huge_memory.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/sched/coredump.h>
  11. #include <linux/sched/numa_balancing.h>
  12. #include <linux/highmem.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/mmu_notifier.h>
  15. #include <linux/rmap.h>
  16. #include <linux/swap.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/mm_inline.h>
  19. #include <linux/swapops.h>
  20. #include <linux/dax.h>
  21. #include <linux/khugepaged.h>
  22. #include <linux/freezer.h>
  23. #include <linux/pfn_t.h>
  24. #include <linux/mman.h>
  25. #include <linux/memremap.h>
  26. #include <linux/pagemap.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/migrate.h>
  29. #include <linux/hashtable.h>
  30. #include <linux/userfaultfd_k.h>
  31. #include <linux/page_idle.h>
  32. #include <linux/shmem_fs.h>
  33. #include <linux/oom.h>
  34. #include <asm/tlb.h>
  35. #include <asm/pgalloc.h>
  36. #include "internal.h"
  37. /*
  38. * By default, transparent hugepage support is disabled in order to avoid
  39. * risking an increased memory footprint for applications that are not
  40. * guaranteed to benefit from it. When transparent hugepage support is
  41. * enabled, it is for all mappings, and khugepaged scans all mappings.
  42. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  43. * for all hugepage allocations.
  44. */
  45. unsigned long transparent_hugepage_flags __read_mostly =
  46. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  47. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  48. #endif
  49. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  50. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  51. #endif
  52. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  53. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  54. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  55. static struct shrinker deferred_split_shrinker;
  56. static atomic_t huge_zero_refcount;
  57. struct page *huge_zero_page __read_mostly;
  58. static struct page *get_huge_zero_page(void)
  59. {
  60. struct page *zero_page;
  61. retry:
  62. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  63. return READ_ONCE(huge_zero_page);
  64. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  65. HPAGE_PMD_ORDER);
  66. if (!zero_page) {
  67. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  68. return NULL;
  69. }
  70. count_vm_event(THP_ZERO_PAGE_ALLOC);
  71. preempt_disable();
  72. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  73. preempt_enable();
  74. __free_pages(zero_page, compound_order(zero_page));
  75. goto retry;
  76. }
  77. /* We take additional reference here. It will be put back by shrinker */
  78. atomic_set(&huge_zero_refcount, 2);
  79. preempt_enable();
  80. return READ_ONCE(huge_zero_page);
  81. }
  82. static void put_huge_zero_page(void)
  83. {
  84. /*
  85. * Counter should never go to zero here. Only shrinker can put
  86. * last reference.
  87. */
  88. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  89. }
  90. struct page *mm_get_huge_zero_page(struct mm_struct *mm)
  91. {
  92. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  93. return READ_ONCE(huge_zero_page);
  94. if (!get_huge_zero_page())
  95. return NULL;
  96. if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  97. put_huge_zero_page();
  98. return READ_ONCE(huge_zero_page);
  99. }
  100. void mm_put_huge_zero_page(struct mm_struct *mm)
  101. {
  102. if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
  103. put_huge_zero_page();
  104. }
  105. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  106. struct shrink_control *sc)
  107. {
  108. /* we can free zero page only if last reference remains */
  109. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  110. }
  111. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  112. struct shrink_control *sc)
  113. {
  114. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  115. struct page *zero_page = xchg(&huge_zero_page, NULL);
  116. BUG_ON(zero_page == NULL);
  117. __free_pages(zero_page, compound_order(zero_page));
  118. return HPAGE_PMD_NR;
  119. }
  120. return 0;
  121. }
  122. static struct shrinker huge_zero_page_shrinker = {
  123. .count_objects = shrink_huge_zero_page_count,
  124. .scan_objects = shrink_huge_zero_page_scan,
  125. .seeks = DEFAULT_SEEKS,
  126. };
  127. #ifdef CONFIG_SYSFS
  128. static ssize_t enabled_show(struct kobject *kobj,
  129. struct kobj_attribute *attr, char *buf)
  130. {
  131. if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
  132. return sprintf(buf, "[always] madvise never\n");
  133. else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
  134. return sprintf(buf, "always [madvise] never\n");
  135. else
  136. return sprintf(buf, "always madvise [never]\n");
  137. }
  138. static ssize_t enabled_store(struct kobject *kobj,
  139. struct kobj_attribute *attr,
  140. const char *buf, size_t count)
  141. {
  142. ssize_t ret = count;
  143. if (!memcmp("always", buf,
  144. min(sizeof("always")-1, count))) {
  145. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  146. set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  147. } else if (!memcmp("madvise", buf,
  148. min(sizeof("madvise")-1, count))) {
  149. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  150. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  151. } else if (!memcmp("never", buf,
  152. min(sizeof("never")-1, count))) {
  153. clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
  154. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
  155. } else
  156. ret = -EINVAL;
  157. if (ret > 0) {
  158. int err = start_stop_khugepaged();
  159. if (err)
  160. ret = err;
  161. }
  162. return ret;
  163. }
  164. static struct kobj_attribute enabled_attr =
  165. __ATTR(enabled, 0644, enabled_show, enabled_store);
  166. ssize_t single_hugepage_flag_show(struct kobject *kobj,
  167. struct kobj_attribute *attr, char *buf,
  168. enum transparent_hugepage_flag flag)
  169. {
  170. return sprintf(buf, "%d\n",
  171. !!test_bit(flag, &transparent_hugepage_flags));
  172. }
  173. ssize_t single_hugepage_flag_store(struct kobject *kobj,
  174. struct kobj_attribute *attr,
  175. const char *buf, size_t count,
  176. enum transparent_hugepage_flag flag)
  177. {
  178. unsigned long value;
  179. int ret;
  180. ret = kstrtoul(buf, 10, &value);
  181. if (ret < 0)
  182. return ret;
  183. if (value > 1)
  184. return -EINVAL;
  185. if (value)
  186. set_bit(flag, &transparent_hugepage_flags);
  187. else
  188. clear_bit(flag, &transparent_hugepage_flags);
  189. return count;
  190. }
  191. static ssize_t defrag_show(struct kobject *kobj,
  192. struct kobj_attribute *attr, char *buf)
  193. {
  194. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  195. return sprintf(buf, "[always] defer defer+madvise madvise never\n");
  196. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  197. return sprintf(buf, "always [defer] defer+madvise madvise never\n");
  198. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  199. return sprintf(buf, "always defer [defer+madvise] madvise never\n");
  200. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  201. return sprintf(buf, "always defer defer+madvise [madvise] never\n");
  202. return sprintf(buf, "always defer defer+madvise madvise [never]\n");
  203. }
  204. static ssize_t defrag_store(struct kobject *kobj,
  205. struct kobj_attribute *attr,
  206. const char *buf, size_t count)
  207. {
  208. if (!memcmp("always", buf,
  209. min(sizeof("always")-1, count))) {
  210. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  211. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  212. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  213. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  214. } else if (!memcmp("defer+madvise", buf,
  215. min(sizeof("defer+madvise")-1, count))) {
  216. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  217. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  218. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  219. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  220. } else if (!memcmp("defer", buf,
  221. min(sizeof("defer")-1, count))) {
  222. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  223. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  224. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  225. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  226. } else if (!memcmp("madvise", buf,
  227. min(sizeof("madvise")-1, count))) {
  228. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  229. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  230. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  231. set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  232. } else if (!memcmp("never", buf,
  233. min(sizeof("never")-1, count))) {
  234. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
  235. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
  236. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
  237. clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
  238. } else
  239. return -EINVAL;
  240. return count;
  241. }
  242. static struct kobj_attribute defrag_attr =
  243. __ATTR(defrag, 0644, defrag_show, defrag_store);
  244. static ssize_t use_zero_page_show(struct kobject *kobj,
  245. struct kobj_attribute *attr, char *buf)
  246. {
  247. return single_hugepage_flag_show(kobj, attr, buf,
  248. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  249. }
  250. static ssize_t use_zero_page_store(struct kobject *kobj,
  251. struct kobj_attribute *attr, const char *buf, size_t count)
  252. {
  253. return single_hugepage_flag_store(kobj, attr, buf, count,
  254. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  255. }
  256. static struct kobj_attribute use_zero_page_attr =
  257. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  258. static ssize_t hpage_pmd_size_show(struct kobject *kobj,
  259. struct kobj_attribute *attr, char *buf)
  260. {
  261. return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
  262. }
  263. static struct kobj_attribute hpage_pmd_size_attr =
  264. __ATTR_RO(hpage_pmd_size);
  265. #ifdef CONFIG_DEBUG_VM
  266. static ssize_t debug_cow_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf)
  268. {
  269. return single_hugepage_flag_show(kobj, attr, buf,
  270. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  271. }
  272. static ssize_t debug_cow_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count)
  275. {
  276. return single_hugepage_flag_store(kobj, attr, buf, count,
  277. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  278. }
  279. static struct kobj_attribute debug_cow_attr =
  280. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  281. #endif /* CONFIG_DEBUG_VM */
  282. static struct attribute *hugepage_attr[] = {
  283. &enabled_attr.attr,
  284. &defrag_attr.attr,
  285. &use_zero_page_attr.attr,
  286. &hpage_pmd_size_attr.attr,
  287. #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
  288. &shmem_enabled_attr.attr,
  289. #endif
  290. #ifdef CONFIG_DEBUG_VM
  291. &debug_cow_attr.attr,
  292. #endif
  293. NULL,
  294. };
  295. static const struct attribute_group hugepage_attr_group = {
  296. .attrs = hugepage_attr,
  297. };
  298. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  299. {
  300. int err;
  301. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  302. if (unlikely(!*hugepage_kobj)) {
  303. pr_err("failed to create transparent hugepage kobject\n");
  304. return -ENOMEM;
  305. }
  306. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  307. if (err) {
  308. pr_err("failed to register transparent hugepage group\n");
  309. goto delete_obj;
  310. }
  311. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  312. if (err) {
  313. pr_err("failed to register transparent hugepage group\n");
  314. goto remove_hp_group;
  315. }
  316. return 0;
  317. remove_hp_group:
  318. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  319. delete_obj:
  320. kobject_put(*hugepage_kobj);
  321. return err;
  322. }
  323. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  324. {
  325. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  326. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  327. kobject_put(hugepage_kobj);
  328. }
  329. #else
  330. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  331. {
  332. return 0;
  333. }
  334. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  335. {
  336. }
  337. #endif /* CONFIG_SYSFS */
  338. static int __init hugepage_init(void)
  339. {
  340. int err;
  341. struct kobject *hugepage_kobj;
  342. if (!has_transparent_hugepage()) {
  343. transparent_hugepage_flags = 0;
  344. return -EINVAL;
  345. }
  346. /*
  347. * hugepages can't be allocated by the buddy allocator
  348. */
  349. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
  350. /*
  351. * we use page->mapping and page->index in second tail page
  352. * as list_head: assuming THP order >= 2
  353. */
  354. MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
  355. err = hugepage_init_sysfs(&hugepage_kobj);
  356. if (err)
  357. goto err_sysfs;
  358. err = khugepaged_init();
  359. if (err)
  360. goto err_slab;
  361. err = register_shrinker(&huge_zero_page_shrinker);
  362. if (err)
  363. goto err_hzp_shrinker;
  364. err = register_shrinker(&deferred_split_shrinker);
  365. if (err)
  366. goto err_split_shrinker;
  367. /*
  368. * By default disable transparent hugepages on smaller systems,
  369. * where the extra memory used could hurt more than TLB overhead
  370. * is likely to save. The admin can still enable it through /sys.
