hugetlb.c 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864
  1. /*
  2. * Generic hugetlb support.
  3. * (C) Nadia Yvette Chambers, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/mm.h>
  8. #include <linux/seq_file.h>
  9. #include <linux/sysctl.h>
  10. #include <linux/highmem.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/compiler.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/mmdebug.h>
  22. #include <linux/sched/signal.h>
  23. #include <linux/rmap.h>
  24. #include <linux/string_helpers.h>
  25. #include <linux/swap.h>
  26. #include <linux/swapops.h>
  27. #include <linux/jhash.h>
  28. #include <asm/page.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/tlb.h>
  31. #include <linux/io.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/hugetlb_cgroup.h>
  34. #include <linux/node.h>
  35. #include <linux/userfaultfd_k.h>
  36. #include <linux/page_owner.h>
  37. #include "internal.h"
  38. int hugetlb_max_hstate __read_mostly;
  39. unsigned int default_hstate_idx;
  40. struct hstate hstates[HUGE_MAX_HSTATE];
  41. /*
  42. * Minimum page order among possible hugepage sizes, set to a proper value
  43. * at boot time.
  44. */
  45. static unsigned int minimum_order __read_mostly = UINT_MAX;
  46. __initdata LIST_HEAD(huge_boot_pages);
  47. /* for command line parsing */
  48. static struct hstate * __initdata parsed_hstate;
  49. static unsigned long __initdata default_hstate_max_huge_pages;
  50. static unsigned long __initdata default_hstate_size;
  51. static bool __initdata parsed_valid_hugepagesz = true;
  52. /*
  53. * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  54. * free_huge_pages, and surplus_huge_pages.
  55. */
  56. DEFINE_SPINLOCK(hugetlb_lock);
  57. /*
  58. * Serializes faults on the same logical page. This is used to
  59. * prevent spurious OOMs when the hugepage pool is fully utilized.
  60. */
  61. static int num_fault_mutexes;
  62. struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  63. /* Forward declaration */
  64. static int hugetlb_acct_memory(struct hstate *h, long delta);
  65. static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  66. {
  67. bool free = (spool->count == 0) && (spool->used_hpages == 0);
  68. spin_unlock(&spool->lock);
  69. /* If no pages are used, and no other handles to the subpool
  70. * remain, give up any reservations mased on minimum size and
  71. * free the subpool */
  72. if (free) {
  73. if (spool->min_hpages != -1)
  74. hugetlb_acct_memory(spool->hstate,
  75. -spool->min_hpages);
  76. kfree(spool);
  77. }
  78. }
  79. struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
  80. long min_hpages)
  81. {
  82. struct hugepage_subpool *spool;
  83. spool = kzalloc(sizeof(*spool), GFP_KERNEL);
  84. if (!spool)
  85. return NULL;
  86. spin_lock_init(&spool->lock);
  87. spool->count = 1;
  88. spool->max_hpages = max_hpages;
  89. spool->hstate = h;
  90. spool->min_hpages = min_hpages;
  91. if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
  92. kfree(spool);
  93. return NULL;
  94. }
  95. spool->rsv_hpages = min_hpages;
  96. return spool;
  97. }
  98. void hugepage_put_subpool(struct hugepage_subpool *spool)
  99. {
  100. spin_lock(&spool->lock);
  101. BUG_ON(!spool->count);
  102. spool->count--;
  103. unlock_or_release_subpool(spool);
  104. }
  105. /*
  106. * Subpool accounting for allocating and reserving pages.
  107. * Return -ENOMEM if there are not enough resources to satisfy the
  108. * the request. Otherwise, return the number of pages by which the
  109. * global pools must be adjusted (upward). The returned value may
  110. * only be different than the passed value (delta) in the case where
  111. * a subpool minimum size must be manitained.
  112. */
  113. static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
  114. long delta)
  115. {
  116. long ret = delta;
  117. if (!spool)
  118. return ret;
  119. spin_lock(&spool->lock);
  120. if (spool->max_hpages != -1) { /* maximum size accounting */
  121. if ((spool->used_hpages + delta) <= spool->max_hpages)
  122. spool->used_hpages += delta;
  123. else {
  124. ret = -ENOMEM;
  125. goto unlock_ret;
  126. }
  127. }
  128. /* minimum size accounting */
  129. if (spool->min_hpages != -1 && spool->rsv_hpages) {
  130. if (delta > spool->rsv_hpages) {
  131. /*
  132. * Asking for more reserves than those already taken on
  133. * behalf of subpool. Return difference.
  134. */
  135. ret = delta - spool->rsv_hpages;
  136. spool->rsv_hpages = 0;
  137. } else {
  138. ret = 0; /* reserves already accounted for */
  139. spool->rsv_hpages -= delta;
  140. }
  141. }
  142. unlock_ret:
  143. spin_unlock(&spool->lock);
  144. return ret;
  145. }
  146. /*
  147. * Subpool accounting for freeing and unreserving pages.
  148. * Return the number of global page reservations that must be dropped.
  149. * The return value may only be different than the passed value (delta)
  150. * in the case where a subpool minimum size must be maintained.
  151. */
  152. static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
  153. long delta)
  154. {
  155. long ret = delta;
  156. if (!spool)
  157. return delta;
  158. spin_lock(&spool->lock);
  159. if (spool->max_hpages != -1) /* maximum size accounting */
  160. spool->used_hpages -= delta;
  161. /* minimum size accounting */
  162. if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
  163. if (spool->rsv_hpages + delta <= spool->min_hpages)
  164. ret = 0;
  165. else
  166. ret = spool->rsv_hpages + delta - spool->min_hpages;
  167. spool->rsv_hpages += delta;
  168. if (spool->rsv_hpages > spool->min_hpages)
  169. spool->rsv_hpages = spool->min_hpages;
  170. }
  171. /*
  172. * If hugetlbfs_put_super couldn't free spool due to an outstanding
  173. * quota reference, free it now.
  174. */
  175. unlock_or_release_subpool(spool);
  176. return ret;
  177. }
  178. static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
  179. {
  180. return HUGETLBFS_SB(inode->i_sb)->spool;
  181. }
  182. static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
  183. {
  184. return subpool_inode(file_inode(vma->vm_file));
  185. }
  186. /*
  187. * Region tracking -- allows tracking of reservations and instantiated pages
  188. * across the pages in a mapping.
  189. *
  190. * The region data structures are embedded into a resv_map and protected
  191. * by a resv_map's lock. The set of regions within the resv_map represent
  192. * reservations for huge pages, or huge pages that have already been
  193. * instantiated within the map. The from and to elements are huge page
  194. * indicies into the associated mapping. from indicates the starting index
  195. * of the region. to represents the first index past the end of the region.
  196. *
  197. * For example, a file region structure with from == 0 and to == 4 represents
  198. * four huge pages in a mapping. It is important to note that the to element
  199. * represents the first element past the end of the region. This is used in
  200. * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
  201. *
  202. * Interval notation of the form [from, to) will be used to indicate that
  203. * the endpoint from is inclusive and to is exclusive.
  204. */
  205. struct file_region {
  206. struct list_head link;
  207. long from;
  208. long to;
  209. };
  210. /*
  211. * Add the huge page range represented by [f, t) to the reserve
  212. * map. In the normal case, existing regions will be expanded
  213. * to accommodate the specified range. Sufficient regions should
  214. * exist for expansion due to the previous call to region_chg
  215. * with the same range. However, it is possible that region_del
  216. * could have been called after region_chg and modifed the map
  217. * in such a way that no region exists to be expanded. In this
  218. * case, pull a region descriptor from the cache associated with
  219. * the map and use that for the new range.
  220. *
  221. * Return the number of new huge pages added to the map. This
  222. * number is greater than or equal to zero.
  223. */
  224. static long region_add(struct resv_map *resv, long f, long t)
  225. {
  226. struct list_head *head = &resv->regions;
  227. struct file_region *rg, *nrg, *trg;
  228. long add = 0;
  229. spin_lock(&resv->lock);
  230. /* Locate the region we are either in or before. */
  231. list_for_each_entry(rg, head, link)
  232. if (f <= rg->to)
  233. break;
  234. /*
  235. * If no region exists which can be expanded to include the
  236. * specified range, the list must have been modified by an
  237. * interleving call to region_del(). Pull a region descriptor
  238. * from the cache and use it for this range.
  239. */
  240. if (&rg->link == head || t < rg->from) {
  241. VM_BUG_ON(resv->region_cache_count <= 0);
  242. resv->region_cache_count--;
  243. nrg = list_first_entry(&resv->region_cache, struct file_region,
  244. link);
  245. list_del(&nrg->link);
  246. nrg->from = f;
  247. nrg->to = t;
  248. list_add(&nrg->link, rg->link.prev);
  249. add += t - f;
  250. goto out_locked;
  251. }
  252. /* Round our left edge to the current segment if it encloses us. */
  253. if (f > rg->from)
  254. f = rg->from;
  255. /* Check for and consume any regions we now overlap with. */
  256. nrg = rg;
  257. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  258. if (&rg->link == head)
  259. break;
  260. if (rg->from > t)
  261. break;
  262. /* If this area reaches higher then extend our area to
  263. * include it completely. If this is not the first area
  264. * which we intend to reuse, free it. */
  265. if (rg->to > t)
  266. t = rg->to;
  267. if (rg != nrg) {
  268. /* Decrement return value by the deleted range.
  269. * Another range will span this area so that by
  270. * end of routine add will be >= zero
  271. */
  272. add -= (rg->to - rg->from);
  273. list_del(&rg->link);
  274. kfree(rg);
  275. }
  276. }
  277. add += (nrg->from - f); /* Added to beginning of region */
  278. nrg->from = f;
  279. add += t - nrg->to; /* Added to end of region */
  280. nrg->to = t;
  281. out_locked:
  282. resv->adds_in_progress--;
  283. spin_unlock(&resv->lock);
  284. VM_BUG_ON(add < 0);
  285. return add;
  286. }
  287. /*
  288. * Examine the existing reserve map and determine how many
  289. * huge pages in the specified range [f, t) are NOT currently
  290. * represented. This routine is called before a subsequent
  291. * call to region_add that will actually modify the reserve
  292. * map to add the specified range [f, t). region_chg does
  293. * not change the number of huge pages represented by the
  294. * map. However, if the existing regions in the map can not
  295. * be expanded to represent the new range, a new file_region
  296. * structure is added to the map as a placeholder. This is
  297. * so that the subsequent region_add call will have all the
  298. * regions it needs and will not fail.
  299. *
  300. * Upon entry, region_chg will also examine the cache of region descriptors
  301. * associated with the map. If there are not enough descriptors cached, one
  302. * will be allocated for the in progress add operation.
  303. *
  304. * Returns the number of huge pages that need to be added to the existing
  305. * reservation map for the range [f, t). This number is greater or equal to
  306. * zero. -ENOMEM is returned if a new file_region structure or cache entry
  307. * is needed and can not be allocated.
  308. */
  309. static long region_chg(struct resv_map *resv, long f, long t)
  310. {
  311. struct list_head *head = &resv->regions;
  312. struct file_region *rg, *nrg = NULL;
  313. long chg = 0;
  314. retry:
  315. spin_lock(&resv->lock);
  316. retry_locked:
  317. resv->adds_in_progress++;
  318. /*
  319. * Check for sufficient descriptors in the cache to accommodate
  320. * the number of in progress add operations.
  321. */
  322. if (resv->adds_in_progress > resv->region_cache_count) {
  323. struct file_region *trg;
  324. VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
  325. /* Must drop lock to allocate a new descriptor. */
  326. resv->adds_in_progress--;
  327. spin_unlock(&resv->lock);
  328. trg = kmalloc(sizeof(*trg), GFP_KERNEL);
  329. if (!trg) {
  330. kfree(nrg);
  331. return -ENOMEM;
  332. }
  333. spin_lock(&resv->lock);
  334. list_add(&trg->link, &resv->region_cache);
  335. resv->region_cache_count++;
  336. goto retry_locked;
  337. }
  338. /* Locate the region we are before or in. */
  339. list_for_each_entry(rg, head, link)
  340. if (f <= rg->to)
  341. break;
  342. /* If we are below the current region then a new region is required.
  343. * Subtle, allocate a new region at the position but make it zero
  344. * size such that we can guarantee to record the reservation. */
  345. if (&rg->link == head || t < rg->from) {
  346. if (!nrg) {
  347. resv->adds_in_progress--;
  348. spin_unlock(&resv->lock);
  349. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  350. if (!nrg)
  351. return -ENOMEM;
  352. nrg->from = f;
  353. nrg->to = f;
  354. INIT_LIST_HEAD(&nrg->link);
  355. goto retry;
  356. }
  357. list_add(&nrg->link, rg->link.prev);
  358. chg = t - f;
  359. goto out_nrg;
  360. }
  361. /* Round our left edge to the current segment if it encloses us. */
  362. if (f > rg->from)
  363. f = rg->from;
  364. chg = t - f;
  365. /* Check for and consume any regions we now overlap with. */
  366. list_for_each_entry(rg, rg->link.prev, link) {
  367. if (&rg->link == head)
  368. break;
  369. if (rg->from > t)
  370. goto out;
  371. /* We overlap with this area, if it extends further than
  372. * us then we must extend ourselves. Account for its
  373. * existing reservation. */
  374. if (rg->to > t) {
  375. chg += rg->to - t;
  376. t = rg->to;
  377. }
  378. chg -= rg->to - rg->from;
  379. }
  380. out:
  381. spin_unlock(&resv->lock);
  382. /* We already know we raced and no longer need the new region */
  383. kfree(nrg);
  384. return chg;
  385. out_nrg:
  386. spin_unlock(&resv->lock);
  387. return chg;
  388. }
  389. /*
  390. * Abort the in progress add operation. The adds_in_progress field
  391. * of the resv_map keeps track of the operations in progress between
  392. * calls to region_chg and region_add. Operations are sometimes
  393. * aborted after the call to region_chg. In such cases, region_abort
  394. * is called to decrement the adds_in_progress counter.
  395. *
  396. * NOTE: The range arguments [f, t) are not needed or used in this
  397. * routine. They are kept to make reading the calling code easier as
  398. * arguments will match the associated region_chg call.
  399. */
  400. static void region_abort(struct resv_map *resv, long f, long t)
  401. {
  402. spin_lock(&resv->lock);
  403. VM_BUG_ON(!resv->region_cache_count);
  404. resv->adds_in_progress--;
  405. spin_unlock(&resv->lock);
  406. }
  407. /*
  408. * Delete the specified range [f, t) from the reserve map. If the
  409. * t parameter is LONG_MAX, this indicates that ALL regions after f
  410. * should be deleted. Locate the regions which intersect [f, t)
  411. * and either trim, delete or split the existing regions.
  412. *
  413. * Returns the number of huge pages deleted from the reserve map.
  414. * In the normal case, the return value is zero or more. In the
  415. * case where a region must be split, a new region descriptor must
  416. * be allocated. If the allocation fails, -ENOMEM will be returned.
  417. * NOTE: If the parameter t == LONG_MAX, then we will never split
  418. * a region and possibly return -ENOMEM. Callers specifying
  419. * t == LONG_MAX do not need to check for -ENOMEM error.
  420. */
  421. static long region_del(struct resv_map *resv, long f, long t)
  422. {
  423. struct list_head *head = &resv->regions;
  424. struct file_region *rg, *trg;
  425. struct file_region *nrg = NULL;
  426. long del = 0;
  427. retry:
  428. spin_lock(&resv->lock);
  429. list_for_each_entry_safe(rg, trg, head, link) {
  430. /*
  431. * Skip regions before the range to be deleted. file_region
  432. * ranges are normally of the form [from, to). However, there
  433. * may be a "placeholder" entry in the map which is of the form
  434. * (from, to) with from == to. Check for placeholder entries
  435. * at the beginning of the range to be deleted.
  436. */
  437. if (rg->to <= f && (rg->to != rg->from || rg->to != f))
  438. continue;
  439. if (rg->from >= t)
  440. break;
  441. if (f > rg->from && t < rg->to) { /* Must split region */
  442. /*
  443. * Check for an entry in the cache before dropping
  444. * lock and attempting allocation.
  445. */
  446. if (!nrg &&
  447. resv->region_cache_count > resv->adds_in_progress) {
  448. nrg = list_first_entry(&resv->region_cache,
  449. struct file_region,
  450. link);
  451. list_del(&nrg->link);
  452. resv->region_cache_count--;
  453. }
  454. if (!nrg) {
  455. spin_unlock(&resv->lock);
  456. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  457. if (!nrg)
  458. return -ENOMEM;
  459. goto retry;
  460. }
  461. del += t - f;
  462. /* New entry for end of split region */
  463. nrg->from = t;
  464. nrg->to = rg->to;
  465. INIT_LIST_HEAD(&nrg->link);
  466. /* Original entry is trimmed */
  467. rg->to = f;
  468. list_add(&nrg->link, &rg->link);
  469. nrg = NULL;
  470. break;
  471. }
  472. if (f <= rg->from && t >= rg->to) { /* Remove entire region */
  473. del += rg->to - rg->from;
  474. list_del(&rg->link);
  475. kfree(rg);
  476. continue;
  477. }
  478. if (f <= rg->from) { /* Trim beginning of region */
  479. del += t - rg->from;
  480. rg->from = t;
  481. } else { /* Trim end of region */
  482. del += rg->to - f;
  483. rg->to = f;
  484. }
  485. }
  486. spin_unlock(&resv->lock);
  487. kfree(nrg);
  488. return del;
  489. }
  490. /*
  491. * A rare out of memory error was encountered which prevented removal of
  492. * the reserve map region for a page. The huge page itself was free'ed
  493. * and removed from the page cache. This routine will adjust the subpool
  494. * usage count, and the global reserve count if needed. By incrementing
  495. * these counts, the reserve map entry which could not be deleted will
  496. * appear as a "reserved" entry instead of simply dangling with incorrect
  497. * counts.
  498. */
  499. void hugetlb_fix_reserve_counts(struct inode *inode)
  500. {
  501. struct hugepage_subpool *spool = subpool_inode(inode);
  502. long rsv_adjust;
  503. rsv_adjust = hugepage_subpool_get_pages(spool, 1);
  504. if (rsv_adjust) {
  505. struct hstate *h = hstate_inode(inode);
  506. hugetlb_acct_memory(h, 1);
  507. }
  508. }
  509. /*
  510. * Count and return the number of huge pages in the reserve map
  511. * that intersect with the range [f, t).
  512. */
  513. static long region_count(struct resv_map *resv, long f, long t)
  514. {
  515. struct list_head *head = &resv->regions;
  516. struct file_region *rg;
  517. long chg = 0;
  518. spin_lock(&resv->lock);
  519. /* Locate each segment we overlap with, and count that overlap. */
  520. list_for_each_entry(rg, head, link) {
  521. long seg_from;
  522. long seg_to;
  523. if (rg->to <= f)
  524. continue;
  525. if (rg->from >= t)
  526. break;
  527. seg_from = max(rg->from, f);
  528. seg_to = min(rg->to, t);
  529. chg += seg_to - seg_from;
  530. }
  531. spin_unlock(&resv->lock);
  532. return chg;
  533. }
  534. /*
  535. * Convert the address within this vma to the page offset within
  536. * the mapping, in pagecache page units; huge pages here.
  537. */
  538. static pgoff_t vma_hugecache_offset(struct hstate *h,
  539. struct vm_area_struct *vma, unsigned long address)
  540. {
  541. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  542. (vma->vm_pgoff >> huge_page_order(h));
  543. }
  544. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  545. unsigned long address)
  546. {
  547. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  548. }
  549. EXPORT_SYMBOL_GPL(linear_hugepage_index);
  550. /*
  551. * Return the size of the pages allocated when backing a VMA. In the majority
  552. * cases this will be same size as used by the page table entries.
