segment.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include <linux/freezer.h>
  20. #include <linux/sched/signal.h>
  21. #include "f2fs.h"
  22. #include "segment.h"
  23. #include "node.h"
  24. #include "gc.h"
  25. #include "trace.h"
  26. #include <trace/events/f2fs.h>
  27. #define __reverse_ffz(x) __reverse_ffs(~(x))
  28. static struct kmem_cache *discard_entry_slab;
  29. static struct kmem_cache *discard_cmd_slab;
  30. static struct kmem_cache *sit_entry_set_slab;
  31. static struct kmem_cache *inmem_entry_slab;
  32. static unsigned long __reverse_ulong(unsigned char *str)
  33. {
  34. unsigned long tmp = 0;
  35. int shift = 24, idx = 0;
  36. #if BITS_PER_LONG == 64
  37. shift = 56;
  38. #endif
  39. while (shift >= 0) {
  40. tmp |= (unsigned long)str[idx++] << shift;
  41. shift -= BITS_PER_BYTE;
  42. }
  43. return tmp;
  44. }
  45. /*
  46. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  47. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  48. */
  49. static inline unsigned long __reverse_ffs(unsigned long word)
  50. {
  51. int num = 0;
  52. #if BITS_PER_LONG == 64
  53. if ((word & 0xffffffff00000000UL) == 0)
  54. num += 32;
  55. else
  56. word >>= 32;
  57. #endif
  58. if ((word & 0xffff0000) == 0)
  59. num += 16;
  60. else
  61. word >>= 16;
  62. if ((word & 0xff00) == 0)
  63. num += 8;
  64. else
  65. word >>= 8;
  66. if ((word & 0xf0) == 0)
  67. num += 4;
  68. else
  69. word >>= 4;
  70. if ((word & 0xc) == 0)
  71. num += 2;
  72. else
  73. word >>= 2;
  74. if ((word & 0x2) == 0)
  75. num += 1;
  76. return num;
  77. }
  78. /*
  79. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  80. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  81. * @size must be integral times of unsigned long.
  82. * Example:
  83. * MSB <--> LSB
  84. * f2fs_set_bit(0, bitmap) => 1000 0000
  85. * f2fs_set_bit(7, bitmap) => 0000 0001
  86. */
  87. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  88. unsigned long size, unsigned long offset)
  89. {
  90. const unsigned long *p = addr + BIT_WORD(offset);
  91. unsigned long result = size;
  92. unsigned long tmp;
  93. if (offset >= size)
  94. return size;
  95. size -= (offset & ~(BITS_PER_LONG - 1));
  96. offset %= BITS_PER_LONG;
  97. while (1) {
  98. if (*p == 0)
  99. goto pass;
  100. tmp = __reverse_ulong((unsigned char *)p);
  101. tmp &= ~0UL >> offset;
  102. if (size < BITS_PER_LONG)
  103. tmp &= (~0UL << (BITS_PER_LONG - size));
  104. if (tmp)
  105. goto found;
  106. pass:
  107. if (size <= BITS_PER_LONG)
  108. break;
  109. size -= BITS_PER_LONG;
  110. offset = 0;
  111. p++;
  112. }
  113. return result;
  114. found:
  115. return result - size + __reverse_ffs(tmp);
  116. }
  117. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  118. unsigned long size, unsigned long offset)
  119. {
  120. const unsigned long *p = addr + BIT_WORD(offset);
  121. unsigned long result = size;
  122. unsigned long tmp;
  123. if (offset >= size)
  124. return size;
  125. size -= (offset & ~(BITS_PER_LONG - 1));
  126. offset %= BITS_PER_LONG;
  127. while (1) {
  128. if (*p == ~0UL)
  129. goto pass;
  130. tmp = __reverse_ulong((unsigned char *)p);
  131. if (offset)
  132. tmp |= ~0UL << (BITS_PER_LONG - offset);
  133. if (size < BITS_PER_LONG)
  134. tmp |= ~0UL >> size;
  135. if (tmp != ~0UL)
  136. goto found;
  137. pass:
  138. if (size <= BITS_PER_LONG)
  139. break;
  140. size -= BITS_PER_LONG;
  141. offset = 0;
  142. p++;
  143. }
  144. return result;
  145. found:
  146. return result - size + __reverse_ffz(tmp);
  147. }
  148. bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
  149. {
  150. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  151. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  152. int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
  153. if (test_opt(sbi, LFS))
  154. return false;
  155. if (sbi->gc_mode == GC_URGENT)
  156. return true;
  157. return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
  158. SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
  159. }
  160. void f2fs_register_inmem_page(struct inode *inode, struct page *page)
  161. {
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. struct inmem_pages *new;
  165. f2fs_trace_pid(page);
  166. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  167. SetPagePrivate(page);
  168. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  169. /* add atomic page indices to the list */
  170. new->page = page;
  171. INIT_LIST_HEAD(&new->list);
  172. /* increase reference count with clean state */
  173. mutex_lock(&fi->inmem_lock);
  174. get_page(page);
  175. list_add_tail(&new->list, &fi->inmem_pages);
  176. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  177. if (list_empty(&fi->inmem_ilist))
  178. list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
  179. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  180. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  181. mutex_unlock(&fi->inmem_lock);
  182. trace_f2fs_register_inmem_page(page, INMEM);
  183. }
  184. static int __revoke_inmem_pages(struct inode *inode,
  185. struct list_head *head, bool drop, bool recover)
  186. {
  187. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  188. struct inmem_pages *cur, *tmp;
  189. int err = 0;
  190. list_for_each_entry_safe(cur, tmp, head, list) {
  191. struct page *page = cur->page;
  192. if (drop)
  193. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  194. lock_page(page);
  195. f2fs_wait_on_page_writeback(page, DATA, true);
  196. if (recover) {
  197. struct dnode_of_data dn;
  198. struct node_info ni;
  199. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  200. retry:
  201. set_new_dnode(&dn, inode, NULL, NULL, 0);
  202. err = f2fs_get_dnode_of_data(&dn, page->index,
  203. LOOKUP_NODE);
  204. if (err) {
  205. if (err == -ENOMEM) {
  206. congestion_wait(BLK_RW_ASYNC, HZ/50);
  207. cond_resched();
  208. goto retry;
  209. }
  210. err = -EAGAIN;
  211. goto next;
  212. }
  213. f2fs_get_node_info(sbi, dn.nid, &ni);
  214. if (cur->old_addr == NEW_ADDR) {
  215. f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
  216. f2fs_update_data_blkaddr(&dn, NEW_ADDR);
  217. } else
  218. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  219. cur->old_addr, ni.version, true, true);
  220. f2fs_put_dnode(&dn);
  221. }
  222. next:
  223. /* we don't need to invalidate this in the sccessful status */
  224. if (drop || recover)
  225. ClearPageUptodate(page);
  226. set_page_private(page, 0);
  227. ClearPagePrivate(page);
  228. f2fs_put_page(page, 1);
  229. list_del(&cur->list);
  230. kmem_cache_free(inmem_entry_slab, cur);
  231. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  232. }
  233. return err;
  234. }
  235. void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
  236. {
  237. struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
  238. struct inode *inode;
  239. struct f2fs_inode_info *fi;
  240. next:
  241. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  242. if (list_empty(head)) {
  243. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  244. return;
  245. }
  246. fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
  247. inode = igrab(&fi->vfs_inode);
  248. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  249. if (inode) {
  250. if (gc_failure) {
  251. if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
  252. goto drop;
  253. goto skip;
  254. }
  255. drop:
  256. set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  257. f2fs_drop_inmem_pages(inode);
  258. iput(inode);
  259. }
  260. skip:
  261. congestion_wait(BLK_RW_ASYNC, HZ/50);
  262. cond_resched();
  263. goto next;
  264. }
  265. void f2fs_drop_inmem_pages(struct inode *inode)
  266. {
  267. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  268. struct f2fs_inode_info *fi = F2FS_I(inode);
  269. mutex_lock(&fi->inmem_lock);
  270. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  271. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  272. if (!list_empty(&fi->inmem_ilist))
  273. list_del_init(&fi->inmem_ilist);
  274. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  275. mutex_unlock(&fi->inmem_lock);
  276. clear_inode_flag(inode, FI_ATOMIC_FILE);
  277. fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  278. stat_dec_atomic_write(inode);
  279. }
  280. void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
  281. {
  282. struct f2fs_inode_info *fi = F2FS_I(inode);
  283. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  284. struct list_head *head = &fi->inmem_pages;
  285. struct inmem_pages *cur = NULL;
  286. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  287. mutex_lock(&fi->inmem_lock);
  288. list_for_each_entry(cur, head, list) {
  289. if (cur->page == page)
  290. break;
  291. }
  292. f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
  293. list_del(&cur->list);
  294. mutex_unlock(&fi->inmem_lock);
  295. dec_page_count(sbi, F2FS_INMEM_PAGES);
  296. kmem_cache_free(inmem_entry_slab, cur);
  297. ClearPageUptodate(page);
  298. set_page_private(page, 0);
  299. ClearPagePrivate(page);
  300. f2fs_put_page(page, 0);
  301. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  302. }
  303. static int __f2fs_commit_inmem_pages(struct inode *inode)
  304. {
  305. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  306. struct f2fs_inode_info *fi = F2FS_I(inode);
  307. struct inmem_pages *cur, *tmp;
  308. struct f2fs_io_info fio = {
  309. .sbi = sbi,
  310. .ino = inode->i_ino,
  311. .type = DATA,
  312. .op = REQ_OP_WRITE,
  313. .op_flags = REQ_SYNC | REQ_PRIO,
  314. .io_type = FS_DATA_IO,
  315. };
  316. struct list_head revoke_list;
  317. pgoff_t last_idx = ULONG_MAX;
  318. int err = 0;
  319. INIT_LIST_HEAD(&revoke_list);
  320. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  321. struct page *page = cur->page;
  322. lock_page(page);
  323. if (page->mapping == inode->i_mapping) {
  324. trace_f2fs_commit_inmem_page(page, INMEM);
  325. set_page_dirty(page);
  326. f2fs_wait_on_page_writeback(page, DATA, true);
  327. if (clear_page_dirty_for_io(page)) {
  328. inode_dec_dirty_pages(inode);
  329. f2fs_remove_dirty_inode(inode);
  330. }
  331. retry:
  332. fio.page = page;
  333. fio.old_blkaddr = NULL_ADDR;
  334. fio.encrypted_page = NULL;
  335. fio.need_lock = LOCK_DONE;
  336. err = f2fs_do_write_data_page(&fio);
  337. if (err) {
  338. if (err == -ENOMEM) {
  339. congestion_wait(BLK_RW_ASYNC, HZ/50);
  340. cond_resched();
  341. goto retry;
  342. }
  343. unlock_page(page);
  344. break;
  345. }
  346. /* record old blkaddr for revoking */
  347. cur->old_addr = fio.old_blkaddr;
  348. last_idx = page->index;
  349. }
  350. unlock_page(page);
  351. list_move_tail(&cur->list, &revoke_list);
  352. }
  353. if (last_idx != ULONG_MAX)
  354. f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
  355. if (err) {
  356. /*
  357. * try to revoke all committed pages, but still we could fail
  358. * due to no memory or other reason, if that happened, EAGAIN
  359. * will be returned, which means in such case, transaction is
  360. * already not integrity, caller should use journal to do the
  361. * recovery or rewrite & commit last transaction. For other
  362. * error number, revoking was done by filesystem itself.