  371. */
  372. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  373. transparent_hugepage_flags = 0;
  374. return 0;
  375. }
  376. err = start_stop_khugepaged();
  377. if (err)
  378. goto err_khugepaged;
  379. return 0;
  380. err_khugepaged:
  381. unregister_shrinker(&deferred_split_shrinker);
  382. err_split_shrinker:
  383. unregister_shrinker(&huge_zero_page_shrinker);
  384. err_hzp_shrinker:
  385. khugepaged_destroy();
  386. err_slab:
  387. hugepage_exit_sysfs(hugepage_kobj);
  388. err_sysfs:
  389. return err;
  390. }
  391. subsys_initcall(hugepage_init);
  392. static int __init setup_transparent_hugepage(char *str)
  393. {
  394. int ret = 0;
  395. if (!str)
  396. goto out;
  397. if (!strcmp(str, "always")) {
  398. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  399. &transparent_hugepage_flags);
  400. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  401. &transparent_hugepage_flags);
  402. ret = 1;
  403. } else if (!strcmp(str, "madvise")) {
  404. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  405. &transparent_hugepage_flags);
  406. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  407. &transparent_hugepage_flags);
  408. ret = 1;
  409. } else if (!strcmp(str, "never")) {
  410. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  411. &transparent_hugepage_flags);
  412. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  413. &transparent_hugepage_flags);
  414. ret = 1;
  415. }
  416. out:
  417. if (!ret)
  418. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  419. return ret;
  420. }
  421. __setup("transparent_hugepage=", setup_transparent_hugepage);
  422. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  423. {
  424. if (likely(vma->vm_flags & VM_WRITE))
  425. pmd = pmd_mkwrite(pmd);
  426. return pmd;
  427. }
  428. static inline struct list_head *page_deferred_list(struct page *page)
  429. {
  430. /* ->lru in the tail pages is occupied by compound_head. */
  431. return &page[2].deferred_list;
  432. }
  433. void prep_transhuge_page(struct page *page)
  434. {
  435. /*
  436. * we use page->mapping and page->indexlru in second tail page
  437. * as list_head: assuming THP order >= 2
  438. */
  439. INIT_LIST_HEAD(page_deferred_list(page));
  440. set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
  441. }
  442. unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
  443. loff_t off, unsigned long flags, unsigned long size)
  444. {
  445. unsigned long addr;
  446. loff_t off_end = off + len;
  447. loff_t off_align = round_up(off, size);
  448. unsigned long len_pad;
  449. if (off_end <= off_align || (off_end - off_align) < size)
  450. return 0;
  451. len_pad = len + size;
  452. if (len_pad < len || (off + len_pad) < off)
  453. return 0;
  454. addr = current->mm->get_unmapped_area(filp, 0, len_pad,
  455. off >> PAGE_SHIFT, flags);
  456. if (IS_ERR_VALUE(addr))
  457. return 0;
  458. addr += (off - addr) & (size - 1);
  459. return addr;
  460. }
  461. unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
  462. unsigned long len, unsigned long pgoff, unsigned long flags)
  463. {
  464. loff_t off = (loff_t)pgoff << PAGE_SHIFT;
  465. if (addr)
  466. goto out;
  467. if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
  468. goto out;
  469. addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
  470. if (addr)
  471. return addr;
  472. out:
  473. return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
  474. }
  475. EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
  476. static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
  477. gfp_t gfp)
  478. {
  479. struct vm_area_struct *vma = vmf->vma;
  480. struct mem_cgroup *memcg;
  481. pgtable_t pgtable;
  482. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  483. int ret = 0;
  484. VM_BUG_ON_PAGE(!PageCompound(page), page);
  485. if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
  486. put_page(page);
  487. count_vm_event(THP_FAULT_FALLBACK);
  488. return VM_FAULT_FALLBACK;
  489. }
  490. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  491. if (unlikely(!pgtable)) {
  492. ret = VM_FAULT_OOM;
  493. goto release;
  494. }
  495. clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
  496. /*
  497. * The memory barrier inside __SetPageUptodate makes sure that
  498. * clear_huge_page writes become visible before the set_pmd_at()
  499. * write.
  500. */
  501. __SetPageUptodate(page);
  502. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  503. if (unlikely(!pmd_none(*vmf->pmd))) {
  504. goto unlock_release;
  505. } else {
  506. pmd_t entry;
  507. ret = check_stable_address_space(vma->vm_mm);
  508. if (ret)
  509. goto unlock_release;
  510. /* Deliver the page fault to userland */
  511. if (userfaultfd_missing(vma)) {
  512. int ret;
  513. spin_unlock(vmf->ptl);
  514. mem_cgroup_cancel_charge(page, memcg, true);
  515. put_page(page);
  516. pte_free(vma->vm_mm, pgtable);
  517. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  518. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  519. return ret;
  520. }
  521. entry = mk_huge_pmd(page, vma->vm_page_prot);
  522. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  523. page_add_new_anon_rmap(page, vma, haddr, true);
  524. mem_cgroup_commit_charge(page, memcg, false, true);
  525. lru_cache_add_active_or_unevictable(page, vma);
  526. pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
  527. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  528. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  529. mm_inc_nr_ptes(vma->vm_mm);
  530. spin_unlock(vmf->ptl);
  531. count_vm_event(THP_FAULT_ALLOC);
  532. }
  533. return 0;
  534. unlock_release:
  535. spin_unlock(vmf->ptl);
  536. release:
  537. if (pgtable)
  538. pte_free(vma->vm_mm, pgtable);
  539. mem_cgroup_cancel_charge(page, memcg, true);
  540. put_page(page);
  541. return ret;
  542. }
  543. /*
  544. * always: directly stall for all thp allocations
  545. * defer: wake kswapd and fail if not immediately available
  546. * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
  547. * fail if not immediately available
  548. * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
  549. * available
  550. * never: never stall for any thp allocation
  551. */
  552. static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
  553. {
  554. const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
  555. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
  556. return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
  557. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
  558. return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
  559. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
  560. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  561. __GFP_KSWAPD_RECLAIM);
  562. if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
  563. return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
  564. 0);
  565. return GFP_TRANSHUGE_LIGHT;
  566. }
  567. /* Caller must hold page table lock. */
  568. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  569. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  570. struct page *zero_page)
  571. {
  572. pmd_t entry;
  573. if (!pmd_none(*pmd))
  574. return false;
  575. entry = mk_pmd(zero_page, vma->vm_page_prot);
  576. entry = pmd_mkhuge(entry);
  577. if (pgtable)
  578. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  579. set_pmd_at(mm, haddr, pmd, entry);
  580. mm_inc_nr_ptes(mm);
  581. return true;
  582. }
  583. int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
  584. {
  585. struct vm_area_struct *vma = vmf->vma;
  586. gfp_t gfp;
  587. struct page *page;
  588. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  589. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  590. return VM_FAULT_FALLBACK;
  591. if (unlikely(anon_vma_prepare(vma)))
  592. return VM_FAULT_OOM;
  593. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  594. return VM_FAULT_OOM;
  595. if (!(vmf->flags & FAULT_FLAG_WRITE) &&
  596. !mm_forbids_zeropage(vma->vm_mm) &&
  597. transparent_hugepage_use_zero_page()) {
  598. pgtable_t pgtable;
  599. struct page *zero_page;
  600. bool set;
  601. int ret;
  602. pgtable = pte_alloc_one(vma->vm_mm, haddr);
  603. if (unlikely(!pgtable))
  604. return VM_FAULT_OOM;
  605. zero_page = mm_get_huge_zero_page(vma->vm_mm);
  606. if (unlikely(!zero_page)) {
  607. pte_free(vma->vm_mm, pgtable);
  608. count_vm_event(THP_FAULT_FALLBACK);
  609. return VM_FAULT_FALLBACK;
  610. }
  611. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  612. ret = 0;
  613. set = false;
  614. if (pmd_none(*vmf->pmd)) {
  615. ret = check_stable_address_space(vma->vm_mm);
  616. if (ret) {
  617. spin_unlock(vmf->ptl);
  618. } else if (userfaultfd_missing(vma)) {
  619. spin_unlock(vmf->ptl);
  620. ret = handle_userfault(vmf, VM_UFFD_MISSING);
  621. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  622. } else {
  623. set_huge_zero_page(pgtable, vma->vm_mm, vma,
  624. haddr, vmf->pmd, zero_page);
  625. spin_unlock(vmf->ptl);
  626. set = true;
  627. }
  628. } else
  629. spin_unlock(vmf->ptl);
  630. if (!set)
  631. pte_free(vma->vm_mm, pgtable);
  632. return ret;
  633. }
  634. gfp = alloc_hugepage_direct_gfpmask(vma);
  635. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  636. if (unlikely(!page)) {
  637. count_vm_event(THP_FAULT_FALLBACK);
  638. return VM_FAULT_FALLBACK;
  639. }
  640. prep_transhuge_page(page);
  641. return __do_huge_pmd_anonymous_page(vmf, page, gfp);
  642. }
  643. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  644. pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
  645. pgtable_t pgtable)
  646. {
  647. struct mm_struct *mm = vma->vm_mm;
  648. pmd_t entry;
  649. spinlock_t *ptl;
  650. ptl = pmd_lock(mm, pmd);
  651. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
  652. if (pfn_t_devmap(pfn))
  653. entry = pmd_mkdevmap(entry);
  654. if (write) {
  655. entry = pmd_mkyoung(pmd_mkdirty(entry));
  656. entry = maybe_pmd_mkwrite(entry, vma);
  657. }
  658. if (pgtable) {
  659. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  660. mm_inc_nr_ptes(mm);
  661. }
  662. set_pmd_at(mm, addr, pmd, entry);
  663. update_mmu_cache_pmd(vma, addr, pmd);
  664. spin_unlock(ptl);
  665. }
  666. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  667. pmd_t *pmd, pfn_t pfn, bool write)
  668. {
  669. pgprot_t pgprot = vma->vm_page_prot;
  670. pgtable_t pgtable = NULL;
  671. /*
  672. * If we had pmd_special, we could avoid all these restrictions,
  673. * but we need to be consistent with PTEs and architectures that
  674. * can't support a 'special' bit.
  675. */
  676. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  677. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  678. (VM_PFNMAP|VM_MIXEDMAP));
  679. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  680. BUG_ON(!pfn_t_devmap(pfn));
  681. if (addr < vma->vm_start || addr >= vma->vm_end)
  682. return VM_FAULT_SIGBUS;
  683. if (arch_needs_pgtable_deposit()) {
  684. pgtable = pte_alloc_one(vma->vm_mm, addr);
  685. if (!pgtable)
  686. return VM_FAULT_OOM;
  687. }
  688. track_pfn_insert(vma, &pgprot, pfn);
  689. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
  690. return VM_FAULT_NOPAGE;
  691. }
  692. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
  693. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  694. static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
  695. {
  696. if (likely(vma->vm_flags & VM_WRITE))
  697. pud = pud_mkwrite(pud);
  698. return pud;
  699. }
  700. static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  701. pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
  702. {
  703. struct mm_struct *mm = vma->vm_mm;
  704. pud_t entry;
  705. spinlock_t *ptl;
  706. ptl = pud_lock(mm, pud);
  707. entry = pud_mkhuge(pfn_t_pud(pfn, prot));
  708. if (pfn_t_devmap(pfn))
  709. entry = pud_mkdevmap(entry);
  710. if (write) {
  711. entry = pud_mkyoung(pud_mkdirty(entry));
  712. entry = maybe_pud_mkwrite(entry, vma);
  713. }
  714. set_pud_at(mm, addr, pud, entry);
  715. update_mmu_cache_pud(vma, addr, pud);
  716. spin_unlock(ptl);
  717. }
  718. int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
  719. pud_t *pud, pfn_t pfn, bool write)
  720. {
  721. pgprot_t pgprot = vma->vm_page_prot;
  722. /*
  723. * If we had pud_special, we could avoid all these restrictions,
  724. * but we need to be consistent with PTEs and architectures that
  725. * can't support a 'special' bit.