  553. */
  554. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  555. {
  556. if (vma->vm_ops && vma->vm_ops->pagesize)
  557. return vma->vm_ops->pagesize(vma);
  558. return PAGE_SIZE;
  559. }
  560. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  561. /*
  562. * Return the page size being used by the MMU to back a VMA. In the majority
  563. * of cases, the page size used by the kernel matches the MMU size. On
  564. * architectures where it differs, an architecture-specific 'strong'
  565. * version of this symbol is required.
  566. */
  567. __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  568. {
  569. return vma_kernel_pagesize(vma);
  570. }
  571. /*
  572. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  573. * bits of the reservation map pointer, which are always clear due to
  574. * alignment.
  575. */
  576. #define HPAGE_RESV_OWNER (1UL << 0)
  577. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  578. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  579. /*
  580. * These helpers are used to track how many pages are reserved for
  581. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  582. * is guaranteed to have their future faults succeed.
  583. *
  584. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  585. * the reserve counters are updated with the hugetlb_lock held. It is safe
  586. * to reset the VMA at fork() time as it is not in use yet and there is no
  587. * chance of the global counters getting corrupted as a result of the values.
  588. *
  589. * The private mapping reservation is represented in a subtly different
  590. * manner to a shared mapping. A shared mapping has a region map associated
  591. * with the underlying file, this region map represents the backing file
  592. * pages which have ever had a reservation assigned which this persists even
  593. * after the page is instantiated. A private mapping has a region map
  594. * associated with the original mmap which is attached to all VMAs which
  595. * reference it, this region map represents those offsets which have consumed
  596. * reservation ie. where pages have been instantiated.
  597. */
  598. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  599. {
  600. return (unsigned long)vma->vm_private_data;
  601. }
  602. static void set_vma_private_data(struct vm_area_struct *vma,
  603. unsigned long value)
  604. {
  605. vma->vm_private_data = (void *)value;
  606. }
  607. struct resv_map *resv_map_alloc(void)
  608. {
  609. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  610. struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
  611. if (!resv_map || !rg) {
  612. kfree(resv_map);
  613. kfree(rg);
  614. return NULL;
  615. }
  616. kref_init(&resv_map->refs);
  617. spin_lock_init(&resv_map->lock);
  618. INIT_LIST_HEAD(&resv_map->regions);
  619. resv_map->adds_in_progress = 0;
  620. INIT_LIST_HEAD(&resv_map->region_cache);
  621. list_add(&rg->link, &resv_map->region_cache);
  622. resv_map->region_cache_count = 1;
  623. return resv_map;
  624. }
  625. void resv_map_release(struct kref *ref)
  626. {
  627. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  628. struct list_head *head = &resv_map->region_cache;
  629. struct file_region *rg, *trg;
  630. /* Clear out any active regions before we release the map. */
  631. region_del(resv_map, 0, LONG_MAX);
  632. /* ... and any entries left in the cache */
  633. list_for_each_entry_safe(rg, trg, head, link) {
  634. list_del(&rg->link);
  635. kfree(rg);
  636. }
  637. VM_BUG_ON(resv_map->adds_in_progress);
  638. kfree(resv_map);
  639. }
  640. static inline struct resv_map *inode_resv_map(struct inode *inode)
  641. {
  642. return inode->i_mapping->private_data;
  643. }
  644. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  645. {
  646. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  647. if (vma->vm_flags & VM_MAYSHARE) {
  648. struct address_space *mapping = vma->vm_file->f_mapping;
  649. struct inode *inode = mapping->host;
  650. return inode_resv_map(inode);
  651. } else {
  652. return (struct resv_map *)(get_vma_private_data(vma) &
  653. ~HPAGE_RESV_MASK);
  654. }
  655. }
  656. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  657. {
  658. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  659. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  660. set_vma_private_data(vma, (get_vma_private_data(vma) &
  661. HPAGE_RESV_MASK) | (unsigned long)map);
  662. }
  663. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  664. {
  665. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  666. VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
  667. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  668. }
  669. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  670. {
  671. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  672. return (get_vma_private_data(vma) & flag) != 0;
  673. }
  674. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  675. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  676. {
  677. VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
  678. if (!(vma->vm_flags & VM_MAYSHARE))
  679. vma->vm_private_data = (void *)0;
  680. }
  681. /* Returns true if the VMA has associated reserve pages */
  682. static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
  683. {
  684. if (vma->vm_flags & VM_NORESERVE) {
  685. /*
  686. * This address is already reserved by other process(chg == 0),
  687. * so, we should decrement reserved count. Without decrementing,
  688. * reserve count remains after releasing inode, because this
  689. * allocated page will go into page cache and is regarded as
  690. * coming from reserved pool in releasing step. Currently, we
  691. * don't have any other solution to deal with this situation
  692. * properly, so add work-around here.
  693. */
  694. if (vma->vm_flags & VM_MAYSHARE && chg == 0)
  695. return true;
  696. else
  697. return false;
  698. }
  699. /* Shared mappings always use reserves */
  700. if (vma->vm_flags & VM_MAYSHARE) {
  701. /*
  702. * We know VM_NORESERVE is not set. Therefore, there SHOULD
  703. * be a region map for all pages. The only situation where
  704. * there is no region map is if a hole was punched via
  705. * fallocate. In this case, there really are no reverves to
  706. * use. This situation is indicated if chg != 0.
  707. */
  708. if (chg)
  709. return false;
  710. else
  711. return true;
  712. }
  713. /*
  714. * Only the process that called mmap() has reserves for
  715. * private mappings.
  716. */
  717. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  718. /*
  719. * Like the shared case above, a hole punch or truncate
  720. * could have been performed on the private mapping.
  721. * Examine the value of chg to determine if reserves
  722. * actually exist or were previously consumed.
  723. * Very Subtle - The value of chg comes from a previous
  724. * call to vma_needs_reserves(). The reserve map for
  725. * private mappings has different (opposite) semantics
  726. * than that of shared mappings. vma_needs_reserves()
  727. * has already taken this difference in semantics into
  728. * account. Therefore, the meaning of chg is the same
  729. * as in the shared case above. Code could easily be
  730. * combined, but keeping it separate draws attention to
  731. * subtle differences.
  732. */
  733. if (chg)
  734. return false;
  735. else
  736. return true;
  737. }
  738. return false;
  739. }
  740. static void enqueue_huge_page(struct hstate *h, struct page *page)
  741. {
  742. int nid = page_to_nid(page);
  743. list_move(&page->lru, &h->hugepage_freelists[nid]);
  744. h->free_huge_pages++;
  745. h->free_huge_pages_node[nid]++;
  746. }
  747. static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
  748. {
  749. struct page *page;
  750. list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
  751. if (!PageHWPoison(page))
  752. break;
  753. /*
  754. * if 'non-isolated free hugepage' not found on the list,
  755. * the allocation fails.
  756. */
  757. if (&h->hugepage_freelists[nid] == &page->lru)
  758. return NULL;
  759. list_move(&page->lru, &h->hugepage_activelist);
  760. set_page_refcounted(page);
  761. h->free_huge_pages--;
  762. h->free_huge_pages_node[nid]--;
  763. return page;
  764. }
  765. static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
  766. nodemask_t *nmask)
  767. {
  768. unsigned int cpuset_mems_cookie;
  769. struct zonelist *zonelist;
  770. struct zone *zone;
  771. struct zoneref *z;
  772. int node = -1;
  773. zonelist = node_zonelist(nid, gfp_mask);
  774. retry_cpuset:
  775. cpuset_mems_cookie = read_mems_allowed_begin();
  776. for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
  777. struct page *page;
  778. if (!cpuset_zone_allowed(zone, gfp_mask))
  779. continue;
  780. /*
  781. * no need to ask again on the same node. Pool is node rather than
  782. * zone aware
  783. */
  784. if (zone_to_nid(zone) == node)
  785. continue;
  786. node = zone_to_nid(zone);
  787. page = dequeue_huge_page_node_exact(h, node);
  788. if (page)
  789. return page;
  790. }
  791. if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
  792. goto retry_cpuset;
  793. return NULL;
  794. }
  795. /* Movability of hugepages depends on migration support. */
  796. static inline gfp_t htlb_alloc_mask(struct hstate *h)
  797. {
  798. if (hugepage_migration_supported(h))
  799. return GFP_HIGHUSER_MOVABLE;
  800. else
  801. return GFP_HIGHUSER;
  802. }
  803. static struct page *dequeue_huge_page_vma(struct hstate *h,
  804. struct vm_area_struct *vma,
  805. unsigned long address, int avoid_reserve,
  806. long chg)
  807. {
  808. struct page *page;
  809. struct mempolicy *mpol;
  810. gfp_t gfp_mask;
  811. nodemask_t *nodemask;
  812. int nid;
  813. /*
  814. * A child process with MAP_PRIVATE mappings created by their parent
  815. * have no page reserves. This check ensures that reservations are
  816. * not "stolen". The child may still get SIGKILLed
  817. */
  818. if (!vma_has_reserves(vma, chg) &&
  819. h->free_huge_pages - h->resv_huge_pages == 0)
  820. goto err;
  821. /* If reserves cannot be used, ensure enough pages are in the pool */
  822. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  823. goto err;
  824. gfp_mask = htlb_alloc_mask(h);
  825. nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
  826. page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
  827. if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
  828. SetPagePrivate(page);
  829. h->resv_huge_pages--;
  830. }
  831. mpol_cond_put(mpol);
  832. return page;
  833. err:
  834. return NULL;
  835. }
  836. /*
  837. * common helper functions for hstate_next_node_to_{alloc|free}.
  838. * We may have allocated or freed a huge page based on a different
  839. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  840. * be outside of *nodes_allowed. Ensure that we use an allowed
  841. * node for alloc or free.
  842. */
  843. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  844. {
  845. nid = next_node_in(nid, *nodes_allowed);
  846. VM_BUG_ON(nid >= MAX_NUMNODES);
  847. return nid;
  848. }
  849. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  850. {
  851. if (!node_isset(nid, *nodes_allowed))
  852. nid = next_node_allowed(nid, nodes_allowed);
  853. return nid;
  854. }
  855. /*
  856. * returns the previously saved node ["this node"] from which to
  857. * allocate a persistent huge page for the pool and advance the
  858. * next node from which to allocate, handling wrap at end of node
  859. * mask.
  860. */
  861. static int hstate_next_node_to_alloc(struct hstate *h,
  862. nodemask_t *nodes_allowed)
  863. {
  864. int nid;
  865. VM_BUG_ON(!nodes_allowed);
  866. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  867. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  868. return nid;
  869. }
  870. /*
  871. * helper for free_pool_huge_page() - return the previously saved
  872. * node ["this node"] from which to free a huge page. Advance the
  873. * next node id whether or not we find a free huge page to free so
  874. * that the next attempt to free addresses the next node.
  875. */
  876. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  877. {
  878. int nid;
  879. VM_BUG_ON(!nodes_allowed);
  880. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  881. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  882. return nid;
  883. }
  884. #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
  885. for (nr_nodes = nodes_weight(*mask); \
  886. nr_nodes > 0 && \
  887. ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
  888. nr_nodes--)
  889. #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
  890. for (nr_nodes = nodes_weight(*mask); \
  891. nr_nodes > 0 && \
  892. ((node = hstate_next_node_to_free(hs, mask)) || 1); \
  893. nr_nodes--)
  894. #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
  895. static void destroy_compound_gigantic_page(struct page *page,
  896. unsigned int order)
  897. {
  898. int i;
  899. int nr_pages = 1 << order;
  900. struct page *p = page + 1;
  901. atomic_set(compound_mapcount_ptr(page), 0);
  902. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  903. clear_compound_head(p);
  904. set_page_refcounted(p);
  905. }
  906. set_compound_order(page, 0);
  907. __ClearPageHead(page);
  908. }
  909. static void free_gigantic_page(struct page *page, unsigned int order)
  910. {
  911. free_contig_range(page_to_pfn(page), 1 << order);
  912. }
  913. static int __alloc_gigantic_page(unsigned long start_pfn,
  914. unsigned long nr_pages, gfp_t gfp_mask)
  915. {
  916. unsigned long end_pfn = start_pfn + nr_pages;
  917. return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
  918. gfp_mask);
  919. }
  920. static bool pfn_range_valid_gigantic(struct zone *z,
  921. unsigned long start_pfn, unsigned long nr_pages)
  922. {
  923. unsigned long i, end_pfn = start_pfn + nr_pages;
  924. struct page *page;
  925. for (i = start_pfn; i < end_pfn; i++) {
  926. if (!pfn_valid(i))
  927. return false;
  928. page = pfn_to_page(i);
  929. if (page_zone(page) != z)
  930. return false;
  931. if (PageReserved(page))
  932. return false;
  933. if (page_count(page) > 0)
  934. return false;
  935. if (PageHuge(page))
  936. return false;
  937. }
  938. return true;
  939. }
  940. static bool zone_spans_last_pfn(const struct zone *zone,
  941. unsigned long start_pfn, unsigned long nr_pages)
  942. {
  943. unsigned long last_pfn = start_pfn + nr_pages - 1;
  944. return zone_spans_pfn(zone, last_pfn);
  945. }
  946. static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
  947. int nid, nodemask_t *nodemask)
  948. {
  949. unsigned int order = huge_page_order(h);
  950. unsigned long nr_pages = 1 << order;
  951. unsigned long ret, pfn, flags;
  952. struct zonelist *zonelist;
  953. struct zone *zone;
  954. struct zoneref *z;
  955. zonelist = node_zonelist(nid, gfp_mask);
  956. for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
  957. spin_lock_irqsave(&zone->lock, flags);
  958. pfn = ALIGN(zone->zone_start_pfn, nr_pages);
  959. while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
  960. if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
  961. /*
  962. * We release the zone lock here because
  963. * alloc_contig_range() will also lock the zone
  964. * at some point. If there's an allocation
  965. * spinning on this lock, it may win the race
  966. * and cause alloc_contig_range() to fail...
  967. */
  968. spin_unlock_irqrestore(&zone->lock, flags);
  969. ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
  970. if (!ret)
  971. return pfn_to_page(pfn);
  972. spin_lock_irqsave(&zone->lock, flags);
  973. }
  974. pfn += nr_pages;
  975. }
  976. spin_unlock_irqrestore(&zone->lock, flags);
  977. }
  978. return NULL;
  979. }
  980. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
  981. static void prep_compound_gigantic_page(struct page *page, unsigned int order);
  982. #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
  983. static inline bool gigantic_page_supported(void) { return false; }
  984. static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
  985. int nid, nodemask_t *nodemask) { return NULL; }
  986. static inline void free_gigantic_page(struct page *page, unsigned int order) { }
  987. static inline void destroy_compound_gigantic_page(struct page *page,
  988. unsigned int order) { }
  989. #endif
  990. static void update_and_free_page(struct hstate *h, struct page *page)
  991. {
  992. int i;
  993. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  994. return;
  995. h->nr_huge_pages--;
  996. h->nr_huge_pages_node[page_to_nid(page)]--;
  997. for (i = 0; i < pages_per_huge_page(h); i++) {
  998. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  999. 1 << PG_referenced | 1 << PG_dirty |
  1000. 1 << PG_active | 1 << PG_private |
  1001. 1 << PG_writeback);
  1002. }
  1003. VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
  1004. set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
  1005. set_page_refcounted(page);
  1006. if (hstate_is_gigantic(h)) {
  1007. destroy_compound_gigantic_page(page, huge_page_order(h));
  1008. free_gigantic_page(page, huge_page_order(h));
  1009. } else {
  1010. __free_pages(page, huge_page_order(h));
  1011. }
  1012. }
  1013. struct hstate *size_to_hstate(unsigned long size)
  1014. {
  1015. struct hstate *h;
  1016. for_each_hstate(h) {
  1017. if (huge_page_size(h) == size)
  1018. return h;
  1019. }
  1020. return NULL;
  1021. }
  1022. /*
  1023. * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
  1024. * to hstate->hugepage_activelist.)
  1025. *
  1026. * This function can be called for tail pages, but never returns true for them.
  1027. */
  1028. bool page_huge_active(struct page *page)
  1029. {
  1030. VM_BUG_ON_PAGE(!PageHuge(page), page);
  1031. return PageHead(page) && PagePrivate(&page[1]);
  1032. }
  1033. /* never called for tail page */
  1034. static void set_page_huge_active(struct page *page)
  1035. {
  1036. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1037. SetPagePrivate(&page[1]);
  1038. }
  1039. static void clear_page_huge_active(struct page *page)
  1040. {
  1041. VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
  1042. ClearPagePrivate(&page[1]);
  1043. }
  1044. /*
  1045. * Internal hugetlb specific page flag. Do not use outside of the hugetlb
  1046. * code
  1047. */
  1048. static inline bool PageHugeTemporary(struct page *page)
  1049. {
  1050. if (!PageHuge(page))
  1051. return false;
  1052. return (unsigned long)page[2].mapping == -1U;
  1053. }
  1054. static inline void SetPageHugeTemporary(struct page *page)
  1055. {
  1056. page[2].mapping = (void *)-1U;
  1057. }
  1058. static inline void ClearPageHugeTemporary(struct page *page)
  1059. {
  1060. page[2].mapping = NULL;
  1061. }
  1062. void free_huge_page(struct page *page)
  1063. {
  1064. /*
  1065. * Can't pass hstate in here because it is called from the
  1066. * compound page destructor.
  1067. */
  1068. struct hstate *h = page_hstate(page);
  1069. int nid = page_to_nid(page);
  1070. struct hugepage_subpool *spool =
  1071. (struct hugepage_subpool *)page_private(page);
  1072. bool restore_reserve;
  1073. set_page_private(page, 0);
  1074. page->mapping = NULL;
  1075. VM_BUG_ON_PAGE(page_count(page), page);
  1076. VM_BUG_ON_PAGE(page_mapcount(page), page);
  1077. restore_reserve = PagePrivate(page);
  1078. ClearPagePrivate(page);
  1079. /*
  1080. * A return code of zero implies that the subpool will be under its
  1081. * minimum size if the reservation is not restored after page is free.
  1082. * Therefore, force restore_reserve operation.
