task_mmu.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/vmacache.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/pkeys.h>
  22. #include <asm/elf.h>
  23. #include <asm/tlb.h>
  24. #include <asm/tlbflush.h>
  25. #include "internal.h"
  26. #define SEQ_PUT_DEC(str, val) \
  27. seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  28. void task_mem(struct seq_file *m, struct mm_struct *mm)
  29. {
  30. unsigned long text, lib, swap, anon, file, shmem;
  31. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  32. anon = get_mm_counter(mm, MM_ANONPAGES);
  33. file = get_mm_counter(mm, MM_FILEPAGES);
  34. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  35. /*
  36. * Note: to minimize their overhead, mm maintains hiwater_vm and
  37. * hiwater_rss only when about to *lower* total_vm or rss. Any
  38. * collector of these hiwater stats must therefore get total_vm
  39. * and rss too, which will usually be the higher. Barriers? not
  40. * worth the effort, such snapshots can always be inconsistent.
  41. */
  42. hiwater_vm = total_vm = mm->total_vm;
  43. if (hiwater_vm < mm->hiwater_vm)
  44. hiwater_vm = mm->hiwater_vm;
  45. hiwater_rss = total_rss = anon + file + shmem;
  46. if (hiwater_rss < mm->hiwater_rss)
  47. hiwater_rss = mm->hiwater_rss;
  48. /* split executable areas between text and lib */
  49. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  50. text = min(text, mm->exec_vm << PAGE_SHIFT);
  51. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  52. swap = get_mm_counter(mm, MM_SWAPENTS);
  53. SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  54. SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  55. SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  56. SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
  57. SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  58. SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  59. SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  60. SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  61. SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  62. SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  63. SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  64. seq_put_decimal_ull_width(m,
  65. " kB\nVmExe:\t", text >> 10, 8);
  66. seq_put_decimal_ull_width(m,
  67. " kB\nVmLib:\t", lib >> 10, 8);
  68. seq_put_decimal_ull_width(m,
  69. " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  70. SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  71. seq_puts(m, " kB\n");
  72. hugetlb_report_usage(m, mm);
  73. }
  74. #undef SEQ_PUT_DEC
  75. unsigned long task_vsize(struct mm_struct *mm)
  76. {
  77. return PAGE_SIZE * mm->total_vm;
  78. }
  79. unsigned long task_statm(struct mm_struct *mm,
  80. unsigned long *shared, unsigned long *text,
  81. unsigned long *data, unsigned long *resident)
  82. {
  83. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  84. get_mm_counter(mm, MM_SHMEMPAGES);
  85. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  86. >> PAGE_SHIFT;
  87. *data = mm->data_vm + mm->stack_vm;
  88. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  89. return mm->total_vm;
  90. }
  91. #ifdef CONFIG_NUMA
  92. /*
  93. * Save get_task_policy() for show_numa_map().
  94. */
  95. static void hold_task_mempolicy(struct proc_maps_private *priv)
  96. {
  97. struct task_struct *task = priv->task;
  98. task_lock(task);
  99. priv->task_mempolicy = get_task_policy(task);
  100. mpol_get(priv->task_mempolicy);
  101. task_unlock(task);
  102. }
  103. static void release_task_mempolicy(struct proc_maps_private *priv)
  104. {
  105. mpol_put(priv->task_mempolicy);
  106. }
  107. #else
  108. static void hold_task_mempolicy(struct proc_maps_private *priv)
  109. {
  110. }
  111. static void release_task_mempolicy(struct proc_maps_private *priv)
  112. {
  113. }
  114. #endif
  115. static void vma_stop(struct proc_maps_private *priv)
  116. {
  117. struct mm_struct *mm = priv->mm;
  118. release_task_mempolicy(priv);
  119. up_read(&mm->mmap_sem);
  120. mmput(mm);
  121. }
  122. static struct vm_area_struct *
  123. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  124. {
  125. if (vma == priv->tail_vma)
  126. return NULL;
  127. return vma->vm_next ?: priv->tail_vma;
  128. }
  129. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  130. {
  131. if (m->count < m->size) /* vma is copied successfully */
  132. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  133. }
  134. static void *m_start(struct seq_file *m, loff_t *ppos)
  135. {
  136. struct proc_maps_private *priv = m->private;
  137. unsigned long last_addr = m->version;
  138. struct mm_struct *mm;
  139. struct vm_area_struct *vma;
  140. unsigned int pos = *ppos;
  141. /* See m_cache_vma(). Zero at the start or after lseek. */
  142. if (last_addr == -1UL)
  143. return NULL;
  144. priv->task = get_proc_task(priv->inode);
  145. if (!priv->task)
  146. return ERR_PTR(-ESRCH);
  147. mm = priv->mm;
  148. if (!mm || !mmget_not_zero(mm))
  149. return NULL;
  150. down_read(&mm->mmap_sem);
  151. hold_task_mempolicy(priv);
  152. priv->tail_vma = get_gate_vma(mm);
  153. if (last_addr) {
  154. vma = find_vma(mm, last_addr - 1);
  155. if (vma && vma->vm_start <= last_addr)
  156. vma = m_next_vma(priv, vma);
  157. if (vma)
  158. return vma;
  159. }
  160. m->version = 0;
  161. if (pos < mm->map_count) {
  162. for (vma = mm->mmap; pos; pos--) {
  163. m->version = vma->vm_start;
  164. vma = vma->vm_next;
  165. }
  166. return vma;
  167. }
  168. /* we do not bother to update m->version in this case */
  169. if (pos == mm->map_count && priv->tail_vma)
  170. return priv->tail_vma;
  171. vma_stop(priv);
  172. return NULL;
  173. }
  174. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  175. {
  176. struct proc_maps_private *priv = m->private;
  177. struct vm_area_struct *next;
  178. (*pos)++;
  179. next = m_next_vma(priv, v);
  180. if (!next)
  181. vma_stop(priv);
  182. return next;
  183. }
  184. static void m_stop(struct seq_file *m, void *v)
  185. {
  186. struct proc_maps_private *priv = m->private;
  187. if (!IS_ERR_OR_NULL(v))
  188. vma_stop(priv);
  189. if (priv->task) {
  190. put_task_struct(priv->task);
  191. priv->task = NULL;
  192. }
  193. }
  194. static int proc_maps_open(struct inode *inode, struct file *file,
  195. const struct seq_operations *ops, int psize)
  196. {
  197. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  198. if (!priv)
  199. return -ENOMEM;
  200. priv->inode = inode;
  201. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  202. if (IS_ERR(priv->mm)) {
  203. int err = PTR_ERR(priv->mm);
  204. seq_release_private(inode, file);
  205. return err;
  206. }
  207. return 0;
  208. }
  209. static int proc_map_release(struct inode *inode, struct file *file)
  210. {
  211. struct seq_file *seq = file->private_data;
  212. struct proc_maps_private *priv = seq->private;
  213. if (priv->mm)
  214. mmdrop(priv->mm);
  215. kfree(priv->rollup);
  216. return seq_release_private(inode, file);
  217. }
  218. static int do_maps_open(struct inode *inode, struct file *file,
  219. const struct seq_operations *ops)
  220. {
  221. return proc_maps_open(inode, file, ops,
  222. sizeof(struct proc_maps_private));
  223. }
  224. /*
  225. * Indicate if the VMA is a stack for the given task; for
  226. * /proc/PID/maps that is the stack of the main task.