  726. */
  727. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  728. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  729. (VM_PFNMAP|VM_MIXEDMAP));
  730. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  731. BUG_ON(!pfn_t_devmap(pfn));
  732. if (addr < vma->vm_start || addr >= vma->vm_end)
  733. return VM_FAULT_SIGBUS;
  734. track_pfn_insert(vma, &pgprot, pfn);
  735. insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
  736. return VM_FAULT_NOPAGE;
  737. }
  738. EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
  739. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  740. static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
  741. pmd_t *pmd, int flags)
  742. {
  743. pmd_t _pmd;
  744. _pmd = pmd_mkyoung(*pmd);
  745. if (flags & FOLL_WRITE)
  746. _pmd = pmd_mkdirty(_pmd);
  747. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  748. pmd, _pmd, flags & FOLL_WRITE))
  749. update_mmu_cache_pmd(vma, addr, pmd);
  750. }
  751. struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
  752. pmd_t *pmd, int flags)
  753. {
  754. unsigned long pfn = pmd_pfn(*pmd);
  755. struct mm_struct *mm = vma->vm_mm;
  756. struct dev_pagemap *pgmap;
  757. struct page *page;
  758. assert_spin_locked(pmd_lockptr(mm, pmd));
  759. /*
  760. * When we COW a devmap PMD entry, we split it into PTEs, so we should
  761. * not be in this function with `flags & FOLL_COW` set.
  762. */
  763. WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
  764. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  765. return NULL;
  766. if (pmd_present(*pmd) && pmd_devmap(*pmd))
  767. /* pass */;
  768. else
  769. return NULL;
  770. if (flags & FOLL_TOUCH)
  771. touch_pmd(vma, addr, pmd, flags);
  772. /*
  773. * device mapped pages can only be returned if the
  774. * caller will manage the page reference count.
  775. */
  776. if (!(flags & FOLL_GET))
  777. return ERR_PTR(-EEXIST);
  778. pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  779. pgmap = get_dev_pagemap(pfn, NULL);
  780. if (!pgmap)
  781. return ERR_PTR(-EFAULT);
  782. page = pfn_to_page(pfn);
  783. get_page(page);
  784. put_dev_pagemap(pgmap);
  785. return page;
  786. }
  787. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  788. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  789. struct vm_area_struct *vma)
  790. {
  791. spinlock_t *dst_ptl, *src_ptl;
  792. struct page *src_page;
  793. pmd_t pmd;
  794. pgtable_t pgtable = NULL;
  795. int ret = -ENOMEM;
  796. /* Skip if can be re-fill on fault */
  797. if (!vma_is_anonymous(vma))
  798. return 0;
  799. pgtable = pte_alloc_one(dst_mm, addr);
  800. if (unlikely(!pgtable))
  801. goto out;
  802. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  803. src_ptl = pmd_lockptr(src_mm, src_pmd);
  804. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  805. ret = -EAGAIN;
  806. pmd = *src_pmd;
  807. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  808. if (unlikely(is_swap_pmd(pmd))) {
  809. swp_entry_t entry = pmd_to_swp_entry(pmd);
  810. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  811. if (is_write_migration_entry(entry)) {
  812. make_migration_entry_read(&entry);
  813. pmd = swp_entry_to_pmd(entry);
  814. if (pmd_swp_soft_dirty(*src_pmd))
  815. pmd = pmd_swp_mksoft_dirty(pmd);
  816. set_pmd_at(src_mm, addr, src_pmd, pmd);
  817. }
  818. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  819. mm_inc_nr_ptes(dst_mm);
  820. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  821. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  822. ret = 0;
  823. goto out_unlock;
  824. }
  825. #endif
  826. if (unlikely(!pmd_trans_huge(pmd))) {
  827. pte_free(dst_mm, pgtable);
  828. goto out_unlock;
  829. }
  830. /*
  831. * When page table lock is held, the huge zero pmd should not be
  832. * under splitting since we don't split the page itself, only pmd to
  833. * a page table.
  834. */
  835. if (is_huge_zero_pmd(pmd)) {
  836. struct page *zero_page;
  837. /*
  838. * get_huge_zero_page() will never allocate a new page here,
  839. * since we already have a zero page to copy. It just takes a
  840. * reference.
  841. */
  842. zero_page = mm_get_huge_zero_page(dst_mm);
  843. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  844. zero_page);
  845. ret = 0;
  846. goto out_unlock;
  847. }
  848. src_page = pmd_page(pmd);
  849. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  850. get_page(src_page);
  851. page_dup_rmap(src_page, true);
  852. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  853. mm_inc_nr_ptes(dst_mm);
  854. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  855. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  856. pmd = pmd_mkold(pmd_wrprotect(pmd));
  857. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  858. ret = 0;
  859. out_unlock:
  860. spin_unlock(src_ptl);
  861. spin_unlock(dst_ptl);
  862. out:
  863. return ret;
  864. }
  865. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  866. static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
  867. pud_t *pud, int flags)
  868. {
  869. pud_t _pud;
  870. _pud = pud_mkyoung(*pud);
  871. if (flags & FOLL_WRITE)
  872. _pud = pud_mkdirty(_pud);
  873. if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
  874. pud, _pud, flags & FOLL_WRITE))
  875. update_mmu_cache_pud(vma, addr, pud);
  876. }
  877. struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
  878. pud_t *pud, int flags)
  879. {
  880. unsigned long pfn = pud_pfn(*pud);
  881. struct mm_struct *mm = vma->vm_mm;
  882. struct dev_pagemap *pgmap;
  883. struct page *page;
  884. assert_spin_locked(pud_lockptr(mm, pud));
  885. if (flags & FOLL_WRITE && !pud_write(*pud))
  886. return NULL;
  887. if (pud_present(*pud) && pud_devmap(*pud))
  888. /* pass */;
  889. else
  890. return NULL;
  891. if (flags & FOLL_TOUCH)
  892. touch_pud(vma, addr, pud, flags);
  893. /*
  894. * device mapped pages can only be returned if the
  895. * caller will manage the page reference count.
  896. */
  897. if (!(flags & FOLL_GET))
  898. return ERR_PTR(-EEXIST);
  899. pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
  900. pgmap = get_dev_pagemap(pfn, NULL);
  901. if (!pgmap)
  902. return ERR_PTR(-EFAULT);
  903. page = pfn_to_page(pfn);
  904. get_page(page);
  905. put_dev_pagemap(pgmap);
  906. return page;
  907. }
  908. int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  909. pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
  910. struct vm_area_struct *vma)
  911. {
  912. spinlock_t *dst_ptl, *src_ptl;
  913. pud_t pud;
  914. int ret;
  915. dst_ptl = pud_lock(dst_mm, dst_pud);
  916. src_ptl = pud_lockptr(src_mm, src_pud);
  917. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  918. ret = -EAGAIN;
  919. pud = *src_pud;
  920. if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
  921. goto out_unlock;
  922. /*
  923. * When page table lock is held, the huge zero pud should not be
  924. * under splitting since we don't split the page itself, only pud to
  925. * a page table.
  926. */
  927. if (is_huge_zero_pud(pud)) {
  928. /* No huge zero pud yet */
  929. }
  930. pudp_set_wrprotect(src_mm, addr, src_pud);
  931. pud = pud_mkold(pud_wrprotect(pud));
  932. set_pud_at(dst_mm, addr, dst_pud, pud);
  933. ret = 0;
  934. out_unlock:
  935. spin_unlock(src_ptl);
  936. spin_unlock(dst_ptl);
  937. return ret;
  938. }
  939. void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
  940. {
  941. pud_t entry;
  942. unsigned long haddr;
  943. bool write = vmf->flags & FAULT_FLAG_WRITE;
  944. vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
  945. if (unlikely(!pud_same(*vmf->pud, orig_pud)))
  946. goto unlock;
  947. entry = pud_mkyoung(orig_pud);
  948. if (write)
  949. entry = pud_mkdirty(entry);
  950. haddr = vmf->address & HPAGE_PUD_MASK;
  951. if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
  952. update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
  953. unlock:
  954. spin_unlock(vmf->ptl);
  955. }
  956. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  957. void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
  958. {
  959. pmd_t entry;
  960. unsigned long haddr;
  961. bool write = vmf->flags & FAULT_FLAG_WRITE;
  962. vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
  963. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  964. goto unlock;
  965. entry = pmd_mkyoung(orig_pmd);
  966. if (write)
  967. entry = pmd_mkdirty(entry);
  968. haddr = vmf->address & HPAGE_PMD_MASK;
  969. if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
  970. update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
  971. unlock:
  972. spin_unlock(vmf->ptl);
  973. }
  974. static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
  975. struct page *page)
  976. {
  977. struct vm_area_struct *vma = vmf->vma;
  978. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  979. struct mem_cgroup *memcg;
  980. pgtable_t pgtable;
  981. pmd_t _pmd;
  982. int ret = 0, i;
  983. struct page **pages;
  984. unsigned long mmun_start; /* For mmu_notifiers */
  985. unsigned long mmun_end; /* For mmu_notifiers */
  986. pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
  987. GFP_KERNEL);
  988. if (unlikely(!pages)) {
  989. ret |= VM_FAULT_OOM;
  990. goto out;
  991. }
  992. for (i = 0; i < HPAGE_PMD_NR; i++) {
  993. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
  994. vmf->address, page_to_nid(page));
  995. if (unlikely(!pages[i] ||
  996. mem_cgroup_try_charge(pages[i], vma->vm_mm,
  997. GFP_KERNEL, &memcg, false))) {
  998. if (pages[i])
  999. put_page(pages[i]);
  1000. while (--i >= 0) {
  1001. memcg = (void *)page_private(pages[i]);
  1002. set_page_private(pages[i], 0);
  1003. mem_cgroup_cancel_charge(pages[i], memcg,
  1004. false);
  1005. put_page(pages[i]);
  1006. }
  1007. kfree(pages);
  1008. ret |= VM_FAULT_OOM;
  1009. goto out;
  1010. }
  1011. set_page_private(pages[i], (unsigned long)memcg);
  1012. }
  1013. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1014. copy_user_highpage(pages[i], page + i,
  1015. haddr + PAGE_SIZE * i, vma);
  1016. __SetPageUptodate(pages[i]);
  1017. cond_resched();
  1018. }
  1019. mmun_start = haddr;
  1020. mmun_end = haddr + HPAGE_PMD_SIZE;
  1021. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1022. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1023. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1024. goto out_free_pages;
  1025. VM_BUG_ON_PAGE(!PageHead(page), page);
  1026. /*
  1027. * Leave pmd empty until pte is filled note we must notify here as
  1028. * concurrent CPU thread might write to new page before the call to
  1029. * mmu_notifier_invalidate_range_end() happens which can lead to a
  1030. * device seeing memory write in different order than CPU.
  1031. *
  1032. * See Documentation/vm/mmu_notifier.rst
  1033. */
  1034. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1035. pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
  1036. pmd_populate(vma->vm_mm, &_pmd, pgtable);
  1037. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1038. pte_t entry;
  1039. entry = mk_pte(pages[i], vma->vm_page_prot);
  1040. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1041. memcg = (void *)page_private(pages[i]);
  1042. set_page_private(pages[i], 0);
  1043. page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
  1044. mem_cgroup_commit_charge(pages[i], memcg, false, false);
  1045. lru_cache_add_active_or_unevictable(pages[i], vma);
  1046. vmf->pte = pte_offset_map(&_pmd, haddr);
  1047. VM_BUG_ON(!pte_none(*vmf->pte));
  1048. set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
  1049. pte_unmap(vmf->pte);
  1050. }
  1051. kfree(pages);
  1052. smp_wmb(); /* make pte visible before pmd */
  1053. pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
  1054. page_remove_rmap(page, true);
  1055. spin_unlock(vmf->ptl);
  1056. /*
  1057. * No need to double call mmu_notifier->invalidate_range() callback as
  1058. * the above pmdp_huge_clear_flush_notify() did already call it.