  1083. */
  1084. if (hugepage_subpool_put_pages(spool, 1) == 0)
  1085. restore_reserve = true;
  1086. spin_lock(&hugetlb_lock);
  1087. clear_page_huge_active(page);
  1088. hugetlb_cgroup_uncharge_page(hstate_index(h),
  1089. pages_per_huge_page(h), page);
  1090. if (restore_reserve)
  1091. h->resv_huge_pages++;
  1092. if (PageHugeTemporary(page)) {
  1093. list_del(&page->lru);
  1094. ClearPageHugeTemporary(page);
  1095. update_and_free_page(h, page);
  1096. } else if (h->surplus_huge_pages_node[nid]) {
  1097. /* remove the page from active list */
  1098. list_del(&page->lru);
  1099. update_and_free_page(h, page);
  1100. h->surplus_huge_pages--;
  1101. h->surplus_huge_pages_node[nid]--;
  1102. } else {
  1103. arch_clear_hugepage_flags(page);
  1104. enqueue_huge_page(h, page);
  1105. }
  1106. spin_unlock(&hugetlb_lock);
  1107. }
  1108. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  1109. {
  1110. INIT_LIST_HEAD(&page->lru);
  1111. set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
  1112. spin_lock(&hugetlb_lock);
  1113. set_hugetlb_cgroup(page, NULL);
  1114. h->nr_huge_pages++;
  1115. h->nr_huge_pages_node[nid]++;
  1116. spin_unlock(&hugetlb_lock);
  1117. }
  1118. static void prep_compound_gigantic_page(struct page *page, unsigned int order)
  1119. {
  1120. int i;
  1121. int nr_pages = 1 << order;
  1122. struct page *p = page + 1;
  1123. /* we rely on prep_new_huge_page to set the destructor */
  1124. set_compound_order(page, order);
  1125. __ClearPageReserved(page);
  1126. __SetPageHead(page);
  1127. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  1128. /*
  1129. * For gigantic hugepages allocated through bootmem at
  1130. * boot, it's safer to be consistent with the not-gigantic
  1131. * hugepages and clear the PG_reserved bit from all tail pages
  1132. * too. Otherwse drivers using get_user_pages() to access tail
  1133. * pages may get the reference counting wrong if they see
  1134. * PG_reserved set on a tail page (despite the head page not
  1135. * having PG_reserved set). Enforcing this consistency between
  1136. * head and tail pages allows drivers to optimize away a check
  1137. * on the head page when they need know if put_page() is needed
  1138. * after get_user_pages().
  1139. */
  1140. __ClearPageReserved(p);
  1141. set_page_count(p, 0);
  1142. set_compound_head(p, page);
  1143. }
  1144. atomic_set(compound_mapcount_ptr(page), -1);
  1145. }
  1146. /*
  1147. * PageHuge() only returns true for hugetlbfs pages, but not for normal or
  1148. * transparent huge pages. See the PageTransHuge() documentation for more
  1149. * details.
  1150. */
  1151. int PageHuge(struct page *page)
  1152. {
  1153. if (!PageCompound(page))
  1154. return 0;
  1155. page = compound_head(page);
  1156. return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
  1157. }
  1158. EXPORT_SYMBOL_GPL(PageHuge);
  1159. /*
  1160. * PageHeadHuge() only returns true for hugetlbfs head page, but not for
  1161. * normal or transparent huge pages.
  1162. */
  1163. int PageHeadHuge(struct page *page_head)
  1164. {
  1165. if (!PageHead(page_head))
  1166. return 0;
  1167. return get_compound_page_dtor(page_head) == free_huge_page;
  1168. }
  1169. pgoff_t __basepage_index(struct page *page)
  1170. {
  1171. struct page *page_head = compound_head(page);
  1172. pgoff_t index = page_index(page_head);
  1173. unsigned long compound_idx;
  1174. if (!PageHuge(page_head))
  1175. return page_index(page);
  1176. if (compound_order(page_head) >= MAX_ORDER)
  1177. compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
  1178. else
  1179. compound_idx = page - page_head;
  1180. return (index << compound_order(page_head)) + compound_idx;
  1181. }
  1182. static struct page *alloc_buddy_huge_page(struct hstate *h,
  1183. gfp_t gfp_mask, int nid, nodemask_t *nmask)
  1184. {
  1185. int order = huge_page_order(h);
  1186. struct page *page;
  1187. gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
  1188. if (nid == NUMA_NO_NODE)
  1189. nid = numa_mem_id();
  1190. page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
  1191. if (page)
  1192. __count_vm_event(HTLB_BUDDY_PGALLOC);
  1193. else
  1194. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  1195. return page;
  1196. }
  1197. /*
  1198. * Common helper to allocate a fresh hugetlb page. All specific allocators
  1199. * should use this function to get new hugetlb pages
  1200. */
  1201. static struct page *alloc_fresh_huge_page(struct hstate *h,
  1202. gfp_t gfp_mask, int nid, nodemask_t *nmask)
  1203. {
  1204. struct page *page;
  1205. if (hstate_is_gigantic(h))
  1206. page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
  1207. else
  1208. page = alloc_buddy_huge_page(h, gfp_mask,
  1209. nid, nmask);
  1210. if (!page)
  1211. return NULL;
  1212. if (hstate_is_gigantic(h))
  1213. prep_compound_gigantic_page(page, huge_page_order(h));
  1214. prep_new_huge_page(h, page, page_to_nid(page));
  1215. return page;
  1216. }
  1217. /*
  1218. * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
  1219. * manner.
  1220. */
  1221. static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  1222. {
  1223. struct page *page;
  1224. int nr_nodes, node;
  1225. gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
  1226. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1227. page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
  1228. if (page)
  1229. break;
  1230. }
  1231. if (!page)
  1232. return 0;
  1233. put_page(page); /* free it into the hugepage allocator */
  1234. return 1;
  1235. }
  1236. /*
  1237. * Free huge page from pool from next node to free.
  1238. * Attempt to keep persistent huge pages more or less
  1239. * balanced over allowed nodes.
  1240. * Called with hugetlb_lock locked.
  1241. */
  1242. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  1243. bool acct_surplus)
  1244. {
  1245. int nr_nodes, node;
  1246. int ret = 0;
  1247. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1248. /*
  1249. * If we're returning unused surplus pages, only examine
  1250. * nodes with surplus pages.
  1251. */
  1252. if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
  1253. !list_empty(&h->hugepage_freelists[node])) {
  1254. struct page *page =
  1255. list_entry(h->hugepage_freelists[node].next,
  1256. struct page, lru);
  1257. list_del(&page->lru);
  1258. h->free_huge_pages--;
  1259. h->free_huge_pages_node[node]--;
  1260. if (acct_surplus) {
  1261. h->surplus_huge_pages--;
  1262. h->surplus_huge_pages_node[node]--;
  1263. }
  1264. update_and_free_page(h, page);
  1265. ret = 1;
  1266. break;
  1267. }
  1268. }
  1269. return ret;
  1270. }
  1271. /*
  1272. * Dissolve a given free hugepage into free buddy pages. This function does
  1273. * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
  1274. * number of free hugepages would be reduced below the number of reserved
  1275. * hugepages.
  1276. */
  1277. int dissolve_free_huge_page(struct page *page)
  1278. {
  1279. int rc = 0;
  1280. spin_lock(&hugetlb_lock);
  1281. if (PageHuge(page) && !page_count(page)) {
  1282. struct page *head = compound_head(page);
  1283. struct hstate *h = page_hstate(head);
  1284. int nid = page_to_nid(head);
  1285. if (h->free_huge_pages - h->resv_huge_pages == 0) {
  1286. rc = -EBUSY;
  1287. goto out;
  1288. }
  1289. /*
  1290. * Move PageHWPoison flag from head page to the raw error page,
  1291. * which makes any subpages rather than the error page reusable.
  1292. */
  1293. if (PageHWPoison(head) && page != head) {
  1294. SetPageHWPoison(page);
  1295. ClearPageHWPoison(head);
  1296. }
  1297. list_del(&head->lru);
  1298. h->free_huge_pages--;
  1299. h->free_huge_pages_node[nid]--;
  1300. h->max_huge_pages--;
  1301. update_and_free_page(h, head);
  1302. }
  1303. out:
  1304. spin_unlock(&hugetlb_lock);
  1305. return rc;
  1306. }
  1307. /*
  1308. * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
  1309. * make specified memory blocks removable from the system.
  1310. * Note that this will dissolve a free gigantic hugepage completely, if any
  1311. * part of it lies within the given range.
  1312. * Also note that if dissolve_free_huge_page() returns with an error, all
  1313. * free hugepages that were dissolved before that error are lost.
  1314. */
  1315. int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
  1316. {
  1317. unsigned long pfn;
  1318. struct page *page;
  1319. int rc = 0;
  1320. if (!hugepages_supported())
  1321. return rc;
  1322. for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
  1323. page = pfn_to_page(pfn);
  1324. if (PageHuge(page) && !page_count(page)) {
  1325. rc = dissolve_free_huge_page(page);
  1326. if (rc)
  1327. break;
  1328. }
  1329. }
  1330. return rc;
  1331. }
  1332. /*
  1333. * Allocates a fresh surplus page from the page allocator.
  1334. */
  1335. static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
  1336. int nid, nodemask_t *nmask)
  1337. {
  1338. struct page *page = NULL;
  1339. if (hstate_is_gigantic(h))
  1340. return NULL;
  1341. spin_lock(&hugetlb_lock);
  1342. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
  1343. goto out_unlock;
  1344. spin_unlock(&hugetlb_lock);
  1345. page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
  1346. if (!page)
  1347. return NULL;
  1348. spin_lock(&hugetlb_lock);
  1349. /*
  1350. * We could have raced with the pool size change.
  1351. * Double check that and simply deallocate the new page
  1352. * if we would end up overcommiting the surpluses. Abuse
  1353. * temporary page to workaround the nasty free_huge_page
  1354. * codeflow
  1355. */
  1356. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  1357. SetPageHugeTemporary(page);
  1358. put_page(page);
  1359. page = NULL;
  1360. } else {
  1361. h->surplus_huge_pages++;
  1362. h->surplus_huge_pages_node[page_to_nid(page)]++;
  1363. }
  1364. out_unlock:
  1365. spin_unlock(&hugetlb_lock);
  1366. return page;
  1367. }
  1368. static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
  1369. int nid, nodemask_t *nmask)
  1370. {
  1371. struct page *page;
  1372. if (hstate_is_gigantic(h))
  1373. return NULL;
  1374. page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
  1375. if (!page)
  1376. return NULL;
  1377. /*
  1378. * We do not account these pages as surplus because they are only
  1379. * temporary and will be released properly on the last reference
  1380. */
  1381. SetPageHugeTemporary(page);
  1382. return page;
  1383. }
  1384. /*
  1385. * Use the VMA's mpolicy to allocate a huge page from the buddy.
  1386. */
  1387. static
  1388. struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
  1389. struct vm_area_struct *vma, unsigned long addr)
  1390. {
  1391. struct page *page;
  1392. struct mempolicy *mpol;
  1393. gfp_t gfp_mask = htlb_alloc_mask(h);
  1394. int nid;
  1395. nodemask_t *nodemask;
  1396. nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
  1397. page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
  1398. mpol_cond_put(mpol);
  1399. return page;
  1400. }
  1401. /* page migration callback function */
  1402. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  1403. {
  1404. gfp_t gfp_mask = htlb_alloc_mask(h);
  1405. struct page *page = NULL;
  1406. if (nid != NUMA_NO_NODE)
  1407. gfp_mask |= __GFP_THISNODE;
  1408. spin_lock(&hugetlb_lock);
  1409. if (h->free_huge_pages - h->resv_huge_pages > 0)
  1410. page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
  1411. spin_unlock(&hugetlb_lock);
  1412. if (!page)
  1413. page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
  1414. return page;
  1415. }
  1416. /* page migration callback function */
  1417. struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
  1418. nodemask_t *nmask)
  1419. {
  1420. gfp_t gfp_mask = htlb_alloc_mask(h);
  1421. spin_lock(&hugetlb_lock);
  1422. if (h->free_huge_pages - h->resv_huge_pages > 0) {
  1423. struct page *page;
  1424. page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
  1425. if (page) {
  1426. spin_unlock(&hugetlb_lock);
  1427. return page;
  1428. }
  1429. }
  1430. spin_unlock(&hugetlb_lock);
  1431. return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
  1432. }
  1433. /* mempolicy aware migration callback */
  1434. struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
  1435. unsigned long address)
  1436. {
  1437. struct mempolicy *mpol;
  1438. nodemask_t *nodemask;
  1439. struct page *page;
  1440. gfp_t gfp_mask;
  1441. int node;
  1442. gfp_mask = htlb_alloc_mask(h);
  1443. node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
  1444. page = alloc_huge_page_nodemask(h, node, nodemask);
  1445. mpol_cond_put(mpol);
  1446. return page;
  1447. }
  1448. /*
  1449. * Increase the hugetlb pool such that it can accommodate a reservation
  1450. * of size 'delta'.
  1451. */
  1452. static int gather_surplus_pages(struct hstate *h, int delta)
  1453. {
  1454. struct list_head surplus_list;
  1455. struct page *page, *tmp;
  1456. int ret, i;
  1457. int needed, allocated;
  1458. bool alloc_ok = true;
  1459. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  1460. if (needed <= 0) {
  1461. h->resv_huge_pages += delta;
  1462. return 0;
  1463. }
  1464. allocated = 0;
  1465. INIT_LIST_HEAD(&surplus_list);
  1466. ret = -ENOMEM;
  1467. retry:
  1468. spin_unlock(&hugetlb_lock);
  1469. for (i = 0; i < needed; i++) {
  1470. page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
  1471. NUMA_NO_NODE, NULL);
  1472. if (!page) {
  1473. alloc_ok = false;
  1474. break;
  1475. }
  1476. list_add(&page->lru, &surplus_list);
  1477. cond_resched();
  1478. }
  1479. allocated += i;
  1480. /*
  1481. * After retaking hugetlb_lock, we need to recalculate 'needed'
  1482. * because either resv_huge_pages or free_huge_pages may have changed.
  1483. */
  1484. spin_lock(&hugetlb_lock);
  1485. needed = (h->resv_huge_pages + delta) -
  1486. (h->free_huge_pages + allocated);
  1487. if (needed > 0) {
  1488. if (alloc_ok)
  1489. goto retry;
  1490. /*
  1491. * We were not able to allocate enough pages to
  1492. * satisfy the entire reservation so we free what
  1493. * we've allocated so far.
  1494. */
  1495. goto free;
  1496. }
  1497. /*
  1498. * The surplus_list now contains _at_least_ the number of extra pages
  1499. * needed to accommodate the reservation. Add the appropriate number
  1500. * of pages to the hugetlb pool and free the extras back to the buddy
  1501. * allocator. Commit the entire reservation here to prevent another
  1502. * process from stealing the pages as they are added to the pool but
  1503. * before they are reserved.
  1504. */
  1505. needed += allocated;
  1506. h->resv_huge_pages += delta;
  1507. ret = 0;
  1508. /* Free the needed pages to the hugetlb pool */
  1509. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  1510. if ((--needed) < 0)
  1511. break;
  1512. /*
  1513. * This page is now managed by the hugetlb allocator and has
  1514. * no users -- drop the buddy allocator's reference.
  1515. */
  1516. put_page_testzero(page);
  1517. VM_BUG_ON_PAGE(page_count(page), page);
  1518. enqueue_huge_page(h, page);
  1519. }
  1520. free:
  1521. spin_unlock(&hugetlb_lock);
  1522. /* Free unnecessary surplus pages to the buddy allocator */
  1523. list_for_each_entry_safe(page, tmp, &surplus_list, lru)
  1524. put_page(page);
  1525. spin_lock(&hugetlb_lock);
  1526. return ret;
  1527. }
  1528. /*
  1529. * This routine has two main purposes:
  1530. * 1) Decrement the reservation count (resv_huge_pages) by the value passed
  1531. * in unused_resv_pages. This corresponds to the prior adjustments made
  1532. * to the associated reservation map.
  1533. * 2) Free any unused surplus pages that may have been allocated to satisfy
  1534. * the reservation. As many as unused_resv_pages may be freed.
  1535. *
  1536. * Called with hugetlb_lock held. However, the lock could be dropped (and
  1537. * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
  1538. * we must make sure nobody else can claim pages we are in the process of
  1539. * freeing. Do this by ensuring resv_huge_page always is greater than the
  1540. * number of huge pages we plan to free when dropping the lock.
  1541. */
  1542. static void return_unused_surplus_pages(struct hstate *h,
  1543. unsigned long unused_resv_pages)
  1544. {
  1545. unsigned long nr_pages;
  1546. /* Cannot return gigantic pages currently */
  1547. if (hstate_is_gigantic(h))
  1548. goto out;
  1549. /*
  1550. * Part (or even all) of the reservation could have been backed
  1551. * by pre-allocated pages. Only free surplus pages.
  1552. */
  1553. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  1554. /*
  1555. * We want to release as many surplus pages as possible, spread
  1556. * evenly across all nodes with memory. Iterate across these nodes
  1557. * until we can no longer free unreserved surplus pages. This occurs
  1558. * when the nodes with surplus pages have no free pages.
  1559. * free_pool_huge_page() will balance the the freed pages across the
  1560. * on-line nodes with memory and will handle the hstate accounting.
  1561. *
  1562. * Note that we decrement resv_huge_pages as we free the pages. If
  1563. * we drop the lock, resv_huge_pages will still be sufficiently large
  1564. * to cover subsequent pages we may free.
  1565. */
  1566. while (nr_pages--) {
  1567. h->resv_huge_pages--;
  1568. unused_resv_pages--;
  1569. if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
  1570. goto out;
  1571. cond_resched_lock(&hugetlb_lock);
  1572. }
  1573. out:
  1574. /* Fully uncommit the reservation */
  1575. h->resv_huge_pages -= unused_resv_pages;
  1576. }
  1577. /*
  1578. * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
  1579. * are used by the huge page allocation routines to manage reservations.
  1580. *
  1581. * vma_needs_reservation is called to determine if the huge page at addr
  1582. * within the vma has an associated reservation. If a reservation is
  1583. * needed, the value 1 is returned. The caller is then responsible for
  1584. * managing the global reservation and subpool usage counts. After
  1585. * the huge page has been allocated, vma_commit_reservation is called
  1586. * to add the page to the reservation map. If the page allocation fails,
  1587. * the reservation must be ended instead of committed. vma_end_reservation
  1588. * is called in such cases.
  1589. *
  1590. * In the normal case, vma_commit_reservation returns the same value
  1591. * as the preceding vma_needs_reservation call. The only time this
  1592. * is not the case is if a reserve map was changed between calls. It
  1593. * is the responsibility of the caller to notice the difference and
  1594. * take appropriate action.
  1595. *
  1596. * vma_add_reservation is used in error paths where a reservation must
  1597. * be restored when a newly allocated huge page must be freed. It is
  1598. * to be called after calling vma_needs_reservation to determine if a
  1599. * reservation exists.
  1600. */
  1601. enum vma_resv_mode {
  1602. VMA_NEEDS_RESV,
  1603. VMA_COMMIT_RESV,
  1604. VMA_END_RESV,
  1605. VMA_ADD_RESV,
  1606. };
  1607. static long __vma_reservation_common(struct hstate *h,
  1608. struct vm_area_struct *vma, unsigned long addr,
  1609. enum vma_resv_mode mode)
  1610. {
  1611. struct resv_map *resv;
  1612. pgoff_t idx;
  1613. long ret;
  1614. resv = vma_resv_map(vma);
  1615. if (!resv)
  1616. return 1;
  1617. idx = vma_hugecache_offset(h, vma, addr);
  1618. switch (mode) {
  1619. case VMA_NEEDS_RESV:
  1620. ret = region_chg(resv, idx, idx + 1);
  1621. break;
  1622. case VMA_COMMIT_RESV:
  1623. ret = region_add(resv, idx, idx + 1);
  1624. break;
  1625. case VMA_END_RESV:
  1626. region_abort(resv, idx, idx + 1);
  1627. ret = 0;
  1628. break;
  1629. case VMA_ADD_RESV:
  1630. if (vma->vm_flags & VM_MAYSHARE)
  1631. ret = region_add(resv, idx, idx + 1);
  1632. else {
  1633. region_abort(resv, idx, idx + 1);
  1634. ret = region_del(resv, idx, idx + 1);
  1635. }
  1636. break;
  1637. default:
  1638. BUG();
  1639. }
  1640. if (vma->vm_flags & VM_MAYSHARE)
  1641. return ret;
  1642. else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
  1643. /*
  1644. * In most cases, reserves always exist for private mappings.
  1645. * However, a file associated with mapping could have been
  1646. * hole punched or truncated after reserves were consumed.
