019. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
  1020. ncycles);
  1021. if (ret)
  1022. return ret;
  1023. /*
  1024. * As for the write setup timing, the read hold timing depends on the
  1025. * operation done on the NAND:
  1026. *
  1027. * NRD_HOLD = max(tREH, tRHOH)
  1028. */
  1029. timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
  1030. ncycles = DIV_ROUND_UP(timeps, mckperiodps);
  1031. totalcycles = ncycles;
  1032. /*
  1033. * TDF = tRHZ - NRD_HOLD
  1034. */
  1035. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
  1036. ncycles -= totalcycles;
  1037. /*
  1038. * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
  1039. * we might end up with a config that does not fit in the TDF field.
  1040. * Just take the max value in this case and hope that the NAND is more
  1041. * tolerant than advertised.
  1042. */
  1043. if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
  1044. ncycles = ATMEL_SMC_MODE_TDF_MAX;
  1045. else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
  1046. ncycles = ATMEL_SMC_MODE_TDF_MIN;
  1047. smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
  1048. ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
  1049. /*
  1050. * Read pulse timing directly matches tRP:
  1051. *
  1052. * NRD_PULSE = tRP
  1053. */
  1054. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
  1055. totalcycles += ncycles;
  1056. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
  1057. ncycles);
  1058. if (ret)
  1059. return ret;
  1060. /*
  1061. * The write cycle timing is directly matching tWC, but is also
  1062. * dependent on the setup and hold timings we calculated earlier,
  1063. * which gives:
  1064. *
  1065. * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
  1066. *
  1067. * NRD_SETUP is always 0.
  1068. */
  1069. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
  1070. ncycles = max(totalcycles, ncycles);
  1071. ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
  1072. ncycles);
  1073. if (ret)
  1074. return ret;
  1075. /*
  1076. * We don't want the CS line to be toggled between each byte/word
  1077. * transfer from the NAND. The only way to guarantee that is to have
  1078. * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
  1079. *
  1080. * NCS_RD_PULSE = NRD_CYCLE
  1081. */
  1082. ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
  1083. ncycles);
  1084. if (ret)
  1085. return ret;
  1086. /* Txxx timings are directly matching tXXX ones. */
  1087. ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
  1088. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1089. ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
  1090. ncycles);
  1091. if (ret)
  1092. return ret;
  1093. ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
  1094. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1095. ATMEL_HSMC_TIMINGS_TADL_SHIFT,
  1096. ncycles);
  1097. /*
  1098. * Version 4 of the ONFI spec mandates that tADL be at least 400
  1099. * nanoseconds, but, depending on the master clock rate, 400 ns may not
  1100. * fit in the tADL field of the SMC reg. We need to relax the check and
  1101. * accept the -ERANGE return code.
  1102. *
  1103. * Note that previous versions of the ONFI spec had a lower tADL_min
  1104. * (100 or 200 ns). It's not clear why this timing constraint got
  1105. * increased but it seems most NANDs are fine with values lower than
  1106. * 400ns, so we should be safe.
  1107. */
  1108. if (ret && ret != -ERANGE)
  1109. return ret;
  1110. ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
  1111. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1112. ATMEL_HSMC_TIMINGS_TAR_SHIFT,
  1113. ncycles);
  1114. if (ret)
  1115. return ret;
  1116. ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
  1117. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1118. ATMEL_HSMC_TIMINGS_TRR_SHIFT,
  1119. ncycles);
  1120. if (ret)
  1121. return ret;
  1122. ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
  1123. ret = atmel_smc_cs_conf_set_timing(smcconf,
  1124. ATMEL_HSMC_TIMINGS_TWB_SHIFT,
  1125. ncycles);
  1126. if (ret)
  1127. return ret;
  1128. /* Attach the CS line to the NFC logic. */
  1129. smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
  1130. /* Set the appropriate data bus width. */
  1131. if (nand->base.options & NAND_BUSWIDTH_16)
  1132. smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
  1133. /* Operate in NRD/NWE READ/WRITEMODE. */
  1134. smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
  1135. ATMEL_SMC_MODE_WRITEMODE_NWE;
  1136. return 0;
  1137. }
  1138. static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
  1139. int csline,
  1140. const struct nand_data_interface *conf)
  1141. {
  1142. struct atmel_nand_controller *nc;