  1059. */
  1060. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1061. mmun_end);
  1062. ret |= VM_FAULT_WRITE;
  1063. put_page(page);
  1064. out:
  1065. return ret;
  1066. out_free_pages:
  1067. spin_unlock(vmf->ptl);
  1068. mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
  1069. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1070. memcg = (void *)page_private(pages[i]);
  1071. set_page_private(pages[i], 0);
  1072. mem_cgroup_cancel_charge(pages[i], memcg, false);
  1073. put_page(pages[i]);
  1074. }
  1075. kfree(pages);
  1076. goto out;
  1077. }
  1078. int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
  1079. {
  1080. struct vm_area_struct *vma = vmf->vma;
  1081. struct page *page = NULL, *new_page;
  1082. struct mem_cgroup *memcg;
  1083. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1084. unsigned long mmun_start; /* For mmu_notifiers */
  1085. unsigned long mmun_end; /* For mmu_notifiers */
  1086. gfp_t huge_gfp; /* for allocation and charge */
  1087. int ret = 0;
  1088. vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
  1089. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1090. if (is_huge_zero_pmd(orig_pmd))
  1091. goto alloc;
  1092. spin_lock(vmf->ptl);
  1093. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
  1094. goto out_unlock;
  1095. page = pmd_page(orig_pmd);
  1096. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1097. /*
  1098. * We can only reuse the page if nobody else maps the huge page or it's
  1099. * part.
  1100. */
  1101. if (!trylock_page(page)) {
  1102. get_page(page);
  1103. spin_unlock(vmf->ptl);
  1104. lock_page(page);
  1105. spin_lock(vmf->ptl);
  1106. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1107. unlock_page(page);
  1108. put_page(page);
  1109. goto out_unlock;
  1110. }
  1111. put_page(page);
  1112. }
  1113. if (reuse_swap_page(page, NULL)) {
  1114. pmd_t entry;
  1115. entry = pmd_mkyoung(orig_pmd);
  1116. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1117. if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
  1118. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1119. ret |= VM_FAULT_WRITE;
  1120. unlock_page(page);
  1121. goto out_unlock;
  1122. }
  1123. unlock_page(page);
  1124. get_page(page);
  1125. spin_unlock(vmf->ptl);
  1126. alloc:
  1127. if (transparent_hugepage_enabled(vma) &&
  1128. !transparent_hugepage_debug_cow()) {
  1129. huge_gfp = alloc_hugepage_direct_gfpmask(vma);
  1130. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1131. } else
  1132. new_page = NULL;
  1133. if (likely(new_page)) {
  1134. prep_transhuge_page(new_page);
  1135. } else {
  1136. if (!page) {
  1137. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1138. ret |= VM_FAULT_FALLBACK;
  1139. } else {
  1140. ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
  1141. if (ret & VM_FAULT_OOM) {
  1142. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1143. ret |= VM_FAULT_FALLBACK;
  1144. }
  1145. put_page(page);
  1146. }
  1147. count_vm_event(THP_FAULT_FALLBACK);
  1148. goto out;
  1149. }
  1150. if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
  1151. huge_gfp, &memcg, true))) {
  1152. put_page(new_page);
  1153. split_huge_pmd(vma, vmf->pmd, vmf->address);
  1154. if (page)
  1155. put_page(page);
  1156. ret |= VM_FAULT_FALLBACK;
  1157. count_vm_event(THP_FAULT_FALLBACK);
  1158. goto out;
  1159. }
  1160. count_vm_event(THP_FAULT_ALLOC);
  1161. if (!page)
  1162. clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
  1163. else
  1164. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1165. __SetPageUptodate(new_page);
  1166. mmun_start = haddr;
  1167. mmun_end = haddr + HPAGE_PMD_SIZE;
  1168. mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
  1169. spin_lock(vmf->ptl);
  1170. if (page)
  1171. put_page(page);
  1172. if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
  1173. spin_unlock(vmf->ptl);
  1174. mem_cgroup_cancel_charge(new_page, memcg, true);
  1175. put_page(new_page);
  1176. goto out_mn;
  1177. } else {
  1178. pmd_t entry;
  1179. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1180. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1181. pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
  1182. page_add_new_anon_rmap(new_page, vma, haddr, true);
  1183. mem_cgroup_commit_charge(new_page, memcg, false, true);
  1184. lru_cache_add_active_or_unevictable(new_page, vma);
  1185. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
  1186. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1187. if (!page) {
  1188. add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1189. } else {
  1190. VM_BUG_ON_PAGE(!PageHead(page), page);
  1191. page_remove_rmap(page, true);
  1192. put_page(page);
  1193. }
  1194. ret |= VM_FAULT_WRITE;
  1195. }
  1196. spin_unlock(vmf->ptl);
  1197. out_mn:
  1198. /*
  1199. * No need to double call mmu_notifier->invalidate_range() callback as
  1200. * the above pmdp_huge_clear_flush_notify() did already call it.
  1201. */
  1202. mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
  1203. mmun_end);
  1204. out:
  1205. return ret;
  1206. out_unlock:
  1207. spin_unlock(vmf->ptl);
  1208. return ret;
  1209. }
  1210. /*
  1211. * FOLL_FORCE can write to even unwritable pmd's, but only
  1212. * after we've gone through a COW cycle and they are dirty.
  1213. */
  1214. static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
  1215. {
  1216. return pmd_write(pmd) ||
  1217. ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
  1218. }
  1219. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1220. unsigned long addr,
  1221. pmd_t *pmd,
  1222. unsigned int flags)
  1223. {
  1224. struct mm_struct *mm = vma->vm_mm;
  1225. struct page *page = NULL;
  1226. assert_spin_locked(pmd_lockptr(mm, pmd));
  1227. if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
  1228. goto out;
  1229. /* Avoid dumping huge zero page */
  1230. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1231. return ERR_PTR(-EFAULT);
  1232. /* Full NUMA hinting faults to serialise migration in fault paths */
  1233. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1234. goto out;
  1235. page = pmd_page(*pmd);
  1236. VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
  1237. if (flags & FOLL_TOUCH)
  1238. touch_pmd(vma, addr, pmd, flags);
  1239. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1240. /*
  1241. * We don't mlock() pte-mapped THPs. This way we can avoid
  1242. * leaking mlocked pages into non-VM_LOCKED VMAs.
  1243. *
  1244. * For anon THP:
  1245. *
  1246. * In most cases the pmd is the only mapping of the page as we
  1247. * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
  1248. * writable private mappings in populate_vma_page_range().
  1249. *
  1250. * The only scenario when we have the page shared here is if we
  1251. * mlocking read-only mapping shared over fork(). We skip
  1252. * mlocking such pages.
  1253. *
  1254. * For file THP:
  1255. *
  1256. * We can expect PageDoubleMap() to be stable under page lock:
  1257. * for file pages we set it in page_add_file_rmap(), which
  1258. * requires page to be locked.
  1259. */
  1260. if (PageAnon(page) && compound_mapcount(page) != 1)
  1261. goto skip_mlock;
  1262. if (PageDoubleMap(page) || !page->mapping)
  1263. goto skip_mlock;
  1264. if (!trylock_page(page))
  1265. goto skip_mlock;
  1266. lru_add_drain();
  1267. if (page->mapping && !PageDoubleMap(page))
  1268. mlock_vma_page(page);
  1269. unlock_page(page);
  1270. }
  1271. skip_mlock:
  1272. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1273. VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
  1274. if (flags & FOLL_GET)
  1275. get_page(page);
  1276. out:
  1277. return page;
  1278. }
  1279. /* NUMA hinting page fault entry point for trans huge pmds */
  1280. int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
  1281. {
  1282. struct vm_area_struct *vma = vmf->vma;
  1283. struct anon_vma *anon_vma = NULL;
  1284. struct page *page;
  1285. unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
  1286. int page_nid = -1, this_nid = numa_node_id();
  1287. int target_nid, last_cpupid = -1;
  1288. bool page_locked;
  1289. bool migrated = false;
  1290. bool was_writable;
  1291. int flags = 0;
  1292. vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
  1293. if (unlikely(!pmd_same(pmd, *vmf->pmd)))
  1294. goto out_unlock;
  1295. /*
  1296. * If there are potential migrations, wait for completion and retry
  1297. * without disrupting NUMA hinting information. Do not relock and
  1298. * check_same as the page may no longer be mapped.
  1299. */
  1300. if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
  1301. page = pmd_page(*vmf->pmd);
  1302. if (!get_page_unless_zero(page))
  1303. goto out_unlock;
  1304. spin_unlock(vmf->ptl);
  1305. wait_on_page_locked(page);
  1306. put_page(page);
  1307. goto out;
  1308. }
  1309. page = pmd_page(pmd);
  1310. BUG_ON(is_huge_zero_page(page));
  1311. page_nid = page_to_nid(page);
  1312. last_cpupid = page_cpupid_last(page);
  1313. count_vm_numa_event(NUMA_HINT_FAULTS);
  1314. if (page_nid == this_nid) {
  1315. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1316. flags |= TNF_FAULT_LOCAL;
  1317. }
  1318. /* See similar comment in do_numa_page for explanation */
  1319. if (!pmd_savedwrite(pmd))
  1320. flags |= TNF_NO_GROUP;
  1321. /*
  1322. * Acquire the page lock to serialise THP migrations but avoid dropping
  1323. * page_table_lock if at all possible
  1324. */
  1325. page_locked = trylock_page(page);
  1326. target_nid = mpol_misplaced(page, vma, haddr);
  1327. if (target_nid == -1) {
  1328. /* If the page was locked, there are no parallel migrations */
  1329. if (page_locked)
  1330. goto clear_pmdnuma;
  1331. }
  1332. /* Migration could have started since the pmd_trans_migrating check */
  1333. if (!page_locked) {
  1334. page_nid = -1;
  1335. if (!get_page_unless_zero(page))
  1336. goto out_unlock;
  1337. spin_unlock(vmf->ptl);
  1338. wait_on_page_locked(page);
  1339. put_page(page);
  1340. goto out;
  1341. }
  1342. /*
  1343. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1344. * to serialises splits
  1345. */
  1346. get_page(page);
  1347. spin_unlock(vmf->ptl);
  1348. anon_vma = page_lock_anon_vma_read(page);
  1349. /* Confirm the PMD did not change while page_table_lock was released */
  1350. spin_lock(vmf->ptl);
  1351. if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
  1352. unlock_page(page);
  1353. put_page(page);
  1354. page_nid = -1;
  1355. goto out_unlock;
  1356. }
  1357. /* Bail if we fail to protect against THP splits for any reason */
  1358. if (unlikely(!anon_vma)) {
  1359. put_page(page);
  1360. page_nid = -1;
  1361. goto clear_pmdnuma;
  1362. }
  1363. /*
  1364. * Since we took the NUMA fault, we must have observed the !accessible
  1365. * bit. Make sure all other CPUs agree with that, to avoid them
  1366. * modifying the page we're about to migrate.
  1367. *
  1368. * Must be done under PTL such that we'll observe the relevant
  1369. * inc_tlb_flush_pending().