  227. */
  228. static int is_stack(struct vm_area_struct *vma)
  229. {
  230. /*
  231. * We make no effort to guess what a given thread considers to be
  232. * its "stack". It's not even well-defined for programs written
  233. * languages like Go.
  234. */
  235. return vma->vm_start <= vma->vm_mm->start_stack &&
  236. vma->vm_end >= vma->vm_mm->start_stack;
  237. }
  238. static void show_vma_header_prefix(struct seq_file *m,
  239. unsigned long start, unsigned long end,
  240. vm_flags_t flags, unsigned long long pgoff,
  241. dev_t dev, unsigned long ino)
  242. {
  243. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  244. seq_put_hex_ll(m, NULL, start, 8);
  245. seq_put_hex_ll(m, "-", end, 8);
  246. seq_putc(m, ' ');
  247. seq_putc(m, flags & VM_READ ? 'r' : '-');
  248. seq_putc(m, flags & VM_WRITE ? 'w' : '-');
  249. seq_putc(m, flags & VM_EXEC ? 'x' : '-');
  250. seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
  251. seq_put_hex_ll(m, " ", pgoff, 8);
  252. seq_put_hex_ll(m, " ", MAJOR(dev), 2);
  253. seq_put_hex_ll(m, ":", MINOR(dev), 2);
  254. seq_put_decimal_ull(m, " ", ino);
  255. seq_putc(m, ' ');
  256. }
  257. static void
  258. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  259. {
  260. struct mm_struct *mm = vma->vm_mm;
  261. struct file *file = vma->vm_file;
  262. vm_flags_t flags = vma->vm_flags;
  263. unsigned long ino = 0;
  264. unsigned long long pgoff = 0;
  265. unsigned long start, end;
  266. dev_t dev = 0;
  267. const char *name = NULL;
  268. if (file) {
  269. struct inode *inode = file_inode(vma->vm_file);
  270. dev = inode->i_sb->s_dev;
  271. ino = inode->i_ino;
  272. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  273. }
  274. start = vma->vm_start;
  275. end = vma->vm_end;
  276. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  277. /*
  278. * Print the dentry name for named mappings, and a
  279. * special [heap] marker for the heap:
  280. */
  281. if (file) {
  282. seq_pad(m, ' ');
  283. seq_file_path(m, file, "\n");
  284. goto done;
  285. }
  286. if (vma->vm_ops && vma->vm_ops->name) {
  287. name = vma->vm_ops->name(vma);
  288. if (name)
  289. goto done;
  290. }
  291. name = arch_vma_name(vma);
  292. if (!name) {
  293. if (!mm) {
  294. name = "[vdso]";
  295. goto done;
  296. }
  297. if (vma->vm_start <= mm->brk &&
  298. vma->vm_end >= mm->start_brk) {
  299. name = "[heap]";
  300. goto done;
  301. }
  302. if (is_stack(vma))
  303. name = "[stack]";
  304. }
  305. done:
  306. if (name) {
  307. seq_pad(m, ' ');
  308. seq_puts(m, name);
  309. }
  310. seq_putc(m, '\n');
  311. }
  312. static int show_map(struct seq_file *m, void *v, int is_pid)
  313. {
  314. show_map_vma(m, v, is_pid);
  315. m_cache_vma(m, v);
  316. return 0;
  317. }
  318. static int show_pid_map(struct seq_file *m, void *v)
  319. {
  320. return show_map(m, v, 1);
  321. }
  322. static int show_tid_map(struct seq_file *m, void *v)
  323. {
  324. return show_map(m, v, 0);
  325. }
  326. static const struct seq_operations proc_pid_maps_op = {
  327. .start = m_start,
  328. .next = m_next,
  329. .stop = m_stop,
  330. .show = show_pid_map
  331. };
  332. static const struct seq_operations proc_tid_maps_op = {
  333. .start = m_start,
  334. .next = m_next,
  335. .stop = m_stop,
  336. .show = show_tid_map
  337. };
  338. static int pid_maps_open(struct inode *inode, struct file *file)
  339. {
  340. return do_maps_open(inode, file, &proc_pid_maps_op);
  341. }
  342. static int tid_maps_open(struct inode *inode, struct file *file)
  343. {
  344. return do_maps_open(inode, file, &proc_tid_maps_op);
  345. }
  346. const struct file_operations proc_pid_maps_operations = {
  347. .open = pid_maps_open,
  348. .read = seq_read,
  349. .llseek = seq_lseek,
  350. .release = proc_map_release,
  351. };
  352. const struct file_operations proc_tid_maps_operations = {
  353. .open = tid_maps_open,
  354. .read = seq_read,
  355. .llseek = seq_lseek,
  356. .release = proc_map_release,
  357. };
  358. /*
  359. * Proportional Set Size(PSS): my share of RSS.
  360. *
  361. * PSS of a process is the count of pages it has in memory, where each
  362. * page is divided by the number of processes sharing it. So if a
  363. * process has 1000 pages all to itself, and 1000 shared with one other
  364. * process, its PSS will be 1500.
  365. *
  366. * To keep (accumulated) division errors low, we adopt a 64bit
  367. * fixed-point pss counter to minimize division errors. So (pss >>
  368. * PSS_SHIFT) would be the real byte count.
  369. *
  370. * A shift of 12 before division means (assuming 4K page size):
  371. * - 1M 3-user-pages add up to 8KB errors;
  372. * - supports mapcount up to 2^24, or 16M;
  373. * - supports PSS up to 2^52 bytes, or 4PB.
  374. */
  375. #define PSS_SHIFT 12
  376. #ifdef CONFIG_PROC_PAGE_MONITOR
  377. struct mem_size_stats {
  378. bool first;
  379. unsigned long resident;
  380. unsigned long shared_clean;
  381. unsigned long shared_dirty;
  382. unsigned long private_clean;
  383. unsigned long private_dirty;
  384. unsigned long referenced;
  385. unsigned long anonymous;
  386. unsigned long lazyfree;
  387. unsigned long anonymous_thp;
  388. unsigned long shmem_thp;
  389. unsigned long swap;
  390. unsigned long shared_hugetlb;
  391. unsigned long private_hugetlb;
  392. unsigned long first_vma_start;
  393. u64 pss;
  394. u64 pss_locked;
  395. u64 swap_pss;
  396. bool check_shmem_swap;
  397. };
  398. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  399. bool compound, bool young, bool dirty)
  400. {
  401. int i, nr = compound ? 1 << compound_order(page) : 1;
  402. unsigned long size = nr * PAGE_SIZE;
  403. if (PageAnon(page)) {
  404. mss->anonymous += size;
  405. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  406. mss->lazyfree += size;
  407. }
  408. mss->resident += size;
  409. /* Accumulate the size in pages that have been accessed. */
  410. if (young || page_is_young(page) || PageReferenced(page))
  411. mss->referenced += size;
  412. /*
  413. * page_count(page) == 1 guarantees the page is mapped exactly once.
  414. * If any subpage of the compound page mapped with PTE it would elevate
  415. * page_count().