  363. */
  364. err = __revoke_inmem_pages(inode, &revoke_list, false, true);
  365. /* drop all uncommitted pages */
  366. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  367. } else {
  368. __revoke_inmem_pages(inode, &revoke_list, false, false);
  369. }
  370. return err;
  371. }
  372. int f2fs_commit_inmem_pages(struct inode *inode)
  373. {
  374. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  375. struct f2fs_inode_info *fi = F2FS_I(inode);
  376. int err;
  377. f2fs_balance_fs(sbi, true);
  378. f2fs_lock_op(sbi);
  379. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  380. mutex_lock(&fi->inmem_lock);
  381. err = __f2fs_commit_inmem_pages(inode);
  382. spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
  383. if (!list_empty(&fi->inmem_ilist))
  384. list_del_init(&fi->inmem_ilist);
  385. spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
  386. mutex_unlock(&fi->inmem_lock);
  387. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  388. f2fs_unlock_op(sbi);
  389. return err;
  390. }
  391. /*
  392. * This function balances dirty node and dentry pages.
  393. * In addition, it controls garbage collection.
  394. */
  395. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  396. {
  397. #ifdef CONFIG_F2FS_FAULT_INJECTION
  398. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  399. f2fs_show_injection_info(FAULT_CHECKPOINT);
  400. f2fs_stop_checkpoint(sbi, false);
  401. }
  402. #endif
  403. /* balance_fs_bg is able to be pending */
  404. if (need && excess_cached_nats(sbi))
  405. f2fs_balance_fs_bg(sbi);
  406. /*
  407. * We should do GC or end up with checkpoint, if there are so many dirty
  408. * dir/node pages without enough free segments.
  409. */
  410. if (has_not_enough_free_secs(sbi, 0, 0)) {
  411. mutex_lock(&sbi->gc_mutex);
  412. f2fs_gc(sbi, false, false, NULL_SEGNO);
  413. }
  414. }
  415. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  416. {
  417. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  418. return;
  419. /* try to shrink extent cache when there is no enough memory */
  420. if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
  421. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  422. /* check the # of cached NAT entries */
  423. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
  424. f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  425. if (!f2fs_available_free_memory(sbi, FREE_NIDS))
  426. f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
  427. else
  428. f2fs_build_free_nids(sbi, false, false);
  429. if (!is_idle(sbi) && !excess_dirty_nats(sbi))
  430. return;
  431. /* checkpoint is the only way to shrink partial cached entries */
  432. if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
  433. !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
  434. excess_prefree_segs(sbi) ||
  435. excess_dirty_nats(sbi) ||
  436. f2fs_time_over(sbi, CP_TIME)) {
  437. if (test_opt(sbi, DATA_FLUSH)) {
  438. struct blk_plug plug;
  439. blk_start_plug(&plug);
  440. f2fs_sync_dirty_inodes(sbi, FILE_INODE);
  441. blk_finish_plug(&plug);
  442. }
  443. f2fs_sync_fs(sbi->sb, true);
  444. stat_inc_bg_cp_count(sbi->stat_info);
  445. }
  446. }
  447. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  448. struct block_device *bdev)
  449. {
  450. struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
  451. int ret;
  452. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  453. bio_set_dev(bio, bdev);
  454. ret = submit_bio_wait(bio);
  455. bio_put(bio);
  456. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  457. test_opt(sbi, FLUSH_MERGE), ret);
  458. return ret;
  459. }
  460. static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
  461. {
  462. int ret = 0;
  463. int i;
  464. if (!sbi->s_ndevs)
  465. return __submit_flush_wait(sbi, sbi->sb->s_bdev);
  466. for (i = 0; i < sbi->s_ndevs; i++) {
  467. if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
  468. continue;
  469. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  470. if (ret)
  471. break;
  472. }
  473. return ret;
  474. }
  475. static int issue_flush_thread(void *data)
  476. {
  477. struct f2fs_sb_info *sbi = data;
  478. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  479. wait_queue_head_t *q = &fcc->flush_wait_queue;
  480. repeat:
  481. if (kthread_should_stop())
  482. return 0;
  483. sb_start_intwrite(sbi->sb);
  484. if (!llist_empty(&fcc->issue_list)) {
  485. struct flush_cmd *cmd, *next;
  486. int ret;
  487. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  488. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  489. cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
  490. ret = submit_flush_wait(sbi, cmd->ino);
  491. atomic_inc(&fcc->issued_flush);
  492. llist_for_each_entry_safe(cmd, next,
  493. fcc->dispatch_list, llnode) {
  494. cmd->ret = ret;
  495. complete(&cmd->wait);
  496. }
  497. fcc->dispatch_list = NULL;
  498. }
  499. sb_end_intwrite(sbi->sb);
  500. wait_event_interruptible(*q,
  501. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  502. goto repeat;
  503. }
  504. int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
  505. {
  506. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  507. struct flush_cmd cmd;
  508. int ret;
  509. if (test_opt(sbi, NOBARRIER))
  510. return 0;
  511. if (!test_opt(sbi, FLUSH_MERGE)) {
  512. ret = submit_flush_wait(sbi, ino);
  513. atomic_inc(&fcc->issued_flush);
  514. return ret;
  515. }
  516. if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
  517. ret = submit_flush_wait(sbi, ino);
  518. atomic_dec(&fcc->issing_flush);
  519. atomic_inc(&fcc->issued_flush);
  520. return ret;
  521. }
  522. cmd.ino = ino;
  523. init_completion(&cmd.wait);
  524. llist_add(&cmd.llnode, &fcc->issue_list);
  525. /* update issue_list before we wake up issue_flush thread */
  526. smp_mb();
  527. if (waitqueue_active(&fcc->flush_wait_queue))
  528. wake_up(&fcc->flush_wait_queue);
  529. if (fcc->f2fs_issue_flush) {
  530. wait_for_completion(&cmd.wait);
  531. atomic_dec(&fcc->issing_flush);
  532. } else {
  533. struct llist_node *list;
  534. list = llist_del_all(&fcc->issue_list);
  535. if (!list) {
  536. wait_for_completion(&cmd.wait);
  537. atomic_dec(&fcc->issing_flush);
  538. } else {
  539. struct flush_cmd *tmp, *next;
  540. ret = submit_flush_wait(sbi, ino);
  541. llist_for_each_entry_safe(tmp, next, list, llnode) {
  542. if (tmp == &cmd) {
  543. cmd.ret = ret;
  544. atomic_dec(&fcc->issing_flush);
  545. continue;
  546. }
  547. tmp->ret = ret;
  548. complete(&tmp->wait);
  549. }
  550. }
  551. }
  552. return cmd.ret;
  553. }
  554. int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
  555. {
  556. dev_t dev = sbi->sb->s_bdev->bd_dev;
  557. struct flush_cmd_control *fcc;
  558. int err = 0;
  559. if (SM_I(sbi)->fcc_info) {
  560. fcc = SM_I(sbi)->fcc_info;
  561. if (fcc->f2fs_issue_flush)
  562. return err;
  563. goto init_thread;
  564. }
  565. fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
  566. if (!fcc)
  567. return -ENOMEM;
  568. atomic_set(&fcc->issued_flush, 0);
  569. atomic_set(&fcc->issing_flush, 0);
  570. init_waitqueue_head(&fcc->flush_wait_queue);
  571. init_llist_head(&fcc->issue_list);
  572. SM_I(sbi)->fcc_info = fcc;
  573. if (!test_opt(sbi, FLUSH_MERGE))
  574. return err;
  575. init_thread:
  576. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  577. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  578. if (IS_ERR(fcc->f2fs_issue_flush)) {
  579. err = PTR_ERR(fcc->f2fs_issue_flush);
  580. kfree(fcc);
  581. SM_I(sbi)->fcc_info = NULL;
  582. return err;
  583. }
  584. return err;
  585. }
  586. void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  587. {
  588. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  589. if (fcc && fcc->f2fs_issue_flush) {
  590. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  591. fcc->f2fs_issue_flush = NULL;
  592. kthread_stop(flush_thread);
  593. }
  594. if (free) {
  595. kfree(fcc);
  596. SM_I(sbi)->fcc_info = NULL;
  597. }
  598. }
  599. int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
  600. {
  601. int ret = 0, i;
  602. if (!sbi->s_ndevs)
  603. return 0;
  604. for (i = 1; i < sbi->s_ndevs; i++) {
  605. if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
  606. continue;
  607. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  608. if (ret)
  609. break;
  610. spin_lock(&sbi->dev_lock);
  611. f2fs_clear_bit(i, (char *)&sbi->dirty_device);
  612. spin_unlock(&sbi->dev_lock);
  613. }
  614. return ret;
  615. }
  616. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  617. enum dirty_type dirty_type)