  1370. *
  1371. * We are not sure a pending tlb flush here is for a huge page
  1372. * mapping or not. Hence use the tlb range variant
  1373. */
  1374. if (mm_tlb_flush_pending(vma->vm_mm))
  1375. flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
  1376. /*
  1377. * Migrate the THP to the requested node, returns with page unlocked
  1378. * and access rights restored.
  1379. */
  1380. spin_unlock(vmf->ptl);
  1381. migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
  1382. vmf->pmd, pmd, vmf->address, page, target_nid);
  1383. if (migrated) {
  1384. flags |= TNF_MIGRATED;
  1385. page_nid = target_nid;
  1386. } else
  1387. flags |= TNF_MIGRATE_FAIL;
  1388. goto out;
  1389. clear_pmdnuma:
  1390. BUG_ON(!PageLocked(page));
  1391. was_writable = pmd_savedwrite(pmd);
  1392. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1393. pmd = pmd_mkyoung(pmd);
  1394. if (was_writable)
  1395. pmd = pmd_mkwrite(pmd);
  1396. set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
  1397. update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
  1398. unlock_page(page);
  1399. out_unlock:
  1400. spin_unlock(vmf->ptl);
  1401. out:
  1402. if (anon_vma)
  1403. page_unlock_anon_vma_read(anon_vma);
  1404. if (page_nid != -1)
  1405. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
  1406. flags);
  1407. return 0;
  1408. }
  1409. /*
  1410. * Return true if we do MADV_FREE successfully on entire pmd page.
  1411. * Otherwise, return false.
  1412. */
  1413. bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1414. pmd_t *pmd, unsigned long addr, unsigned long next)
  1415. {
  1416. spinlock_t *ptl;
  1417. pmd_t orig_pmd;
  1418. struct page *page;
  1419. struct mm_struct *mm = tlb->mm;
  1420. bool ret = false;
  1421. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1422. ptl = pmd_trans_huge_lock(pmd, vma);
  1423. if (!ptl)
  1424. goto out_unlocked;
  1425. orig_pmd = *pmd;
  1426. if (is_huge_zero_pmd(orig_pmd))
  1427. goto out;
  1428. if (unlikely(!pmd_present(orig_pmd))) {
  1429. VM_BUG_ON(thp_migration_supported() &&
  1430. !is_pmd_migration_entry(orig_pmd));
  1431. goto out;
  1432. }
  1433. page = pmd_page(orig_pmd);
  1434. /*
  1435. * If other processes are mapping this page, we couldn't discard
  1436. * the page unless they all do MADV_FREE so let's skip the page.
  1437. */
  1438. if (page_mapcount(page) != 1)
  1439. goto out;
  1440. if (!trylock_page(page))
  1441. goto out;
  1442. /*
  1443. * If user want to discard part-pages of THP, split it so MADV_FREE
  1444. * will deactivate only them.
  1445. */
  1446. if (next - addr != HPAGE_PMD_SIZE) {
  1447. get_page(page);
  1448. spin_unlock(ptl);
  1449. split_huge_page(page);
  1450. unlock_page(page);
  1451. put_page(page);
  1452. goto out_unlocked;
  1453. }
  1454. if (PageDirty(page))
  1455. ClearPageDirty(page);
  1456. unlock_page(page);
  1457. if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
  1458. pmdp_invalidate(vma, addr, pmd);
  1459. orig_pmd = pmd_mkold(orig_pmd);
  1460. orig_pmd = pmd_mkclean(orig_pmd);
  1461. set_pmd_at(mm, addr, pmd, orig_pmd);
  1462. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1463. }
  1464. mark_page_lazyfree(page);
  1465. ret = true;
  1466. out:
  1467. spin_unlock(ptl);
  1468. out_unlocked:
  1469. return ret;
  1470. }
  1471. static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
  1472. {
  1473. pgtable_t pgtable;
  1474. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1475. pte_free(mm, pgtable);
  1476. mm_dec_nr_ptes(mm);
  1477. }
  1478. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1479. pmd_t *pmd, unsigned long addr)
  1480. {
  1481. pmd_t orig_pmd;
  1482. spinlock_t *ptl;
  1483. tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
  1484. ptl = __pmd_trans_huge_lock(pmd, vma);
  1485. if (!ptl)
  1486. return 0;
  1487. /*
  1488. * For architectures like ppc64 we look at deposited pgtable
  1489. * when calling pmdp_huge_get_and_clear. So do the
  1490. * pgtable_trans_huge_withdraw after finishing pmdp related
  1491. * operations.
  1492. */
  1493. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1494. tlb->fullmm);
  1495. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1496. if (vma_is_dax(vma)) {
  1497. if (arch_needs_pgtable_deposit())
  1498. zap_deposited_table(tlb->mm, pmd);
  1499. spin_unlock(ptl);
  1500. if (is_huge_zero_pmd(orig_pmd))
  1501. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1502. } else if (is_huge_zero_pmd(orig_pmd)) {
  1503. zap_deposited_table(tlb->mm, pmd);
  1504. spin_unlock(ptl);
  1505. tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
  1506. } else {
  1507. struct page *page = NULL;
  1508. int flush_needed = 1;
  1509. if (pmd_present(orig_pmd)) {
  1510. page = pmd_page(orig_pmd);
  1511. page_remove_rmap(page, true);
  1512. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1513. VM_BUG_ON_PAGE(!PageHead(page), page);
  1514. } else if (thp_migration_supported()) {
  1515. swp_entry_t entry;
  1516. VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
  1517. entry = pmd_to_swp_entry(orig_pmd);
  1518. page = pfn_to_page(swp_offset(entry));
  1519. flush_needed = 0;
  1520. } else
  1521. WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
  1522. if (PageAnon(page)) {
  1523. zap_deposited_table(tlb->mm, pmd);
  1524. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1525. } else {
  1526. if (arch_needs_pgtable_deposit())
  1527. zap_deposited_table(tlb->mm, pmd);
  1528. add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1529. }
  1530. spin_unlock(ptl);
  1531. if (flush_needed)
  1532. tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
  1533. }
  1534. return 1;
  1535. }
  1536. #ifndef pmd_move_must_withdraw
  1537. static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
  1538. spinlock_t *old_pmd_ptl,
  1539. struct vm_area_struct *vma)
  1540. {
  1541. /*
  1542. * With split pmd lock we also need to move preallocated
  1543. * PTE page table if new_pmd is on different PMD page table.
  1544. *
  1545. * We also don't deposit and withdraw tables for file pages.
  1546. */
  1547. return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
  1548. }
  1549. #endif
  1550. static pmd_t move_soft_dirty_pmd(pmd_t pmd)
  1551. {
  1552. #ifdef CONFIG_MEM_SOFT_DIRTY
  1553. if (unlikely(is_pmd_migration_entry(pmd)))
  1554. pmd = pmd_swp_mksoft_dirty(pmd);
  1555. else if (pmd_present(pmd))
  1556. pmd = pmd_mksoft_dirty(pmd);
  1557. #endif
  1558. return pmd;
  1559. }
  1560. bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
  1561. unsigned long new_addr, unsigned long old_end,
  1562. pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
  1563. {
  1564. spinlock_t *old_ptl, *new_ptl;
  1565. pmd_t pmd;
  1566. struct mm_struct *mm = vma->vm_mm;
  1567. bool force_flush = false;
  1568. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1569. (new_addr & ~HPAGE_PMD_MASK) ||
  1570. old_end - old_addr < HPAGE_PMD_SIZE)
  1571. return false;
  1572. /*
  1573. * The destination pmd shouldn't be established, free_pgtables()
  1574. * should have release it.
  1575. */
  1576. if (WARN_ON(!pmd_none(*new_pmd))) {
  1577. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1578. return false;
  1579. }
  1580. /*
  1581. * We don't have to worry about the ordering of src and dst
  1582. * ptlocks because exclusive mmap_sem prevents deadlock.
  1583. */
  1584. old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
  1585. if (old_ptl) {
  1586. new_ptl = pmd_lockptr(mm, new_pmd);
  1587. if (new_ptl != old_ptl)
  1588. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1589. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1590. if (pmd_present(pmd) && pmd_dirty(pmd))
  1591. force_flush = true;
  1592. VM_BUG_ON(!pmd_none(*new_pmd));
  1593. if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
  1594. pgtable_t pgtable;
  1595. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1596. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1597. }
  1598. pmd = move_soft_dirty_pmd(pmd);
  1599. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1600. if (new_ptl != old_ptl)
  1601. spin_unlock(new_ptl);
  1602. if (force_flush)
  1603. flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
  1604. else
  1605. *need_flush = true;
  1606. spin_unlock(old_ptl);
  1607. return true;
  1608. }
  1609. return false;
  1610. }
  1611. /*
  1612. * Returns
  1613. * - 0 if PMD could not be locked
  1614. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1615. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1616. */
  1617. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1618. unsigned long addr, pgprot_t newprot, int prot_numa)
  1619. {
  1620. struct mm_struct *mm = vma->vm_mm;
  1621. spinlock_t *ptl;
  1622. pmd_t entry;
  1623. bool preserve_write;
  1624. int ret;
  1625. ptl = __pmd_trans_huge_lock(pmd, vma);
  1626. if (!ptl)
  1627. return 0;
  1628. preserve_write = prot_numa && pmd_write(*pmd);
  1629. ret = 1;
  1630. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1631. if (is_swap_pmd(*pmd)) {
  1632. swp_entry_t entry = pmd_to_swp_entry(*pmd);
  1633. VM_BUG_ON(!is_pmd_migration_entry(*pmd));
  1634. if (is_write_migration_entry(entry)) {
  1635. pmd_t newpmd;
  1636. /*
  1637. * A protection check is difficult so
  1638. * just be safe and disable write
  1639. */
  1640. make_migration_entry_read(&entry);
  1641. newpmd = swp_entry_to_pmd(entry);
  1642. if (pmd_swp_soft_dirty(*pmd))
  1643. newpmd = pmd_swp_mksoft_dirty(newpmd);
  1644. set_pmd_at(mm, addr, pmd, newpmd);
  1645. }
  1646. goto unlock;
  1647. }
  1648. #endif
  1649. /*
  1650. * Avoid trapping faults against the zero page. The read-only
  1651. * data is likely to be read-cached on the local CPU and
  1652. * local/remote hits to the zero page are not interesting.
  1653. */
  1654. if (prot_numa && is_huge_zero_pmd(*pmd))
  1655. goto unlock;
  1656. if (prot_numa && pmd_protnone(*pmd))
  1657. goto unlock;
  1658. /*
  1659. * In case prot_numa, we are under down_read(mmap_sem). It's critical
  1660. * to not clear pmd intermittently to avoid race with MADV_DONTNEED
  1661. * which is also under down_read(mmap_sem):
  1662. *
  1663. * CPU0: CPU1:
  1664. * change_huge_pmd(prot_numa=1)
  1665. * pmdp_huge_get_and_clear_notify()
  1666. * madvise_dontneed()
  1667. * zap_pmd_range()
  1668. * pmd_trans_huge(*pmd) == 0 (without ptl)
  1669. * // skip the pmd
  1670. * set_pmd_at();
  1671. * // pmd is re-established
  1672. *
  1673. * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
  1674. * which may break userspace.
  1675. *
  1676. * pmdp_invalidate() is required to make sure we don't miss
  1677. * dirty/young flags set by hardware.
  1678. */
  1679. entry = pmdp_invalidate(vma, addr, pmd);
  1680. entry = pmd_modify(entry, newprot);
  1681. if (preserve_write)
  1682. entry = pmd_mk_savedwrite(entry);
  1683. ret = HPAGE_PMD_NR;
  1684. set_pmd_at(mm, addr, pmd, entry);
  1685. BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
  1686. unlock:
  1687. spin_unlock(ptl);
  1688. return ret;
  1689. }
  1690. /*
  1691. * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
  1692. *
  1693. * Note that if it returns page table lock pointer, this routine returns without
  1694. * unlocking page table lock. So callers must unlock it.