  1647. * As subsequent fault on such a range will not use reserves.
  1648. * Subtle - The reserve map for private mappings has the
  1649. * opposite meaning than that of shared mappings. If NO
  1650. * entry is in the reserve map, it means a reservation exists.
  1651. * If an entry exists in the reserve map, it means the
  1652. * reservation has already been consumed. As a result, the
  1653. * return value of this routine is the opposite of the
  1654. * value returned from reserve map manipulation routines above.
  1655. */
  1656. if (ret)
  1657. return 0;
  1658. else
  1659. return 1;
  1660. }
  1661. else
  1662. return ret < 0 ? ret : 0;
  1663. }
  1664. static long vma_needs_reservation(struct hstate *h,
  1665. struct vm_area_struct *vma, unsigned long addr)
  1666. {
  1667. return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
  1668. }
  1669. static long vma_commit_reservation(struct hstate *h,
  1670. struct vm_area_struct *vma, unsigned long addr)
  1671. {
  1672. return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
  1673. }
  1674. static void vma_end_reservation(struct hstate *h,
  1675. struct vm_area_struct *vma, unsigned long addr)
  1676. {
  1677. (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
  1678. }
  1679. static long vma_add_reservation(struct hstate *h,
  1680. struct vm_area_struct *vma, unsigned long addr)
  1681. {
  1682. return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
  1683. }
  1684. /*
  1685. * This routine is called to restore a reservation on error paths. In the
  1686. * specific error paths, a huge page was allocated (via alloc_huge_page)
  1687. * and is about to be freed. If a reservation for the page existed,
  1688. * alloc_huge_page would have consumed the reservation and set PagePrivate
  1689. * in the newly allocated page. When the page is freed via free_huge_page,
  1690. * the global reservation count will be incremented if PagePrivate is set.
  1691. * However, free_huge_page can not adjust the reserve map. Adjust the
  1692. * reserve map here to be consistent with global reserve count adjustments
  1693. * to be made by free_huge_page.
  1694. */
  1695. static void restore_reserve_on_error(struct hstate *h,
  1696. struct vm_area_struct *vma, unsigned long address,
  1697. struct page *page)
  1698. {
  1699. if (unlikely(PagePrivate(page))) {
  1700. long rc = vma_needs_reservation(h, vma, address);
  1701. if (unlikely(rc < 0)) {
  1702. /*
  1703. * Rare out of memory condition in reserve map
  1704. * manipulation. Clear PagePrivate so that
  1705. * global reserve count will not be incremented
  1706. * by free_huge_page. This will make it appear
  1707. * as though the reservation for this page was
  1708. * consumed. This may prevent the task from
  1709. * faulting in the page at a later time. This
  1710. * is better than inconsistent global huge page
  1711. * accounting of reserve counts.
  1712. */
  1713. ClearPagePrivate(page);
  1714. } else if (rc) {
  1715. rc = vma_add_reservation(h, vma, address);
  1716. if (unlikely(rc < 0))
  1717. /*
  1718. * See above comment about rare out of
  1719. * memory condition.
  1720. */
  1721. ClearPagePrivate(page);
  1722. } else
  1723. vma_end_reservation(h, vma, address);
  1724. }
  1725. }
  1726. struct page *alloc_huge_page(struct vm_area_struct *vma,
  1727. unsigned long addr, int avoid_reserve)
  1728. {
  1729. struct hugepage_subpool *spool = subpool_vma(vma);
  1730. struct hstate *h = hstate_vma(vma);
  1731. struct page *page;
  1732. long map_chg, map_commit;
  1733. long gbl_chg;
  1734. int ret, idx;
  1735. struct hugetlb_cgroup *h_cg;
  1736. idx = hstate_index(h);
  1737. /*
  1738. * Examine the region/reserve map to determine if the process
  1739. * has a reservation for the page to be allocated. A return
  1740. * code of zero indicates a reservation exists (no change).
  1741. */
  1742. map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
  1743. if (map_chg < 0)
  1744. return ERR_PTR(-ENOMEM);
  1745. /*
  1746. * Processes that did not create the mapping will have no
  1747. * reserves as indicated by the region/reserve map. Check
  1748. * that the allocation will not exceed the subpool limit.
  1749. * Allocations for MAP_NORESERVE mappings also need to be
  1750. * checked against any subpool limit.
  1751. */
  1752. if (map_chg || avoid_reserve) {
  1753. gbl_chg = hugepage_subpool_get_pages(spool, 1);
  1754. if (gbl_chg < 0) {
  1755. vma_end_reservation(h, vma, addr);
  1756. return ERR_PTR(-ENOSPC);
  1757. }
  1758. /*
  1759. * Even though there was no reservation in the region/reserve
  1760. * map, there could be reservations associated with the
  1761. * subpool that can be used. This would be indicated if the
  1762. * return value of hugepage_subpool_get_pages() is zero.
  1763. * However, if avoid_reserve is specified we still avoid even
  1764. * the subpool reservations.
  1765. */
  1766. if (avoid_reserve)
  1767. gbl_chg = 1;
  1768. }
  1769. ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
  1770. if (ret)
  1771. goto out_subpool_put;
  1772. spin_lock(&hugetlb_lock);
  1773. /*
  1774. * glb_chg is passed to indicate whether or not a page must be taken
  1775. * from the global free pool (global change). gbl_chg == 0 indicates
  1776. * a reservation exists for the allocation.
  1777. */
  1778. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
  1779. if (!page) {
  1780. spin_unlock(&hugetlb_lock);
  1781. page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
  1782. if (!page)
  1783. goto out_uncharge_cgroup;
  1784. if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
  1785. SetPagePrivate(page);
  1786. h->resv_huge_pages--;
  1787. }
  1788. spin_lock(&hugetlb_lock);
  1789. list_move(&page->lru, &h->hugepage_activelist);
  1790. /* Fall through */
  1791. }
  1792. hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
  1793. spin_unlock(&hugetlb_lock);
  1794. set_page_private(page, (unsigned long)spool);
  1795. map_commit = vma_commit_reservation(h, vma, addr);
  1796. if (unlikely(map_chg > map_commit)) {
  1797. /*
  1798. * The page was added to the reservation map between
  1799. * vma_needs_reservation and vma_commit_reservation.
  1800. * This indicates a race with hugetlb_reserve_pages.
  1801. * Adjust for the subpool count incremented above AND
  1802. * in hugetlb_reserve_pages for the same page. Also,
  1803. * the reservation count added in hugetlb_reserve_pages
  1804. * no longer applies.
  1805. */
  1806. long rsv_adjust;
  1807. rsv_adjust = hugepage_subpool_put_pages(spool, 1);
  1808. hugetlb_acct_memory(h, -rsv_adjust);
  1809. }
  1810. return page;
  1811. out_uncharge_cgroup:
  1812. hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
  1813. out_subpool_put:
  1814. if (map_chg || avoid_reserve)
  1815. hugepage_subpool_put_pages(spool, 1);
  1816. vma_end_reservation(h, vma, addr);
  1817. return ERR_PTR(-ENOSPC);
  1818. }
  1819. int alloc_bootmem_huge_page(struct hstate *h)
  1820. __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
  1821. int __alloc_bootmem_huge_page(struct hstate *h)
  1822. {
  1823. struct huge_bootmem_page *m;
  1824. int nr_nodes, node;
  1825. for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
  1826. void *addr;
  1827. addr = memblock_virt_alloc_try_nid_nopanic(
  1828. huge_page_size(h), huge_page_size(h),
  1829. 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
  1830. if (addr) {
  1831. /*
  1832. * Use the beginning of the huge page to store the
  1833. * huge_bootmem_page struct (until gather_bootmem
  1834. * puts them into the mem_map).
  1835. */
  1836. m = addr;
  1837. goto found;
  1838. }
  1839. }
  1840. return 0;
  1841. found:
  1842. BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
  1843. /* Put them into a private list first because mem_map is not up yet */
  1844. list_add(&m->list, &huge_boot_pages);
  1845. m->hstate = h;
  1846. return 1;
  1847. }
  1848. static void __init prep_compound_huge_page(struct page *page,
  1849. unsigned int order)
  1850. {
  1851. if (unlikely(order > (MAX_ORDER - 1)))
  1852. prep_compound_gigantic_page(page, order);
  1853. else
  1854. prep_compound_page(page, order);
  1855. }
  1856. /* Put bootmem huge pages into the standard lists after mem_map is up */
  1857. static void __init gather_bootmem_prealloc(void)
  1858. {
  1859. struct huge_bootmem_page *m;
  1860. list_for_each_entry(m, &huge_boot_pages, list) {
  1861. struct hstate *h = m->hstate;
  1862. struct page *page;
  1863. #ifdef CONFIG_HIGHMEM
  1864. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  1865. memblock_free_late(__pa(m),
  1866. sizeof(struct huge_bootmem_page));
  1867. #else
  1868. page = virt_to_page(m);
  1869. #endif
  1870. WARN_ON(page_count(page) != 1);
  1871. prep_compound_huge_page(page, h->order);
  1872. WARN_ON(PageReserved(page));
  1873. prep_new_huge_page(h, page, page_to_nid(page));
  1874. put_page(page); /* free it into the hugepage allocator */
  1875. /*
  1876. * If we had gigantic hugepages allocated at boot time, we need
  1877. * to restore the 'stolen' pages to totalram_pages in order to
  1878. * fix confusing memory reports from free(1) and another
  1879. * side-effects, like CommitLimit going negative.
  1880. */
  1881. if (hstate_is_gigantic(h))
  1882. adjust_managed_page_count(page, 1 << h->order);
  1883. cond_resched();
  1884. }
  1885. }
  1886. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  1887. {
  1888. unsigned long i;
  1889. for (i = 0; i < h->max_huge_pages; ++i) {
  1890. if (hstate_is_gigantic(h)) {
  1891. if (!alloc_bootmem_huge_page(h))
  1892. break;
  1893. } else if (!alloc_pool_huge_page(h,
  1894. &node_states[N_MEMORY]))
  1895. break;
  1896. cond_resched();
  1897. }
  1898. if (i < h->max_huge_pages) {
  1899. char buf[32];
  1900. string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
  1901. pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
  1902. h->max_huge_pages, buf, i);
  1903. h->max_huge_pages = i;
  1904. }
  1905. }
  1906. static void __init hugetlb_init_hstates(void)
  1907. {
  1908. struct hstate *h;
  1909. for_each_hstate(h) {
  1910. if (minimum_order > huge_page_order(h))
  1911. minimum_order = huge_page_order(h);
  1912. /* oversize hugepages were init'ed in early boot */
  1913. if (!hstate_is_gigantic(h))
  1914. hugetlb_hstate_alloc_pages(h);
  1915. }
  1916. VM_BUG_ON(minimum_order == UINT_MAX);
  1917. }
  1918. static void __init report_hugepages(void)
  1919. {
  1920. struct hstate *h;
  1921. for_each_hstate(h) {
  1922. char buf[32];
  1923. string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
  1924. pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
  1925. buf, h->free_huge_pages);
  1926. }
  1927. }
  1928. #ifdef CONFIG_HIGHMEM
  1929. static void try_to_free_low(struct hstate *h, unsigned long count,
  1930. nodemask_t *nodes_allowed)
  1931. {
  1932. int i;
  1933. if (hstate_is_gigantic(h))
  1934. return;
  1935. for_each_node_mask(i, *nodes_allowed) {
  1936. struct page *page, *next;
  1937. struct list_head *freel = &h->hugepage_freelists[i];
  1938. list_for_each_entry_safe(page, next, freel, lru) {
  1939. if (count >= h->nr_huge_pages)
  1940. return;
  1941. if (PageHighMem(page))
  1942. continue;
  1943. list_del(&page->lru);
  1944. update_and_free_page(h, page);
  1945. h->free_huge_pages--;
  1946. h->free_huge_pages_node[page_to_nid(page)]--;
  1947. }
  1948. }
  1949. }
  1950. #else
  1951. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1952. nodemask_t *nodes_allowed)
  1953. {
  1954. }
  1955. #endif
  1956. /*
  1957. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1958. * balanced by operating on them in a round-robin fashion.
  1959. * Returns 1 if an adjustment was made.
  1960. */
  1961. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1962. int delta)
  1963. {
  1964. int nr_nodes, node;
  1965. VM_BUG_ON(delta != -1 && delta != 1);
  1966. if (delta < 0) {
  1967. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1968. if (h->surplus_huge_pages_node[node])
  1969. goto found;
  1970. }
  1971. } else {
  1972. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1973. if (h->surplus_huge_pages_node[node] <
  1974. h->nr_huge_pages_node[node])
  1975. goto found;
  1976. }
  1977. }
  1978. return 0;
  1979. found:
  1980. h->surplus_huge_pages += delta;
  1981. h->surplus_huge_pages_node[node] += delta;
  1982. return 1;
  1983. }
  1984. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1985. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1986. nodemask_t *nodes_allowed)
  1987. {
  1988. unsigned long min_count, ret;
  1989. if (hstate_is_gigantic(h) && !gigantic_page_supported())
  1990. return h->max_huge_pages;
  1991. /*
  1992. * Increase the pool size
  1993. * First take pages out of surplus state. Then make up the
  1994. * remaining difference by allocating fresh huge pages.
  1995. *
  1996. * We might race with alloc_surplus_huge_page() here and be unable
  1997. * to convert a surplus huge page to a normal huge page. That is
  1998. * not critical, though, it just means the overall size of the
  1999. * pool might be one hugepage larger than it needs to be, but
  2000. * within all the constraints specified by the sysctls.
  2001. */
  2002. spin_lock(&hugetlb_lock);
  2003. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  2004. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  2005. break;
  2006. }
  2007. while (count > persistent_huge_pages(h)) {
  2008. /*
  2009. * If this allocation races such that we no longer need the
  2010. * page, free_huge_page will handle it by freeing the page
  2011. * and reducing the surplus.
  2012. */
  2013. spin_unlock(&hugetlb_lock);
  2014. /* yield cpu to avoid soft lockup */
  2015. cond_resched();
  2016. ret = alloc_pool_huge_page(h, nodes_allowed);
  2017. spin_lock(&hugetlb_lock);
  2018. if (!ret)
  2019. goto out;
  2020. /* Bail for signals. Probably ctrl-c from user */
  2021. if (signal_pending(current))
  2022. goto out;
  2023. }
  2024. /*
  2025. * Decrease the pool size
  2026. * First return free pages to the buddy allocator (being careful
  2027. * to keep enough around to satisfy reservations). Then place
  2028. * pages into surplus state as needed so the pool will shrink
  2029. * to the desired size as pages become free.
  2030. *
  2031. * By placing pages into the surplus state independent of the
  2032. * overcommit value, we are allowing the surplus pool size to
  2033. * exceed overcommit. There are few sane options here. Since
  2034. * alloc_surplus_huge_page() is checking the global counter,
  2035. * though, we'll note that we're not allowed to exceed surplus
  2036. * and won't grow the pool anywhere else. Not until one of the
  2037. * sysctls are changed, or the surplus pages go out of use.
  2038. */
  2039. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  2040. min_count = max(count, min_count);
  2041. try_to_free_low(h, min_count, nodes_allowed);
  2042. while (min_count < persistent_huge_pages(h)) {
  2043. if (!free_pool_huge_page(h, nodes_allowed, 0))
  2044. break;
  2045. cond_resched_lock(&hugetlb_lock);
  2046. }
  2047. while (count < persistent_huge_pages(h)) {
  2048. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  2049. break;
  2050. }
  2051. out:
  2052. ret = persistent_huge_pages(h);
  2053. spin_unlock(&hugetlb_lock);
  2054. return ret;
  2055. }
  2056. #define HSTATE_ATTR_RO(_name) \
  2057. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  2058. #define HSTATE_ATTR(_name) \
  2059. static struct kobj_attribute _name##_attr = \
  2060. __ATTR(_name, 0644, _name##_show, _name##_store)
  2061. static struct kobject *hugepages_kobj;
  2062. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  2063. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  2064. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  2065. {
  2066. int i;
  2067. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  2068. if (hstate_kobjs[i] == kobj) {
  2069. if (nidp)
  2070. *nidp = NUMA_NO_NODE;
  2071. return &hstates[i];
  2072. }
  2073. return kobj_to_node_hstate(kobj, nidp);
  2074. }
  2075. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  2076. struct kobj_attribute *attr, char *buf)
  2077. {
  2078. struct hstate *h;
  2079. unsigned long nr_huge_pages;
  2080. int nid;
  2081. h = kobj_to_hstate(kobj, &nid);
  2082. if (nid == NUMA_NO_NODE)
  2083. nr_huge_pages = h->nr_huge_pages;
  2084. else
  2085. nr_huge_pages = h->nr_huge_pages_node[nid];
  2086. return sprintf(buf, "%lu\n", nr_huge_pages);
  2087. }
  2088. static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
  2089. struct hstate *h, int nid,
  2090. unsigned long count, size_t len)
  2091. {
  2092. int err;
  2093. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  2094. if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
  2095. err = -EINVAL;
  2096. goto out;
  2097. }
  2098. if (nid == NUMA_NO_NODE) {
  2099. /*
  2100. * global hstate attribute
  2101. */
  2102. if (!(obey_mempolicy &&
  2103. init_nodemask_of_mempolicy(nodes_allowed))) {
  2104. NODEMASK_FREE(nodes_allowed);
  2105. nodes_allowed = &node_states[N_MEMORY];
  2106. }
  2107. } else if (nodes_allowed) {
  2108. /*
  2109. * per node hstate attribute: adjust count to global,
  2110. * but restrict alloc/free to the specified node.
  2111. */
  2112. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  2113. init_nodemask_of_node(nodes_allowed, nid);
  2114. } else
  2115. nodes_allowed = &node_states[N_MEMORY];
  2116. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  2117. if (nodes_allowed != &node_states[N_MEMORY])
  2118. NODEMASK_FREE(nodes_allowed);
  2119. return len;
  2120. out:
  2121. NODEMASK_FREE(nodes_allowed);
  2122. return err;
  2123. }
  2124. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  2125. struct kobject *kobj, const char *buf,
  2126. size_t len)
  2127. {
  2128. struct hstate *h;
  2129. unsigned long count;
  2130. int nid;
  2131. int err;
  2132. err = kstrtoul(buf, 10, &count);
  2133. if (err)
  2134. return err;
  2135. h = kobj_to_hstate(kobj, &nid);
  2136. return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
  2137. }
  2138. static ssize_t nr_hugepages_show(struct kobject *kobj,
  2139. struct kobj_attribute *attr, char *buf)
  2140. {
  2141. return nr_hugepages_show_common(kobj, attr, buf);
  2142. }
  2143. static ssize_t nr_hugepages_store(struct kobject *kobj,
  2144. struct kobj_attribute *attr, const char *buf, size_t len)
  2145. {
  2146. return nr_hugepages_store_common(false, kobj, buf, len);
  2147. }
  2148. HSTATE_ATTR(nr_hugepages);
  2149. #ifdef CONFIG_NUMA
  2150. /*
  2151. * hstate attribute for optionally mempolicy-based constraint on persistent
  2152. * huge page alloc/free.