  1143. struct atmel_smc_cs_conf smcconf;
  1144. struct atmel_nand_cs *cs;
  1145. int ret;
  1146. nc = to_nand_controller(nand->base.controller);
  1147. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1148. if (ret)
  1149. return ret;
  1150. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1151. return 0;
  1152. cs = &nand->cs[csline];
  1153. cs->smcconf = smcconf;
  1154. atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
  1155. return 0;
  1156. }
  1157. static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
  1158. int csline,
  1159. const struct nand_data_interface *conf)
  1160. {
  1161. struct atmel_hsmc_nand_controller *nc;
  1162. struct atmel_smc_cs_conf smcconf;
  1163. struct atmel_nand_cs *cs;
  1164. int ret;
  1165. nc = to_hsmc_nand_controller(nand->base.controller);
  1166. ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
  1167. if (ret)
  1168. return ret;
  1169. if (csline == NAND_DATA_IFACE_CHECK_ONLY)
  1170. return 0;
  1171. cs = &nand->cs[csline];
  1172. cs->smcconf = smcconf;
  1173. if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
  1174. cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
  1175. atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
  1176. &cs->smcconf);
  1177. return 0;
  1178. }
  1179. static int atmel_nand_setup_data_interface(struct nand_chip *chip, int csline,
  1180. const struct nand_data_interface *conf)
  1181. {
  1182. struct atmel_nand *nand = to_atmel_nand(chip);
  1183. struct atmel_nand_controller *nc;
  1184. nc = to_nand_controller(nand->base.controller);
  1185. if (csline >= nand->numcs ||
  1186. (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
  1187. return -EINVAL;
  1188. return nc->caps->ops->setup_data_interface(nand, csline, conf);
  1189. }
  1190. static void atmel_nand_init(struct atmel_nand_controller *nc,
  1191. struct atmel_nand *nand)
  1192. {
  1193. struct nand_chip *chip = &nand->base;
  1194. struct mtd_info *mtd = nand_to_mtd(chip);
  1195. mtd->dev.parent = nc->dev;
  1196. nand->base.controller = &nc->base;
  1197. chip->legacy.cmd_ctrl = atmel_nand_cmd_ctrl;
  1198. chip->legacy.read_byte = atmel_nand_read_byte;
  1199. chip->legacy.write_byte = atmel_nand_write_byte;
  1200. chip->legacy.read_buf = atmel_nand_read_buf;
  1201. chip->legacy.write_buf = atmel_nand_write_buf;
  1202. chip->select_chip = atmel_nand_select_chip;
  1203. if (nc->mck && nc->caps->ops->setup_data_interface)
  1204. chip->setup_data_interface = atmel_nand_setup_data_interface;
  1205. /* Some NANDs require a longer delay than the default one (20us). */
  1206. chip->chip_delay = 40;
  1207. /*
  1208. * Use a bounce buffer when the buffer passed by the MTD user is not
  1209. * suitable for DMA.
  1210. */
  1211. if (nc->dmac)
  1212. chip->options |= NAND_USE_BOUNCE_BUFFER;
  1213. /* Default to HW ECC if pmecc is available. */
  1214. if (nc->pmecc)
  1215. chip->ecc.mode = NAND_ECC_HW;
  1216. }
  1217. static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
  1218. struct atmel_nand *nand)
  1219. {
  1220. struct nand_chip *chip = &nand->base;
  1221. struct atmel_smc_nand_controller *smc_nc;
  1222. int i;
  1223. atmel_nand_init(nc, nand);
  1224. smc_nc = to_smc_nand_controller(chip->controller);
  1225. if (!smc_nc->matrix)
  1226. return;
  1227. /* Attach the CS to the NAND Flash logic. */
  1228. for (i = 0; i < nand->numcs; i++)
  1229. regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
  1230. BIT(nand->cs[i].id), BIT(nand->cs[i].id));
  1231. }
  1232. static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
  1233. struct atmel_nand *nand)
  1234. {
  1235. struct nand_chip *chip = &nand->base;
  1236. atmel_nand_init(nc, nand);
  1237. /* Overload some methods for the HSMC controller. */
  1238. chip->legacy.cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
  1239. chip->select_chip = atmel_hsmc_nand_select_chip;
  1240. }
  1241. static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
  1242. {
  1243. struct nand_chip *chip = &nand->base;
  1244. struct mtd_info *mtd = nand_to_mtd(chip);
  1245. int ret;
  1246. ret = mtd_device_unregister(mtd);
  1247. if (ret)
  1248. return ret;
  1249. nand_cleanup(chip);
  1250. list_del(&nand->node);
  1251. return 0;
  1252. }
  1253. static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
  1254. struct device_node *np,
  1255. int reg_cells)
  1256. {
  1257. struct atmel_nand *nand;
  1258. struct gpio_desc *gpio;
  1259. int numcs, ret, i;
  1260. numcs = of_property_count_elems_of_size(np, "reg",
  1261. reg_cells * sizeof(u32));
  1262. if (numcs < 1) {
  1263. dev_err(nc->dev, "Missing or invalid reg property\n");
  1264. return ERR_PTR(-EINVAL);
  1265. }
  1266. nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