  1695. */
  1696. spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1697. {
  1698. spinlock_t *ptl;
  1699. ptl = pmd_lock(vma->vm_mm, pmd);
  1700. if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
  1701. pmd_devmap(*pmd)))
  1702. return ptl;
  1703. spin_unlock(ptl);
  1704. return NULL;
  1705. }
  1706. /*
  1707. * Returns true if a given pud maps a thp, false otherwise.
  1708. *
  1709. * Note that if it returns true, this routine returns without unlocking page
  1710. * table lock. So callers must unlock it.
  1711. */
  1712. spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
  1713. {
  1714. spinlock_t *ptl;
  1715. ptl = pud_lock(vma->vm_mm, pud);
  1716. if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
  1717. return ptl;
  1718. spin_unlock(ptl);
  1719. return NULL;
  1720. }
  1721. #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
  1722. int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1723. pud_t *pud, unsigned long addr)
  1724. {
  1725. pud_t orig_pud;
  1726. spinlock_t *ptl;
  1727. ptl = __pud_trans_huge_lock(pud, vma);
  1728. if (!ptl)
  1729. return 0;
  1730. /*
  1731. * For architectures like ppc64 we look at deposited pgtable
  1732. * when calling pudp_huge_get_and_clear. So do the
  1733. * pgtable_trans_huge_withdraw after finishing pudp related
  1734. * operations.
  1735. */
  1736. orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
  1737. tlb->fullmm);
  1738. tlb_remove_pud_tlb_entry(tlb, pud, addr);
  1739. if (vma_is_dax(vma)) {
  1740. spin_unlock(ptl);
  1741. /* No zero page support yet */
  1742. } else {
  1743. /* No support for anonymous PUD pages yet */
  1744. BUG();
  1745. }
  1746. return 1;
  1747. }
  1748. static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
  1749. unsigned long haddr)
  1750. {
  1751. VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
  1752. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1753. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
  1754. VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
  1755. count_vm_event(THP_SPLIT_PUD);
  1756. pudp_huge_clear_flush_notify(vma, haddr, pud);
  1757. }
  1758. void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
  1759. unsigned long address)
  1760. {
  1761. spinlock_t *ptl;
  1762. struct mm_struct *mm = vma->vm_mm;
  1763. unsigned long haddr = address & HPAGE_PUD_MASK;
  1764. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
  1765. ptl = pud_lock(mm, pud);
  1766. if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
  1767. goto out;
  1768. __split_huge_pud_locked(vma, pud, haddr);
  1769. out:
  1770. spin_unlock(ptl);
  1771. /*
  1772. * No need to double call mmu_notifier->invalidate_range() callback as
  1773. * the above pudp_huge_clear_flush_notify() did already call it.
  1774. */
  1775. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1776. HPAGE_PUD_SIZE);
  1777. }
  1778. #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
  1779. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  1780. unsigned long haddr, pmd_t *pmd)
  1781. {
  1782. struct mm_struct *mm = vma->vm_mm;
  1783. pgtable_t pgtable;
  1784. pmd_t _pmd;
  1785. int i;
  1786. /*
  1787. * Leave pmd empty until pte is filled note that it is fine to delay
  1788. * notification until mmu_notifier_invalidate_range_end() as we are
  1789. * replacing a zero pmd write protected page with a zero pte write
  1790. * protected page.
  1791. *
  1792. * See Documentation/vm/mmu_notifier.rst
  1793. */
  1794. pmdp_huge_clear_flush(vma, haddr, pmd);
  1795. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1796. pmd_populate(mm, &_pmd, pgtable);
  1797. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1798. pte_t *pte, entry;
  1799. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  1800. entry = pte_mkspecial(entry);
  1801. pte = pte_offset_map(&_pmd, haddr);
  1802. VM_BUG_ON(!pte_none(*pte));
  1803. set_pte_at(mm, haddr, pte, entry);
  1804. pte_unmap(pte);
  1805. }
  1806. smp_wmb(); /* make pte visible before pmd */
  1807. pmd_populate(mm, pmd, pgtable);
  1808. }
  1809. static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
  1810. unsigned long haddr, bool freeze)
  1811. {
  1812. struct mm_struct *mm = vma->vm_mm;
  1813. struct page *page;
  1814. pgtable_t pgtable;
  1815. pmd_t old_pmd, _pmd;
  1816. bool young, write, soft_dirty, pmd_migration = false;
  1817. unsigned long addr;
  1818. int i;
  1819. VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
  1820. VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
  1821. VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
  1822. VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
  1823. && !pmd_devmap(*pmd));
  1824. count_vm_event(THP_SPLIT_PMD);
  1825. if (!vma_is_anonymous(vma)) {
  1826. _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1827. /*
  1828. * We are going to unmap this huge page. So
  1829. * just go ahead and zap it
  1830. */
  1831. if (arch_needs_pgtable_deposit())
  1832. zap_deposited_table(mm, pmd);
  1833. if (vma_is_dax(vma))
  1834. return;
  1835. page = pmd_page(_pmd);
  1836. if (!PageReferenced(page) && pmd_young(_pmd))
  1837. SetPageReferenced(page);
  1838. page_remove_rmap(page, true);
  1839. put_page(page);
  1840. add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
  1841. return;
  1842. } else if (is_huge_zero_pmd(*pmd)) {
  1843. /*
  1844. * FIXME: Do we want to invalidate secondary mmu by calling
  1845. * mmu_notifier_invalidate_range() see comments below inside
  1846. * __split_huge_pmd() ?
  1847. *
  1848. * We are going from a zero huge page write protected to zero
  1849. * small page also write protected so it does not seems useful
  1850. * to invalidate secondary mmu at this time.
  1851. */
  1852. return __split_huge_zero_page_pmd(vma, haddr, pmd);
  1853. }
  1854. /*
  1855. * Up to this point the pmd is present and huge and userland has the
  1856. * whole access to the hugepage during the split (which happens in
  1857. * place). If we overwrite the pmd with the not-huge version pointing
  1858. * to the pte here (which of course we could if all CPUs were bug
  1859. * free), userland could trigger a small page size TLB miss on the
  1860. * small sized TLB while the hugepage TLB entry is still established in
  1861. * the huge TLB. Some CPU doesn't like that.
  1862. * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
  1863. * 383 on page 93. Intel should be safe but is also warns that it's
  1864. * only safe if the permission and cache attributes of the two entries
  1865. * loaded in the two TLB is identical (which should be the case here).
  1866. * But it is generally safer to never allow small and huge TLB entries
  1867. * for the same virtual address to be loaded simultaneously. So instead
  1868. * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
  1869. * current pmd notpresent (atomically because here the pmd_trans_huge
  1870. * must remain set at all times on the pmd until the split is complete
  1871. * for this pmd), then we flush the SMP TLB and finally we write the
  1872. * non-huge version of the pmd entry with pmd_populate.
  1873. */
  1874. old_pmd = pmdp_invalidate(vma, haddr, pmd);
  1875. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1876. pmd_migration = is_pmd_migration_entry(old_pmd);
  1877. if (pmd_migration) {
  1878. swp_entry_t entry;
  1879. entry = pmd_to_swp_entry(old_pmd);
  1880. page = pfn_to_page(swp_offset(entry));
  1881. } else
  1882. #endif
  1883. page = pmd_page(old_pmd);
  1884. VM_BUG_ON_PAGE(!page_count(page), page);
  1885. page_ref_add(page, HPAGE_PMD_NR - 1);
  1886. if (pmd_dirty(old_pmd))
  1887. SetPageDirty(page);
  1888. write = pmd_write(old_pmd);
  1889. young = pmd_young(old_pmd);
  1890. soft_dirty = pmd_soft_dirty(old_pmd);
  1891. /*
  1892. * Withdraw the table only after we mark the pmd entry invalid.
  1893. * This's critical for some architectures (Power).
  1894. */
  1895. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1896. pmd_populate(mm, &_pmd, pgtable);
  1897. for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
  1898. pte_t entry, *pte;
  1899. /*
  1900. * Note that NUMA hinting access restrictions are not
  1901. * transferred to avoid any possibility of altering
  1902. * permissions across VMAs.
  1903. */
  1904. if (freeze || pmd_migration) {
  1905. swp_entry_t swp_entry;
  1906. swp_entry = make_migration_entry(page + i, write);
  1907. entry = swp_entry_to_pte(swp_entry);
  1908. if (soft_dirty)
  1909. entry = pte_swp_mksoft_dirty(entry);
  1910. } else {
  1911. entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
  1912. entry = maybe_mkwrite(entry, vma);
  1913. if (!write)
  1914. entry = pte_wrprotect(entry);
  1915. if (!young)
  1916. entry = pte_mkold(entry);
  1917. if (soft_dirty)
  1918. entry = pte_mksoft_dirty(entry);
  1919. }
  1920. pte = pte_offset_map(&_pmd, addr);
  1921. BUG_ON(!pte_none(*pte));
  1922. set_pte_at(mm, addr, pte, entry);
  1923. atomic_inc(&page[i]._mapcount);
  1924. pte_unmap(pte);
  1925. }
  1926. /*
  1927. * Set PG_double_map before dropping compound_mapcount to avoid
  1928. * false-negative page_mapped().
  1929. */
  1930. if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
  1931. for (i = 0; i < HPAGE_PMD_NR; i++)
  1932. atomic_inc(&page[i]._mapcount);
  1933. }
  1934. if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
  1935. /* Last compound_mapcount is gone. */
  1936. __dec_node_page_state(page, NR_ANON_THPS);
  1937. if (TestClearPageDoubleMap(page)) {
  1938. /* No need in mapcount reference anymore */
  1939. for (i = 0; i < HPAGE_PMD_NR; i++)
  1940. atomic_dec(&page[i]._mapcount);
  1941. }
  1942. }
  1943. smp_wmb(); /* make pte visible before pmd */
  1944. pmd_populate(mm, pmd, pgtable);
  1945. if (freeze) {
  1946. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1947. page_remove_rmap(page + i, false);
  1948. put_page(page + i);
  1949. }
  1950. }
  1951. }
  1952. void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1953. unsigned long address, bool freeze, struct page *page)
  1954. {
  1955. spinlock_t *ptl;
  1956. struct mm_struct *mm = vma->vm_mm;
  1957. unsigned long haddr = address & HPAGE_PMD_MASK;
  1958. mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
  1959. ptl = pmd_lock(mm, pmd);
  1960. /*
  1961. * If caller asks to setup a migration entries, we need a page to check
  1962. * pmd against. Otherwise we can end up replacing wrong page.
  1963. */
  1964. VM_BUG_ON(freeze && !page);
  1965. if (page && page != pmd_page(*pmd))
  1966. goto out;
  1967. if (pmd_trans_huge(*pmd)) {
  1968. page = pmd_page(*pmd);
  1969. if (PageMlocked(page))
  1970. clear_page_mlock(page);
  1971. } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
  1972. goto out;
  1973. __split_huge_pmd_locked(vma, pmd, haddr, freeze);
  1974. out:
  1975. spin_unlock(ptl);
  1976. /*
  1977. * No need to double call mmu_notifier->invalidate_range() callback.
  1978. * They are 3 cases to consider inside __split_huge_pmd_locked():
  1979. * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
  1980. * 2) __split_huge_zero_page_pmd() read only zero page and any write
  1981. * fault will trigger a flush_notify before pointing to a new page
  1982. * (it is fine if the secondary mmu keeps pointing to the old zero
  1983. * page in the meantime)
  1984. * 3) Split a huge pmd into pte pointing to the same page. No need
  1985. * to invalidate secondary tlb entry they are all still valid.