  618. {
  619. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  620. /* need not be added */
  621. if (IS_CURSEG(sbi, segno))
  622. return;
  623. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  624. dirty_i->nr_dirty[dirty_type]++;
  625. if (dirty_type == DIRTY) {
  626. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  627. enum dirty_type t = sentry->type;
  628. if (unlikely(t >= DIRTY)) {
  629. f2fs_bug_on(sbi, 1);
  630. return;
  631. }
  632. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  633. dirty_i->nr_dirty[t]++;
  634. }
  635. }
  636. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  637. enum dirty_type dirty_type)
  638. {
  639. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  640. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  641. dirty_i->nr_dirty[dirty_type]--;
  642. if (dirty_type == DIRTY) {
  643. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  644. enum dirty_type t = sentry->type;
  645. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  646. dirty_i->nr_dirty[t]--;
  647. if (get_valid_blocks(sbi, segno, true) == 0)
  648. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  649. dirty_i->victim_secmap);
  650. }
  651. }
  652. /*
  653. * Should not occur error such as -ENOMEM.
  654. * Adding dirty entry into seglist is not critical operation.
  655. * If a given segment is one of current working segments, it won't be added.
  656. */
  657. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  658. {
  659. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  660. unsigned short valid_blocks;
  661. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  662. return;
  663. mutex_lock(&dirty_i->seglist_lock);
  664. valid_blocks = get_valid_blocks(sbi, segno, false);
  665. if (valid_blocks == 0) {
  666. __locate_dirty_segment(sbi, segno, PRE);
  667. __remove_dirty_segment(sbi, segno, DIRTY);
  668. } else if (valid_blocks < sbi->blocks_per_seg) {
  669. __locate_dirty_segment(sbi, segno, DIRTY);
  670. } else {
  671. /* Recovery routine with SSR needs this */
  672. __remove_dirty_segment(sbi, segno, DIRTY);
  673. }
  674. mutex_unlock(&dirty_i->seglist_lock);
  675. }
  676. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  677. struct block_device *bdev, block_t lstart,
  678. block_t start, block_t len)
  679. {
  680. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  681. struct list_head *pend_list;
  682. struct discard_cmd *dc;
  683. f2fs_bug_on(sbi, !len);
  684. pend_list = &dcc->pend_list[plist_idx(len)];
  685. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  686. INIT_LIST_HEAD(&dc->list);
  687. dc->bdev = bdev;
  688. dc->lstart = lstart;
  689. dc->start = start;
  690. dc->len = len;
  691. dc->ref = 0;
  692. dc->state = D_PREP;
  693. dc->error = 0;
  694. init_completion(&dc->wait);
  695. list_add_tail(&dc->list, pend_list);
  696. atomic_inc(&dcc->discard_cmd_cnt);
  697. dcc->undiscard_blks += len;
  698. return dc;
  699. }
  700. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  701. struct block_device *bdev, block_t lstart,
  702. block_t start, block_t len,
  703. struct rb_node *parent, struct rb_node **p)
  704. {
  705. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  706. struct discard_cmd *dc;
  707. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  708. rb_link_node(&dc->rb_node, parent, p);
  709. rb_insert_color(&dc->rb_node, &dcc->root);
  710. return dc;
  711. }
  712. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  713. struct discard_cmd *dc)
  714. {
  715. if (dc->state == D_DONE)
  716. atomic_dec(&dcc->issing_discard);
  717. list_del(&dc->list);
  718. rb_erase(&dc->rb_node, &dcc->root);
  719. dcc->undiscard_blks -= dc->len;
  720. kmem_cache_free(discard_cmd_slab, dc);
  721. atomic_dec(&dcc->discard_cmd_cnt);
  722. }
  723. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  724. struct discard_cmd *dc)
  725. {
  726. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  727. trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
  728. f2fs_bug_on(sbi, dc->ref);
  729. if (dc->error == -EOPNOTSUPP)
  730. dc->error = 0;
  731. if (dc->error)
  732. f2fs_msg(sbi->sb, KERN_INFO,
  733. "Issue discard(%u, %u, %u) failed, ret: %d",
  734. dc->lstart, dc->start, dc->len, dc->error);
  735. __detach_discard_cmd(dcc, dc);
  736. }
  737. static void f2fs_submit_discard_endio(struct bio *bio)
  738. {
  739. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  740. dc->error = blk_status_to_errno(bio->bi_status);
  741. dc->state = D_DONE;
  742. complete_all(&dc->wait);
  743. bio_put(bio);
  744. }
  745. static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
  746. block_t start, block_t end)
  747. {
  748. #ifdef CONFIG_F2FS_CHECK_FS
  749. struct seg_entry *sentry;
  750. unsigned int segno;
  751. block_t blk = start;
  752. unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
  753. unsigned long *map;
  754. while (blk < end) {
  755. segno = GET_SEGNO(sbi, blk);
  756. sentry = get_seg_entry(sbi, segno);
  757. offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
  758. if (end < START_BLOCK(sbi, segno + 1))
  759. size = GET_BLKOFF_FROM_SEG0(sbi, end);
  760. else
  761. size = max_blocks;
  762. map = (unsigned long *)(sentry->cur_valid_map);
  763. offset = __find_rev_next_bit(map, size, offset);
  764. f2fs_bug_on(sbi, offset != size);
  765. blk = START_BLOCK(sbi, segno + 1);
  766. }
  767. #endif
  768. }
  769. static void __init_discard_policy(struct f2fs_sb_info *sbi,
  770. struct discard_policy *dpolicy,
  771. int discard_type, unsigned int granularity)
  772. {
  773. /* common policy */
  774. dpolicy->type = discard_type;
  775. dpolicy->sync = true;
  776. dpolicy->granularity = granularity;
  777. dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
  778. dpolicy->io_aware_gran = MAX_PLIST_NUM;
  779. if (discard_type == DPOLICY_BG) {
  780. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  781. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  782. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  783. dpolicy->io_aware = true;
  784. dpolicy->sync = false;
  785. if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
  786. dpolicy->granularity = 1;
  787. dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  788. }
  789. } else if (discard_type == DPOLICY_FORCE) {
  790. dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
  791. dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
  792. dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
  793. dpolicy->io_aware = false;
  794. } else if (discard_type == DPOLICY_FSTRIM) {
  795. dpolicy->io_aware = false;
  796. } else if (discard_type == DPOLICY_UMOUNT) {
  797. dpolicy->max_requests = UINT_MAX;
  798. dpolicy->io_aware = false;
  799. }
  800. }
  801. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  802. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  803. struct discard_policy *dpolicy,
  804. struct discard_cmd *dc)
  805. {
  806. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  807. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  808. &(dcc->fstrim_list) : &(dcc->wait_list);
  809. struct bio *bio = NULL;
  810. int flag = dpolicy->sync ? REQ_SYNC : 0;
  811. if (dc->state != D_PREP)
  812. return;
  813. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  814. return;
  815. trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
  816. dc->error = __blkdev_issue_discard(dc->bdev,
  817. SECTOR_FROM_BLOCK(dc->start),
  818. SECTOR_FROM_BLOCK(dc->len),
  819. GFP_NOFS, 0, &bio);
  820. if (!dc->error) {
  821. /* should keep before submission to avoid D_DONE right away */
  822. dc->state = D_SUBMIT;
  823. atomic_inc(&dcc->issued_discard);
  824. atomic_inc(&dcc->issing_discard);
  825. if (bio) {
  826. bio->bi_private = dc;
  827. bio->bi_end_io = f2fs_submit_discard_endio;
  828. bio->bi_opf |= flag;
  829. submit_bio(bio);
  830. list_move_tail(&dc->list, wait_list);
  831. __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
  832. f2fs_update_iostat(sbi, FS_DISCARD, 1);
  833. }
  834. } else {
  835. __remove_discard_cmd(sbi, dc);
  836. }
  837. }
  838. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  839. struct block_device *bdev, block_t lstart,
  840. block_t start, block_t len,
  841. struct rb_node **insert_p,
  842. struct rb_node *insert_parent)
  843. {
  844. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  845. struct rb_node **p;
  846. struct rb_node *parent = NULL;
  847. struct discard_cmd *dc = NULL;
  848. if (insert_p && insert_parent) {
  849. parent = insert_parent;
  850. p = insert_p;
  851. goto do_insert;
  852. }