  1267. if (!nand) {
  1268. dev_err(nc->dev, "Failed to allocate NAND object\n");
  1269. return ERR_PTR(-ENOMEM);
  1270. }
  1271. nand->numcs = numcs;
  1272. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
  1273. &np->fwnode, GPIOD_IN,
  1274. "nand-det");
  1275. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1276. dev_err(nc->dev,
  1277. "Failed to get detect gpio (err = %ld)\n",
  1278. PTR_ERR(gpio));
  1279. return ERR_CAST(gpio);
  1280. }
  1281. if (!IS_ERR(gpio))
  1282. nand->cdgpio = gpio;
  1283. for (i = 0; i < numcs; i++) {
  1284. struct resource res;
  1285. u32 val;
  1286. ret = of_address_to_resource(np, 0, &res);
  1287. if (ret) {
  1288. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1289. ret);
  1290. return ERR_PTR(ret);
  1291. }
  1292. ret = of_property_read_u32_index(np, "reg", i * reg_cells,
  1293. &val);
  1294. if (ret) {
  1295. dev_err(nc->dev, "Invalid reg property (err = %d)\n",
  1296. ret);
  1297. return ERR_PTR(ret);
  1298. }
  1299. nand->cs[i].id = val;
  1300. nand->cs[i].io.dma = res.start;
  1301. nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
  1302. if (IS_ERR(nand->cs[i].io.virt))
  1303. return ERR_CAST(nand->cs[i].io.virt);
  1304. if (!of_property_read_u32(np, "atmel,rb", &val)) {
  1305. if (val > ATMEL_NFC_MAX_RB_ID)
  1306. return ERR_PTR(-EINVAL);
  1307. nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
  1308. nand->cs[i].rb.id = val;
  1309. } else {
  1310. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
  1311. "rb", i, &np->fwnode,
  1312. GPIOD_IN, "nand-rb");
  1313. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1314. dev_err(nc->dev,
  1315. "Failed to get R/B gpio (err = %ld)\n",
  1316. PTR_ERR(gpio));
  1317. return ERR_CAST(gpio);
  1318. }
  1319. if (!IS_ERR(gpio)) {
  1320. nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
  1321. nand->cs[i].rb.gpio = gpio;
  1322. }
  1323. }
  1324. gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
  1325. i, &np->fwnode,
  1326. GPIOD_OUT_HIGH,
  1327. "nand-cs");
  1328. if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
  1329. dev_err(nc->dev,
  1330. "Failed to get CS gpio (err = %ld)\n",
  1331. PTR_ERR(gpio));
  1332. return ERR_CAST(gpio);
  1333. }
  1334. if (!IS_ERR(gpio))
  1335. nand->cs[i].csgpio = gpio;
  1336. }
  1337. nand_set_flash_node(&nand->base, np);
  1338. return nand;
  1339. }
  1340. static int
  1341. atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
  1342. struct atmel_nand *nand)
  1343. {
  1344. struct nand_chip *chip = &nand->base;
  1345. struct mtd_info *mtd = nand_to_mtd(chip);
  1346. int ret;
  1347. /* No card inserted, skip this NAND. */
  1348. if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
  1349. dev_info(nc->dev, "No SmartMedia card inserted.\n");
  1350. return 0;
  1351. }
  1352. nc->caps->ops->nand_init(nc, nand);
  1353. ret = nand_scan(chip, nand->numcs);
  1354. if (ret) {
  1355. dev_err(nc->dev, "NAND scan failed: %d\n", ret);
  1356. return ret;
  1357. }
  1358. ret = mtd_device_register(mtd, NULL, 0);
  1359. if (ret) {
  1360. dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
  1361. nand_cleanup(chip);
  1362. return ret;
  1363. }
  1364. list_add_tail(&nand->node, &nc->chips);
  1365. return 0;
  1366. }
  1367. static int
  1368. atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
  1369. {
  1370. struct atmel_nand *nand, *tmp;
  1371. int ret;
  1372. list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
  1373. ret = atmel_nand_controller_remove_nand(nand);
  1374. if (ret)
  1375. return ret;
  1376. }
  1377. return 0;
  1378. }
  1379. static int
  1380. atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
  1381. {
  1382. struct device *dev = nc->dev;
  1383. struct platform_device *pdev = to_platform_device(dev);
  1384. struct atmel_nand *nand;
  1385. struct gpio_desc *gpio;
  1386. struct resource *res;
  1387. /*
  1388. * Legacy bindings only allow connecting a single NAND with a unique CS
  1389. * line to the controller.
  1390. */
  1391. nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
  1392. GFP_KERNEL);
  1393. if (!nand)
  1394. return -ENOMEM;
  1395. nand->numcs = 1;
  1396. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1397. nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
  1398. if (IS_ERR(nand->cs[0].io.virt))
  1399. return PTR_ERR(nand->cs[0].io.virt);
  1400. nand->cs[0].io.dma = res->start;
  1401. /*
  1402. * The old driver was hardcoding the CS id to 3 for all sama5
  1403. * controllers. Since this id is only meaningful for the sama5
  1404. * controller we can safely assign this id to 3 no matter the
  1405. * controller.
  1406. * If one wants to connect a NAND to a different CS line, he will
  1407. * have to use the new bindings.