  416. */
  417. if (page_count(page) == 1) {
  418. if (dirty || PageDirty(page))
  419. mss->private_dirty += size;
  420. else
  421. mss->private_clean += size;
  422. mss->pss += (u64)size << PSS_SHIFT;
  423. return;
  424. }
  425. for (i = 0; i < nr; i++, page++) {
  426. int mapcount = page_mapcount(page);
  427. if (mapcount >= 2) {
  428. if (dirty || PageDirty(page))
  429. mss->shared_dirty += PAGE_SIZE;
  430. else
  431. mss->shared_clean += PAGE_SIZE;
  432. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  433. } else {
  434. if (dirty || PageDirty(page))
  435. mss->private_dirty += PAGE_SIZE;
  436. else
  437. mss->private_clean += PAGE_SIZE;
  438. mss->pss += PAGE_SIZE << PSS_SHIFT;
  439. }
  440. }
  441. }
  442. #ifdef CONFIG_SHMEM
  443. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  444. struct mm_walk *walk)
  445. {
  446. struct mem_size_stats *mss = walk->private;
  447. mss->swap += shmem_partial_swap_usage(
  448. walk->vma->vm_file->f_mapping, addr, end);
  449. return 0;
  450. }
  451. #endif
  452. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  453. struct mm_walk *walk)
  454. {
  455. struct mem_size_stats *mss = walk->private;
  456. struct vm_area_struct *vma = walk->vma;
  457. struct page *page = NULL;
  458. if (pte_present(*pte)) {
  459. page = vm_normal_page(vma, addr, *pte);
  460. } else if (is_swap_pte(*pte)) {
  461. swp_entry_t swpent = pte_to_swp_entry(*pte);
  462. if (!non_swap_entry(swpent)) {
  463. int mapcount;
  464. mss->swap += PAGE_SIZE;
  465. mapcount = swp_swapcount(swpent);
  466. if (mapcount >= 2) {
  467. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  468. do_div(pss_delta, mapcount);
  469. mss->swap_pss += pss_delta;
  470. } else {
  471. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  472. }
  473. } else if (is_migration_entry(swpent))
  474. page = migration_entry_to_page(swpent);
  475. else if (is_device_private_entry(swpent))
  476. page = device_private_entry_to_page(swpent);
  477. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  478. && pte_none(*pte))) {
  479. page = find_get_entry(vma->vm_file->f_mapping,
  480. linear_page_index(vma, addr));
  481. if (!page)
  482. return;
  483. if (radix_tree_exceptional_entry(page))
  484. mss->swap += PAGE_SIZE;
  485. else
  486. put_page(page);
  487. return;
  488. }
  489. if (!page)
  490. return;
  491. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  492. }
  493. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  494. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  495. struct mm_walk *walk)
  496. {
  497. struct mem_size_stats *mss = walk->private;
  498. struct vm_area_struct *vma = walk->vma;
  499. struct page *page;
  500. /* FOLL_DUMP will return -EFAULT on huge zero page */
  501. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  502. if (IS_ERR_OR_NULL(page))
  503. return;
  504. if (PageAnon(page))
  505. mss->anonymous_thp += HPAGE_PMD_SIZE;
  506. else if (PageSwapBacked(page))
  507. mss->shmem_thp += HPAGE_PMD_SIZE;
  508. else if (is_zone_device_page(page))
  509. /* pass */;
  510. else
  511. VM_BUG_ON_PAGE(1, page);
  512. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  513. }
  514. #else
  515. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  516. struct mm_walk *walk)
  517. {
  518. }
  519. #endif
  520. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  521. struct mm_walk *walk)
  522. {
  523. struct vm_area_struct *vma = walk->vma;
  524. pte_t *pte;
  525. spinlock_t *ptl;
  526. ptl = pmd_trans_huge_lock(pmd, vma);
  527. if (ptl) {
  528. if (pmd_present(*pmd))
  529. smaps_pmd_entry(pmd, addr, walk);
  530. spin_unlock(ptl);
  531. goto out;
  532. }
  533. if (pmd_trans_unstable(pmd))
  534. goto out;
  535. /*
  536. * The mmap_sem held all the way back in m_start() is what
  537. * keeps khugepaged out of here and from collapsing things
  538. * in here.
  539. */
  540. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  541. for (; addr != end; pte++, addr += PAGE_SIZE)
  542. smaps_pte_entry(pte, addr, walk);
  543. pte_unmap_unlock(pte - 1, ptl);
  544. out:
  545. cond_resched();
  546. return 0;
  547. }
  548. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  549. {
  550. /*
  551. * Don't forget to update Documentation/ on changes.
  552. */
  553. static const char mnemonics[BITS_PER_LONG][2] = {
  554. /*
  555. * In case if we meet a flag we don't know about.
  556. */
  557. [0 ... (BITS_PER_LONG-1)] = "??",
  558. [ilog2(VM_READ)] = "rd",
  559. [ilog2(VM_WRITE)] = "wr",
  560. [ilog2(VM_EXEC)] = "ex",
  561. [ilog2(VM_SHARED)] = "sh",
  562. [ilog2(VM_MAYREAD)] = "mr",
  563. [ilog2(VM_MAYWRITE)] = "mw",
  564. [ilog2(VM_MAYEXEC)] = "me",
  565. [ilog2(VM_MAYSHARE)] = "ms",
  566. [ilog2(VM_GROWSDOWN)] = "gd",
  567. [ilog2(VM_PFNMAP)] = "pf",
  568. [ilog2(VM_DENYWRITE)] = "dw",
  569. #ifdef CONFIG_X86_INTEL_MPX
  570. [ilog2(VM_MPX)] = "mp",
  571. #endif
  572. [ilog2(VM_LOCKED)] = "lo",
  573. [ilog2(VM_IO)] = "io",
  574. [ilog2(VM_SEQ_READ)] = "sr",
  575. [ilog2(VM_RAND_READ)] = "rr",
  576. [ilog2(VM_DONTCOPY)] = "dc",
  577. [ilog2(VM_DONTEXPAND)] = "de",
  578. [ilog2(VM_ACCOUNT)] = "ac",
  579. [ilog2(VM_NORESERVE)] = "nr",
  580. [ilog2(VM_HUGETLB)] = "ht",
  581. [ilog2(VM_SYNC)] = "sf",
  582. [ilog2(VM_ARCH_1)] = "ar",
  583. [ilog2(VM_WIPEONFORK)] = "wf",
  584. [ilog2(VM_DONTDUMP)] = "dd",
  585. #ifdef CONFIG_MEM_SOFT_DIRTY
  586. [ilog2(VM_SOFTDIRTY)] = "sd",
  587. #endif
  588. [ilog2(VM_MIXEDMAP)] = "mm",
  589. [ilog2(VM_HUGEPAGE)] = "hg",
  590. [ilog2(VM_NOHUGEPAGE)] = "nh",
  591. [ilog2(VM_MERGEABLE)] = "mg",
  592. [ilog2(VM_UFFD_MISSING)]= "um",
  593. [ilog2(VM_UFFD_WP)] = "uw",
  594. #ifdef CONFIG_ARCH_HAS_PKEYS
  595. /* These come out via ProtectionKey: */
  596. [ilog2(VM_PKEY_BIT0)] = "",
  597. [ilog2(VM_PKEY_BIT1)] = "",
  598. [ilog2(VM_PKEY_BIT2)] = "",
  599. [ilog2(VM_PKEY_BIT3)] = "",
  600. #if VM_PKEY_BIT4
  601. [ilog2(VM_PKEY_BIT4)] = "",
  602. #endif
  603. #endif /* CONFIG_ARCH_HAS_PKEYS */
  604. };
  605. size_t i;
  606. seq_puts(m, "VmFlags: ");
  607. for (i = 0; i < BITS_PER_LONG; i++) {
  608. if (!mnemonics[i][0])
  609. continue;
  610. if (vma->vm_flags & (1UL << i)) {
  611. seq_putc(m, mnemonics[i][0]);
  612. seq_putc(m, mnemonics[i][1]);
  613. seq_putc(m, ' ');
  614. }
  615. }
  616. seq_putc(m, '\n');
  617. }
  618. #ifdef CONFIG_HUGETLB_PAGE
  619. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  620. unsigned long addr, unsigned long end,
  621. struct mm_walk *walk)
  622. {
  623. struct mem_size_stats *mss = walk->private;
  624. struct vm_area_struct *vma = walk->vma;
  625. struct page *page = NULL;
  626. if (pte_present(*pte)) {
  627. page = vm_normal_page(vma, addr, *pte);
  628. } else if (is_swap_pte(*pte)) {
  629. swp_entry_t swpent = pte_to_swp_entry(*pte);
  630. if (is_migration_entry(swpent))
  631. page = migration_entry_to_page(swpent);
  632. else if (is_device_private_entry(swpent))