  1986. * any further changes to individual pte will notify. So no need
  1987. * to call mmu_notifier->invalidate_range()
  1988. */
  1989. mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
  1990. HPAGE_PMD_SIZE);
  1991. }
  1992. void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
  1993. bool freeze, struct page *page)
  1994. {
  1995. pgd_t *pgd;
  1996. p4d_t *p4d;
  1997. pud_t *pud;
  1998. pmd_t *pmd;
  1999. pgd = pgd_offset(vma->vm_mm, address);
  2000. if (!pgd_present(*pgd))
  2001. return;
  2002. p4d = p4d_offset(pgd, address);
  2003. if (!p4d_present(*p4d))
  2004. return;
  2005. pud = pud_offset(p4d, address);
  2006. if (!pud_present(*pud))
  2007. return;
  2008. pmd = pmd_offset(pud, address);
  2009. __split_huge_pmd(vma, pmd, address, freeze, page);
  2010. }
  2011. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2012. unsigned long start,
  2013. unsigned long end,
  2014. long adjust_next)
  2015. {
  2016. /*
  2017. * If the new start address isn't hpage aligned and it could
  2018. * previously contain an hugepage: check if we need to split
  2019. * an huge pmd.
  2020. */
  2021. if (start & ~HPAGE_PMD_MASK &&
  2022. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2023. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2024. split_huge_pmd_address(vma, start, false, NULL);
  2025. /*
  2026. * If the new end address isn't hpage aligned and it could
  2027. * previously contain an hugepage: check if we need to split
  2028. * an huge pmd.
  2029. */
  2030. if (end & ~HPAGE_PMD_MASK &&
  2031. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2032. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2033. split_huge_pmd_address(vma, end, false, NULL);
  2034. /*
  2035. * If we're also updating the vma->vm_next->vm_start, if the new
  2036. * vm_next->vm_start isn't page aligned and it could previously
  2037. * contain an hugepage: check if we need to split an huge pmd.
  2038. */
  2039. if (adjust_next > 0) {
  2040. struct vm_area_struct *next = vma->vm_next;
  2041. unsigned long nstart = next->vm_start;
  2042. nstart += adjust_next << PAGE_SHIFT;
  2043. if (nstart & ~HPAGE_PMD_MASK &&
  2044. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2045. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2046. split_huge_pmd_address(next, nstart, false, NULL);
  2047. }
  2048. }
  2049. static void freeze_page(struct page *page)
  2050. {
  2051. enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
  2052. TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
  2053. bool unmap_success;
  2054. VM_BUG_ON_PAGE(!PageHead(page), page);
  2055. if (PageAnon(page))
  2056. ttu_flags |= TTU_SPLIT_FREEZE;
  2057. unmap_success = try_to_unmap(page, ttu_flags);
  2058. VM_BUG_ON_PAGE(!unmap_success, page);
  2059. }
  2060. static void unfreeze_page(struct page *page)
  2061. {
  2062. int i;
  2063. if (PageTransHuge(page)) {
  2064. remove_migration_ptes(page, page, true);
  2065. } else {
  2066. for (i = 0; i < HPAGE_PMD_NR; i++)
  2067. remove_migration_ptes(page + i, page + i, true);
  2068. }
  2069. }
  2070. static void __split_huge_page_tail(struct page *head, int tail,
  2071. struct lruvec *lruvec, struct list_head *list)
  2072. {
  2073. struct page *page_tail = head + tail;
  2074. VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
  2075. /*
  2076. * Clone page flags before unfreezing refcount.
  2077. *
  2078. * After successful get_page_unless_zero() might follow flags change,
  2079. * for exmaple lock_page() which set PG_waiters.
  2080. */
  2081. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  2082. page_tail->flags |= (head->flags &
  2083. ((1L << PG_referenced) |
  2084. (1L << PG_swapbacked) |
  2085. (1L << PG_swapcache) |
  2086. (1L << PG_mlocked) |
  2087. (1L << PG_uptodate) |
  2088. (1L << PG_active) |
  2089. (1L << PG_locked) |
  2090. (1L << PG_unevictable) |
  2091. (1L << PG_dirty)));
  2092. /* Page flags must be visible before we make the page non-compound. */
  2093. smp_wmb();
  2094. /*
  2095. * Clear PageTail before unfreezing page refcount.
  2096. *
  2097. * After successful get_page_unless_zero() might follow put_page()
  2098. * which needs correct compound_head().
  2099. */
  2100. clear_compound_head(page_tail);
  2101. /* Finally unfreeze refcount. Additional reference from page cache. */
  2102. page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
  2103. PageSwapCache(head)));
  2104. if (page_is_young(head))
  2105. set_page_young(page_tail);
  2106. if (page_is_idle(head))
  2107. set_page_idle(page_tail);
  2108. /* ->mapping in first tail page is compound_mapcount */
  2109. VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
  2110. page_tail);
  2111. page_tail->mapping = head->mapping;
  2112. page_tail->index = head->index + tail;
  2113. page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
  2114. /*
  2115. * always add to the tail because some iterators expect new
  2116. * pages to show after the currently processed elements - e.g.
  2117. * migrate_pages
  2118. */
  2119. lru_add_page_tail(head, page_tail, lruvec, list);
  2120. }
  2121. static void __split_huge_page(struct page *page, struct list_head *list,
  2122. unsigned long flags)
  2123. {
  2124. struct page *head = compound_head(page);
  2125. struct zone *zone = page_zone(head);
  2126. struct lruvec *lruvec;
  2127. pgoff_t end = -1;
  2128. int i;
  2129. lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
  2130. /* complete memcg works before add pages to LRU */
  2131. mem_cgroup_split_huge_fixup(head);
  2132. if (!PageAnon(page))
  2133. end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
  2134. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  2135. __split_huge_page_tail(head, i, lruvec, list);
  2136. /* Some pages can be beyond i_size: drop them from page cache */
  2137. if (head[i].index >= end) {
  2138. ClearPageDirty(head + i);
  2139. __delete_from_page_cache(head + i, NULL);
  2140. if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
  2141. shmem_uncharge(head->mapping->host, 1);
  2142. put_page(head + i);
  2143. }
  2144. }
  2145. ClearPageCompound(head);
  2146. /* See comment in __split_huge_page_tail() */
  2147. if (PageAnon(head)) {
  2148. /* Additional pin to radix tree of swap cache */
  2149. if (PageSwapCache(head))
  2150. page_ref_add(head, 2);
  2151. else
  2152. page_ref_inc(head);
  2153. } else {
  2154. /* Additional pin to radix tree */
  2155. page_ref_add(head, 2);
  2156. xa_unlock(&head->mapping->i_pages);
  2157. }
  2158. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2159. unfreeze_page(head);
  2160. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2161. struct page *subpage = head + i;
  2162. if (subpage == page)
  2163. continue;
  2164. unlock_page(subpage);
  2165. /*
  2166. * Subpages may be freed if there wasn't any mapping
  2167. * like if add_to_swap() is running on a lru page that
  2168. * had its mapping zapped. And freeing these pages
  2169. * requires taking the lru_lock so we do the put_page
  2170. * of the tail pages after the split is complete.
  2171. */
  2172. put_page(subpage);
  2173. }
  2174. }
  2175. int total_mapcount(struct page *page)
  2176. {
  2177. int i, compound, ret;
  2178. VM_BUG_ON_PAGE(PageTail(page), page);
  2179. if (likely(!PageCompound(page)))
  2180. return atomic_read(&page->_mapcount) + 1;
  2181. compound = compound_mapcount(page);
  2182. if (PageHuge(page))
  2183. return compound;
  2184. ret = compound;
  2185. for (i = 0; i < HPAGE_PMD_NR; i++)
  2186. ret += atomic_read(&page[i]._mapcount) + 1;
  2187. /* File pages has compound_mapcount included in _mapcount */
  2188. if (!PageAnon(page))
  2189. return ret - compound * HPAGE_PMD_NR;
  2190. if (PageDoubleMap(page))
  2191. ret -= HPAGE_PMD_NR;
  2192. return ret;
  2193. }
  2194. /*
  2195. * This calculates accurately how many mappings a transparent hugepage
  2196. * has (unlike page_mapcount() which isn't fully accurate). This full
  2197. * accuracy is primarily needed to know if copy-on-write faults can
  2198. * reuse the page and change the mapping to read-write instead of
  2199. * copying them. At the same time this returns the total_mapcount too.
  2200. *
  2201. * The function returns the highest mapcount any one of the subpages
  2202. * has. If the return value is one, even if different processes are
  2203. * mapping different subpages of the transparent hugepage, they can
  2204. * all reuse it, because each process is reusing a different subpage.
  2205. *
  2206. * The total_mapcount is instead counting all virtual mappings of the
  2207. * subpages. If the total_mapcount is equal to "one", it tells the
  2208. * caller all mappings belong to the same "mm" and in turn the
  2209. * anon_vma of the transparent hugepage can become the vma->anon_vma
  2210. * local one as no other process may be mapping any of the subpages.
  2211. *
  2212. * It would be more accurate to replace page_mapcount() with
  2213. * page_trans_huge_mapcount(), however we only use
  2214. * page_trans_huge_mapcount() in the copy-on-write faults where we
  2215. * need full accuracy to avoid breaking page pinning, because
  2216. * page_trans_huge_mapcount() is slower than page_mapcount().
  2217. */
  2218. int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
  2219. {
  2220. int i, ret, _total_mapcount, mapcount;
  2221. /* hugetlbfs shouldn't call it */
  2222. VM_BUG_ON_PAGE(PageHuge(page), page);
  2223. if (likely(!PageTransCompound(page))) {
  2224. mapcount = atomic_read(&page->_mapcount) + 1;
  2225. if (total_mapcount)
  2226. *total_mapcount = mapcount;
  2227. return mapcount;
  2228. }
  2229. page = compound_head(page);
  2230. _total_mapcount = ret = 0;
  2231. for (i = 0; i < HPAGE_PMD_NR; i++) {
  2232. mapcount = atomic_read(&page[i]._mapcount) + 1;
  2233. ret = max(ret, mapcount);
  2234. _total_mapcount += mapcount;
  2235. }
  2236. if (PageDoubleMap(page)) {
  2237. ret -= 1;
  2238. _total_mapcount -= HPAGE_PMD_NR;
  2239. }
  2240. mapcount = compound_mapcount(page);
  2241. ret += mapcount;
  2242. _total_mapcount += mapcount;
  2243. if (total_mapcount)
  2244. *total_mapcount = _total_mapcount;
  2245. return ret;
  2246. }
  2247. /* Racy check whether the huge page can be split */
  2248. bool can_split_huge_page(struct page *page, int *pextra_pins)
  2249. {
  2250. int extra_pins;
  2251. /* Additional pins from radix tree */
  2252. if (PageAnon(page))
  2253. extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
  2254. else
  2255. extra_pins = HPAGE_PMD_NR;
  2256. if (pextra_pins)
  2257. *pextra_pins = extra_pins;
  2258. return total_mapcount(page) == page_count(page) - extra_pins - 1;
  2259. }
  2260. /*
  2261. * This function splits huge page into normal pages. @page can point to any
  2262. * subpage of huge page to split. Split doesn't change the position of @page.
  2263. *
  2264. * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
  2265. * The huge page must be locked.
  2266. *
  2267. * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
  2268. *
  2269. * Both head page and tail pages will inherit mapping, flags, and so on from
  2270. * the hugepage.
  2271. *
  2272. * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
  2273. * they are not mapped.
  2274. *
  2275. * Returns 0 if the hugepage is split successfully.