  1408. */
  1409. nand->cs[0].id = 3;
  1410. /* R/B GPIO. */
  1411. gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
  1412. if (IS_ERR(gpio)) {
  1413. dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
  1414. PTR_ERR(gpio));
  1415. return PTR_ERR(gpio);
  1416. }
  1417. if (gpio) {
  1418. nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
  1419. nand->cs[0].rb.gpio = gpio;
  1420. }
  1421. /* CS GPIO. */
  1422. gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
  1423. if (IS_ERR(gpio)) {
  1424. dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
  1425. PTR_ERR(gpio));
  1426. return PTR_ERR(gpio);
  1427. }
  1428. nand->cs[0].csgpio = gpio;
  1429. /* Card detect GPIO. */
  1430. gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
  1431. if (IS_ERR(gpio)) {
  1432. dev_err(dev,
  1433. "Failed to get detect gpio (err = %ld)\n",
  1434. PTR_ERR(gpio));
  1435. return PTR_ERR(gpio);
  1436. }
  1437. nand->cdgpio = gpio;
  1438. nand_set_flash_node(&nand->base, nc->dev->of_node);
  1439. return atmel_nand_controller_add_nand(nc, nand);
  1440. }
  1441. static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
  1442. {
  1443. struct device_node *np, *nand_np;
  1444. struct device *dev = nc->dev;
  1445. int ret, reg_cells;
  1446. u32 val;
  1447. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1448. if (nc->caps->legacy_of_bindings)
  1449. return atmel_nand_controller_legacy_add_nands(nc);
  1450. np = dev->of_node;
  1451. ret = of_property_read_u32(np, "#address-cells", &val);
  1452. if (ret) {
  1453. dev_err(dev, "missing #address-cells property\n");
  1454. return ret;
  1455. }
  1456. reg_cells = val;
  1457. ret = of_property_read_u32(np, "#size-cells", &val);
  1458. if (ret) {
  1459. dev_err(dev, "missing #address-cells property\n");
  1460. return ret;
  1461. }
  1462. reg_cells += val;
  1463. for_each_child_of_node(np, nand_np) {
  1464. struct atmel_nand *nand;
  1465. nand = atmel_nand_create(nc, nand_np, reg_cells);
  1466. if (IS_ERR(nand)) {
  1467. ret = PTR_ERR(nand);
  1468. goto err;
  1469. }
  1470. ret = atmel_nand_controller_add_nand(nc, nand);
  1471. if (ret)
  1472. goto err;
  1473. }
  1474. return 0;
  1475. err:
  1476. atmel_nand_controller_remove_nands(nc);
  1477. return ret;
  1478. }
  1479. static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
  1480. {
  1481. if (nc->dmac)
  1482. dma_release_channel(nc->dmac);
  1483. clk_put(nc->mck);
  1484. }
  1485. static const struct of_device_id atmel_matrix_of_ids[] = {
  1486. {
  1487. .compatible = "atmel,at91sam9260-matrix",
  1488. .data = (void *)AT91SAM9260_MATRIX_EBICSA,
  1489. },
  1490. {
  1491. .compatible = "atmel,at91sam9261-matrix",
  1492. .data = (void *)AT91SAM9261_MATRIX_EBICSA,
  1493. },
  1494. {
  1495. .compatible = "atmel,at91sam9263-matrix",
  1496. .data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
  1497. },
  1498. {
  1499. .compatible = "atmel,at91sam9rl-matrix",
  1500. .data = (void *)AT91SAM9RL_MATRIX_EBICSA,
  1501. },
  1502. {
  1503. .compatible = "atmel,at91sam9g45-matrix",
  1504. .data = (void *)AT91SAM9G45_MATRIX_EBICSA,
  1505. },
  1506. {
  1507. .compatible = "atmel,at91sam9n12-matrix",
  1508. .data = (void *)AT91SAM9N12_MATRIX_EBICSA,
  1509. },
  1510. {
  1511. .compatible = "atmel,at91sam9x5-matrix",
  1512. .data = (void *)AT91SAM9X5_MATRIX_EBICSA,
  1513. },
  1514. { /* sentinel */ },
  1515. };
  1516. static int atmel_nand_attach_chip(struct nand_chip *chip)
  1517. {
  1518. struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
  1519. struct atmel_nand *nand = to_atmel_nand(chip);
  1520. struct mtd_info *mtd = nand_to_mtd(chip);
  1521. int ret;
  1522. ret = nc->caps->ops->ecc_init(chip);
  1523. if (ret)
  1524. return ret;
  1525. if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
  1526. /*
  1527. * We keep the MTD name unchanged to avoid breaking platforms
  1528. * where the MTD cmdline parser is used and the bootloader
  1529. * has not been updated to use the new naming scheme.
  1530. */
  1531. mtd->name = "atmel_nand";
  1532. } else if (!mtd->name) {
  1533. /*
  1534. * If the new bindings are used and the bootloader has not been
  1535. * updated to pass a new mtdparts parameter on the cmdline, you
  1536. * should define the following property in your nand node:
  1537. *
  1538. * label = "atmel_nand";
  1539. *
  1540. * This way, mtd->name will be set by the core when
  1541. * nand_set_flash_node() is called.