  633. page = device_private_entry_to_page(swpent);
  634. }
  635. if (page) {
  636. int mapcount = page_mapcount(page);
  637. if (mapcount >= 2)
  638. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  639. else
  640. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  641. }
  642. return 0;
  643. }
  644. #endif /* HUGETLB_PAGE */
  645. #define SEQ_PUT_DEC(str, val) \
  646. seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
  647. static int show_smap(struct seq_file *m, void *v, int is_pid)
  648. {
  649. struct proc_maps_private *priv = m->private;
  650. struct vm_area_struct *vma = v;
  651. struct mem_size_stats mss_stack;
  652. struct mem_size_stats *mss;
  653. struct mm_walk smaps_walk = {
  654. .pmd_entry = smaps_pte_range,
  655. #ifdef CONFIG_HUGETLB_PAGE
  656. .hugetlb_entry = smaps_hugetlb_range,
  657. #endif
  658. .mm = vma->vm_mm,
  659. };
  660. int ret = 0;
  661. bool rollup_mode;
  662. bool last_vma;
  663. if (priv->rollup) {
  664. rollup_mode = true;
  665. mss = priv->rollup;
  666. if (mss->first) {
  667. mss->first_vma_start = vma->vm_start;
  668. mss->first = false;
  669. }
  670. last_vma = !m_next_vma(priv, vma);
  671. } else {
  672. rollup_mode = false;
  673. memset(&mss_stack, 0, sizeof(mss_stack));
  674. mss = &mss_stack;
  675. }
  676. smaps_walk.private = mss;
  677. #ifdef CONFIG_SHMEM
  678. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  679. /*
  680. * For shared or readonly shmem mappings we know that all
  681. * swapped out pages belong to the shmem object, and we can
  682. * obtain the swap value much more efficiently. For private
  683. * writable mappings, we might have COW pages that are
  684. * not affected by the parent swapped out pages of the shmem
  685. * object, so we have to distinguish them during the page walk.
  686. * Unless we know that the shmem object (or the part mapped by
  687. * our VMA) has no swapped out pages at all.
  688. */
  689. unsigned long shmem_swapped = shmem_swap_usage(vma);
  690. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  691. !(vma->vm_flags & VM_WRITE)) {
  692. mss->swap = shmem_swapped;
  693. } else {
  694. mss->check_shmem_swap = true;
  695. smaps_walk.pte_hole = smaps_pte_hole;
  696. }
  697. }
  698. #endif
  699. /* mmap_sem is held in m_start */
  700. walk_page_vma(vma, &smaps_walk);
  701. if (vma->vm_flags & VM_LOCKED)
  702. mss->pss_locked += mss->pss;
  703. if (!rollup_mode) {
  704. show_map_vma(m, vma, is_pid);
  705. } else if (last_vma) {
  706. show_vma_header_prefix(
  707. m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
  708. seq_pad(m, ' ');
  709. seq_puts(m, "[rollup]\n");
  710. } else {
  711. ret = SEQ_SKIP;
  712. }
  713. if (!rollup_mode) {
  714. SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
  715. SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
  716. SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
  717. seq_puts(m, " kB\n");
  718. }
  719. if (!rollup_mode || last_vma) {
  720. SEQ_PUT_DEC("Rss: ", mss->resident);
  721. SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
  722. SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
  723. SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
  724. SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
  725. SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
  726. SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
  727. SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
  728. SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
  729. SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
  730. SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
  731. SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
  732. seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
  733. mss->private_hugetlb >> 10, 7);
  734. SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
  735. SEQ_PUT_DEC(" kB\nSwapPss: ",
  736. mss->swap_pss >> PSS_SHIFT);
  737. SEQ_PUT_DEC(" kB\nLocked: ",
  738. mss->pss_locked >> PSS_SHIFT);
  739. seq_puts(m, " kB\n");
  740. }
  741. if (!rollup_mode) {
  742. if (arch_pkeys_enabled())
  743. seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
  744. show_smap_vma_flags(m, vma);
  745. }
  746. m_cache_vma(m, vma);
  747. return ret;
  748. }
  749. #undef SEQ_PUT_DEC
  750. static int show_pid_smap(struct seq_file *m, void *v)
  751. {
  752. return show_smap(m, v, 1);
  753. }
  754. static int show_tid_smap(struct seq_file *m, void *v)
  755. {
  756. return show_smap(m, v, 0);
  757. }
  758. static const struct seq_operations proc_pid_smaps_op = {
  759. .start = m_start,
  760. .next = m_next,
  761. .stop = m_stop,
  762. .show = show_pid_smap
  763. };
  764. static const struct seq_operations proc_tid_smaps_op = {
  765. .start = m_start,
  766. .next = m_next,
  767. .stop = m_stop,
  768. .show = show_tid_smap
  769. };
  770. static int pid_smaps_open(struct inode *inode, struct file *file)
  771. {
  772. return do_maps_open(inode, file, &proc_pid_smaps_op);
  773. }
  774. static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
  775. {
  776. struct seq_file *seq;
  777. struct proc_maps_private *priv;
  778. int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
  779. if (ret < 0)
  780. return ret;
  781. seq = file->private_data;
  782. priv = seq->private;
  783. priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
  784. if (!priv->rollup) {
  785. proc_map_release(inode, file);
  786. return -ENOMEM;
  787. }
  788. priv->rollup->first = true;
  789. return 0;
  790. }
  791. static int tid_smaps_open(struct inode *inode, struct file *file)
  792. {
  793. return do_maps_open(inode, file, &proc_tid_smaps_op);
  794. }
  795. const struct file_operations proc_pid_smaps_operations = {
  796. .open = pid_smaps_open,
  797. .read = seq_read,
  798. .llseek = seq_lseek,
  799. .release = proc_map_release,
  800. };
  801. const struct file_operations proc_pid_smaps_rollup_operations = {
  802. .open = pid_smaps_rollup_open,
  803. .read = seq_read,
  804. .llseek = seq_lseek,
  805. .release = proc_map_release,
  806. };
  807. const struct file_operations proc_tid_smaps_operations = {
  808. .open = tid_smaps_open,
  809. .read = seq_read,
  810. .llseek = seq_lseek,
  811. .release = proc_map_release,
  812. };
  813. enum clear_refs_types {
  814. CLEAR_REFS_ALL = 1,
  815. CLEAR_REFS_ANON,
  816. CLEAR_REFS_MAPPED,
  817. CLEAR_REFS_SOFT_DIRTY,
  818. CLEAR_REFS_MM_HIWATER_RSS,
  819. CLEAR_REFS_LAST,
  820. };
  821. struct clear_refs_private {
  822. enum clear_refs_types type;
  823. };
  824. #ifdef CONFIG_MEM_SOFT_DIRTY
  825. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  826. unsigned long addr, pte_t *pte)
  827. {
  828. /*
  829. * The soft-dirty tracker uses #PF-s to catch writes
  830. * to pages, so write-protect the pte as well. See the
  831. * Documentation/admin-guide/mm/soft-dirty.rst for full description
  832. * of how soft-dirty works.