  853. p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  854. do_insert:
  855. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  856. if (!dc)
  857. return NULL;
  858. return dc;
  859. }
  860. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  861. struct discard_cmd *dc)
  862. {
  863. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  864. }
  865. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  866. struct discard_cmd *dc, block_t blkaddr)
  867. {
  868. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  869. struct discard_info di = dc->di;
  870. bool modified = false;
  871. if (dc->state == D_DONE || dc->len == 1) {
  872. __remove_discard_cmd(sbi, dc);
  873. return;
  874. }
  875. dcc->undiscard_blks -= di.len;
  876. if (blkaddr > di.lstart) {
  877. dc->len = blkaddr - dc->lstart;
  878. dcc->undiscard_blks += dc->len;
  879. __relocate_discard_cmd(dcc, dc);
  880. modified = true;
  881. }
  882. if (blkaddr < di.lstart + di.len - 1) {
  883. if (modified) {
  884. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  885. di.start + blkaddr + 1 - di.lstart,
  886. di.lstart + di.len - 1 - blkaddr,
  887. NULL, NULL);
  888. } else {
  889. dc->lstart++;
  890. dc->len--;
  891. dc->start++;
  892. dcc->undiscard_blks += dc->len;
  893. __relocate_discard_cmd(dcc, dc);
  894. }
  895. }
  896. }
  897. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  898. struct block_device *bdev, block_t lstart,
  899. block_t start, block_t len)
  900. {
  901. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  902. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  903. struct discard_cmd *dc;
  904. struct discard_info di = {0};
  905. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  906. block_t end = lstart + len;
  907. mutex_lock(&dcc->cmd_lock);
  908. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  909. NULL, lstart,
  910. (struct rb_entry **)&prev_dc,
  911. (struct rb_entry **)&next_dc,
  912. &insert_p, &insert_parent, true);
  913. if (dc)
  914. prev_dc = dc;
  915. if (!prev_dc) {
  916. di.lstart = lstart;
  917. di.len = next_dc ? next_dc->lstart - lstart : len;
  918. di.len = min(di.len, len);
  919. di.start = start;
  920. }
  921. while (1) {
  922. struct rb_node *node;
  923. bool merged = false;
  924. struct discard_cmd *tdc = NULL;
  925. if (prev_dc) {
  926. di.lstart = prev_dc->lstart + prev_dc->len;
  927. if (di.lstart < lstart)
  928. di.lstart = lstart;
  929. if (di.lstart >= end)
  930. break;
  931. if (!next_dc || next_dc->lstart > end)
  932. di.len = end - di.lstart;
  933. else
  934. di.len = next_dc->lstart - di.lstart;
  935. di.start = start + di.lstart - lstart;
  936. }
  937. if (!di.len)
  938. goto next;
  939. if (prev_dc && prev_dc->state == D_PREP &&
  940. prev_dc->bdev == bdev &&
  941. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  942. prev_dc->di.len += di.len;
  943. dcc->undiscard_blks += di.len;
  944. __relocate_discard_cmd(dcc, prev_dc);
  945. di = prev_dc->di;
  946. tdc = prev_dc;
  947. merged = true;
  948. }
  949. if (next_dc && next_dc->state == D_PREP &&
  950. next_dc->bdev == bdev &&
  951. __is_discard_front_mergeable(&di, &next_dc->di)) {
  952. next_dc->di.lstart = di.lstart;
  953. next_dc->di.len += di.len;
  954. next_dc->di.start = di.start;
  955. dcc->undiscard_blks += di.len;
  956. __relocate_discard_cmd(dcc, next_dc);
  957. if (tdc)
  958. __remove_discard_cmd(sbi, tdc);
  959. merged = true;
  960. }
  961. if (!merged) {
  962. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  963. di.len, NULL, NULL);
  964. }
  965. next:
  966. prev_dc = next_dc;
  967. if (!prev_dc)
  968. break;
  969. node = rb_next(&prev_dc->rb_node);
  970. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  971. }
  972. mutex_unlock(&dcc->cmd_lock);
  973. }
  974. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  975. struct block_device *bdev, block_t blkstart, block_t blklen)
  976. {
  977. block_t lblkstart = blkstart;
  978. trace_f2fs_queue_discard(bdev, blkstart, blklen);
  979. if (sbi->s_ndevs) {
  980. int devi = f2fs_target_device_index(sbi, blkstart);
  981. blkstart -= FDEV(devi).start_blk;
  982. }
  983. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  984. return 0;
  985. }
  986. static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
  987. struct discard_policy *dpolicy)
  988. {
  989. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  990. struct list_head *pend_list;
  991. struct discard_cmd *dc, *tmp;
  992. struct blk_plug plug;
  993. int i, iter = 0, issued = 0;
  994. bool io_interrupted = false;
  995. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  996. if (i + 1 < dpolicy->granularity)
  997. break;
  998. pend_list = &dcc->pend_list[i];
  999. mutex_lock(&dcc->cmd_lock);
  1000. if (list_empty(pend_list))
  1001. goto next;
  1002. f2fs_bug_on(sbi,
  1003. !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
  1004. blk_start_plug(&plug);
  1005. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1006. f2fs_bug_on(sbi, dc->state != D_PREP);
  1007. if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
  1008. !is_idle(sbi)) {
  1009. io_interrupted = true;
  1010. goto skip;
  1011. }
  1012. __submit_discard_cmd(sbi, dpolicy, dc);
  1013. issued++;
  1014. skip:
  1015. if (++iter >= dpolicy->max_requests)
  1016. break;
  1017. }
  1018. blk_finish_plug(&plug);
  1019. next:
  1020. mutex_unlock(&dcc->cmd_lock);
  1021. if (iter >= dpolicy->max_requests)
  1022. break;
  1023. }
  1024. if (!issued && io_interrupted)
  1025. issued = -1;
  1026. return issued;
  1027. }
  1028. static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
  1029. {
  1030. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1031. struct list_head *pend_list;
  1032. struct discard_cmd *dc, *tmp;
  1033. int i;
  1034. bool dropped = false;
  1035. mutex_lock(&dcc->cmd_lock);
  1036. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  1037. pend_list = &dcc->pend_list[i];
  1038. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  1039. f2fs_bug_on(sbi, dc->state != D_PREP);
  1040. __remove_discard_cmd(sbi, dc);
  1041. dropped = true;
  1042. }
  1043. }
  1044. mutex_unlock(&dcc->cmd_lock);
  1045. return dropped;
  1046. }
  1047. void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
  1048. {
  1049. __drop_discard_cmd(sbi);
  1050. }
  1051. static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
  1052. struct discard_cmd *dc)
  1053. {
  1054. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1055. unsigned int len = 0;
  1056. wait_for_completion_io(&dc->wait);
  1057. mutex_lock(&dcc->cmd_lock);
  1058. f2fs_bug_on(sbi, dc->state != D_DONE);
  1059. dc->ref--;
  1060. if (!dc->ref) {
  1061. if (!dc->error)
  1062. len = dc->len;
  1063. __remove_discard_cmd(sbi, dc);
  1064. }
  1065. mutex_unlock(&dcc->cmd_lock);
  1066. return len;
  1067. }
  1068. static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
  1069. struct discard_policy *dpolicy,
  1070. block_t start, block_t end)
  1071. {
  1072. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1073. struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
  1074. &(dcc->fstrim_list) : &(dcc->wait_list);
  1075. struct discard_cmd *dc, *tmp;
  1076. bool need_wait;
  1077. unsigned int trimmed = 0;
  1078. next:
  1079. need_wait = false;
  1080. mutex_lock(&dcc->cmd_lock);
  1081. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  1082. if (dc->lstart + dc->len <= start || end <= dc->lstart)
  1083. continue;
  1084. if (dc->len < dpolicy->granularity)
  1085. continue;
  1086. if (dc->state == D_DONE && !dc->ref) {
  1087. wait_for_completion_io(&dc->wait);
  1088. if (!dc->error)
  1089. trimmed += dc->len;
  1090. __remove_discard_cmd(sbi, dc);
  1091. } else {
  1092. dc->ref++;
  1093. need_wait = true;
  1094. break;
  1095. }
  1096. }
  1097. mutex_unlock(&dcc->cmd_lock);
  1098. if (need_wait) {
  1099. trimmed += __wait_one_discard_bio(sbi, dc);
  1100. goto next;
  1101. }
  1102. return trimmed;
  1103. }
  1104. static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
  1105. struct discard_policy *dpolicy)
  1106. {
  1107. struct discard_policy dp;
  1108. if (dpolicy) {
  1109. __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
  1110. return;
  1111. }
  1112. /* wait all */
  1113. __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
  1114. __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1115. __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
  1116. __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
  1117. }
  1118. /* This should be covered by global mutex, &sit_i->sentry_lock */