  2153. */
  2154. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  2155. struct kobj_attribute *attr, char *buf)
  2156. {
  2157. return nr_hugepages_show_common(kobj, attr, buf);
  2158. }
  2159. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  2160. struct kobj_attribute *attr, const char *buf, size_t len)
  2161. {
  2162. return nr_hugepages_store_common(true, kobj, buf, len);
  2163. }
  2164. HSTATE_ATTR(nr_hugepages_mempolicy);
  2165. #endif
  2166. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  2167. struct kobj_attribute *attr, char *buf)
  2168. {
  2169. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2170. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  2171. }
  2172. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  2173. struct kobj_attribute *attr, const char *buf, size_t count)
  2174. {
  2175. int err;
  2176. unsigned long input;
  2177. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2178. if (hstate_is_gigantic(h))
  2179. return -EINVAL;
  2180. err = kstrtoul(buf, 10, &input);
  2181. if (err)
  2182. return err;
  2183. spin_lock(&hugetlb_lock);
  2184. h->nr_overcommit_huge_pages = input;
  2185. spin_unlock(&hugetlb_lock);
  2186. return count;
  2187. }
  2188. HSTATE_ATTR(nr_overcommit_hugepages);
  2189. static ssize_t free_hugepages_show(struct kobject *kobj,
  2190. struct kobj_attribute *attr, char *buf)
  2191. {
  2192. struct hstate *h;
  2193. unsigned long free_huge_pages;
  2194. int nid;
  2195. h = kobj_to_hstate(kobj, &nid);
  2196. if (nid == NUMA_NO_NODE)
  2197. free_huge_pages = h->free_huge_pages;
  2198. else
  2199. free_huge_pages = h->free_huge_pages_node[nid];
  2200. return sprintf(buf, "%lu\n", free_huge_pages);
  2201. }
  2202. HSTATE_ATTR_RO(free_hugepages);
  2203. static ssize_t resv_hugepages_show(struct kobject *kobj,
  2204. struct kobj_attribute *attr, char *buf)
  2205. {
  2206. struct hstate *h = kobj_to_hstate(kobj, NULL);
  2207. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  2208. }
  2209. HSTATE_ATTR_RO(resv_hugepages);
  2210. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  2211. struct kobj_attribute *attr, char *buf)
  2212. {
  2213. struct hstate *h;
  2214. unsigned long surplus_huge_pages;
  2215. int nid;
  2216. h = kobj_to_hstate(kobj, &nid);
  2217. if (nid == NUMA_NO_NODE)
  2218. surplus_huge_pages = h->surplus_huge_pages;
  2219. else
  2220. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  2221. return sprintf(buf, "%lu\n", surplus_huge_pages);
  2222. }
  2223. HSTATE_ATTR_RO(surplus_hugepages);
  2224. static struct attribute *hstate_attrs[] = {
  2225. &nr_hugepages_attr.attr,
  2226. &nr_overcommit_hugepages_attr.attr,
  2227. &free_hugepages_attr.attr,
  2228. &resv_hugepages_attr.attr,
  2229. &surplus_hugepages_attr.attr,
  2230. #ifdef CONFIG_NUMA
  2231. &nr_hugepages_mempolicy_attr.attr,
  2232. #endif
  2233. NULL,
  2234. };
  2235. static const struct attribute_group hstate_attr_group = {
  2236. .attrs = hstate_attrs,
  2237. };
  2238. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  2239. struct kobject **hstate_kobjs,
  2240. const struct attribute_group *hstate_attr_group)
  2241. {
  2242. int retval;
  2243. int hi = hstate_index(h);
  2244. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  2245. if (!hstate_kobjs[hi])
  2246. return -ENOMEM;
  2247. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  2248. if (retval)
  2249. kobject_put(hstate_kobjs[hi]);
  2250. return retval;
  2251. }
  2252. static void __init hugetlb_sysfs_init(void)
  2253. {
  2254. struct hstate *h;
  2255. int err;
  2256. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  2257. if (!hugepages_kobj)
  2258. return;
  2259. for_each_hstate(h) {
  2260. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  2261. hstate_kobjs, &hstate_attr_group);
  2262. if (err)
  2263. pr_err("Hugetlb: Unable to add hstate %s", h->name);
  2264. }
  2265. }
  2266. #ifdef CONFIG_NUMA
  2267. /*
  2268. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  2269. * with node devices in node_devices[] using a parallel array. The array
  2270. * index of a node device or _hstate == node id.
  2271. * This is here to avoid any static dependency of the node device driver, in
  2272. * the base kernel, on the hugetlb module.
  2273. */
  2274. struct node_hstate {
  2275. struct kobject *hugepages_kobj;
  2276. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  2277. };
  2278. static struct node_hstate node_hstates[MAX_NUMNODES];
  2279. /*
  2280. * A subset of global hstate attributes for node devices
  2281. */
  2282. static struct attribute *per_node_hstate_attrs[] = {
  2283. &nr_hugepages_attr.attr,
  2284. &free_hugepages_attr.attr,
  2285. &surplus_hugepages_attr.attr,
  2286. NULL,
  2287. };
  2288. static const struct attribute_group per_node_hstate_attr_group = {
  2289. .attrs = per_node_hstate_attrs,
  2290. };
  2291. /*
  2292. * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
  2293. * Returns node id via non-NULL nidp.
  2294. */
  2295. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2296. {
  2297. int nid;
  2298. for (nid = 0; nid < nr_node_ids; nid++) {
  2299. struct node_hstate *nhs = &node_hstates[nid];
  2300. int i;
  2301. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  2302. if (nhs->hstate_kobjs[i] == kobj) {
  2303. if (nidp)
  2304. *nidp = nid;
  2305. return &hstates[i];
  2306. }
  2307. }
  2308. BUG();
  2309. return NULL;
  2310. }
  2311. /*
  2312. * Unregister hstate attributes from a single node device.
  2313. * No-op if no hstate attributes attached.
  2314. */
  2315. static void hugetlb_unregister_node(struct node *node)
  2316. {
  2317. struct hstate *h;
  2318. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2319. if (!nhs->hugepages_kobj)
  2320. return; /* no hstate attributes */
  2321. for_each_hstate(h) {
  2322. int idx = hstate_index(h);
  2323. if (nhs->hstate_kobjs[idx]) {
  2324. kobject_put(nhs->hstate_kobjs[idx]);
  2325. nhs->hstate_kobjs[idx] = NULL;
  2326. }
  2327. }
  2328. kobject_put(nhs->hugepages_kobj);
  2329. nhs->hugepages_kobj = NULL;
  2330. }
  2331. /*
  2332. * Register hstate attributes for a single node device.
  2333. * No-op if attributes already registered.
  2334. */
  2335. static void hugetlb_register_node(struct node *node)
  2336. {
  2337. struct hstate *h;
  2338. struct node_hstate *nhs = &node_hstates[node->dev.id];
  2339. int err;
  2340. if (nhs->hugepages_kobj)
  2341. return; /* already allocated */
  2342. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  2343. &node->dev.kobj);
  2344. if (!nhs->hugepages_kobj)
  2345. return;
  2346. for_each_hstate(h) {
  2347. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  2348. nhs->hstate_kobjs,
  2349. &per_node_hstate_attr_group);
  2350. if (err) {
  2351. pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
  2352. h->name, node->dev.id);
  2353. hugetlb_unregister_node(node);
  2354. break;
  2355. }
  2356. }
  2357. }
  2358. /*
  2359. * hugetlb init time: register hstate attributes for all registered node
  2360. * devices of nodes that have memory. All on-line nodes should have
  2361. * registered their associated device by this time.
  2362. */
  2363. static void __init hugetlb_register_all_nodes(void)
  2364. {
  2365. int nid;
  2366. for_each_node_state(nid, N_MEMORY) {
  2367. struct node *node = node_devices[nid];
  2368. if (node->dev.id == nid)
  2369. hugetlb_register_node(node);
  2370. }
  2371. /*
  2372. * Let the node device driver know we're here so it can
  2373. * [un]register hstate attributes on node hotplug.
  2374. */
  2375. register_hugetlbfs_with_node(hugetlb_register_node,
  2376. hugetlb_unregister_node);
  2377. }
  2378. #else /* !CONFIG_NUMA */
  2379. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  2380. {
  2381. BUG();
  2382. if (nidp)
  2383. *nidp = -1;
  2384. return NULL;
  2385. }
  2386. static void hugetlb_register_all_nodes(void) { }
  2387. #endif
  2388. static int __init hugetlb_init(void)
  2389. {
  2390. int i;
  2391. if (!hugepages_supported())
  2392. return 0;
  2393. if (!size_to_hstate(default_hstate_size)) {
  2394. if (default_hstate_size != 0) {
  2395. pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
  2396. default_hstate_size, HPAGE_SIZE);
  2397. }
  2398. default_hstate_size = HPAGE_SIZE;
  2399. if (!size_to_hstate(default_hstate_size))
  2400. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  2401. }
  2402. default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
  2403. if (default_hstate_max_huge_pages) {
  2404. if (!default_hstate.max_huge_pages)
  2405. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  2406. }
  2407. hugetlb_init_hstates();
  2408. gather_bootmem_prealloc();
  2409. report_hugepages();
  2410. hugetlb_sysfs_init();
  2411. hugetlb_register_all_nodes();
  2412. hugetlb_cgroup_file_init();
  2413. #ifdef CONFIG_SMP
  2414. num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
  2415. #else
  2416. num_fault_mutexes = 1;
  2417. #endif
  2418. hugetlb_fault_mutex_table =
  2419. kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
  2420. GFP_KERNEL);
  2421. BUG_ON(!hugetlb_fault_mutex_table);
  2422. for (i = 0; i < num_fault_mutexes; i++)
  2423. mutex_init(&hugetlb_fault_mutex_table[i]);
  2424. return 0;
  2425. }
  2426. subsys_initcall(hugetlb_init);
  2427. /* Should be called on processing a hugepagesz=... option */
  2428. void __init hugetlb_bad_size(void)
  2429. {
  2430. parsed_valid_hugepagesz = false;
  2431. }
  2432. void __init hugetlb_add_hstate(unsigned int order)
  2433. {
  2434. struct hstate *h;
  2435. unsigned long i;
  2436. if (size_to_hstate(PAGE_SIZE << order)) {
  2437. pr_warn("hugepagesz= specified twice, ignoring\n");
  2438. return;
  2439. }
  2440. BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
  2441. BUG_ON(order == 0);
  2442. h = &hstates[hugetlb_max_hstate++];
  2443. h->order = order;
  2444. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  2445. h->nr_huge_pages = 0;
  2446. h->free_huge_pages = 0;
  2447. for (i = 0; i < MAX_NUMNODES; ++i)
  2448. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  2449. INIT_LIST_HEAD(&h->hugepage_activelist);
  2450. h->next_nid_to_alloc = first_memory_node;
  2451. h->next_nid_to_free = first_memory_node;
  2452. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  2453. huge_page_size(h)/1024);
  2454. parsed_hstate = h;
  2455. }
  2456. static int __init hugetlb_nrpages_setup(char *s)
  2457. {
  2458. unsigned long *mhp;
  2459. static unsigned long *last_mhp;
  2460. if (!parsed_valid_hugepagesz) {
  2461. pr_warn("hugepages = %s preceded by "
  2462. "an unsupported hugepagesz, ignoring\n", s);
  2463. parsed_valid_hugepagesz = true;
  2464. return 1;
  2465. }
  2466. /*
  2467. * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
  2468. * so this hugepages= parameter goes to the "default hstate".
  2469. */
  2470. else if (!hugetlb_max_hstate)
  2471. mhp = &default_hstate_max_huge_pages;
  2472. else
  2473. mhp = &parsed_hstate->max_huge_pages;
  2474. if (mhp == last_mhp) {
  2475. pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
  2476. return 1;
  2477. }
  2478. if (sscanf(s, "%lu", mhp) <= 0)
  2479. *mhp = 0;
  2480. /*
  2481. * Global state is always initialized later in hugetlb_init.
  2482. * But we need to allocate >= MAX_ORDER hstates here early to still
  2483. * use the bootmem allocator.
  2484. */
  2485. if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
  2486. hugetlb_hstate_alloc_pages(parsed_hstate);
  2487. last_mhp = mhp;
  2488. return 1;
  2489. }
  2490. __setup("hugepages=", hugetlb_nrpages_setup);
  2491. static int __init hugetlb_default_setup(char *s)
  2492. {
  2493. default_hstate_size = memparse(s, &s);
  2494. return 1;
  2495. }
  2496. __setup("default_hugepagesz=", hugetlb_default_setup);
  2497. static unsigned int cpuset_mems_nr(unsigned int *array)
  2498. {
  2499. int node;
  2500. unsigned int nr = 0;
  2501. for_each_node_mask(node, cpuset_current_mems_allowed)
  2502. nr += array[node];
  2503. return nr;
  2504. }
  2505. #ifdef CONFIG_SYSCTL
  2506. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  2507. struct ctl_table *table, int write,
  2508. void __user *buffer, size_t *length, loff_t *ppos)
  2509. {
  2510. struct hstate *h = &default_hstate;
  2511. unsigned long tmp = h->max_huge_pages;
  2512. int ret;
  2513. if (!hugepages_supported())
  2514. return -EOPNOTSUPP;
  2515. table->data = &tmp;
  2516. table->maxlen = sizeof(unsigned long);
  2517. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2518. if (ret)
  2519. goto out;
  2520. if (write)
  2521. ret = __nr_hugepages_store_common(obey_mempolicy, h,
  2522. NUMA_NO_NODE, tmp, *length);
  2523. out:
  2524. return ret;
  2525. }
  2526. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  2527. void __user *buffer, size_t *length, loff_t *ppos)
  2528. {
  2529. return hugetlb_sysctl_handler_common(false, table, write,
  2530. buffer, length, ppos);
  2531. }
  2532. #ifdef CONFIG_NUMA
  2533. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  2534. void __user *buffer, size_t *length, loff_t *ppos)
  2535. {
  2536. return hugetlb_sysctl_handler_common(true, table, write,
  2537. buffer, length, ppos);
  2538. }
  2539. #endif /* CONFIG_NUMA */
  2540. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  2541. void __user *buffer,
  2542. size_t *length, loff_t *ppos)
  2543. {
  2544. struct hstate *h = &default_hstate;
  2545. unsigned long tmp;
  2546. int ret;
  2547. if (!hugepages_supported())
  2548. return -EOPNOTSUPP;
  2549. tmp = h->nr_overcommit_huge_pages;
  2550. if (write && hstate_is_gigantic(h))
  2551. return -EINVAL;
  2552. table->data = &tmp;
  2553. table->maxlen = sizeof(unsigned long);
  2554. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  2555. if (ret)
  2556. goto out;
  2557. if (write) {
  2558. spin_lock(&hugetlb_lock);
  2559. h->nr_overcommit_huge_pages = tmp;
  2560. spin_unlock(&hugetlb_lock);
  2561. }
  2562. out:
  2563. return ret;
  2564. }
  2565. #endif /* CONFIG_SYSCTL */
  2566. void hugetlb_report_meminfo(struct seq_file *m)
  2567. {
  2568. struct hstate *h;
  2569. unsigned long total = 0;
  2570. if (!hugepages_supported())
  2571. return;
  2572. for_each_hstate(h) {
  2573. unsigned long count = h->nr_huge_pages;
  2574. total += (PAGE_SIZE << huge_page_order(h)) * count;
  2575. if (h == &default_hstate)
  2576. seq_printf(m,
  2577. "HugePages_Total: %5lu\n"
  2578. "HugePages_Free: %5lu\n"
  2579. "HugePages_Rsvd: %5lu\n"
  2580. "HugePages_Surp: %5lu\n"
  2581. "Hugepagesize: %8lu kB\n",
  2582. count,
  2583. h->free_huge_pages,
  2584. h->resv_huge_pages,
  2585. h->surplus_huge_pages,
  2586. (PAGE_SIZE << huge_page_order(h)) / 1024);
  2587. }
  2588. seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
  2589. }
  2590. int hugetlb_report_node_meminfo(int nid, char *buf)
  2591. {
  2592. struct hstate *h = &default_hstate;
  2593. if (!hugepages_supported())
  2594. return 0;
  2595. return sprintf(buf,
  2596. "Node %d HugePages_Total: %5u\n"
  2597. "Node %d HugePages_Free: %5u\n"
  2598. "Node %d HugePages_Surp: %5u\n",
  2599. nid, h->nr_huge_pages_node[nid],
  2600. nid, h->free_huge_pages_node[nid],
  2601. nid, h->surplus_huge_pages_node[nid]);
  2602. }
  2603. void hugetlb_show_meminfo(void)
  2604. {
  2605. struct hstate *h;
  2606. int nid;
  2607. if (!hugepages_supported())
  2608. return;
  2609. for_each_node_state(nid, N_MEMORY)
  2610. for_each_hstate(h)
  2611. pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
  2612. nid,
  2613. h->nr_huge_pages_node[nid],
  2614. h->free_huge_pages_node[nid],
  2615. h->surplus_huge_pages_node[nid],
  2616. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  2617. }
  2618. void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
  2619. {
  2620. seq_printf(m, "HugetlbPages:\t%8lu kB\n",
  2621. atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
  2622. }
  2623. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  2624. unsigned long hugetlb_total_pages(void)
  2625. {
  2626. struct hstate *h;
  2627. unsigned long nr_total_pages = 0;
  2628. for_each_hstate(h)
  2629. nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
  2630. return nr_total_pages;
  2631. }
  2632. static int hugetlb_acct_memory(struct hstate *h, long delta)
  2633. {
  2634. int ret = -ENOMEM;
  2635. spin_lock(&hugetlb_lock);
  2636. /*
  2637. * When cpuset is configured, it breaks the strict hugetlb page
  2638. * reservation as the accounting is done on a global variable. Such
  2639. * reservation is completely rubbish in the presence of cpuset because
  2640. * the reservation is not checked against page availability for the
  2641. * current cpuset. Application can still potentially OOM'ed by kernel
  2642. * with lack of free htlb page in cpuset that the task is in.
  2643. * Attempt to enforce strict accounting with cpuset is almost
  2644. * impossible (or too ugly) because cpuset is too fluid that
  2645. * task or memory node can be dynamically moved between cpusets.
  2646. *
  2647. * The change of semantics for shared hugetlb mapping with cpuset is
  2648. * undesirable. However, in order to preserve some of the semantics,
  2649. * we fall back to check against current free page availability as
  2650. * a best attempt and hopefully to minimize the impact of changing
  2651. * semantics that cpuset has.
  2652. */
  2653. if (delta > 0) {
  2654. if (gather_surplus_pages(h, delta) < 0)
  2655. goto out;
  2656. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  2657. return_unused_surplus_pages(h, delta);
  2658. goto out;
  2659. }
  2660. }
  2661. ret = 0;
  2662. if (delta < 0)
  2663. return_unused_surplus_pages(h, (unsigned long) -delta);
  2664. out:
  2665. spin_unlock(&hugetlb_lock);
  2666. return ret;
  2667. }
  2668. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  2669. {
  2670. struct resv_map *resv = vma_resv_map(vma);
  2671. /*
  2672. * This new VMA should share its siblings reservation map if present.
  2673. * The VMA will only ever have a valid reservation map pointer where
  2674. * it is being copied for another still existing VMA. As that VMA
  2675. * has a reference to the reservation map it cannot disappear until
  2676. * after this open call completes. It is therefore safe to take a
  2677. * new reference here without additional locking.
  2678. */
  2679. if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2680. kref_get(&resv->refs);
  2681. }
  2682. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  2683. {
  2684. struct hstate *h = hstate_vma(vma);
  2685. struct resv_map *resv = vma_resv_map(vma);
  2686. struct hugepage_subpool *spool = subpool_vma(vma);
  2687. unsigned long reserve, start, end;
  2688. long gbl_reserve;
  2689. if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  2690. return;
  2691. start = vma_hugecache_offset(h, vma, vma->vm_start);
  2692. end = vma_hugecache_offset(h, vma, vma->vm_end);
  2693. reserve = (end - start) - region_count(resv, start, end);
  2694. kref_put(&resv->refs, resv_map_release);
  2695. if (reserve) {
  2696. /*
  2697. * Decrement reserve counts. The global reserve count may be
  2698. * adjusted if the subpool has a minimum size.