  833. */
  834. pte_t ptent = *pte;
  835. if (pte_present(ptent)) {
  836. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  837. ptent = pte_wrprotect(ptent);
  838. ptent = pte_clear_soft_dirty(ptent);
  839. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  840. } else if (is_swap_pte(ptent)) {
  841. ptent = pte_swp_clear_soft_dirty(ptent);
  842. set_pte_at(vma->vm_mm, addr, pte, ptent);
  843. }
  844. }
  845. #else
  846. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  847. unsigned long addr, pte_t *pte)
  848. {
  849. }
  850. #endif
  851. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  852. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  853. unsigned long addr, pmd_t *pmdp)
  854. {
  855. pmd_t old, pmd = *pmdp;
  856. if (pmd_present(pmd)) {
  857. /* See comment in change_huge_pmd() */
  858. old = pmdp_invalidate(vma, addr, pmdp);
  859. if (pmd_dirty(old))
  860. pmd = pmd_mkdirty(pmd);
  861. if (pmd_young(old))
  862. pmd = pmd_mkyoung(pmd);
  863. pmd = pmd_wrprotect(pmd);
  864. pmd = pmd_clear_soft_dirty(pmd);
  865. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  866. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  867. pmd = pmd_swp_clear_soft_dirty(pmd);
  868. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  869. }
  870. }
  871. #else
  872. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  873. unsigned long addr, pmd_t *pmdp)
  874. {
  875. }
  876. #endif
  877. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  878. unsigned long end, struct mm_walk *walk)
  879. {
  880. struct clear_refs_private *cp = walk->private;
  881. struct vm_area_struct *vma = walk->vma;
  882. pte_t *pte, ptent;
  883. spinlock_t *ptl;
  884. struct page *page;
  885. ptl = pmd_trans_huge_lock(pmd, vma);
  886. if (ptl) {
  887. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  888. clear_soft_dirty_pmd(vma, addr, pmd);
  889. goto out;
  890. }
  891. if (!pmd_present(*pmd))
  892. goto out;
  893. page = pmd_page(*pmd);
  894. /* Clear accessed and referenced bits. */
  895. pmdp_test_and_clear_young(vma, addr, pmd);
  896. test_and_clear_page_young(page);
  897. ClearPageReferenced(page);
  898. out:
  899. spin_unlock(ptl);
  900. return 0;
  901. }
  902. if (pmd_trans_unstable(pmd))
  903. return 0;
  904. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  905. for (; addr != end; pte++, addr += PAGE_SIZE) {
  906. ptent = *pte;
  907. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  908. clear_soft_dirty(vma, addr, pte);
  909. continue;
  910. }
  911. if (!pte_present(ptent))
  912. continue;
  913. page = vm_normal_page(vma, addr, ptent);
  914. if (!page)
  915. continue;
  916. /* Clear accessed and referenced bits. */
  917. ptep_test_and_clear_young(vma, addr, pte);
  918. test_and_clear_page_young(page);
  919. ClearPageReferenced(page);
  920. }
  921. pte_unmap_unlock(pte - 1, ptl);
  922. cond_resched();
  923. return 0;
  924. }
  925. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  926. struct mm_walk *walk)
  927. {
  928. struct clear_refs_private *cp = walk->private;
  929. struct vm_area_struct *vma = walk->vma;
  930. if (vma->vm_flags & VM_PFNMAP)
  931. return 1;
  932. /*
  933. * Writing 1 to /proc/pid/clear_refs affects all pages.
  934. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  935. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  936. * Writing 4 to /proc/pid/clear_refs affects all pages.
  937. */
  938. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  939. return 1;
  940. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  941. return 1;
  942. return 0;
  943. }
  944. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  945. size_t count, loff_t *ppos)
  946. {
  947. struct task_struct *task;
  948. char buffer[PROC_NUMBUF];
  949. struct mm_struct *mm;
  950. struct vm_area_struct *vma;
  951. enum clear_refs_types type;
  952. struct mmu_gather tlb;
  953. int itype;
  954. int rv;
  955. memset(buffer, 0, sizeof(buffer));
  956. if (count > sizeof(buffer) - 1)
  957. count = sizeof(buffer) - 1;
  958. if (copy_from_user(buffer, buf, count))
  959. return -EFAULT;
  960. rv = kstrtoint(strstrip(buffer), 10, &itype);
  961. if (rv < 0)
  962. return rv;
  963. type = (enum clear_refs_types)itype;
  964. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  965. return -EINVAL;
  966. task = get_proc_task(file_inode(file));
  967. if (!task)
  968. return -ESRCH;
  969. mm = get_task_mm(task);
  970. if (mm) {
  971. struct clear_refs_private cp = {
  972. .type = type,
  973. };
  974. struct mm_walk clear_refs_walk = {
  975. .pmd_entry = clear_refs_pte_range,
  976. .test_walk = clear_refs_test_walk,
  977. .mm = mm,
  978. .private = &cp,
  979. };
  980. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  981. if (down_write_killable(&mm->mmap_sem)) {
  982. count = -EINTR;
  983. goto out_mm;
  984. }
  985. /*
  986. * Writing 5 to /proc/pid/clear_refs resets the peak
  987. * resident set size to this mm's current rss value.