  2276. * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
  2277. * us.
  2278. */
  2279. int split_huge_page_to_list(struct page *page, struct list_head *list)
  2280. {
  2281. struct page *head = compound_head(page);
  2282. struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
  2283. struct anon_vma *anon_vma = NULL;
  2284. struct address_space *mapping = NULL;
  2285. int count, mapcount, extra_pins, ret;
  2286. bool mlocked;
  2287. unsigned long flags;
  2288. VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
  2289. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2290. VM_BUG_ON_PAGE(!PageCompound(page), page);
  2291. if (PageWriteback(page))
  2292. return -EBUSY;
  2293. if (PageAnon(head)) {
  2294. /*
  2295. * The caller does not necessarily hold an mmap_sem that would
  2296. * prevent the anon_vma disappearing so we first we take a
  2297. * reference to it and then lock the anon_vma for write. This
  2298. * is similar to page_lock_anon_vma_read except the write lock
  2299. * is taken to serialise against parallel split or collapse
  2300. * operations.
  2301. */
  2302. anon_vma = page_get_anon_vma(head);
  2303. if (!anon_vma) {
  2304. ret = -EBUSY;
  2305. goto out;
  2306. }
  2307. mapping = NULL;
  2308. anon_vma_lock_write(anon_vma);
  2309. } else {
  2310. mapping = head->mapping;
  2311. /* Truncated ? */
  2312. if (!mapping) {
  2313. ret = -EBUSY;
  2314. goto out;
  2315. }
  2316. anon_vma = NULL;
  2317. i_mmap_lock_read(mapping);
  2318. }
  2319. /*
  2320. * Racy check if we can split the page, before freeze_page() will
  2321. * split PMDs
  2322. */
  2323. if (!can_split_huge_page(head, &extra_pins)) {
  2324. ret = -EBUSY;
  2325. goto out_unlock;
  2326. }
  2327. mlocked = PageMlocked(page);
  2328. freeze_page(head);
  2329. VM_BUG_ON_PAGE(compound_mapcount(head), head);
  2330. /* Make sure the page is not on per-CPU pagevec as it takes pin */
  2331. if (mlocked)
  2332. lru_add_drain();
  2333. /* prevent PageLRU to go away from under us, and freeze lru stats */
  2334. spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
  2335. if (mapping) {
  2336. void **pslot;
  2337. xa_lock(&mapping->i_pages);
  2338. pslot = radix_tree_lookup_slot(&mapping->i_pages,
  2339. page_index(head));
  2340. /*
  2341. * Check if the head page is present in radix tree.
  2342. * We assume all tail are present too, if head is there.
  2343. */
  2344. if (radix_tree_deref_slot_protected(pslot,
  2345. &mapping->i_pages.xa_lock) != head)
  2346. goto fail;
  2347. }
  2348. /* Prevent deferred_split_scan() touching ->_refcount */
  2349. spin_lock(&pgdata->split_queue_lock);
  2350. count = page_count(head);
  2351. mapcount = total_mapcount(head);
  2352. if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
  2353. if (!list_empty(page_deferred_list(head))) {
  2354. pgdata->split_queue_len--;
  2355. list_del(page_deferred_list(head));
  2356. }
  2357. if (mapping)
  2358. __dec_node_page_state(page, NR_SHMEM_THPS);
  2359. spin_unlock(&pgdata->split_queue_lock);
  2360. __split_huge_page(page, list, flags);
  2361. if (PageSwapCache(head)) {
  2362. swp_entry_t entry = { .val = page_private(head) };
  2363. ret = split_swap_cluster(entry);
  2364. } else
  2365. ret = 0;
  2366. } else {
  2367. if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
  2368. pr_alert("total_mapcount: %u, page_count(): %u\n",
  2369. mapcount, count);
  2370. if (PageTail(page))
  2371. dump_page(head, NULL);
  2372. dump_page(page, "total_mapcount(head) > 0");
  2373. BUG();
  2374. }
  2375. spin_unlock(&pgdata->split_queue_lock);
  2376. fail: if (mapping)
  2377. xa_unlock(&mapping->i_pages);
  2378. spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
  2379. unfreeze_page(head);
  2380. ret = -EBUSY;
  2381. }
  2382. out_unlock:
  2383. if (anon_vma) {
  2384. anon_vma_unlock_write(anon_vma);
  2385. put_anon_vma(anon_vma);
  2386. }
  2387. if (mapping)
  2388. i_mmap_unlock_read(mapping);
  2389. out:
  2390. count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
  2391. return ret;
  2392. }
  2393. void free_transhuge_page(struct page *page)
  2394. {
  2395. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2396. unsigned long flags;
  2397. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2398. if (!list_empty(page_deferred_list(page))) {
  2399. pgdata->split_queue_len--;
  2400. list_del(page_deferred_list(page));
  2401. }
  2402. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2403. free_compound_page(page);
  2404. }
  2405. void deferred_split_huge_page(struct page *page)
  2406. {
  2407. struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
  2408. unsigned long flags;
  2409. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  2410. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2411. if (list_empty(page_deferred_list(page))) {
  2412. count_vm_event(THP_DEFERRED_SPLIT_PAGE);
  2413. list_add_tail(page_deferred_list(page), &pgdata->split_queue);
  2414. pgdata->split_queue_len++;
  2415. }
  2416. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2417. }
  2418. static unsigned long deferred_split_count(struct shrinker *shrink,
  2419. struct shrink_control *sc)
  2420. {
  2421. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2422. return READ_ONCE(pgdata->split_queue_len);
  2423. }
  2424. static unsigned long deferred_split_scan(struct shrinker *shrink,
  2425. struct shrink_control *sc)
  2426. {
  2427. struct pglist_data *pgdata = NODE_DATA(sc->nid);
  2428. unsigned long flags;
  2429. LIST_HEAD(list), *pos, *next;
  2430. struct page *page;
  2431. int split = 0;
  2432. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2433. /* Take pin on all head pages to avoid freeing them under us */
  2434. list_for_each_safe(pos, next, &pgdata->split_queue) {
  2435. page = list_entry((void *)pos, struct page, mapping);
  2436. page = compound_head(page);
  2437. if (get_page_unless_zero(page)) {
  2438. list_move(page_deferred_list(page), &list);
  2439. } else {
  2440. /* We lost race with put_compound_page() */
  2441. list_del_init(page_deferred_list(page));
  2442. pgdata->split_queue_len--;
  2443. }
  2444. if (!--sc->nr_to_scan)
  2445. break;
  2446. }
  2447. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2448. list_for_each_safe(pos, next, &list) {
  2449. page = list_entry((void *)pos, struct page, mapping);
  2450. if (!trylock_page(page))
  2451. goto next;
  2452. /* split_huge_page() removes page from list on success */
  2453. if (!split_huge_page(page))
  2454. split++;
  2455. unlock_page(page);
  2456. next:
  2457. put_page(page);
  2458. }
  2459. spin_lock_irqsave(&pgdata->split_queue_lock, flags);
  2460. list_splice_tail(&list, &pgdata->split_queue);
  2461. spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
  2462. /*
  2463. * Stop shrinker if we didn't split any page, but the queue is empty.
  2464. * This can happen if pages were freed under us.
  2465. */
  2466. if (!split && list_empty(&pgdata->split_queue))
  2467. return SHRINK_STOP;
  2468. return split;
  2469. }
  2470. static struct shrinker deferred_split_shrinker = {
  2471. .count_objects = deferred_split_count,
  2472. .scan_objects = deferred_split_scan,
  2473. .seeks = DEFAULT_SEEKS,
  2474. .flags = SHRINKER_NUMA_AWARE,
  2475. };
  2476. #ifdef CONFIG_DEBUG_FS
  2477. static int split_huge_pages_set(void *data, u64 val)
  2478. {
  2479. struct zone *zone;
  2480. struct page *page;
  2481. unsigned long pfn, max_zone_pfn;
  2482. unsigned long total = 0, split = 0;
  2483. if (val != 1)
  2484. return -EINVAL;
  2485. for_each_populated_zone(zone) {
  2486. max_zone_pfn = zone_end_pfn(zone);
  2487. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
  2488. if (!pfn_valid(pfn))
  2489. continue;
  2490. page = pfn_to_page(pfn);
  2491. if (!get_page_unless_zero(page))
  2492. continue;
  2493. if (zone != page_zone(page))
  2494. goto next;
  2495. if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
  2496. goto next;
  2497. total++;
  2498. lock_page(page);
  2499. if (!split_huge_page(page))
  2500. split++;
  2501. unlock_page(page);
  2502. next:
  2503. put_page(page);
  2504. }
  2505. }
  2506. pr_info("%lu of %lu THP split\n", split, total);
  2507. return 0;
  2508. }
  2509. DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
  2510. "%llu\n");
  2511. static int __init split_huge_pages_debugfs(void)
  2512. {
  2513. void *ret;
  2514. ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
  2515. &split_huge_pages_fops);
  2516. if (!ret)
  2517. pr_warn("Failed to create split_huge_pages in debugfs");
  2518. return 0;
  2519. }
  2520. late_initcall(split_huge_pages_debugfs);
  2521. #endif
  2522. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  2523. void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
  2524. struct page *page)
  2525. {
  2526. struct vm_area_struct *vma = pvmw->vma;
  2527. struct mm_struct *mm = vma->vm_mm;
  2528. unsigned long address = pvmw->address;
  2529. pmd_t pmdval;
  2530. swp_entry_t entry;
  2531. pmd_t pmdswp;
  2532. if (!(pvmw->pmd && !pvmw->pte))
  2533. return;
  2534. mmu_notifier_invalidate_range_start(mm, address,
  2535. address + HPAGE_PMD_SIZE);
  2536. flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
  2537. pmdval = *pvmw->pmd;
  2538. pmdp_invalidate(vma, address, pvmw->pmd);
  2539. if (pmd_dirty(pmdval))
  2540. set_page_dirty(page);
  2541. entry = make_migration_entry(page, pmd_write(pmdval));
  2542. pmdswp = swp_entry_to_pmd(entry);
  2543. if (pmd_soft_dirty(pmdval))
  2544. pmdswp = pmd_swp_mksoft_dirty(pmdswp);
  2545. set_pmd_at(mm, address, pvmw->pmd, pmdswp);
  2546. page_remove_rmap(page, true);
  2547. put_page(page);
  2548. mmu_notifier_invalidate_range_end(mm, address,
  2549. address + HPAGE_PMD_SIZE);
  2550. }
  2551. void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
  2552. {
  2553. struct vm_area_struct *vma = pvmw->vma;
  2554. struct mm_struct *mm = vma->vm_mm;
  2555. unsigned long address = pvmw->address;
  2556. unsigned long mmun_start = address & HPAGE_PMD_MASK;
  2557. pmd_t pmde;
  2558. swp_entry_t entry;
  2559. if (!(pvmw->pmd && !pvmw->pte))
  2560. return;
  2561. entry = pmd_to_swp_entry(*pvmw->pmd);
  2562. get_page(new);
  2563. pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
  2564. if (pmd_swp_soft_dirty(*pvmw->pmd))
  2565. pmde = pmd_mksoft_dirty(pmde);
  2566. if (is_write_migration_entry(entry))
  2567. pmde = maybe_pmd_mkwrite(pmde, vma);
  2568. flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
  2569. if (PageAnon(new))
  2570. page_add_anon_rmap(new, vma, mmun_start, true);
  2571. else
  2572. page_add_file_rmap(new, true);
  2573. set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
  2574. if (vma->vm_flags & VM_LOCKED)
  2575. mlock_vma_page(new);
  2576. update_mmu_cache_pmd(vma, address, pvmw->pmd);
  2577. }
  2578. #endif