  1119. static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  1120. {
  1121. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1122. struct discard_cmd *dc;
  1123. bool need_wait = false;
  1124. mutex_lock(&dcc->cmd_lock);
  1125. dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
  1126. NULL, blkaddr);
  1127. if (dc) {
  1128. if (dc->state == D_PREP) {
  1129. __punch_discard_cmd(sbi, dc, blkaddr);
  1130. } else {
  1131. dc->ref++;
  1132. need_wait = true;
  1133. }
  1134. }
  1135. mutex_unlock(&dcc->cmd_lock);
  1136. if (need_wait)
  1137. __wait_one_discard_bio(sbi, dc);
  1138. }
  1139. void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
  1140. {
  1141. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1142. if (dcc && dcc->f2fs_issue_discard) {
  1143. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1144. dcc->f2fs_issue_discard = NULL;
  1145. kthread_stop(discard_thread);
  1146. }
  1147. }
  1148. /* This comes from f2fs_put_super */
  1149. bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  1150. {
  1151. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1152. struct discard_policy dpolicy;
  1153. bool dropped;
  1154. __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
  1155. dcc->discard_granularity);
  1156. __issue_discard_cmd(sbi, &dpolicy);
  1157. dropped = __drop_discard_cmd(sbi);
  1158. /* just to make sure there is no pending discard commands */
  1159. __wait_all_discard_cmd(sbi, NULL);
  1160. return dropped;
  1161. }
  1162. static int issue_discard_thread(void *data)
  1163. {
  1164. struct f2fs_sb_info *sbi = data;
  1165. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1166. wait_queue_head_t *q = &dcc->discard_wait_queue;
  1167. struct discard_policy dpolicy;
  1168. unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
  1169. int issued;
  1170. set_freezable();
  1171. do {
  1172. __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
  1173. dcc->discard_granularity);
  1174. wait_event_interruptible_timeout(*q,
  1175. kthread_should_stop() || freezing(current) ||
  1176. dcc->discard_wake,
  1177. msecs_to_jiffies(wait_ms));
  1178. if (dcc->discard_wake)
  1179. dcc->discard_wake = 0;
  1180. if (try_to_freeze())
  1181. continue;
  1182. if (f2fs_readonly(sbi->sb))
  1183. continue;
  1184. if (kthread_should_stop())
  1185. return 0;
  1186. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1187. wait_ms = dpolicy.max_interval;
  1188. continue;
  1189. }
  1190. if (sbi->gc_mode == GC_URGENT)
  1191. __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
  1192. sb_start_intwrite(sbi->sb);
  1193. issued = __issue_discard_cmd(sbi, &dpolicy);
  1194. if (issued > 0) {
  1195. __wait_all_discard_cmd(sbi, &dpolicy);
  1196. wait_ms = dpolicy.min_interval;
  1197. } else if (issued == -1){
  1198. wait_ms = dpolicy.mid_interval;
  1199. } else {
  1200. wait_ms = dpolicy.max_interval;
  1201. }
  1202. sb_end_intwrite(sbi->sb);
  1203. } while (!kthread_should_stop());
  1204. return 0;
  1205. }
  1206. #ifdef CONFIG_BLK_DEV_ZONED
  1207. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  1208. struct block_device *bdev, block_t blkstart, block_t blklen)
  1209. {
  1210. sector_t sector, nr_sects;
  1211. block_t lblkstart = blkstart;
  1212. int devi = 0;
  1213. if (sbi->s_ndevs) {
  1214. devi = f2fs_target_device_index(sbi, blkstart);
  1215. blkstart -= FDEV(devi).start_blk;
  1216. }
  1217. /*
  1218. * We need to know the type of the zone: for conventional zones,
  1219. * use regular discard if the drive supports it. For sequential
  1220. * zones, reset the zone write pointer.
  1221. */
  1222. switch (get_blkz_type(sbi, bdev, blkstart)) {
  1223. case BLK_ZONE_TYPE_CONVENTIONAL:
  1224. if (!blk_queue_discard(bdev_get_queue(bdev)))
  1225. return 0;
  1226. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  1227. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  1228. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  1229. sector = SECTOR_FROM_BLOCK(blkstart);
  1230. nr_sects = SECTOR_FROM_BLOCK(blklen);
  1231. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  1232. nr_sects != bdev_zone_sectors(bdev)) {
  1233. f2fs_msg(sbi->sb, KERN_INFO,
  1234. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  1235. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  1236. blkstart, blklen);
  1237. return -EIO;
  1238. }
  1239. trace_f2fs_issue_reset_zone(bdev, blkstart);
  1240. return blkdev_reset_zones(bdev, sector,
  1241. nr_sects, GFP_NOFS);
  1242. default:
  1243. /* Unknown zone type: broken device ? */
  1244. return -EIO;
  1245. }
  1246. }
  1247. #endif
  1248. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  1249. struct block_device *bdev, block_t blkstart, block_t blklen)
  1250. {
  1251. #ifdef CONFIG_BLK_DEV_ZONED
  1252. if (f2fs_sb_has_blkzoned(sbi->sb) &&
  1253. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  1254. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  1255. #endif
  1256. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  1257. }
  1258. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  1259. block_t blkstart, block_t blklen)
  1260. {
  1261. sector_t start = blkstart, len = 0;
  1262. struct block_device *bdev;
  1263. struct seg_entry *se;
  1264. unsigned int offset;
  1265. block_t i;
  1266. int err = 0;
  1267. bdev = f2fs_target_device(sbi, blkstart, NULL);
  1268. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  1269. if (i != start) {
  1270. struct block_device *bdev2 =
  1271. f2fs_target_device(sbi, i, NULL);
  1272. if (bdev2 != bdev) {
  1273. err = __issue_discard_async(sbi, bdev,
  1274. start, len);
  1275. if (err)
  1276. return err;
  1277. bdev = bdev2;
  1278. start = i;
  1279. len = 0;
  1280. }
  1281. }
  1282. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  1283. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  1284. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  1285. sbi->discard_blks--;
  1286. }
  1287. if (len)
  1288. err = __issue_discard_async(sbi, bdev, start, len);
  1289. return err;
  1290. }
  1291. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  1292. bool check_only)
  1293. {
  1294. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1295. int max_blocks = sbi->blocks_per_seg;
  1296. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  1297. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1298. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1299. unsigned long *discard_map = (unsigned long *)se->discard_map;
  1300. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  1301. unsigned int start = 0, end = -1;
  1302. bool force = (cpc->reason & CP_DISCARD);
  1303. struct discard_entry *de = NULL;
  1304. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  1305. int i;
  1306. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  1307. return false;
  1308. if (!force) {
  1309. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  1310. SM_I(sbi)->dcc_info->nr_discards >=
  1311. SM_I(sbi)->dcc_info->max_discards)
  1312. return false;
  1313. }
  1314. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  1315. for (i = 0; i < entries; i++)
  1316. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  1317. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  1318. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  1319. SM_I(sbi)->dcc_info->max_discards) {
  1320. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  1321. if (start >= max_blocks)
  1322. break;
  1323. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  1324. if (force && start && end != max_blocks
  1325. && (end - start) < cpc->trim_minlen)
  1326. continue;
  1327. if (check_only)
  1328. return true;
  1329. if (!de) {
  1330. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  1331. GFP_F2FS_ZERO);
  1332. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  1333. list_add_tail(&de->list, head);
  1334. }
  1335. for (i = start; i < end; i++)
  1336. __set_bit_le(i, (void *)de->discard_map);
  1337. SM_I(sbi)->dcc_info->nr_discards += end - start;
  1338. }
  1339. return false;
  1340. }
  1341. static void release_discard_addr(struct discard_entry *entry)
  1342. {
  1343. list_del(&entry->list);
  1344. kmem_cache_free(discard_entry_slab, entry);
  1345. }
  1346. void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
  1347. {
  1348. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1349. struct discard_entry *entry, *this;
  1350. /* drop caches */
  1351. list_for_each_entry_safe(entry, this, head, list)
  1352. release_discard_addr(entry);
  1353. }
  1354. /*
  1355. * Should call f2fs_clear_prefree_segments after checkpoint is done.