  1542. */
  1543. mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
  1544. "%s:nand.%d", dev_name(nc->dev),
  1545. nand->cs[0].id);
  1546. if (!mtd->name) {
  1547. dev_err(nc->dev, "Failed to allocate mtd->name\n");
  1548. return -ENOMEM;
  1549. }
  1550. }
  1551. return 0;
  1552. }
  1553. static const struct nand_controller_ops atmel_nand_controller_ops = {
  1554. .attach_chip = atmel_nand_attach_chip,
  1555. };
  1556. static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
  1557. struct platform_device *pdev,
  1558. const struct atmel_nand_controller_caps *caps)
  1559. {
  1560. struct device *dev = &pdev->dev;
  1561. struct device_node *np = dev->of_node;
  1562. int ret;
  1563. nand_controller_init(&nc->base);
  1564. nc->base.ops = &atmel_nand_controller_ops;
  1565. INIT_LIST_HEAD(&nc->chips);
  1566. nc->dev = dev;
  1567. nc->caps = caps;
  1568. platform_set_drvdata(pdev, nc);
  1569. nc->pmecc = devm_atmel_pmecc_get(dev);
  1570. if (IS_ERR(nc->pmecc)) {
  1571. ret = PTR_ERR(nc->pmecc);
  1572. if (ret != -EPROBE_DEFER)
  1573. dev_err(dev, "Could not get PMECC object (err = %d)\n",
  1574. ret);
  1575. return ret;
  1576. }
  1577. if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
  1578. dma_cap_mask_t mask;
  1579. dma_cap_zero(mask);
  1580. dma_cap_set(DMA_MEMCPY, mask);
  1581. nc->dmac = dma_request_channel(mask, NULL, NULL);
  1582. if (!nc->dmac)
  1583. dev_err(nc->dev, "Failed to request DMA channel\n");
  1584. }
  1585. /* We do not retrieve the SMC syscon when parsing old DTs. */
  1586. if (nc->caps->legacy_of_bindings)
  1587. return 0;
  1588. nc->mck = of_clk_get(dev->parent->of_node, 0);
  1589. if (IS_ERR(nc->mck)) {
  1590. dev_err(dev, "Failed to retrieve MCK clk\n");
  1591. return PTR_ERR(nc->mck);
  1592. }
  1593. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1594. if (!np) {
  1595. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1596. return -EINVAL;
  1597. }
  1598. nc->smc = syscon_node_to_regmap(np);
  1599. of_node_put(np);
  1600. if (IS_ERR(nc->smc)) {
  1601. ret = PTR_ERR(nc->smc);
  1602. dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
  1603. return ret;
  1604. }
  1605. return 0;
  1606. }
  1607. static int
  1608. atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
  1609. {
  1610. struct device *dev = nc->base.dev;
  1611. const struct of_device_id *match;
  1612. struct device_node *np;
  1613. int ret;
  1614. /* We do not retrieve the matrix syscon when parsing old DTs. */
  1615. if (nc->base.caps->legacy_of_bindings)
  1616. return 0;
  1617. np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
  1618. if (!np)
  1619. return 0;
  1620. match = of_match_node(atmel_matrix_of_ids, np);
  1621. if (!match) {
  1622. of_node_put(np);
  1623. return 0;
  1624. }
  1625. nc->matrix = syscon_node_to_regmap(np);
  1626. of_node_put(np);
  1627. if (IS_ERR(nc->matrix)) {
  1628. ret = PTR_ERR(nc->matrix);
  1629. dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
  1630. return ret;
  1631. }
  1632. nc->ebi_csa_offs = (uintptr_t)match->data;
  1633. /*
  1634. * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
  1635. * add 4 to ->ebi_csa_offs.