  2699. */
  2700. gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
  2701. hugetlb_acct_memory(h, -gbl_reserve);
  2702. }
  2703. }
  2704. static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
  2705. {
  2706. if (addr & ~(huge_page_mask(hstate_vma(vma))))
  2707. return -EINVAL;
  2708. return 0;
  2709. }
  2710. static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
  2711. {
  2712. struct hstate *hstate = hstate_vma(vma);
  2713. return 1UL << huge_page_shift(hstate);
  2714. }
  2715. /*
  2716. * We cannot handle pagefaults against hugetlb pages at all. They cause
  2717. * handle_mm_fault() to try to instantiate regular-sized pages in the
  2718. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  2719. * this far.
  2720. */
  2721. static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
  2722. {
  2723. BUG();
  2724. return 0;
  2725. }
  2726. const struct vm_operations_struct hugetlb_vm_ops = {
  2727. .fault = hugetlb_vm_op_fault,
  2728. .open = hugetlb_vm_op_open,
  2729. .close = hugetlb_vm_op_close,
  2730. .split = hugetlb_vm_op_split,
  2731. .pagesize = hugetlb_vm_op_pagesize,
  2732. };
  2733. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  2734. int writable)
  2735. {
  2736. pte_t entry;
  2737. if (writable) {
  2738. entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
  2739. vma->vm_page_prot)));
  2740. } else {
  2741. entry = huge_pte_wrprotect(mk_huge_pte(page,
  2742. vma->vm_page_prot));
  2743. }
  2744. entry = pte_mkyoung(entry);
  2745. entry = pte_mkhuge(entry);
  2746. entry = arch_make_huge_pte(entry, vma, page, writable);
  2747. return entry;
  2748. }
  2749. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  2750. unsigned long address, pte_t *ptep)
  2751. {
  2752. pte_t entry;
  2753. entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
  2754. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  2755. update_mmu_cache(vma, address, ptep);
  2756. }
  2757. bool is_hugetlb_entry_migration(pte_t pte)
  2758. {
  2759. swp_entry_t swp;
  2760. if (huge_pte_none(pte) || pte_present(pte))
  2761. return false;
  2762. swp = pte_to_swp_entry(pte);
  2763. if (non_swap_entry(swp) && is_migration_entry(swp))
  2764. return true;
  2765. else
  2766. return false;
  2767. }
  2768. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  2769. {
  2770. swp_entry_t swp;
  2771. if (huge_pte_none(pte) || pte_present(pte))
  2772. return 0;
  2773. swp = pte_to_swp_entry(pte);
  2774. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  2775. return 1;
  2776. else
  2777. return 0;
  2778. }
  2779. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  2780. struct vm_area_struct *vma)
  2781. {
  2782. pte_t *src_pte, *dst_pte, entry;
  2783. struct page *ptepage;
  2784. unsigned long addr;
  2785. int cow;
  2786. struct hstate *h = hstate_vma(vma);
  2787. unsigned long sz = huge_page_size(h);
  2788. unsigned long mmun_start; /* For mmu_notifiers */
  2789. unsigned long mmun_end; /* For mmu_notifiers */
  2790. int ret = 0;
  2791. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  2792. mmun_start = vma->vm_start;
  2793. mmun_end = vma->vm_end;
  2794. if (cow)
  2795. mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
  2796. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  2797. spinlock_t *src_ptl, *dst_ptl;
  2798. src_pte = huge_pte_offset(src, addr, sz);
  2799. if (!src_pte)
  2800. continue;
  2801. dst_pte = huge_pte_alloc(dst, addr, sz);
  2802. if (!dst_pte) {
  2803. ret = -ENOMEM;
  2804. break;
  2805. }
  2806. /* If the pagetables are shared don't copy or take references */
  2807. if (dst_pte == src_pte)
  2808. continue;
  2809. dst_ptl = huge_pte_lock(h, dst, dst_pte);
  2810. src_ptl = huge_pte_lockptr(h, src, src_pte);
  2811. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  2812. entry = huge_ptep_get(src_pte);
  2813. if (huge_pte_none(entry)) { /* skip none entry */
  2814. ;
  2815. } else if (unlikely(is_hugetlb_entry_migration(entry) ||
  2816. is_hugetlb_entry_hwpoisoned(entry))) {
  2817. swp_entry_t swp_entry = pte_to_swp_entry(entry);
  2818. if (is_write_migration_entry(swp_entry) && cow) {
  2819. /*
  2820. * COW mappings require pages in both
  2821. * parent and child to be set to read.
  2822. */
  2823. make_migration_entry_read(&swp_entry);
  2824. entry = swp_entry_to_pte(swp_entry);
  2825. set_huge_swap_pte_at(src, addr, src_pte,
  2826. entry, sz);
  2827. }
  2828. set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
  2829. } else {
  2830. if (cow) {
  2831. /*
  2832. * No need to notify as we are downgrading page
  2833. * table protection not changing it to point
  2834. * to a new page.
  2835. *
  2836. * See Documentation/vm/mmu_notifier.rst
  2837. */
  2838. huge_ptep_set_wrprotect(src, addr, src_pte);
  2839. }
  2840. entry = huge_ptep_get(src_pte);
  2841. ptepage = pte_page(entry);
  2842. get_page(ptepage);
  2843. page_dup_rmap(ptepage, true);
  2844. set_huge_pte_at(dst, addr, dst_pte, entry);
  2845. hugetlb_count_add(pages_per_huge_page(h), dst);
  2846. }
  2847. spin_unlock(src_ptl);
  2848. spin_unlock(dst_ptl);
  2849. }
  2850. if (cow)
  2851. mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
  2852. return ret;
  2853. }
  2854. void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  2855. unsigned long start, unsigned long end,
  2856. struct page *ref_page)
  2857. {
  2858. struct mm_struct *mm = vma->vm_mm;
  2859. unsigned long address;
  2860. pte_t *ptep;
  2861. pte_t pte;
  2862. spinlock_t *ptl;
  2863. struct page *page;
  2864. struct hstate *h = hstate_vma(vma);
  2865. unsigned long sz = huge_page_size(h);
  2866. const unsigned long mmun_start = start; /* For mmu_notifiers */
  2867. const unsigned long mmun_end = end; /* For mmu_notifiers */
  2868. WARN_ON(!is_vm_hugetlb_page(vma));
  2869. BUG_ON(start & ~huge_page_mask(h));
  2870. BUG_ON(end & ~huge_page_mask(h));
  2871. /*
  2872. * This is a hugetlb vma, all the pte entries should point
  2873. * to huge page.
  2874. */
  2875. tlb_remove_check_page_size_change(tlb, sz);
  2876. tlb_start_vma(tlb, vma);
  2877. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2878. address = start;
  2879. for (; address < end; address += sz) {
  2880. ptep = huge_pte_offset(mm, address, sz);
  2881. if (!ptep)
  2882. continue;
  2883. ptl = huge_pte_lock(h, mm, ptep);
  2884. if (huge_pmd_unshare(mm, &address, ptep)) {
  2885. spin_unlock(ptl);
  2886. continue;
  2887. }
  2888. pte = huge_ptep_get(ptep);
  2889. if (huge_pte_none(pte)) {
  2890. spin_unlock(ptl);
  2891. continue;
  2892. }
  2893. /*
  2894. * Migrating hugepage or HWPoisoned hugepage is already
  2895. * unmapped and its refcount is dropped, so just clear pte here.
  2896. */
  2897. if (unlikely(!pte_present(pte))) {
  2898. huge_pte_clear(mm, address, ptep, sz);
  2899. spin_unlock(ptl);
  2900. continue;
  2901. }
  2902. page = pte_page(pte);
  2903. /*
  2904. * If a reference page is supplied, it is because a specific
  2905. * page is being unmapped, not a range. Ensure the page we
  2906. * are about to unmap is the actual page of interest.
  2907. */
  2908. if (ref_page) {
  2909. if (page != ref_page) {
  2910. spin_unlock(ptl);
  2911. continue;
  2912. }
  2913. /*
  2914. * Mark the VMA as having unmapped its page so that
  2915. * future faults in this VMA will fail rather than
  2916. * looking like data was lost
  2917. */
  2918. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  2919. }
  2920. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2921. tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
  2922. if (huge_pte_dirty(pte))
  2923. set_page_dirty(page);
  2924. hugetlb_count_sub(pages_per_huge_page(h), mm);
  2925. page_remove_rmap(page, true);
  2926. spin_unlock(ptl);
  2927. tlb_remove_page_size(tlb, page, huge_page_size(h));
  2928. /*
  2929. * Bail out after unmapping reference page if supplied
  2930. */
  2931. if (ref_page)
  2932. break;
  2933. }
  2934. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2935. tlb_end_vma(tlb, vma);
  2936. }
  2937. void __unmap_hugepage_range_final(struct mmu_gather *tlb,
  2938. struct vm_area_struct *vma, unsigned long start,
  2939. unsigned long end, struct page *ref_page)
  2940. {
  2941. __unmap_hugepage_range(tlb, vma, start, end, ref_page);
  2942. /*
  2943. * Clear this flag so that x86's huge_pmd_share page_table_shareable
  2944. * test will fail on a vma being torn down, and not grab a page table
  2945. * on its way out. We're lucky that the flag has such an appropriate
  2946. * name, and can in fact be safely cleared here. We could clear it
  2947. * before the __unmap_hugepage_range above, but all that's necessary
  2948. * is to clear it before releasing the i_mmap_rwsem. This works
  2949. * because in the context this is called, the VMA is about to be
  2950. * destroyed and the i_mmap_rwsem is held.
  2951. */
  2952. vma->vm_flags &= ~VM_MAYSHARE;
  2953. }
  2954. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  2955. unsigned long end, struct page *ref_page)
  2956. {
  2957. struct mm_struct *mm;
  2958. struct mmu_gather tlb;
  2959. mm = vma->vm_mm;
  2960. tlb_gather_mmu(&tlb, mm, start, end);
  2961. __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
  2962. tlb_finish_mmu(&tlb, start, end);
  2963. }
  2964. /*
  2965. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  2966. * mappping it owns the reserve page for. The intention is to unmap the page
  2967. * from other VMAs and let the children be SIGKILLed if they are faulting the
  2968. * same region.
  2969. */
  2970. static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  2971. struct page *page, unsigned long address)
  2972. {
  2973. struct hstate *h = hstate_vma(vma);
  2974. struct vm_area_struct *iter_vma;
  2975. struct address_space *mapping;
  2976. pgoff_t pgoff;
  2977. /*
  2978. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  2979. * from page cache lookup which is in HPAGE_SIZE units.
  2980. */
  2981. address = address & huge_page_mask(h);
  2982. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
  2983. vma->vm_pgoff;
  2984. mapping = vma->vm_file->f_mapping;
  2985. /*
  2986. * Take the mapping lock for the duration of the table walk. As
  2987. * this mapping should be shared between all the VMAs,
  2988. * __unmap_hugepage_range() is called as the lock is already held
  2989. */
  2990. i_mmap_lock_write(mapping);
  2991. vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
  2992. /* Do not unmap the current VMA */
  2993. if (iter_vma == vma)
  2994. continue;
  2995. /*
  2996. * Shared VMAs have their own reserves and do not affect
  2997. * MAP_PRIVATE accounting but it is possible that a shared
  2998. * VMA is using the same page so check and skip such VMAs.
  2999. */
  3000. if (iter_vma->vm_flags & VM_MAYSHARE)
  3001. continue;
  3002. /*
  3003. * Unmap the page from other VMAs without their own reserves.
  3004. * They get marked to be SIGKILLed if they fault in these
  3005. * areas. This is because a future no-page fault on this VMA
  3006. * could insert a zeroed page instead of the data existing
  3007. * from the time of fork. This would look like data corruption
  3008. */
  3009. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  3010. unmap_hugepage_range(iter_vma, address,
  3011. address + huge_page_size(h), page);
  3012. }
  3013. i_mmap_unlock_write(mapping);
  3014. }
  3015. /*
  3016. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  3017. * Called with hugetlb_instantiation_mutex held and pte_page locked so we
  3018. * cannot race with other handlers or page migration.
  3019. * Keep the pte_same checks anyway to make transition from the mutex easier.
  3020. */
  3021. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  3022. unsigned long address, pte_t *ptep,
  3023. struct page *pagecache_page, spinlock_t *ptl)
  3024. {
  3025. pte_t pte;
  3026. struct hstate *h = hstate_vma(vma);
  3027. struct page *old_page, *new_page;
  3028. int ret = 0, outside_reserve = 0;
  3029. unsigned long mmun_start; /* For mmu_notifiers */
  3030. unsigned long mmun_end; /* For mmu_notifiers */
  3031. pte = huge_ptep_get(ptep);
  3032. old_page = pte_page(pte);
  3033. retry_avoidcopy:
  3034. /* If no-one else is actually using this page, avoid the copy
  3035. * and just make the page writable */
  3036. if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
  3037. page_move_anon_rmap(old_page, vma);
  3038. set_huge_ptep_writable(vma, address, ptep);
  3039. return 0;
  3040. }
  3041. /*
  3042. * If the process that created a MAP_PRIVATE mapping is about to
  3043. * perform a COW due to a shared page count, attempt to satisfy
  3044. * the allocation without using the existing reserves. The pagecache
  3045. * page is used to determine if the reserve at this address was
  3046. * consumed or not. If reserves were used, a partial faulted mapping
  3047. * at the time of fork() could consume its reserves on COW instead
  3048. * of the full address range.
  3049. */
  3050. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  3051. old_page != pagecache_page)
  3052. outside_reserve = 1;
  3053. get_page(old_page);
  3054. /*
  3055. * Drop page table lock as buddy allocator may be called. It will
  3056. * be acquired again before returning to the caller, as expected.
  3057. */
  3058. spin_unlock(ptl);
  3059. new_page = alloc_huge_page(vma, address, outside_reserve);
  3060. if (IS_ERR(new_page)) {
  3061. /*
  3062. * If a process owning a MAP_PRIVATE mapping fails to COW,
  3063. * it is due to references held by a child and an insufficient
  3064. * huge page pool. To guarantee the original mappers
  3065. * reliability, unmap the page from child processes. The child
  3066. * may get SIGKILLed if it later faults.
  3067. */
  3068. if (outside_reserve) {
  3069. put_page(old_page);
  3070. BUG_ON(huge_pte_none(pte));
  3071. unmap_ref_private(mm, vma, old_page, address);
  3072. BUG_ON(huge_pte_none(pte));
  3073. spin_lock(ptl);
  3074. ptep = huge_pte_offset(mm, address & huge_page_mask(h),
  3075. huge_page_size(h));
  3076. if (likely(ptep &&
  3077. pte_same(huge_ptep_get(ptep), pte)))
  3078. goto retry_avoidcopy;
  3079. /*
  3080. * race occurs while re-acquiring page table
  3081. * lock, and our job is done.
  3082. */
  3083. return 0;
  3084. }
  3085. ret = (PTR_ERR(new_page) == -ENOMEM) ?
  3086. VM_FAULT_OOM : VM_FAULT_SIGBUS;
  3087. goto out_release_old;
  3088. }
  3089. /*
  3090. * When the original hugepage is shared one, it does not have
  3091. * anon_vma prepared.
  3092. */
  3093. if (unlikely(anon_vma_prepare(vma))) {
  3094. ret = VM_FAULT_OOM;
  3095. goto out_release_all;
  3096. }
  3097. copy_user_huge_page(new_page, old_page, address, vma,
  3098. pages_per_huge_page(h));
  3099. __SetPageUptodate(new_page);
  3100. set_page_huge_active(new_page);
  3101. mmun_start = address & huge_page_mask(h);
  3102. mmun_end = mmun_start + huge_page_size(h);
  3103. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  3104. /*
  3105. * Retake the page table lock to check for racing updates
  3106. * before the page tables are altered
  3107. */
  3108. spin_lock(ptl);
  3109. ptep = huge_pte_offset(mm, address & huge_page_mask(h),
  3110. huge_page_size(h));
  3111. if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
  3112. ClearPagePrivate(new_page);
  3113. /* Break COW */
  3114. huge_ptep_clear_flush(vma, address, ptep);
  3115. mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
  3116. set_huge_pte_at(mm, address, ptep,
  3117. make_huge_pte(vma, new_page, 1));
  3118. page_remove_rmap(old_page, true);
  3119. hugepage_add_new_anon_rmap(new_page, vma, address);
  3120. /* Make the old page be freed below */
  3121. new_page = old_page;
  3122. }
  3123. spin_unlock(ptl);
  3124. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  3125. out_release_all:
  3126. restore_reserve_on_error(h, vma, address, new_page);
  3127. put_page(new_page);
  3128. out_release_old:
  3129. put_page(old_page);
  3130. spin_lock(ptl); /* Caller expects lock to be held */
  3131. return ret;
  3132. }
  3133. /* Return the pagecache page at a given address within a VMA */
  3134. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  3135. struct vm_area_struct *vma, unsigned long address)
  3136. {
  3137. struct address_space *mapping;
  3138. pgoff_t idx;
  3139. mapping = vma->vm_file->f_mapping;
  3140. idx = vma_hugecache_offset(h, vma, address);
  3141. return find_lock_page(mapping, idx);
  3142. }
  3143. /*
  3144. * Return whether there is a pagecache page to back given address within VMA.
  3145. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  3146. */
  3147. static bool hugetlbfs_pagecache_present(struct hstate *h,
  3148. struct vm_area_struct *vma, unsigned long address)
  3149. {
  3150. struct address_space *mapping;
  3151. pgoff_t idx;
  3152. struct page *page;
  3153. mapping = vma->vm_file->f_mapping;
  3154. idx = vma_hugecache_offset(h, vma, address);
  3155. page = find_get_page(mapping, idx);
  3156. if (page)
  3157. put_page(page);
  3158. return page != NULL;
  3159. }
  3160. int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
  3161. pgoff_t idx)
  3162. {
  3163. struct inode *inode = mapping->host;
  3164. struct hstate *h = hstate_inode(inode);
  3165. int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  3166. if (err)
  3167. return err;
  3168. ClearPagePrivate(page);
  3169. spin_lock(&inode->i_lock);
  3170. inode->i_blocks += blocks_per_huge_page(h);
  3171. spin_unlock(&inode->i_lock);
  3172. return 0;
  3173. }
  3174. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3175. struct address_space *mapping, pgoff_t idx,
  3176. unsigned long address, pte_t *ptep, unsigned int flags)
  3177. {
  3178. struct hstate *h = hstate_vma(vma);
  3179. int ret = VM_FAULT_SIGBUS;
  3180. int anon_rmap = 0;
  3181. unsigned long size;
  3182. struct page *page;
  3183. pte_t new_pte;
  3184. spinlock_t *ptl;
  3185. unsigned long haddr = address & huge_page_mask(h);
  3186. /*
  3187. * Currently, we are forced to kill the process in the event the
  3188. * original mapper has unmapped pages from the child due to a failed
  3189. * COW. Warn that such a situation has occurred as it may not be obvious
  3190. */
  3191. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  3192. pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
  3193. current->pid);
  3194. return ret;
  3195. }
  3196. /*
  3197. * Use page lock to guard against racing truncation
  3198. * before we get page_table_lock.