  1356. */
  1357. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1358. {
  1359. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1360. unsigned int segno;
  1361. mutex_lock(&dirty_i->seglist_lock);
  1362. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1363. __set_test_and_free(sbi, segno);
  1364. mutex_unlock(&dirty_i->seglist_lock);
  1365. }
  1366. void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
  1367. struct cp_control *cpc)
  1368. {
  1369. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1370. struct list_head *head = &dcc->entry_list;
  1371. struct discard_entry *entry, *this;
  1372. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1373. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1374. unsigned int start = 0, end = -1;
  1375. unsigned int secno, start_segno;
  1376. bool force = (cpc->reason & CP_DISCARD);
  1377. mutex_lock(&dirty_i->seglist_lock);
  1378. while (1) {
  1379. int i;
  1380. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1381. if (start >= MAIN_SEGS(sbi))
  1382. break;
  1383. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1384. start + 1);
  1385. for (i = start; i < end; i++)
  1386. clear_bit(i, prefree_map);
  1387. dirty_i->nr_dirty[PRE] -= end - start;
  1388. if (!test_opt(sbi, DISCARD))
  1389. continue;
  1390. if (force && start >= cpc->trim_start &&
  1391. (end - 1) <= cpc->trim_end)
  1392. continue;
  1393. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1394. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1395. (end - start) << sbi->log_blocks_per_seg);
  1396. continue;
  1397. }
  1398. next:
  1399. secno = GET_SEC_FROM_SEG(sbi, start);
  1400. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1401. if (!IS_CURSEC(sbi, secno) &&
  1402. !get_valid_blocks(sbi, start, true))
  1403. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1404. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1405. start = start_segno + sbi->segs_per_sec;
  1406. if (start < end)
  1407. goto next;
  1408. else
  1409. end = start - 1;
  1410. }
  1411. mutex_unlock(&dirty_i->seglist_lock);
  1412. /* send small discards */
  1413. list_for_each_entry_safe(entry, this, head, list) {
  1414. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1415. bool is_valid = test_bit_le(0, entry->discard_map);
  1416. find_next:
  1417. if (is_valid) {
  1418. next_pos = find_next_zero_bit_le(entry->discard_map,
  1419. sbi->blocks_per_seg, cur_pos);
  1420. len = next_pos - cur_pos;
  1421. if (f2fs_sb_has_blkzoned(sbi->sb) ||
  1422. (force && len < cpc->trim_minlen))
  1423. goto skip;
  1424. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1425. len);
  1426. total_len += len;
  1427. } else {
  1428. next_pos = find_next_bit_le(entry->discard_map,
  1429. sbi->blocks_per_seg, cur_pos);
  1430. }
  1431. skip:
  1432. cur_pos = next_pos;
  1433. is_valid = !is_valid;
  1434. if (cur_pos < sbi->blocks_per_seg)
  1435. goto find_next;
  1436. release_discard_addr(entry);
  1437. dcc->nr_discards -= total_len;
  1438. }
  1439. wake_up_discard_thread(sbi, false);
  1440. }
  1441. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1442. {
  1443. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1444. struct discard_cmd_control *dcc;
  1445. int err = 0, i;
  1446. if (SM_I(sbi)->dcc_info) {
  1447. dcc = SM_I(sbi)->dcc_info;
  1448. goto init_thread;
  1449. }
  1450. dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
  1451. if (!dcc)
  1452. return -ENOMEM;
  1453. dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
  1454. INIT_LIST_HEAD(&dcc->entry_list);
  1455. for (i = 0; i < MAX_PLIST_NUM; i++)
  1456. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1457. INIT_LIST_HEAD(&dcc->wait_list);
  1458. INIT_LIST_HEAD(&dcc->fstrim_list);
  1459. mutex_init(&dcc->cmd_lock);
  1460. atomic_set(&dcc->issued_discard, 0);
  1461. atomic_set(&dcc->issing_discard, 0);
  1462. atomic_set(&dcc->discard_cmd_cnt, 0);
  1463. dcc->nr_discards = 0;
  1464. dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
  1465. dcc->undiscard_blks = 0;
  1466. dcc->root = RB_ROOT;
  1467. init_waitqueue_head(&dcc->discard_wait_queue);
  1468. SM_I(sbi)->dcc_info = dcc;
  1469. init_thread:
  1470. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1471. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1472. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1473. err = PTR_ERR(dcc->f2fs_issue_discard);
  1474. kfree(dcc);
  1475. SM_I(sbi)->dcc_info = NULL;
  1476. return err;
  1477. }
  1478. return err;
  1479. }
  1480. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1481. {
  1482. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1483. if (!dcc)
  1484. return;
  1485. f2fs_stop_discard_thread(sbi);
  1486. kfree(dcc);
  1487. SM_I(sbi)->dcc_info = NULL;
  1488. }
  1489. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1490. {
  1491. struct sit_info *sit_i = SIT_I(sbi);
  1492. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1493. sit_i->dirty_sentries++;
  1494. return false;
  1495. }
  1496. return true;
  1497. }
  1498. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1499. unsigned int segno, int modified)
  1500. {
  1501. struct seg_entry *se = get_seg_entry(sbi, segno);
  1502. se->type = type;
  1503. if (modified)
  1504. __mark_sit_entry_dirty(sbi, segno);
  1505. }
  1506. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1507. {
  1508. struct seg_entry *se;
  1509. unsigned int segno, offset;
  1510. long int new_vblocks;
  1511. bool exist;
  1512. #ifdef CONFIG_F2FS_CHECK_FS
  1513. bool mir_exist;
  1514. #endif
  1515. segno = GET_SEGNO(sbi, blkaddr);
  1516. se = get_seg_entry(sbi, segno);
  1517. new_vblocks = se->valid_blocks + del;
  1518. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1519. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1520. (new_vblocks > sbi->blocks_per_seg)));
  1521. se->valid_blocks = new_vblocks;
  1522. se->mtime = get_mtime(sbi, false);
  1523. if (se->mtime > SIT_I(sbi)->max_mtime)
  1524. SIT_I(sbi)->max_mtime = se->mtime;
  1525. /* Update valid block bitmap */
  1526. if (del > 0) {
  1527. exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
  1528. #ifdef CONFIG_F2FS_CHECK_FS
  1529. mir_exist = f2fs_test_and_set_bit(offset,
  1530. se->cur_valid_map_mir);
  1531. if (unlikely(exist != mir_exist)) {
  1532. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1533. "when setting bitmap, blk:%u, old bit:%d",
  1534. blkaddr, exist);
  1535. f2fs_bug_on(sbi, 1);
  1536. }
  1537. #endif
  1538. if (unlikely(exist)) {
  1539. f2fs_msg(sbi->sb, KERN_ERR,
  1540. "Bitmap was wrongly set, blk:%u", blkaddr);
  1541. f2fs_bug_on(sbi, 1);
  1542. se->valid_blocks--;
  1543. del = 0;
  1544. }
  1545. if (f2fs_discard_en(sbi) &&
  1546. !f2fs_test_and_set_bit(offset, se->discard_map))
  1547. sbi->discard_blks--;
  1548. /* don't overwrite by SSR to keep node chain */
  1549. if (IS_NODESEG(se->type)) {
  1550. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1551. se->ckpt_valid_blocks++;
  1552. }
  1553. } else {
  1554. exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
  1555. #ifdef CONFIG_F2FS_CHECK_FS
  1556. mir_exist = f2fs_test_and_clear_bit(offset,
  1557. se->cur_valid_map_mir);
  1558. if (unlikely(exist != mir_exist)) {
  1559. f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
  1560. "when clearing bitmap, blk:%u, old bit:%d",
  1561. blkaddr, exist);
  1562. f2fs_bug_on(sbi, 1);
  1563. }
  1564. #endif
  1565. if (unlikely(!exist)) {
  1566. f2fs_msg(sbi->sb, KERN_ERR,
  1567. "Bitmap was wrongly cleared, blk:%u", blkaddr);
  1568. f2fs_bug_on(sbi, 1);
  1569. se->valid_blocks++;
  1570. del = 0;
  1571. }
  1572. if (f2fs_discard_en(sbi) &&
  1573. f2fs_test_and_clear_bit(offset, se->discard_map))
  1574. sbi->discard_blks++;
  1575. }
  1576. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1577. se->ckpt_valid_blocks += del;
  1578. __mark_sit_entry_dirty(sbi, segno);
  1579. /* update total number of valid blocks to be written in ckpt area */
  1580. SIT_I(sbi)->written_valid_blocks += del;
  1581. if (sbi->segs_per_sec > 1)
  1582. get_sec_entry(sbi, segno)->valid_blocks += del;
  1583. }
  1584. void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1585. {
  1586. unsigned int segno = GET_SEGNO(sbi, addr);
  1587. struct sit_info *sit_i = SIT_I(sbi);
  1588. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1589. if (addr == NEW_ADDR)
  1590. return;