  1636. */
  1637. if (of_device_is_compatible(dev->parent->of_node,
  1638. "atmel,at91sam9263-ebi1"))
  1639. nc->ebi_csa_offs += 4;
  1640. return 0;
  1641. }
  1642. static int
  1643. atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
  1644. {
  1645. struct regmap_config regmap_conf = {
  1646. .reg_bits = 32,
  1647. .val_bits = 32,
  1648. .reg_stride = 4,
  1649. };
  1650. struct device *dev = nc->base.dev;
  1651. struct device_node *nand_np, *nfc_np;
  1652. void __iomem *iomem;
  1653. struct resource res;
  1654. int ret;
  1655. nand_np = dev->of_node;
  1656. nfc_np = of_find_compatible_node(dev->of_node, NULL,
  1657. "atmel,sama5d3-nfc");
  1658. nc->clk = of_clk_get(nfc_np, 0);
  1659. if (IS_ERR(nc->clk)) {
  1660. ret = PTR_ERR(nc->clk);
  1661. dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
  1662. ret);
  1663. goto out;
  1664. }
  1665. ret = clk_prepare_enable(nc->clk);
  1666. if (ret) {
  1667. dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
  1668. ret);
  1669. goto out;
  1670. }
  1671. nc->irq = of_irq_get(nand_np, 0);
  1672. if (nc->irq <= 0) {
  1673. ret = nc->irq ?: -ENXIO;
  1674. if (ret != -EPROBE_DEFER)
  1675. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1676. ret);
  1677. goto out;
  1678. }
  1679. ret = of_address_to_resource(nfc_np, 0, &res);
  1680. if (ret) {
  1681. dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
  1682. ret);
  1683. goto out;
  1684. }
  1685. iomem = devm_ioremap_resource(dev, &res);
  1686. if (IS_ERR(iomem)) {
  1687. ret = PTR_ERR(iomem);
  1688. goto out;
  1689. }
  1690. regmap_conf.name = "nfc-io";
  1691. regmap_conf.max_register = resource_size(&res) - 4;
  1692. nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1693. if (IS_ERR(nc->io)) {
  1694. ret = PTR_ERR(nc->io);
  1695. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1696. ret);
  1697. goto out;
  1698. }
  1699. ret = of_address_to_resource(nfc_np, 1, &res);
  1700. if (ret) {
  1701. dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
  1702. ret);
  1703. goto out;
  1704. }
  1705. iomem = devm_ioremap_resource(dev, &res);
  1706. if (IS_ERR(iomem)) {
  1707. ret = PTR_ERR(iomem);
  1708. goto out;
  1709. }
  1710. regmap_conf.name = "smc";
  1711. regmap_conf.max_register = resource_size(&res) - 4;
  1712. nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
  1713. if (IS_ERR(nc->base.smc)) {
  1714. ret = PTR_ERR(nc->base.smc);
  1715. dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
  1716. ret);
  1717. goto out;
  1718. }
  1719. ret = of_address_to_resource(nfc_np, 2, &res);
  1720. if (ret) {
  1721. dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
  1722. ret);
  1723. goto out;
  1724. }
  1725. nc->sram.virt = devm_ioremap_resource(dev, &res);
  1726. if (IS_ERR(nc->sram.virt)) {
  1727. ret = PTR_ERR(nc->sram.virt);
  1728. goto out;
  1729. }
  1730. nc->sram.dma = res.start;
  1731. out:
  1732. of_node_put(nfc_np);
  1733. return ret;
  1734. }
  1735. static int
  1736. atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
  1737. {
  1738. struct device *dev = nc->base.dev;
  1739. struct device_node *np;
  1740. int ret;
  1741. np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
  1742. if (!np) {
  1743. dev_err(dev, "Missing or invalid atmel,smc property\n");
  1744. return -EINVAL;
  1745. }
  1746. nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
  1747. nc->irq = of_irq_get(np, 0);
  1748. of_node_put(np);
  1749. if (nc->irq <= 0) {
  1750. ret = nc->irq ?: -ENXIO;
  1751. if (ret != -EPROBE_DEFER)
  1752. dev_err(dev, "Failed to get IRQ number (err = %d)\n",
  1753. ret);
  1754. return ret;
  1755. }
  1756. np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
  1757. if (!np) {
  1758. dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
  1759. return -EINVAL;
  1760. }
  1761. nc->io = syscon_node_to_regmap(np);
  1762. of_node_put(np);
  1763. if (IS_ERR(nc->io)) {
  1764. ret = PTR_ERR(nc->io);
  1765. dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
  1766. return ret;
  1767. }
  1768. nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
  1769. "atmel,nfc-sram", 0);
  1770. if (!nc->sram.pool) {
  1771. dev_err(nc->base.dev, "Missing SRAM\n");
  1772. return -ENOMEM;
  1773. }
  1774. nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
  1775. ATMEL_NFC_SRAM_SIZE,
  1776. &nc->sram.dma);
  1777. if (!nc->sram.virt) {
  1778. dev_err(nc->base.dev,
  1779. "Could not allocate memory from the NFC SRAM pool\n");
  1780. return -ENOMEM;
  1781. }
  1782. return 0;
  1783. }
  1784. static int
  1785. atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
  1786. {
  1787. struct atmel_hsmc_nand_controller *hsmc_nc;
  1788. int ret;
  1789. ret = atmel_nand_controller_remove_nands(nc);
  1790. if (ret)
  1791. return ret;
  1792. hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