  988. */
  989. reset_mm_hiwater_rss(mm);
  990. up_write(&mm->mmap_sem);
  991. goto out_mm;
  992. }
  993. down_read(&mm->mmap_sem);
  994. tlb_gather_mmu(&tlb, mm, 0, -1);
  995. if (type == CLEAR_REFS_SOFT_DIRTY) {
  996. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  997. if (!(vma->vm_flags & VM_SOFTDIRTY))
  998. continue;
  999. up_read(&mm->mmap_sem);
  1000. if (down_write_killable(&mm->mmap_sem)) {
  1001. count = -EINTR;
  1002. goto out_mm;
  1003. }
  1004. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1005. vma->vm_flags &= ~VM_SOFTDIRTY;
  1006. vma_set_page_prot(vma);
  1007. }
  1008. downgrade_write(&mm->mmap_sem);
  1009. break;
  1010. }
  1011. mmu_notifier_invalidate_range_start(mm, 0, -1);
  1012. }
  1013. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  1014. if (type == CLEAR_REFS_SOFT_DIRTY)
  1015. mmu_notifier_invalidate_range_end(mm, 0, -1);
  1016. tlb_finish_mmu(&tlb, 0, -1);
  1017. up_read(&mm->mmap_sem);
  1018. out_mm:
  1019. mmput(mm);
  1020. }
  1021. put_task_struct(task);
  1022. return count;
  1023. }
  1024. const struct file_operations proc_clear_refs_operations = {
  1025. .write = clear_refs_write,
  1026. .llseek = noop_llseek,
  1027. };
  1028. typedef struct {
  1029. u64 pme;
  1030. } pagemap_entry_t;
  1031. struct pagemapread {
  1032. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1033. pagemap_entry_t *buffer;
  1034. bool show_pfn;
  1035. };
  1036. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1037. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1038. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1039. #define PM_PFRAME_BITS 55
  1040. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1041. #define PM_SOFT_DIRTY BIT_ULL(55)
  1042. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1043. #define PM_FILE BIT_ULL(61)
  1044. #define PM_SWAP BIT_ULL(62)
  1045. #define PM_PRESENT BIT_ULL(63)
  1046. #define PM_END_OF_BUFFER 1
  1047. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1048. {
  1049. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1050. }
  1051. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1052. struct pagemapread *pm)
  1053. {
  1054. pm->buffer[pm->pos++] = *pme;
  1055. if (pm->pos >= pm->len)
  1056. return PM_END_OF_BUFFER;
  1057. return 0;
  1058. }
  1059. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1060. struct mm_walk *walk)
  1061. {
  1062. struct pagemapread *pm = walk->private;
  1063. unsigned long addr = start;
  1064. int err = 0;
  1065. while (addr < end) {
  1066. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1067. pagemap_entry_t pme = make_pme(0, 0);
  1068. /* End of address space hole, which we mark as non-present. */
  1069. unsigned long hole_end;
  1070. if (vma)
  1071. hole_end = min(end, vma->vm_start);
  1072. else
  1073. hole_end = end;
  1074. for (; addr < hole_end; addr += PAGE_SIZE) {
  1075. err = add_to_pagemap(addr, &pme, pm);
  1076. if (err)
  1077. goto out;
  1078. }
  1079. if (!vma)
  1080. break;
  1081. /* Addresses in the VMA. */
  1082. if (vma->vm_flags & VM_SOFTDIRTY)
  1083. pme = make_pme(0, PM_SOFT_DIRTY);
  1084. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1085. err = add_to_pagemap(addr, &pme, pm);
  1086. if (err)
  1087. goto out;
  1088. }
  1089. }
  1090. out:
  1091. return err;
  1092. }
  1093. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1094. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1095. {
  1096. u64 frame = 0, flags = 0;
  1097. struct page *page = NULL;
  1098. if (pte_present(pte)) {
  1099. if (pm->show_pfn)
  1100. frame = pte_pfn(pte);
  1101. flags |= PM_PRESENT;
  1102. page = _vm_normal_page(vma, addr, pte, true);
  1103. if (pte_soft_dirty(pte))
  1104. flags |= PM_SOFT_DIRTY;
  1105. } else if (is_swap_pte(pte)) {
  1106. swp_entry_t entry;
  1107. if (pte_swp_soft_dirty(pte))
  1108. flags |= PM_SOFT_DIRTY;
  1109. entry = pte_to_swp_entry(pte);
  1110. if (pm->show_pfn)
  1111. frame = swp_type(entry) |
  1112. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1113. flags |= PM_SWAP;
  1114. if (is_migration_entry(entry))
  1115. page = migration_entry_to_page(entry);
  1116. if (is_device_private_entry(entry))
  1117. page = device_private_entry_to_page(entry);
  1118. }
  1119. if (page && !PageAnon(page))
  1120. flags |= PM_FILE;
  1121. if (page && page_mapcount(page) == 1)
  1122. flags |= PM_MMAP_EXCLUSIVE;
  1123. if (vma->vm_flags & VM_SOFTDIRTY)
  1124. flags |= PM_SOFT_DIRTY;
  1125. return make_pme(frame, flags);
  1126. }
  1127. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1128. struct mm_walk *walk)
  1129. {
  1130. struct vm_area_struct *vma = walk->vma;
  1131. struct pagemapread *pm = walk->private;
  1132. spinlock_t *ptl;
  1133. pte_t *pte, *orig_pte;
  1134. int err = 0;
  1135. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1136. ptl = pmd_trans_huge_lock(pmdp, vma);
  1137. if (ptl) {
  1138. u64 flags = 0, frame = 0;
  1139. pmd_t pmd = *pmdp;
  1140. struct page *page = NULL;
  1141. if (vma->vm_flags & VM_SOFTDIRTY)
  1142. flags |= PM_SOFT_DIRTY;
  1143. if (pmd_present(pmd)) {
  1144. page = pmd_page(pmd);
  1145. flags |= PM_PRESENT;
  1146. if (pmd_soft_dirty(pmd))
  1147. flags |= PM_SOFT_DIRTY;
  1148. if (pm->show_pfn)
  1149. frame = pmd_pfn(pmd) +
  1150. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1151. }
  1152. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1153. else if (is_swap_pmd(pmd)) {
  1154. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1155. unsigned long offset;
  1156. if (pm->show_pfn) {
  1157. offset = swp_offset(entry) +
  1158. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1159. frame = swp_type(entry) |
  1160. (offset << MAX_SWAPFILES_SHIFT);
  1161. }
  1162. flags |= PM_SWAP;
  1163. if (pmd_swp_soft_dirty(pmd))
  1164. flags |= PM_SOFT_DIRTY;
  1165. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1166. page = migration_entry_to_page(entry);
  1167. }
  1168. #endif
  1169. if (page && page_mapcount(page) == 1)
  1170. flags |= PM_MMAP_EXCLUSIVE;
  1171. for (; addr != end; addr += PAGE_SIZE) {
  1172. pagemap_entry_t pme = make_pme(frame, flags);
  1173. err = add_to_pagemap(addr, &pme, pm);
  1174. if (err)
  1175. break;
  1176. if (pm->show_pfn) {
  1177. if (flags & PM_PRESENT)
  1178. frame++;
  1179. else if (flags & PM_SWAP)
  1180. frame += (1 << MAX_SWAPFILES_SHIFT);
  1181. }
  1182. }
  1183. spin_unlock(ptl);
  1184. return err;
  1185. }
  1186. if (pmd_trans_unstable(pmdp))
  1187. return 0;
  1188. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1189. /*
  1190. * We can assume that @vma always points to a valid one and @end never
  1191. * goes beyond vma->vm_end.