  1591. /* add it into sit main buffer */
  1592. down_write(&sit_i->sentry_lock);
  1593. update_sit_entry(sbi, addr, -1);
  1594. /* add it into dirty seglist */
  1595. locate_dirty_segment(sbi, segno);
  1596. up_write(&sit_i->sentry_lock);
  1597. }
  1598. bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1599. {
  1600. struct sit_info *sit_i = SIT_I(sbi);
  1601. unsigned int segno, offset;
  1602. struct seg_entry *se;
  1603. bool is_cp = false;
  1604. if (!is_valid_blkaddr(blkaddr))
  1605. return true;
  1606. down_read(&sit_i->sentry_lock);
  1607. segno = GET_SEGNO(sbi, blkaddr);
  1608. se = get_seg_entry(sbi, segno);
  1609. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1610. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1611. is_cp = true;
  1612. up_read(&sit_i->sentry_lock);
  1613. return is_cp;
  1614. }
  1615. /*
  1616. * This function should be resided under the curseg_mutex lock
  1617. */
  1618. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1619. struct f2fs_summary *sum)
  1620. {
  1621. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1622. void *addr = curseg->sum_blk;
  1623. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1624. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1625. }
  1626. /*
  1627. * Calculate the number of current summary pages for writing
  1628. */
  1629. int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1630. {
  1631. int valid_sum_count = 0;
  1632. int i, sum_in_page;
  1633. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1634. if (sbi->ckpt->alloc_type[i] == SSR)
  1635. valid_sum_count += sbi->blocks_per_seg;
  1636. else {
  1637. if (for_ra)
  1638. valid_sum_count += le16_to_cpu(
  1639. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1640. else
  1641. valid_sum_count += curseg_blkoff(sbi, i);
  1642. }
  1643. }
  1644. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1645. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1646. if (valid_sum_count <= sum_in_page)
  1647. return 1;
  1648. else if ((valid_sum_count - sum_in_page) <=
  1649. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1650. return 2;
  1651. return 3;
  1652. }
  1653. /*
  1654. * Caller should put this summary page
  1655. */
  1656. struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1657. {
  1658. return f2fs_get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1659. }
  1660. void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
  1661. void *src, block_t blk_addr)
  1662. {
  1663. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1664. memcpy(page_address(page), src, PAGE_SIZE);
  1665. set_page_dirty(page);
  1666. f2fs_put_page(page, 1);
  1667. }
  1668. static void write_sum_page(struct f2fs_sb_info *sbi,
  1669. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1670. {
  1671. f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1672. }
  1673. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1674. int type, block_t blk_addr)
  1675. {
  1676. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1677. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1678. struct f2fs_summary_block *src = curseg->sum_blk;
  1679. struct f2fs_summary_block *dst;
  1680. dst = (struct f2fs_summary_block *)page_address(page);
  1681. memset(dst, 0, PAGE_SIZE);
  1682. mutex_lock(&curseg->curseg_mutex);
  1683. down_read(&curseg->journal_rwsem);
  1684. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1685. up_read(&curseg->journal_rwsem);
  1686. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1687. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1688. mutex_unlock(&curseg->curseg_mutex);
  1689. set_page_dirty(page);
  1690. f2fs_put_page(page, 1);
  1691. }
  1692. static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
  1693. {
  1694. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1695. unsigned int segno = curseg->segno + 1;
  1696. struct free_segmap_info *free_i = FREE_I(sbi);
  1697. if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
  1698. return !test_bit(segno, free_i->free_segmap);
  1699. return 0;
  1700. }
  1701. /*
  1702. * Find a new segment from the free segments bitmap to right order
  1703. * This function should be returned with success, otherwise BUG
  1704. */
  1705. static void get_new_segment(struct f2fs_sb_info *sbi,
  1706. unsigned int *newseg, bool new_sec, int dir)
  1707. {
  1708. struct free_segmap_info *free_i = FREE_I(sbi);
  1709. unsigned int segno, secno, zoneno;
  1710. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1711. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1712. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1713. unsigned int left_start = hint;
  1714. bool init = true;
  1715. int go_left = 0;
  1716. int i;
  1717. spin_lock(&free_i->segmap_lock);
  1718. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1719. segno = find_next_zero_bit(free_i->free_segmap,
  1720. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1721. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1722. goto got_it;
  1723. }
  1724. find_other_zone:
  1725. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1726. if (secno >= MAIN_SECS(sbi)) {
  1727. if (dir == ALLOC_RIGHT) {
  1728. secno = find_next_zero_bit(free_i->free_secmap,
  1729. MAIN_SECS(sbi), 0);
  1730. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1731. } else {
  1732. go_left = 1;
  1733. left_start = hint - 1;
  1734. }
  1735. }
  1736. if (go_left == 0)
  1737. goto skip_left;
  1738. while (test_bit(left_start, free_i->free_secmap)) {
  1739. if (left_start > 0) {
  1740. left_start--;
  1741. continue;
  1742. }
  1743. left_start = find_next_zero_bit(free_i->free_secmap,
  1744. MAIN_SECS(sbi), 0);
  1745. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1746. break;
  1747. }
  1748. secno = left_start;
  1749. skip_left:
  1750. segno = GET_SEG_FROM_SEC(sbi, secno);
  1751. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1752. /* give up on finding another zone */
  1753. if (!init)
  1754. goto got_it;
  1755. if (sbi->secs_per_zone == 1)
  1756. goto got_it;
  1757. if (zoneno == old_zoneno)
  1758. goto got_it;
  1759. if (dir == ALLOC_LEFT) {
  1760. if (!go_left && zoneno + 1 >= total_zones)
  1761. goto got_it;
  1762. if (go_left && zoneno == 0)
  1763. goto got_it;
  1764. }
  1765. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1766. if (CURSEG_I(sbi, i)->zone == zoneno)
  1767. break;
  1768. if (i < NR_CURSEG_TYPE) {
  1769. /* zone is in user, try another */
  1770. if (go_left)
  1771. hint = zoneno * sbi->secs_per_zone - 1;
  1772. else if (zoneno + 1 >= total_zones)
  1773. hint = 0;
  1774. else
  1775. hint = (zoneno + 1) * sbi->secs_per_zone;
  1776. init = false;
  1777. goto find_other_zone;
  1778. }
  1779. got_it:
  1780. /* set it as dirty segment in free segmap */
  1781. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1782. __set_inuse(sbi, segno);
  1783. *newseg = segno;
  1784. spin_unlock(&free_i->segmap_lock);
  1785. }
  1786. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1787. {
  1788. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1789. struct summary_footer *sum_footer;
  1790. curseg->segno = curseg->next_segno;
  1791. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1792. curseg->next_blkoff = 0;
  1793. curseg->next_segno = NULL_SEGNO;
  1794. sum_footer = &(curseg->sum_blk->footer);
  1795. memset(sum_footer, 0, sizeof(struct summary_footer));
  1796. if (IS_DATASEG(type))
  1797. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1798. if (IS_NODESEG(type))
  1799. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1800. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1801. }
  1802. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1803. {
  1804. /* if segs_per_sec is large than 1, we need to keep original policy. */
  1805. if (sbi->segs_per_sec != 1)
  1806. return CURSEG_I(sbi, type)->segno;
  1807. if (test_opt(sbi, NOHEAP) &&
  1808. (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
  1809. return 0;
  1810. if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
  1811. return SIT_I(sbi)->last_victim[ALLOC_NEXT];
  1812. /* find segments from 0 to reuse freed segments */
  1813. if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
  1814. return 0;
  1815. return CURSEG_I(sbi, type)->segno;
  1816. }
  1817. /*
  1818. * Allocate a current working segment.
  1819. * This function always allocates a free segment in LFS manner.