  1793. if (hsmc_nc->sram.pool)
  1794. gen_pool_free(hsmc_nc->sram.pool,
  1795. (unsigned long)hsmc_nc->sram.virt,
  1796. ATMEL_NFC_SRAM_SIZE);
  1797. if (hsmc_nc->clk) {
  1798. clk_disable_unprepare(hsmc_nc->clk);
  1799. clk_put(hsmc_nc->clk);
  1800. }
  1801. atmel_nand_controller_cleanup(nc);
  1802. return 0;
  1803. }
  1804. static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
  1805. const struct atmel_nand_controller_caps *caps)
  1806. {
  1807. struct device *dev = &pdev->dev;
  1808. struct atmel_hsmc_nand_controller *nc;
  1809. int ret;
  1810. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1811. if (!nc)
  1812. return -ENOMEM;
  1813. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1814. if (ret)
  1815. return ret;
  1816. if (caps->legacy_of_bindings)
  1817. ret = atmel_hsmc_nand_controller_legacy_init(nc);
  1818. else
  1819. ret = atmel_hsmc_nand_controller_init(nc);
  1820. if (ret)
  1821. return ret;
  1822. /* Make sure all irqs are masked before registering our IRQ handler. */
  1823. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
  1824. ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
  1825. IRQF_SHARED, "nfc", nc);
  1826. if (ret) {
  1827. dev_err(dev,
  1828. "Could not get register NFC interrupt handler (err = %d)\n",
  1829. ret);
  1830. goto err;
  1831. }
  1832. /* Initial NFC configuration. */
  1833. regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
  1834. ATMEL_HSMC_NFC_CFG_DTO_MAX);
  1835. ret = atmel_nand_controller_add_nands(&nc->base);
  1836. if (ret)
  1837. goto err;
  1838. return 0;
  1839. err:
  1840. atmel_hsmc_nand_controller_remove(&nc->base);
  1841. return ret;
  1842. }
  1843. static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
  1844. .probe = atmel_hsmc_nand_controller_probe,
  1845. .remove = atmel_hsmc_nand_controller_remove,
  1846. .ecc_init = atmel_hsmc_nand_ecc_init,
  1847. .nand_init = atmel_hsmc_nand_init,
  1848. .setup_data_interface = atmel_hsmc_nand_setup_data_interface,
  1849. };
  1850. static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
  1851. .has_dma = true,
  1852. .ale_offs = BIT(21),
  1853. .cle_offs = BIT(22),
  1854. .ops = &atmel_hsmc_nc_ops,
  1855. };
  1856. /* Only used to parse old bindings. */
  1857. static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
  1858. .has_dma = true,
  1859. .ale_offs = BIT(21),
  1860. .cle_offs = BIT(22),
  1861. .ops = &atmel_hsmc_nc_ops,
  1862. .legacy_of_bindings = true,
  1863. };
  1864. static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
  1865. const struct atmel_nand_controller_caps *caps)
  1866. {
  1867. struct device *dev = &pdev->dev;
  1868. struct atmel_smc_nand_controller *nc;
  1869. int ret;
  1870. nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
  1871. if (!nc)
  1872. return -ENOMEM;
  1873. ret = atmel_nand_controller_init(&nc->base, pdev, caps);
  1874. if (ret)
  1875. return ret;
  1876. ret = atmel_smc_nand_controller_init(nc);
  1877. if (ret)
  1878. return ret;
  1879. return atmel_nand_controller_add_nands(&nc->base);
  1880. }
  1881. static int
  1882. atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
  1883. {
  1884. int ret;
  1885. ret = atmel_nand_controller_remove_nands(nc);
  1886. if (ret)
  1887. return ret;
  1888. atmel_nand_controller_cleanup(nc);
  1889. return 0;
  1890. }
  1891. /*
  1892. * The SMC reg layout of at91rm9200 is completely different which prevents us
  1893. * from re-using atmel_smc_nand_setup_data_interface() for the
  1894. * ->setup_data_interface() hook.
  1895. * At this point, there's no support for the at91rm9200 SMC IP, so we leave
  1896. * ->setup_data_interface() unassigned.
  1897. */
  1898. static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
  1899. .probe = atmel_smc_nand_controller_probe,
  1900. .remove = atmel_smc_nand_controller_remove,
  1901. .ecc_init = atmel_nand_ecc_init,
  1902. .nand_init = atmel_smc_nand_init,
  1903. };
  1904. static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
  1905. .ale_offs = BIT(21),
  1906. .cle_offs = BIT(22),
  1907. .ops = &at91rm9200_nc_ops,
  1908. };
  1909. static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
  1910. .probe = atmel_smc_nand_controller_probe,
  1911. .remove = atmel_smc_nand_controller_remove,
  1912. .ecc_init = atmel_nand_ecc_init,
  1913. .nand_init = atmel_smc_nand_init,
  1914. .setup_data_interface = atmel_smc_nand_setup_data_interface,
  1915. };
  1916. static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
  1917. .ale_offs = BIT(21),
  1918. .cle_offs = BIT(22),
  1919. .ops = &atmel_smc_nc_ops,
  1920. };
  1921. static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
  1922. .ale_offs = BIT(22),
  1923. .cle_offs = BIT(21),
  1924. .ops = &atmel_smc_nc_ops,
  1925. };
  1926. static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
  1927. .has_dma = true,