  3199. */
  3200. retry:
  3201. page = find_lock_page(mapping, idx);
  3202. if (!page) {
  3203. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3204. if (idx >= size)
  3205. goto out;
  3206. /*
  3207. * Check for page in userfault range
  3208. */
  3209. if (userfaultfd_missing(vma)) {
  3210. u32 hash;
  3211. struct vm_fault vmf = {
  3212. .vma = vma,
  3213. .address = haddr,
  3214. .flags = flags,
  3215. /*
  3216. * Hard to debug if it ends up being
  3217. * used by a callee that assumes
  3218. * something about the other
  3219. * uninitialized fields... same as in
  3220. * memory.c
  3221. */
  3222. };
  3223. /*
  3224. * hugetlb_fault_mutex must be dropped before
  3225. * handling userfault. Reacquire after handling
  3226. * fault to make calling code simpler.
  3227. */
  3228. hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
  3229. idx, haddr);
  3230. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  3231. ret = handle_userfault(&vmf, VM_UFFD_MISSING);
  3232. mutex_lock(&hugetlb_fault_mutex_table[hash]);
  3233. goto out;
  3234. }
  3235. page = alloc_huge_page(vma, haddr, 0);
  3236. if (IS_ERR(page)) {
  3237. ret = PTR_ERR(page);
  3238. if (ret == -ENOMEM)
  3239. ret = VM_FAULT_OOM;
  3240. else
  3241. ret = VM_FAULT_SIGBUS;
  3242. goto out;
  3243. }
  3244. clear_huge_page(page, address, pages_per_huge_page(h));
  3245. __SetPageUptodate(page);
  3246. set_page_huge_active(page);
  3247. if (vma->vm_flags & VM_MAYSHARE) {
  3248. int err = huge_add_to_page_cache(page, mapping, idx);
  3249. if (err) {
  3250. put_page(page);
  3251. if (err == -EEXIST)
  3252. goto retry;
  3253. goto out;
  3254. }
  3255. } else {
  3256. lock_page(page);
  3257. if (unlikely(anon_vma_prepare(vma))) {
  3258. ret = VM_FAULT_OOM;
  3259. goto backout_unlocked;
  3260. }
  3261. anon_rmap = 1;
  3262. }
  3263. } else {
  3264. /*
  3265. * If memory error occurs between mmap() and fault, some process
  3266. * don't have hwpoisoned swap entry for errored virtual address.
  3267. * So we need to block hugepage fault by PG_hwpoison bit check.
  3268. */
  3269. if (unlikely(PageHWPoison(page))) {
  3270. ret = VM_FAULT_HWPOISON |
  3271. VM_FAULT_SET_HINDEX(hstate_index(h));
  3272. goto backout_unlocked;
  3273. }
  3274. }
  3275. /*
  3276. * If we are going to COW a private mapping later, we examine the
  3277. * pending reservations for this page now. This will ensure that
  3278. * any allocations necessary to record that reservation occur outside
  3279. * the spinlock.
  3280. */
  3281. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3282. if (vma_needs_reservation(h, vma, haddr) < 0) {
  3283. ret = VM_FAULT_OOM;
  3284. goto backout_unlocked;
  3285. }
  3286. /* Just decrements count, does not deallocate */
  3287. vma_end_reservation(h, vma, haddr);
  3288. }
  3289. ptl = huge_pte_lock(h, mm, ptep);
  3290. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3291. if (idx >= size)
  3292. goto backout;
  3293. ret = 0;
  3294. if (!huge_pte_none(huge_ptep_get(ptep)))
  3295. goto backout;
  3296. if (anon_rmap) {
  3297. ClearPagePrivate(page);
  3298. hugepage_add_new_anon_rmap(page, vma, haddr);
  3299. } else
  3300. page_dup_rmap(page, true);
  3301. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  3302. && (vma->vm_flags & VM_SHARED)));
  3303. set_huge_pte_at(mm, haddr, ptep, new_pte);
  3304. hugetlb_count_add(pages_per_huge_page(h), mm);
  3305. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  3306. /* Optimization, do the COW without a second fault */
  3307. ret = hugetlb_cow(mm, vma, haddr, ptep, page, ptl);
  3308. }
  3309. spin_unlock(ptl);
  3310. unlock_page(page);
  3311. out:
  3312. return ret;
  3313. backout:
  3314. spin_unlock(ptl);
  3315. backout_unlocked:
  3316. unlock_page(page);
  3317. restore_reserve_on_error(h, vma, haddr, page);
  3318. put_page(page);
  3319. goto out;
  3320. }
  3321. #ifdef CONFIG_SMP
  3322. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3323. struct vm_area_struct *vma,
  3324. struct address_space *mapping,
  3325. pgoff_t idx, unsigned long address)
  3326. {
  3327. unsigned long key[2];
  3328. u32 hash;
  3329. if (vma->vm_flags & VM_SHARED) {
  3330. key[0] = (unsigned long) mapping;
  3331. key[1] = idx;
  3332. } else {
  3333. key[0] = (unsigned long) mm;
  3334. key[1] = address >> huge_page_shift(h);
  3335. }
  3336. hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
  3337. return hash & (num_fault_mutexes - 1);
  3338. }
  3339. #else
  3340. /*
  3341. * For uniprocesor systems we always use a single mutex, so just
  3342. * return 0 and avoid the hashing overhead.
  3343. */
  3344. u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
  3345. struct vm_area_struct *vma,
  3346. struct address_space *mapping,
  3347. pgoff_t idx, unsigned long address)
  3348. {
  3349. return 0;
  3350. }
  3351. #endif
  3352. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3353. unsigned long address, unsigned int flags)
  3354. {
  3355. pte_t *ptep, entry;
  3356. spinlock_t *ptl;
  3357. int ret;
  3358. u32 hash;
  3359. pgoff_t idx;
  3360. struct page *page = NULL;
  3361. struct page *pagecache_page = NULL;
  3362. struct hstate *h = hstate_vma(vma);
  3363. struct address_space *mapping;
  3364. int need_wait_lock = 0;
  3365. unsigned long haddr = address & huge_page_mask(h);
  3366. ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
  3367. if (ptep) {
  3368. entry = huge_ptep_get(ptep);
  3369. if (unlikely(is_hugetlb_entry_migration(entry))) {
  3370. migration_entry_wait_huge(vma, mm, ptep);
  3371. return 0;
  3372. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  3373. return VM_FAULT_HWPOISON_LARGE |
  3374. VM_FAULT_SET_HINDEX(hstate_index(h));
  3375. } else {
  3376. ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
  3377. if (!ptep)
  3378. return VM_FAULT_OOM;
  3379. }
  3380. mapping = vma->vm_file->f_mapping;
  3381. idx = vma_hugecache_offset(h, vma, haddr);
  3382. /*
  3383. * Serialize hugepage allocation and instantiation, so that we don't
  3384. * get spurious allocation failures if two CPUs race to instantiate
  3385. * the same page in the page cache.
  3386. */
  3387. hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
  3388. mutex_lock(&hugetlb_fault_mutex_table[hash]);
  3389. entry = huge_ptep_get(ptep);
  3390. if (huge_pte_none(entry)) {
  3391. ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
  3392. goto out_mutex;
  3393. }
  3394. ret = 0;
  3395. /*
  3396. * entry could be a migration/hwpoison entry at this point, so this
  3397. * check prevents the kernel from going below assuming that we have
  3398. * a active hugepage in pagecache. This goto expects the 2nd page fault,
  3399. * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
  3400. * handle it.
  3401. */
  3402. if (!pte_present(entry))
  3403. goto out_mutex;
  3404. /*
  3405. * If we are going to COW the mapping later, we examine the pending
  3406. * reservations for this page now. This will ensure that any
  3407. * allocations necessary to record that reservation occur outside the
  3408. * spinlock. For private mappings, we also lookup the pagecache
  3409. * page now as it is used to determine if a reservation has been
  3410. * consumed.
  3411. */
  3412. if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
  3413. if (vma_needs_reservation(h, vma, haddr) < 0) {
  3414. ret = VM_FAULT_OOM;
  3415. goto out_mutex;
  3416. }
  3417. /* Just decrements count, does not deallocate */
  3418. vma_end_reservation(h, vma, haddr);
  3419. if (!(vma->vm_flags & VM_MAYSHARE))
  3420. pagecache_page = hugetlbfs_pagecache_page(h,
  3421. vma, haddr);
  3422. }
  3423. ptl = huge_pte_lock(h, mm, ptep);
  3424. /* Check for a racing update before calling hugetlb_cow */
  3425. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  3426. goto out_ptl;
  3427. /*
  3428. * hugetlb_cow() requires page locks of pte_page(entry) and
  3429. * pagecache_page, so here we need take the former one
  3430. * when page != pagecache_page or !pagecache_page.
  3431. */
  3432. page = pte_page(entry);
  3433. if (page != pagecache_page)
  3434. if (!trylock_page(page)) {
  3435. need_wait_lock = 1;
  3436. goto out_ptl;
  3437. }
  3438. get_page(page);
  3439. if (flags & FAULT_FLAG_WRITE) {
  3440. if (!huge_pte_write(entry)) {
  3441. ret = hugetlb_cow(mm, vma, haddr, ptep,
  3442. pagecache_page, ptl);
  3443. goto out_put_page;
  3444. }
  3445. entry = huge_pte_mkdirty(entry);
  3446. }
  3447. entry = pte_mkyoung(entry);
  3448. if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
  3449. flags & FAULT_FLAG_WRITE))
  3450. update_mmu_cache(vma, haddr, ptep);
  3451. out_put_page:
  3452. if (page != pagecache_page)
  3453. unlock_page(page);
  3454. put_page(page);
  3455. out_ptl:
  3456. spin_unlock(ptl);
  3457. if (pagecache_page) {
  3458. unlock_page(pagecache_page);
  3459. put_page(pagecache_page);
  3460. }
  3461. out_mutex:
  3462. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  3463. /*
  3464. * Generally it's safe to hold refcount during waiting page lock. But
  3465. * here we just wait to defer the next page fault to avoid busy loop and
  3466. * the page is not used after unlocked before returning from the current
  3467. * page fault. So we are safe from accessing freed page, even if we wait
  3468. * here without taking refcount.
  3469. */
  3470. if (need_wait_lock)
  3471. wait_on_page_locked(page);
  3472. return ret;
  3473. }
  3474. /*
  3475. * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
  3476. * modifications for huge pages.
  3477. */
  3478. int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
  3479. pte_t *dst_pte,
  3480. struct vm_area_struct *dst_vma,
  3481. unsigned long dst_addr,
  3482. unsigned long src_addr,
  3483. struct page **pagep)
  3484. {
  3485. struct address_space *mapping;
  3486. pgoff_t idx;
  3487. unsigned long size;
  3488. int vm_shared = dst_vma->vm_flags & VM_SHARED;
  3489. struct hstate *h = hstate_vma(dst_vma);
  3490. pte_t _dst_pte;
  3491. spinlock_t *ptl;
  3492. int ret;
  3493. struct page *page;
  3494. if (!*pagep) {
  3495. ret = -ENOMEM;
  3496. page = alloc_huge_page(dst_vma, dst_addr, 0);
  3497. if (IS_ERR(page))
  3498. goto out;
  3499. ret = copy_huge_page_from_user(page,
  3500. (const void __user *) src_addr,
  3501. pages_per_huge_page(h), false);
  3502. /* fallback to copy_from_user outside mmap_sem */
  3503. if (unlikely(ret)) {
  3504. ret = -EFAULT;
  3505. *pagep = page;
  3506. /* don't free the page */
  3507. goto out;
  3508. }
  3509. } else {
  3510. page = *pagep;
  3511. *pagep = NULL;
  3512. }
  3513. /*
  3514. * The memory barrier inside __SetPageUptodate makes sure that
  3515. * preceding stores to the page contents become visible before
  3516. * the set_pte_at() write.
  3517. */
  3518. __SetPageUptodate(page);
  3519. set_page_huge_active(page);
  3520. mapping = dst_vma->vm_file->f_mapping;
  3521. idx = vma_hugecache_offset(h, dst_vma, dst_addr);
  3522. /*
  3523. * If shared, add to page cache
  3524. */
  3525. if (vm_shared) {
  3526. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3527. ret = -EFAULT;
  3528. if (idx >= size)
  3529. goto out_release_nounlock;
  3530. /*
  3531. * Serialization between remove_inode_hugepages() and
  3532. * huge_add_to_page_cache() below happens through the
  3533. * hugetlb_fault_mutex_table that here must be hold by
  3534. * the caller.
  3535. */
  3536. ret = huge_add_to_page_cache(page, mapping, idx);
  3537. if (ret)
  3538. goto out_release_nounlock;
  3539. }
  3540. ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
  3541. spin_lock(ptl);
  3542. /*
  3543. * Recheck the i_size after holding PT lock to make sure not
  3544. * to leave any page mapped (as page_mapped()) beyond the end
  3545. * of the i_size (remove_inode_hugepages() is strict about
  3546. * enforcing that). If we bail out here, we'll also leave a
  3547. * page in the radix tree in the vm_shared case beyond the end
  3548. * of the i_size, but remove_inode_hugepages() will take care
  3549. * of it as soon as we drop the hugetlb_fault_mutex_table.
  3550. */
  3551. size = i_size_read(mapping->host) >> huge_page_shift(h);
  3552. ret = -EFAULT;
  3553. if (idx >= size)
  3554. goto out_release_unlock;
  3555. ret = -EEXIST;
  3556. if (!huge_pte_none(huge_ptep_get(dst_pte)))
  3557. goto out_release_unlock;
  3558. if (vm_shared) {
  3559. page_dup_rmap(page, true);
  3560. } else {
  3561. ClearPagePrivate(page);
  3562. hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
  3563. }
  3564. _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
  3565. if (dst_vma->vm_flags & VM_WRITE)
  3566. _dst_pte = huge_pte_mkdirty(_dst_pte);
  3567. _dst_pte = pte_mkyoung(_dst_pte);
  3568. set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
  3569. (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
  3570. dst_vma->vm_flags & VM_WRITE);
  3571. hugetlb_count_add(pages_per_huge_page(h), dst_mm);
  3572. /* No need to invalidate - it was non-present before */
  3573. update_mmu_cache(dst_vma, dst_addr, dst_pte);
  3574. spin_unlock(ptl);
  3575. if (vm_shared)
  3576. unlock_page(page);
  3577. ret = 0;
  3578. out:
  3579. return ret;
  3580. out_release_unlock:
  3581. spin_unlock(ptl);
  3582. if (vm_shared)
  3583. unlock_page(page);
  3584. out_release_nounlock:
  3585. put_page(page);
  3586. goto out;
  3587. }
  3588. long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3589. struct page **pages, struct vm_area_struct **vmas,
  3590. unsigned long *position, unsigned long *nr_pages,
  3591. long i, unsigned int flags, int *nonblocking)
  3592. {
  3593. unsigned long pfn_offset;
  3594. unsigned long vaddr = *position;
  3595. unsigned long remainder = *nr_pages;
  3596. struct hstate *h = hstate_vma(vma);
  3597. int err = -EFAULT;
  3598. while (vaddr < vma->vm_end && remainder) {
  3599. pte_t *pte;
  3600. spinlock_t *ptl = NULL;
  3601. int absent;
  3602. struct page *page;
  3603. /*
  3604. * If we have a pending SIGKILL, don't keep faulting pages and
  3605. * potentially allocating memory.
  3606. */
  3607. if (unlikely(fatal_signal_pending(current))) {
  3608. remainder = 0;
  3609. break;
  3610. }
  3611. /*
  3612. * Some archs (sparc64, sh*) have multiple pte_ts to
  3613. * each hugepage. We have to make sure we get the
  3614. * first, for the page indexing below to work.
  3615. *
  3616. * Note that page table lock is not held when pte is null.
  3617. */
  3618. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
  3619. huge_page_size(h));
  3620. if (pte)
  3621. ptl = huge_pte_lock(h, mm, pte);
  3622. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  3623. /*
  3624. * When coredumping, it suits get_dump_page if we just return
  3625. * an error where there's an empty slot with no huge pagecache
  3626. * to back it. This way, we avoid allocating a hugepage, and
  3627. * the sparse dumpfile avoids allocating disk blocks, but its
  3628. * huge holes still show up with zeroes where they need to be.
  3629. */
  3630. if (absent && (flags & FOLL_DUMP) &&
  3631. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  3632. if (pte)
  3633. spin_unlock(ptl);
  3634. remainder = 0;
  3635. break;
  3636. }
  3637. /*
  3638. * We need call hugetlb_fault for both hugepages under migration
  3639. * (in which case hugetlb_fault waits for the migration,) and
  3640. * hwpoisoned hugepages (in which case we need to prevent the
  3641. * caller from accessing to them.) In order to do this, we use
  3642. * here is_swap_pte instead of is_hugetlb_entry_migration and
  3643. * is_hugetlb_entry_hwpoisoned. This is because it simply covers
  3644. * both cases, and because we can't follow correct pages
  3645. * directly from any kind of swap entries.
  3646. */
  3647. if (absent || is_swap_pte(huge_ptep_get(pte)) ||
  3648. ((flags & FOLL_WRITE) &&
  3649. !huge_pte_write(huge_ptep_get(pte)))) {
  3650. int ret;
  3651. unsigned int fault_flags = 0;
  3652. if (pte)
  3653. spin_unlock(ptl);
  3654. if (flags & FOLL_WRITE)
  3655. fault_flags |= FAULT_FLAG_WRITE;
  3656. if (nonblocking)
  3657. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  3658. if (flags & FOLL_NOWAIT)
  3659. fault_flags |= FAULT_FLAG_ALLOW_RETRY |
  3660. FAULT_FLAG_RETRY_NOWAIT;
  3661. if (flags & FOLL_TRIED) {
  3662. VM_WARN_ON_ONCE(fault_flags &
  3663. FAULT_FLAG_ALLOW_RETRY);
  3664. fault_flags |= FAULT_FLAG_TRIED;
  3665. }
  3666. ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
  3667. if (ret & VM_FAULT_ERROR) {
  3668. err = vm_fault_to_errno(ret, flags);
  3669. remainder = 0;
  3670. break;
  3671. }
  3672. if (ret & VM_FAULT_RETRY) {
  3673. if (nonblocking)
  3674. *nonblocking = 0;
  3675. *nr_pages = 0;
  3676. /*
  3677. * VM_FAULT_RETRY must not return an
  3678. * error, it will return zero
  3679. * instead.
  3680. *
  3681. * No need to update "position" as the
  3682. * caller will not check it after
  3683. * *nr_pages is set to 0.
  3684. */
  3685. return i;
  3686. }
  3687. continue;
  3688. }
  3689. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  3690. page = pte_page(huge_ptep_get(pte));
  3691. same_page:
  3692. if (pages) {
  3693. pages[i] = mem_map_offset(page, pfn_offset);
  3694. get_page(pages[i]);
  3695. }
  3696. if (vmas)
  3697. vmas[i] = vma;
  3698. vaddr += PAGE_SIZE;
  3699. ++pfn_offset;
  3700. --remainder;
  3701. ++i;
  3702. if (vaddr < vma->vm_end && remainder &&
  3703. pfn_offset < pages_per_huge_page(h)) {
  3704. /*
  3705. * We use pfn_offset to avoid touching the pageframes
  3706. * of this compound page.
  3707. */
  3708. goto same_page;
  3709. }
  3710. spin_unlock(ptl);
  3711. }
  3712. *nr_pages = remainder;
  3713. /*
  3714. * setting position is actually required only if remainder is
  3715. * not zero but it's faster not to add a "if (remainder)"
  3716. * branch.