  1192. */
  1193. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1194. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1195. pagemap_entry_t pme;
  1196. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1197. err = add_to_pagemap(addr, &pme, pm);
  1198. if (err)
  1199. break;
  1200. }
  1201. pte_unmap_unlock(orig_pte, ptl);
  1202. cond_resched();
  1203. return err;
  1204. }
  1205. #ifdef CONFIG_HUGETLB_PAGE
  1206. /* This function walks within one hugetlb entry in the single call */
  1207. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1208. unsigned long addr, unsigned long end,
  1209. struct mm_walk *walk)
  1210. {
  1211. struct pagemapread *pm = walk->private;
  1212. struct vm_area_struct *vma = walk->vma;
  1213. u64 flags = 0, frame = 0;
  1214. int err = 0;
  1215. pte_t pte;
  1216. if (vma->vm_flags & VM_SOFTDIRTY)
  1217. flags |= PM_SOFT_DIRTY;
  1218. pte = huge_ptep_get(ptep);
  1219. if (pte_present(pte)) {
  1220. struct page *page = pte_page(pte);
  1221. if (!PageAnon(page))
  1222. flags |= PM_FILE;
  1223. if (page_mapcount(page) == 1)
  1224. flags |= PM_MMAP_EXCLUSIVE;
  1225. flags |= PM_PRESENT;
  1226. if (pm->show_pfn)
  1227. frame = pte_pfn(pte) +
  1228. ((addr & ~hmask) >> PAGE_SHIFT);
  1229. }
  1230. for (; addr != end; addr += PAGE_SIZE) {
  1231. pagemap_entry_t pme = make_pme(frame, flags);
  1232. err = add_to_pagemap(addr, &pme, pm);
  1233. if (err)
  1234. return err;
  1235. if (pm->show_pfn && (flags & PM_PRESENT))
  1236. frame++;
  1237. }
  1238. cond_resched();
  1239. return err;
  1240. }
  1241. #endif /* HUGETLB_PAGE */
  1242. /*
  1243. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1244. *
  1245. * For each page in the address space, this file contains one 64-bit entry
  1246. * consisting of the following:
  1247. *
  1248. * Bits 0-54 page frame number (PFN) if present
  1249. * Bits 0-4 swap type if swapped
  1250. * Bits 5-54 swap offset if swapped
  1251. * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
  1252. * Bit 56 page exclusively mapped
  1253. * Bits 57-60 zero
  1254. * Bit 61 page is file-page or shared-anon
  1255. * Bit 62 page swapped
  1256. * Bit 63 page present
  1257. *
  1258. * If the page is not present but in swap, then the PFN contains an
  1259. * encoding of the swap file number and the page's offset into the
  1260. * swap. Unmapped pages return a null PFN. This allows determining
  1261. * precisely which pages are mapped (or in swap) and comparing mapped
  1262. * pages between processes.
  1263. *
  1264. * Efficient users of this interface will use /proc/pid/maps to
  1265. * determine which areas of memory are actually mapped and llseek to
  1266. * skip over unmapped regions.
  1267. */
  1268. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1269. size_t count, loff_t *ppos)
  1270. {
  1271. struct mm_struct *mm = file->private_data;
  1272. struct pagemapread pm;
  1273. struct mm_walk pagemap_walk = {};
  1274. unsigned long src;
  1275. unsigned long svpfn;
  1276. unsigned long start_vaddr;
  1277. unsigned long end_vaddr;
  1278. int ret = 0, copied = 0;
  1279. if (!mm || !mmget_not_zero(mm))
  1280. goto out;
  1281. ret = -EINVAL;
  1282. /* file position must be aligned */
  1283. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1284. goto out_mm;
  1285. ret = 0;
  1286. if (!count)
  1287. goto out_mm;
  1288. /* do not disclose physical addresses: attack vector */
  1289. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1290. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1291. pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
  1292. ret = -ENOMEM;
  1293. if (!pm.buffer)
  1294. goto out_mm;
  1295. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1296. pagemap_walk.pte_hole = pagemap_pte_hole;
  1297. #ifdef CONFIG_HUGETLB_PAGE
  1298. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1299. #endif
  1300. pagemap_walk.mm = mm;
  1301. pagemap_walk.private = &pm;
  1302. src = *ppos;
  1303. svpfn = src / PM_ENTRY_BYTES;
  1304. start_vaddr = svpfn << PAGE_SHIFT;
  1305. end_vaddr = mm->task_size;
  1306. /* watch out for wraparound */
  1307. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1308. start_vaddr = end_vaddr;
  1309. /*
  1310. * The odds are that this will stop walking way
  1311. * before end_vaddr, because the length of the
  1312. * user buffer is tracked in "pm", and the walk
  1313. * will stop when we hit the end of the buffer.
  1314. */
  1315. ret = 0;
  1316. while (count && (start_vaddr < end_vaddr)) {
  1317. int len;
  1318. unsigned long end;
  1319. pm.pos = 0;
  1320. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1321. /* overflow ? */
  1322. if (end < start_vaddr || end > end_vaddr)
  1323. end = end_vaddr;
  1324. down_read(&mm->mmap_sem);
  1325. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1326. up_read(&mm->mmap_sem);
  1327. start_vaddr = end;
  1328. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1329. if (copy_to_user(buf, pm.buffer, len)) {
  1330. ret = -EFAULT;
  1331. goto out_free;
  1332. }
  1333. copied += len;
  1334. buf += len;
  1335. count -= len;
  1336. }
  1337. *ppos += copied;
  1338. if (!ret || ret == PM_END_OF_BUFFER)
  1339. ret = copied;
  1340. out_free:
  1341. kfree(pm.buffer);
  1342. out_mm:
  1343. mmput(mm);
  1344. out:
  1345. return ret;
  1346. }
  1347. static int pagemap_open(struct inode *inode, struct file *file)
  1348. {
  1349. struct mm_struct *mm;
  1350. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1351. if (IS_ERR(mm))
  1352. return PTR_ERR(mm);
  1353. file->private_data = mm;
  1354. return 0;
  1355. }
  1356. static int pagemap_release(struct inode *inode, struct file *file)
  1357. {
  1358. struct mm_struct *mm = file->private_data;
  1359. if (mm)
  1360. mmdrop(mm);
  1361. return 0;
  1362. }
  1363. const struct file_operations proc_pagemap_operations = {
  1364. .llseek = mem_lseek, /* borrow this */
  1365. .read = pagemap_read,
  1366. .open = pagemap_open,
  1367. .release = pagemap_release,
  1368. };
  1369. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1370. #ifdef CONFIG_NUMA
  1371. struct numa_maps {
  1372. unsigned long pages;
  1373. unsigned long anon;
  1374. unsigned long active;
  1375. unsigned long writeback;
  1376. unsigned long mapcount_max;
  1377. unsigned long dirty;
  1378. unsigned long swapcache;
  1379. unsigned long node[MAX_NUMNODES];
  1380. };
  1381. struct numa_maps_private {
  1382. struct proc_maps_private proc_maps;
  1383. struct numa_maps md;
  1384. };
  1385. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1386. unsigned long nr_pages)
  1387. {
  1388. int count = page_mapcount(page);
  1389. md->pages += nr_pages;
  1390. if (pte_dirty || PageDirty(page))
  1391. md->dirty += nr_pages;
  1392. if (PageSwapCache(page))
  1393. md->swapcache += nr_pages;
  1394. if (PageActive(page) || PageUnevictable(page))
  1395. md->active += nr_pages;
  1396. if (PageWriteback(page))
  1397. md->writeback += nr_pages;