  1928. .ale_offs = BIT(21),
  1929. .cle_offs = BIT(22),
  1930. .ops = &atmel_smc_nc_ops,
  1931. };
  1932. /* Only used to parse old bindings. */
  1933. static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
  1934. .ale_offs = BIT(21),
  1935. .cle_offs = BIT(22),
  1936. .ops = &atmel_smc_nc_ops,
  1937. .legacy_of_bindings = true,
  1938. };
  1939. static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
  1940. .ale_offs = BIT(22),
  1941. .cle_offs = BIT(21),
  1942. .ops = &atmel_smc_nc_ops,
  1943. .legacy_of_bindings = true,
  1944. };
  1945. static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
  1946. .has_dma = true,
  1947. .ale_offs = BIT(21),
  1948. .cle_offs = BIT(22),
  1949. .ops = &atmel_smc_nc_ops,
  1950. .legacy_of_bindings = true,
  1951. };
  1952. static const struct of_device_id atmel_nand_controller_of_ids[] = {
  1953. {
  1954. .compatible = "atmel,at91rm9200-nand-controller",
  1955. .data = &atmel_rm9200_nc_caps,
  1956. },
  1957. {
  1958. .compatible = "atmel,at91sam9260-nand-controller",
  1959. .data = &atmel_sam9260_nc_caps,
  1960. },
  1961. {
  1962. .compatible = "atmel,at91sam9261-nand-controller",
  1963. .data = &atmel_sam9261_nc_caps,
  1964. },
  1965. {
  1966. .compatible = "atmel,at91sam9g45-nand-controller",
  1967. .data = &atmel_sam9g45_nc_caps,
  1968. },
  1969. {
  1970. .compatible = "atmel,sama5d3-nand-controller",
  1971. .data = &atmel_sama5_nc_caps,
  1972. },
  1973. /* Support for old/deprecated bindings: */
  1974. {
  1975. .compatible = "atmel,at91rm9200-nand",
  1976. .data = &atmel_rm9200_nand_caps,
  1977. },
  1978. {
  1979. .compatible = "atmel,sama5d4-nand",
  1980. .data = &atmel_rm9200_nand_caps,
  1981. },
  1982. {
  1983. .compatible = "atmel,sama5d2-nand",
  1984. .data = &atmel_rm9200_nand_caps,
  1985. },
  1986. { /* sentinel */ },
  1987. };
  1988. MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
  1989. static int atmel_nand_controller_probe(struct platform_device *pdev)
  1990. {
  1991. const struct atmel_nand_controller_caps *caps;
  1992. if (pdev->id_entry)
  1993. caps = (void *)pdev->id_entry->driver_data;
  1994. else
  1995. caps = of_device_get_match_data(&pdev->dev);
  1996. if (!caps) {
  1997. dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
  1998. return -EINVAL;
  1999. }
  2000. if (caps->legacy_of_bindings) {
  2001. u32 ale_offs = 21;
  2002. /*
  2003. * If we are parsing legacy DT props and the DT contains a
  2004. * valid NFC node, forward the request to the sama5 logic.
  2005. */
  2006. if (of_find_compatible_node(pdev->dev.of_node, NULL,
  2007. "atmel,sama5d3-nfc"))
  2008. caps = &atmel_sama5_nand_caps;
  2009. /*
  2010. * Even if the compatible says we are dealing with an
  2011. * at91rm9200 controller, the atmel,nand-has-dma specify that
  2012. * this controller supports DMA, which means we are in fact
  2013. * dealing with an at91sam9g45+ controller.
  2014. */
  2015. if (!caps->has_dma &&
  2016. of_property_read_bool(pdev->dev.of_node,
  2017. "atmel,nand-has-dma"))
  2018. caps = &atmel_sam9g45_nand_caps;
  2019. /*
  2020. * All SoCs except the at91sam9261 are assigning ALE to A21 and
  2021. * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
  2022. * actually dealing with an at91sam9261 controller.
  2023. */
  2024. of_property_read_u32(pdev->dev.of_node,
  2025. "atmel,nand-addr-offset", &ale_offs);
  2026. if (ale_offs != 21)
  2027. caps = &atmel_sam9261_nand_caps;
  2028. }
  2029. return caps->ops->probe(pdev, caps);
  2030. }
  2031. static int atmel_nand_controller_remove(struct platform_device *pdev)
  2032. {
  2033. struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
  2034. return nc->caps->ops->remove(nc);
  2035. }
  2036. static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
  2037. {
  2038. struct atmel_nand_controller *nc = dev_get_drvdata(dev);
  2039. struct atmel_nand *nand;
  2040. if (nc->pmecc)
  2041. atmel_pmecc_reset(nc->pmecc);
  2042. list_for_each_entry(nand, &nc->chips, node) {
  2043. int i;
  2044. for (i = 0; i < nand->numcs; i++)
  2045. nand_reset(&nand->base, i);
  2046. }
  2047. return 0;
  2048. }
  2049. static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
  2050. atmel_nand_controller_resume);
  2051. static struct platform_driver atmel_nand_controller_driver = {
  2052. .driver = {
  2053. .name = "atmel-nand-controller",
  2054. .of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
  2055. .pm = &atmel_nand_controller_pm_ops,
  2056. },
  2057. .probe = atmel_nand_controller_probe,
  2058. .remove = atmel_nand_controller_remove,
  2059. };
  2060. module_platform_driver(atmel_nand_controller_driver);
  2061. MODULE_LICENSE("GPL");
  2062. MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
  2063. MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
  2064. MODULE_ALIAS("platform:atmel-nand-controller");