  3717. */
  3718. *position = vaddr;
  3719. return i ? i : err;
  3720. }
  3721. #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
  3722. /*
  3723. * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
  3724. * implement this.
  3725. */
  3726. #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
  3727. #endif
  3728. unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
  3729. unsigned long address, unsigned long end, pgprot_t newprot)
  3730. {
  3731. struct mm_struct *mm = vma->vm_mm;
  3732. unsigned long start = address;
  3733. pte_t *ptep;
  3734. pte_t pte;
  3735. struct hstate *h = hstate_vma(vma);
  3736. unsigned long pages = 0;
  3737. BUG_ON(address >= end);
  3738. flush_cache_range(vma, address, end);
  3739. mmu_notifier_invalidate_range_start(mm, start, end);
  3740. i_mmap_lock_write(vma->vm_file->f_mapping);
  3741. for (; address < end; address += huge_page_size(h)) {
  3742. spinlock_t *ptl;
  3743. ptep = huge_pte_offset(mm, address, huge_page_size(h));
  3744. if (!ptep)
  3745. continue;
  3746. ptl = huge_pte_lock(h, mm, ptep);
  3747. if (huge_pmd_unshare(mm, &address, ptep)) {
  3748. pages++;
  3749. spin_unlock(ptl);
  3750. continue;
  3751. }
  3752. pte = huge_ptep_get(ptep);
  3753. if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
  3754. spin_unlock(ptl);
  3755. continue;
  3756. }
  3757. if (unlikely(is_hugetlb_entry_migration(pte))) {
  3758. swp_entry_t entry = pte_to_swp_entry(pte);
  3759. if (is_write_migration_entry(entry)) {
  3760. pte_t newpte;
  3761. make_migration_entry_read(&entry);
  3762. newpte = swp_entry_to_pte(entry);
  3763. set_huge_swap_pte_at(mm, address, ptep,
  3764. newpte, huge_page_size(h));
  3765. pages++;
  3766. }
  3767. spin_unlock(ptl);
  3768. continue;
  3769. }
  3770. if (!huge_pte_none(pte)) {
  3771. pte = huge_ptep_get_and_clear(mm, address, ptep);
  3772. pte = pte_mkhuge(huge_pte_modify(pte, newprot));
  3773. pte = arch_make_huge_pte(pte, vma, NULL, 0);
  3774. set_huge_pte_at(mm, address, ptep, pte);
  3775. pages++;
  3776. }
  3777. spin_unlock(ptl);
  3778. }
  3779. /*
  3780. * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
  3781. * may have cleared our pud entry and done put_page on the page table:
  3782. * once we release i_mmap_rwsem, another task can do the final put_page
  3783. * and that page table be reused and filled with junk.
  3784. */
  3785. flush_hugetlb_tlb_range(vma, start, end);
  3786. /*
  3787. * No need to call mmu_notifier_invalidate_range() we are downgrading
  3788. * page table protection not changing it to point to a new page.
  3789. *
  3790. * See Documentation/vm/mmu_notifier.rst
  3791. */
  3792. i_mmap_unlock_write(vma->vm_file->f_mapping);
  3793. mmu_notifier_invalidate_range_end(mm, start, end);
  3794. return pages << h->order;
  3795. }
  3796. int hugetlb_reserve_pages(struct inode *inode,
  3797. long from, long to,
  3798. struct vm_area_struct *vma,
  3799. vm_flags_t vm_flags)
  3800. {
  3801. long ret, chg;
  3802. struct hstate *h = hstate_inode(inode);
  3803. struct hugepage_subpool *spool = subpool_inode(inode);
  3804. struct resv_map *resv_map;
  3805. long gbl_reserve;
  3806. /* This should never happen */
  3807. if (from > to) {
  3808. VM_WARN(1, "%s called with a negative range\n", __func__);
  3809. return -EINVAL;
  3810. }
  3811. /*
  3812. * Only apply hugepage reservation if asked. At fault time, an
  3813. * attempt will be made for VM_NORESERVE to allocate a page
  3814. * without using reserves
  3815. */
  3816. if (vm_flags & VM_NORESERVE)
  3817. return 0;
  3818. /*
  3819. * Shared mappings base their reservation on the number of pages that
  3820. * are already allocated on behalf of the file. Private mappings need
  3821. * to reserve the full area even if read-only as mprotect() may be
  3822. * called to make the mapping read-write. Assume !vma is a shm mapping
  3823. */
  3824. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3825. resv_map = inode_resv_map(inode);
  3826. chg = region_chg(resv_map, from, to);
  3827. } else {
  3828. resv_map = resv_map_alloc();
  3829. if (!resv_map)
  3830. return -ENOMEM;
  3831. chg = to - from;
  3832. set_vma_resv_map(vma, resv_map);
  3833. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  3834. }
  3835. if (chg < 0) {
  3836. ret = chg;
  3837. goto out_err;
  3838. }
  3839. /*
  3840. * There must be enough pages in the subpool for the mapping. If
  3841. * the subpool has a minimum size, there may be some global
  3842. * reservations already in place (gbl_reserve).
  3843. */
  3844. gbl_reserve = hugepage_subpool_get_pages(spool, chg);
  3845. if (gbl_reserve < 0) {
  3846. ret = -ENOSPC;
  3847. goto out_err;
  3848. }
  3849. /*
  3850. * Check enough hugepages are available for the reservation.
  3851. * Hand the pages back to the subpool if there are not
  3852. */
  3853. ret = hugetlb_acct_memory(h, gbl_reserve);
  3854. if (ret < 0) {
  3855. /* put back original number of pages, chg */
  3856. (void)hugepage_subpool_put_pages(spool, chg);
  3857. goto out_err;
  3858. }
  3859. /*
  3860. * Account for the reservations made. Shared mappings record regions
  3861. * that have reservations as they are shared by multiple VMAs.
  3862. * When the last VMA disappears, the region map says how much
  3863. * the reservation was and the page cache tells how much of
  3864. * the reservation was consumed. Private mappings are per-VMA and
  3865. * only the consumed reservations are tracked. When the VMA
  3866. * disappears, the original reservation is the VMA size and the
  3867. * consumed reservations are stored in the map. Hence, nothing
  3868. * else has to be done for private mappings here
  3869. */
  3870. if (!vma || vma->vm_flags & VM_MAYSHARE) {
  3871. long add = region_add(resv_map, from, to);
  3872. if (unlikely(chg > add)) {
  3873. /*
  3874. * pages in this range were added to the reserve
  3875. * map between region_chg and region_add. This
  3876. * indicates a race with alloc_huge_page. Adjust
  3877. * the subpool and reserve counts modified above
  3878. * based on the difference.
  3879. */
  3880. long rsv_adjust;
  3881. rsv_adjust = hugepage_subpool_put_pages(spool,
  3882. chg - add);
  3883. hugetlb_acct_memory(h, -rsv_adjust);
  3884. }
  3885. }
  3886. return 0;
  3887. out_err:
  3888. if (!vma || vma->vm_flags & VM_MAYSHARE)
  3889. /* Don't call region_abort if region_chg failed */
  3890. if (chg >= 0)
  3891. region_abort(resv_map, from, to);
  3892. if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  3893. kref_put(&resv_map->refs, resv_map_release);
  3894. return ret;
  3895. }
  3896. long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
  3897. long freed)
  3898. {
  3899. struct hstate *h = hstate_inode(inode);
  3900. struct resv_map *resv_map = inode_resv_map(inode);
  3901. long chg = 0;
  3902. struct hugepage_subpool *spool = subpool_inode(inode);
  3903. long gbl_reserve;
  3904. if (resv_map) {
  3905. chg = region_del(resv_map, start, end);
  3906. /*
  3907. * region_del() can fail in the rare case where a region
  3908. * must be split and another region descriptor can not be
  3909. * allocated. If end == LONG_MAX, it will not fail.
  3910. */
  3911. if (chg < 0)
  3912. return chg;
  3913. }
  3914. spin_lock(&inode->i_lock);
  3915. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  3916. spin_unlock(&inode->i_lock);
  3917. /*
  3918. * If the subpool has a minimum size, the number of global
  3919. * reservations to be released may be adjusted.
  3920. */
  3921. gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
  3922. hugetlb_acct_memory(h, -gbl_reserve);
  3923. return 0;
  3924. }
  3925. #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
  3926. static unsigned long page_table_shareable(struct vm_area_struct *svma,
  3927. struct vm_area_struct *vma,
  3928. unsigned long addr, pgoff_t idx)
  3929. {
  3930. unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  3931. svma->vm_start;
  3932. unsigned long sbase = saddr & PUD_MASK;
  3933. unsigned long s_end = sbase + PUD_SIZE;
  3934. /* Allow segments to share if only one is marked locked */
  3935. unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3936. unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
  3937. /*
  3938. * match the virtual addresses, permission and the alignment of the
  3939. * page table page.
  3940. */
  3941. if (pmd_index(addr) != pmd_index(saddr) ||
  3942. vm_flags != svm_flags ||
  3943. sbase < svma->vm_start || svma->vm_end < s_end)
  3944. return 0;
  3945. return saddr;
  3946. }
  3947. static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  3948. {
  3949. unsigned long base = addr & PUD_MASK;
  3950. unsigned long end = base + PUD_SIZE;
  3951. /*
  3952. * check on proper vm_flags and page table alignment
  3953. */
  3954. if (vma->vm_flags & VM_MAYSHARE &&
  3955. vma->vm_start <= base && end <= vma->vm_end)
  3956. return true;
  3957. return false;
  3958. }
  3959. /*
  3960. * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
  3961. * and returns the corresponding pte. While this is not necessary for the
  3962. * !shared pmd case because we can allocate the pmd later as well, it makes the
  3963. * code much cleaner. pmd allocation is essential for the shared case because
  3964. * pud has to be populated inside the same i_mmap_rwsem section - otherwise
  3965. * racing tasks could either miss the sharing (see huge_pte_offset) or select a
  3966. * bad pmd for sharing.
  3967. */
  3968. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  3969. {
  3970. struct vm_area_struct *vma = find_vma(mm, addr);
  3971. struct address_space *mapping = vma->vm_file->f_mapping;
  3972. pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  3973. vma->vm_pgoff;
  3974. struct vm_area_struct *svma;
  3975. unsigned long saddr;
  3976. pte_t *spte = NULL;
  3977. pte_t *pte;
  3978. spinlock_t *ptl;
  3979. if (!vma_shareable(vma, addr))
  3980. return (pte_t *)pmd_alloc(mm, pud, addr);
  3981. i_mmap_lock_write(mapping);
  3982. vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
  3983. if (svma == vma)
  3984. continue;
  3985. saddr = page_table_shareable(svma, vma, addr, idx);
  3986. if (saddr) {
  3987. spte = huge_pte_offset(svma->vm_mm, saddr,
  3988. vma_mmu_pagesize(svma));
  3989. if (spte) {
  3990. get_page(virt_to_page(spte));
  3991. break;
  3992. }
  3993. }
  3994. }
  3995. if (!spte)
  3996. goto out;
  3997. ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
  3998. if (pud_none(*pud)) {
  3999. pud_populate(mm, pud,
  4000. (pmd_t *)((unsigned long)spte & PAGE_MASK));
  4001. mm_inc_nr_pmds(mm);
  4002. } else {
  4003. put_page(virt_to_page(spte));
  4004. }
  4005. spin_unlock(ptl);
  4006. out:
  4007. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  4008. i_mmap_unlock_write(mapping);
  4009. return pte;
  4010. }
  4011. /*
  4012. * unmap huge page backed by shared pte.
  4013. *
  4014. * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
  4015. * indicated by page_count > 1, unmap is achieved by clearing pud and
  4016. * decrementing the ref count. If count == 1, the pte page is not shared.
  4017. *
  4018. * called with page table lock held.
  4019. *
  4020. * returns: 1 successfully unmapped a shared pte page
  4021. * 0 the underlying pte page is not shared, or it is the last user
  4022. */
  4023. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  4024. {
  4025. pgd_t *pgd = pgd_offset(mm, *addr);
  4026. p4d_t *p4d = p4d_offset(pgd, *addr);
  4027. pud_t *pud = pud_offset(p4d, *addr);
  4028. BUG_ON(page_count(virt_to_page(ptep)) == 0);
  4029. if (page_count(virt_to_page(ptep)) == 1)
  4030. return 0;
  4031. pud_clear(pud);
  4032. put_page(virt_to_page(ptep));
  4033. mm_dec_nr_pmds(mm);
  4034. *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
  4035. return 1;
  4036. }
  4037. #define want_pmd_share() (1)
  4038. #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  4039. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  4040. {
  4041. return NULL;
  4042. }
  4043. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  4044. {
  4045. return 0;
  4046. }
  4047. #define want_pmd_share() (0)
  4048. #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  4049. #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
  4050. pte_t *huge_pte_alloc(struct mm_struct *mm,
  4051. unsigned long addr, unsigned long sz)
  4052. {
  4053. pgd_t *pgd;
  4054. p4d_t *p4d;
  4055. pud_t *pud;
  4056. pte_t *pte = NULL;
  4057. pgd = pgd_offset(mm, addr);
  4058. p4d = p4d_alloc(mm, pgd, addr);
  4059. if (!p4d)
  4060. return NULL;
  4061. pud = pud_alloc(mm, p4d, addr);
  4062. if (pud) {
  4063. if (sz == PUD_SIZE) {
  4064. pte = (pte_t *)pud;
  4065. } else {
  4066. BUG_ON(sz != PMD_SIZE);
  4067. if (want_pmd_share() && pud_none(*pud))
  4068. pte = huge_pmd_share(mm, addr, pud);
  4069. else
  4070. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  4071. }
  4072. }
  4073. BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
  4074. return pte;
  4075. }
  4076. /*
  4077. * huge_pte_offset() - Walk the page table to resolve the hugepage
  4078. * entry at address @addr
  4079. *
  4080. * Return: Pointer to page table or swap entry (PUD or PMD) for
  4081. * address @addr, or NULL if a p*d_none() entry is encountered and the
  4082. * size @sz doesn't match the hugepage size at this level of the page
  4083. * table.
  4084. */
  4085. pte_t *huge_pte_offset(struct mm_struct *mm,
  4086. unsigned long addr, unsigned long sz)
  4087. {
  4088. pgd_t *pgd;
  4089. p4d_t *p4d;
  4090. pud_t *pud;
  4091. pmd_t *pmd;
  4092. pgd = pgd_offset(mm, addr);
  4093. if (!pgd_present(*pgd))
  4094. return NULL;
  4095. p4d = p4d_offset(pgd, addr);
  4096. if (!p4d_present(*p4d))
  4097. return NULL;
  4098. pud = pud_offset(p4d, addr);
  4099. if (sz != PUD_SIZE && pud_none(*pud))
  4100. return NULL;
  4101. /* hugepage or swap? */
  4102. if (pud_huge(*pud) || !pud_present(*pud))
  4103. return (pte_t *)pud;
  4104. pmd = pmd_offset(pud, addr);
  4105. if (sz != PMD_SIZE && pmd_none(*pmd))
  4106. return NULL;
  4107. /* hugepage or swap? */
  4108. if (pmd_huge(*pmd) || !pmd_present(*pmd))
  4109. return (pte_t *)pmd;
  4110. return NULL;
  4111. }
  4112. #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  4113. /*
  4114. * These functions are overwritable if your architecture needs its own
  4115. * behavior.
  4116. */
  4117. struct page * __weak
  4118. follow_huge_addr(struct mm_struct *mm, unsigned long address,
  4119. int write)
  4120. {
  4121. return ERR_PTR(-EINVAL);
  4122. }
  4123. struct page * __weak
  4124. follow_huge_pd(struct vm_area_struct *vma,
  4125. unsigned long address, hugepd_t hpd, int flags, int pdshift)
  4126. {
  4127. WARN(1, "hugepd follow called with no support for hugepage directory format\n");
  4128. return NULL;
  4129. }
  4130. struct page * __weak
  4131. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  4132. pmd_t *pmd, int flags)
  4133. {
  4134. struct page *page = NULL;
  4135. spinlock_t *ptl;
  4136. pte_t pte;
  4137. retry:
  4138. ptl = pmd_lockptr(mm, pmd);
  4139. spin_lock(ptl);
  4140. /*
  4141. * make sure that the address range covered by this pmd is not
  4142. * unmapped from other threads.
  4143. */
  4144. if (!pmd_huge(*pmd))
  4145. goto out;
  4146. pte = huge_ptep_get((pte_t *)pmd);
  4147. if (pte_present(pte)) {
  4148. page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
  4149. if (flags & FOLL_GET)
  4150. get_page(page);
  4151. } else {
  4152. if (is_hugetlb_entry_migration(pte)) {
  4153. spin_unlock(ptl);
  4154. __migration_entry_wait(mm, (pte_t *)pmd, ptl);
  4155. goto retry;
  4156. }
  4157. /*
  4158. * hwpoisoned entry is treated as no_page_table in
  4159. * follow_page_mask().
  4160. */
  4161. }
  4162. out:
  4163. spin_unlock(ptl);
  4164. return page;
  4165. }
  4166. struct page * __weak
  4167. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  4168. pud_t *pud, int flags)
  4169. {
  4170. if (flags & FOLL_GET)
  4171. return NULL;
  4172. return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
  4173. }
  4174. struct page * __weak
  4175. follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
  4176. {
  4177. if (flags & FOLL_GET)
  4178. return NULL;
  4179. return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
  4180. }
  4181. bool isolate_huge_page(struct page *page, struct list_head *list)
  4182. {
  4183. bool ret = true;
  4184. VM_BUG_ON_PAGE(!PageHead(page), page);
  4185. spin_lock(&hugetlb_lock);
  4186. if (!page_huge_active(page) || !get_page_unless_zero(page)) {
  4187. ret = false;
  4188. goto unlock;
  4189. }
  4190. clear_page_huge_active(page);
  4191. list_move_tail(&page->lru, list);
  4192. unlock:
  4193. spin_unlock(&hugetlb_lock);
  4194. return ret;
  4195. }
  4196. void putback_active_hugepage(struct page *page)
  4197. {
  4198. VM_BUG_ON_PAGE(!PageHead(page), page);
  4199. spin_lock(&hugetlb_lock);
  4200. set_page_huge_active(page);
  4201. list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
  4202. spin_unlock(&hugetlb_lock);
  4203. put_page(page);
  4204. }
  4205. void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
  4206. {
  4207. struct hstate *h = page_hstate(oldpage);
  4208. hugetlb_cgroup_migrate(oldpage, newpage);
  4209. set_page_owner_migrate_reason(newpage, reason);
  4210. /*
  4211. * transfer temporary state of the new huge page. This is
  4212. * reverse to other transitions because the newpage is going to
  4213. * be final while the old one will be freed so it takes over
  4214. * the temporary status.
  4215. *
  4216. * Also note that we have to transfer the per-node surplus state
  4217. * here as well otherwise the global surplus count will not match
  4218. * the per-node's.
  4219. */
  4220. if (PageHugeTemporary(newpage)) {
  4221. int old_nid = page_to_nid(oldpage);
  4222. int new_nid = page_to_nid(newpage);
  4223. SetPageHugeTemporary(oldpage);
  4224. ClearPageHugeTemporary(newpage);
  4225. spin_lock(&hugetlb_lock);
  4226. if (h->surplus_huge_pages_node[old_nid]) {
  4227. h->surplus_huge_pages_node[old_nid]--;
  4228. h->surplus_huge_pages_node[new_nid]++;
  4229. }
  4230. spin_unlock(&hugetlb_lock);
  4231. }
  4232. }