  1398. if (PageAnon(page))
  1399. md->anon += nr_pages;
  1400. if (count > md->mapcount_max)
  1401. md->mapcount_max = count;
  1402. md->node[page_to_nid(page)] += nr_pages;
  1403. }
  1404. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1405. unsigned long addr)
  1406. {
  1407. struct page *page;
  1408. int nid;
  1409. if (!pte_present(pte))
  1410. return NULL;
  1411. page = vm_normal_page(vma, addr, pte);
  1412. if (!page)
  1413. return NULL;
  1414. if (PageReserved(page))
  1415. return NULL;
  1416. nid = page_to_nid(page);
  1417. if (!node_isset(nid, node_states[N_MEMORY]))
  1418. return NULL;
  1419. return page;
  1420. }
  1421. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1422. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1423. struct vm_area_struct *vma,
  1424. unsigned long addr)
  1425. {
  1426. struct page *page;
  1427. int nid;
  1428. if (!pmd_present(pmd))
  1429. return NULL;
  1430. page = vm_normal_page_pmd(vma, addr, pmd);
  1431. if (!page)
  1432. return NULL;
  1433. if (PageReserved(page))
  1434. return NULL;
  1435. nid = page_to_nid(page);
  1436. if (!node_isset(nid, node_states[N_MEMORY]))
  1437. return NULL;
  1438. return page;
  1439. }
  1440. #endif
  1441. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1442. unsigned long end, struct mm_walk *walk)
  1443. {
  1444. struct numa_maps *md = walk->private;
  1445. struct vm_area_struct *vma = walk->vma;
  1446. spinlock_t *ptl;
  1447. pte_t *orig_pte;
  1448. pte_t *pte;
  1449. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1450. ptl = pmd_trans_huge_lock(pmd, vma);
  1451. if (ptl) {
  1452. struct page *page;
  1453. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1454. if (page)
  1455. gather_stats(page, md, pmd_dirty(*pmd),
  1456. HPAGE_PMD_SIZE/PAGE_SIZE);
  1457. spin_unlock(ptl);
  1458. return 0;
  1459. }
  1460. if (pmd_trans_unstable(pmd))
  1461. return 0;
  1462. #endif
  1463. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1464. do {
  1465. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1466. if (!page)
  1467. continue;
  1468. gather_stats(page, md, pte_dirty(*pte), 1);
  1469. } while (pte++, addr += PAGE_SIZE, addr != end);
  1470. pte_unmap_unlock(orig_pte, ptl);
  1471. cond_resched();
  1472. return 0;
  1473. }
  1474. #ifdef CONFIG_HUGETLB_PAGE
  1475. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1476. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1477. {
  1478. pte_t huge_pte = huge_ptep_get(pte);
  1479. struct numa_maps *md;
  1480. struct page *page;
  1481. if (!pte_present(huge_pte))
  1482. return 0;
  1483. page = pte_page(huge_pte);
  1484. if (!page)
  1485. return 0;
  1486. md = walk->private;
  1487. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1488. return 0;
  1489. }
  1490. #else
  1491. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1492. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1493. {
  1494. return 0;
  1495. }
  1496. #endif
  1497. /*
  1498. * Display pages allocated per node and memory policy via /proc.
  1499. */
  1500. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1501. {
  1502. struct numa_maps_private *numa_priv = m->private;
  1503. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1504. struct vm_area_struct *vma = v;
  1505. struct numa_maps *md = &numa_priv->md;
  1506. struct file *file = vma->vm_file;
  1507. struct mm_struct *mm = vma->vm_mm;
  1508. struct mm_walk walk = {
  1509. .hugetlb_entry = gather_hugetlb_stats,
  1510. .pmd_entry = gather_pte_stats,
  1511. .private = md,
  1512. .mm = mm,
  1513. };
  1514. struct mempolicy *pol;
  1515. char buffer[64];
  1516. int nid;
  1517. if (!mm)
  1518. return 0;
  1519. /* Ensure we start with an empty set of numa_maps statistics. */
  1520. memset(md, 0, sizeof(*md));
  1521. pol = __get_vma_policy(vma, vma->vm_start);
  1522. if (pol) {
  1523. mpol_to_str(buffer, sizeof(buffer), pol);
  1524. mpol_cond_put(pol);
  1525. } else {
  1526. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1527. }
  1528. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1529. if (file) {
  1530. seq_puts(m, " file=");
  1531. seq_file_path(m, file, "\n\t= ");
  1532. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1533. seq_puts(m, " heap");
  1534. } else if (is_stack(vma)) {
  1535. seq_puts(m, " stack");
  1536. }
  1537. if (is_vm_hugetlb_page(vma))
  1538. seq_puts(m, " huge");
  1539. /* mmap_sem is held by m_start */
  1540. walk_page_vma(vma, &walk);
  1541. if (!md->pages)
  1542. goto out;
  1543. if (md->anon)
  1544. seq_printf(m, " anon=%lu", md->anon);
  1545. if (md->dirty)
  1546. seq_printf(m, " dirty=%lu", md->dirty);
  1547. if (md->pages != md->anon && md->pages != md->dirty)
  1548. seq_printf(m, " mapped=%lu", md->pages);
  1549. if (md->mapcount_max > 1)
  1550. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1551. if (md->swapcache)
  1552. seq_printf(m, " swapcache=%lu", md->swapcache);
  1553. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1554. seq_printf(m, " active=%lu", md->active);
  1555. if (md->writeback)
  1556. seq_printf(m, " writeback=%lu", md->writeback);
  1557. for_each_node_state(nid, N_MEMORY)
  1558. if (md->node[nid])
  1559. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1560. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1561. out:
  1562. seq_putc(m, '\n');
  1563. m_cache_vma(m, vma);
  1564. return 0;
  1565. }
  1566. static int show_pid_numa_map(struct seq_file *m, void *v)
  1567. {
  1568. return show_numa_map(m, v, 1);
  1569. }
  1570. static int show_tid_numa_map(struct seq_file *m, void *v)
  1571. {
  1572. return show_numa_map(m, v, 0);
  1573. }
  1574. static const struct seq_operations proc_pid_numa_maps_op = {
  1575. .start = m_start,
  1576. .next = m_next,
  1577. .stop = m_stop,
  1578. .show = show_pid_numa_map,
  1579. };
  1580. static const struct seq_operations proc_tid_numa_maps_op = {
  1581. .start = m_start,
  1582. .next = m_next,
  1583. .stop = m_stop,
  1584. .show = show_tid_numa_map,
  1585. };
  1586. static int numa_maps_open(struct inode *inode, struct file *file,
  1587. const struct seq_operations *ops)
  1588. {
  1589. return proc_maps_open(inode, file, ops,
  1590. sizeof(struct numa_maps_private));
  1591. }
  1592. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1593. {
  1594. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1595. }
  1596. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1597. {
  1598. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1599. }
  1600. const struct file_operations proc_pid_numa_maps_operations = {
  1601. .open = pid_numa_maps_open,
  1602. .read = seq_read,
  1603. .llseek = seq_lseek,
  1604. .release = proc_map_release,
  1605. };
  1606. const struct file_operations proc_tid_numa_maps_operations = {
  1607. .open = tid_numa_maps_open,
  1608. .read = seq_read,
  1609. .llseek = seq_lseek,
  1610. .release = proc_map_release,
  1611. };
  1612. #endif /* CONFIG_NUMA */