  1820. */
  1821. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1822. {
  1823. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1824. unsigned int segno = curseg->segno;
  1825. int dir = ALLOC_LEFT;
  1826. write_sum_page(sbi, curseg->sum_blk,
  1827. GET_SUM_BLOCK(sbi, segno));
  1828. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1829. dir = ALLOC_RIGHT;
  1830. if (test_opt(sbi, NOHEAP))
  1831. dir = ALLOC_RIGHT;
  1832. segno = __get_next_segno(sbi, type);
  1833. get_new_segment(sbi, &segno, new_sec, dir);
  1834. curseg->next_segno = segno;
  1835. reset_curseg(sbi, type, 1);
  1836. curseg->alloc_type = LFS;
  1837. }
  1838. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1839. struct curseg_info *seg, block_t start)
  1840. {
  1841. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1842. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1843. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1844. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1845. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1846. int i, pos;
  1847. for (i = 0; i < entries; i++)
  1848. target_map[i] = ckpt_map[i] | cur_map[i];
  1849. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1850. seg->next_blkoff = pos;
  1851. }
  1852. /*
  1853. * If a segment is written by LFS manner, next block offset is just obtained
  1854. * by increasing the current block offset. However, if a segment is written by
  1855. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1856. */
  1857. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1858. struct curseg_info *seg)
  1859. {
  1860. if (seg->alloc_type == SSR)
  1861. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1862. else
  1863. seg->next_blkoff++;
  1864. }
  1865. /*
  1866. * This function always allocates a used segment(from dirty seglist) by SSR
  1867. * manner, so it should recover the existing segment information of valid blocks
  1868. */
  1869. static void change_curseg(struct f2fs_sb_info *sbi, int type)
  1870. {
  1871. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1872. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1873. unsigned int new_segno = curseg->next_segno;
  1874. struct f2fs_summary_block *sum_node;
  1875. struct page *sum_page;
  1876. write_sum_page(sbi, curseg->sum_blk,
  1877. GET_SUM_BLOCK(sbi, curseg->segno));
  1878. __set_test_and_inuse(sbi, new_segno);
  1879. mutex_lock(&dirty_i->seglist_lock);
  1880. __remove_dirty_segment(sbi, new_segno, PRE);
  1881. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1882. mutex_unlock(&dirty_i->seglist_lock);
  1883. reset_curseg(sbi, type, 1);
  1884. curseg->alloc_type = SSR;
  1885. __next_free_blkoff(sbi, curseg, 0);
  1886. sum_page = f2fs_get_sum_page(sbi, new_segno);
  1887. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1888. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1889. f2fs_put_page(sum_page, 1);
  1890. }
  1891. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1892. {
  1893. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1894. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1895. unsigned segno = NULL_SEGNO;
  1896. int i, cnt;
  1897. bool reversed = false;
  1898. /* f2fs_need_SSR() already forces to do this */
  1899. if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
  1900. curseg->next_segno = segno;
  1901. return 1;
  1902. }
  1903. /* For node segments, let's do SSR more intensively */
  1904. if (IS_NODESEG(type)) {
  1905. if (type >= CURSEG_WARM_NODE) {
  1906. reversed = true;
  1907. i = CURSEG_COLD_NODE;
  1908. } else {
  1909. i = CURSEG_HOT_NODE;
  1910. }
  1911. cnt = NR_CURSEG_NODE_TYPE;
  1912. } else {
  1913. if (type >= CURSEG_WARM_DATA) {
  1914. reversed = true;
  1915. i = CURSEG_COLD_DATA;
  1916. } else {
  1917. i = CURSEG_HOT_DATA;
  1918. }
  1919. cnt = NR_CURSEG_DATA_TYPE;
  1920. }
  1921. for (; cnt-- > 0; reversed ? i-- : i++) {
  1922. if (i == type)
  1923. continue;
  1924. if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
  1925. curseg->next_segno = segno;
  1926. return 1;
  1927. }
  1928. }
  1929. return 0;
  1930. }
  1931. /*
  1932. * flush out current segment and replace it with new segment
  1933. * This function should be returned with success, otherwise BUG
  1934. */
  1935. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1936. int type, bool force)
  1937. {
  1938. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1939. if (force)
  1940. new_curseg(sbi, type, true);
  1941. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1942. type == CURSEG_WARM_NODE)
  1943. new_curseg(sbi, type, false);
  1944. else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
  1945. new_curseg(sbi, type, false);
  1946. else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
  1947. change_curseg(sbi, type);
  1948. else
  1949. new_curseg(sbi, type, false);
  1950. stat_inc_seg_type(sbi, curseg);
  1951. }
  1952. void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
  1953. {
  1954. struct curseg_info *curseg;
  1955. unsigned int old_segno;
  1956. int i;
  1957. down_write(&SIT_I(sbi)->sentry_lock);
  1958. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1959. curseg = CURSEG_I(sbi, i);
  1960. old_segno = curseg->segno;
  1961. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1962. locate_dirty_segment(sbi, old_segno);
  1963. }
  1964. up_write(&SIT_I(sbi)->sentry_lock);
  1965. }
  1966. static const struct segment_allocation default_salloc_ops = {
  1967. .allocate_segment = allocate_segment_by_default,
  1968. };
  1969. bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
  1970. struct cp_control *cpc)
  1971. {
  1972. __u64 trim_start = cpc->trim_start;
  1973. bool has_candidate = false;
  1974. down_write(&SIT_I(sbi)->sentry_lock);
  1975. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1976. if (add_discard_addrs(sbi, cpc, true)) {
  1977. has_candidate = true;
  1978. break;
  1979. }
  1980. }
  1981. up_write(&SIT_I(sbi)->sentry_lock);
  1982. cpc->trim_start = trim_start;
  1983. return has_candidate;
  1984. }
  1985. static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
  1986. struct discard_policy *dpolicy,
  1987. unsigned int start, unsigned int end)
  1988. {
  1989. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1990. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  1991. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  1992. struct discard_cmd *dc;
  1993. struct blk_plug plug;
  1994. int issued;
  1995. next:
  1996. issued = 0;
  1997. mutex_lock(&dcc->cmd_lock);
  1998. f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
  1999. dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
  2000. NULL, start,
  2001. (struct rb_entry **)&prev_dc,
  2002. (struct rb_entry **)&next_dc,
  2003. &insert_p, &insert_parent, true);
  2004. if (!dc)
  2005. dc = next_dc;
  2006. blk_start_plug(&plug);
  2007. while (dc && dc->lstart <= end) {
  2008. struct rb_node *node;
  2009. if (dc->len < dpolicy->granularity)
  2010. goto skip;
  2011. if (dc->state != D_PREP) {
  2012. list_move_tail(&dc->list, &dcc->fstrim_list);
  2013. goto skip;
  2014. }
  2015. __submit_discard_cmd(sbi, dpolicy, dc);
  2016. if (++issued >= dpolicy->max_requests) {
  2017. start = dc->lstart + dc->len;
  2018. blk_finish_plug(&plug);
  2019. mutex_unlock(&dcc->cmd_lock);
  2020. __wait_all_discard_cmd(sbi, NULL);
  2021. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2022. goto next;
  2023. }
  2024. skip:
  2025. node = rb_next(&dc->rb_node);
  2026. dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  2027. if (fatal_signal_pending(current))
  2028. break;
  2029. }
  2030. blk_finish_plug(&plug);
  2031. mutex_unlock(&dcc->cmd_lock);
  2032. }
  2033. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  2034. {
  2035. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  2036. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  2037. unsigned int start_segno, end_segno;
  2038. block_t start_block, end_block;
  2039. struct cp_control cpc;
  2040. struct discard_policy dpolicy;
  2041. unsigned long long trimmed = 0;
  2042. int err = 0;
  2043. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  2044. return -EINVAL;
  2045. if (end <= MAIN_BLKADDR(sbi))
  2046. return -EINVAL;
  2047. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  2048. f2fs_msg(sbi->sb, KERN_WARNING,
  2049. "Found FS corruption, run fsck to fix.");
  2050. return -EIO;
  2051. }
  2052. /* start/end segment number in main_area */
  2053. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  2054. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  2055. GET_SEGNO(sbi, end);
  2056. cpc.reason = CP_DISCARD;
  2057. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  2058. cpc.trim_start = start_segno;
  2059. cpc.trim_end = end_segno;
  2060. if (sbi->discard_blks == 0)
  2061. goto out;
  2062. mutex_lock(&sbi->gc_mutex);
  2063. err = f2fs_write_checkpoint(sbi, &cpc);
  2064. mutex_unlock(&sbi->gc_mutex);
  2065. if (err)
  2066. goto out;
  2067. start_block = START_BLOCK(sbi, start_segno);
  2068. end_block = START_BLOCK(sbi, end_segno + 1);
  2069. __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
  2070. __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
  2071. /*
  2072. * We filed discard candidates, but actually we don't need to wait for
  2073. * all of them, since they'll be issued in idle time along with runtime
  2074. * discard option. User configuration looks like using runtime discard
  2075. * or periodic fstrim instead of it.
  2076. */
  2077. if (!test_opt(sbi, DISCARD)) {
  2078. trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
  2079. start_block, end_block);
  2080. range->len = F2FS_BLK_TO_BYTES(trimmed);
  2081. }
  2082. out:
  2083. return err;
  2084. }
  2085. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  2086. {
  2087. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2088. if (curseg->next_blkoff < sbi->blocks_per_seg)
  2089. return true;
  2090. return false;
  2091. }
  2092. int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
  2093. {
  2094. switch (hint) {
  2095. case WRITE_LIFE_SHORT:
  2096. return CURSEG_HOT_DATA;
  2097. case WRITE_LIFE_EXTREME:
  2098. return CURSEG_COLD_DATA;
  2099. default:
  2100. return CURSEG_WARM_DATA;
  2101. }
  2102. }
  2103. /* This returns write hints for each segment type. This hints will be
  2104. * passed down to block layer. There are mapping tables which depend on
  2105. * the mount option 'whint_mode'.
  2106. *
  2107. * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
  2108. *
  2109. * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
  2110. *
  2111. * User F2FS Block
  2112. * ---- ---- -----
  2113. * META WRITE_LIFE_NOT_SET
  2114. * HOT_NODE "
  2115. * WARM_NODE "
  2116. * COLD_NODE "
  2117. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2118. * extension list " "
  2119. *
  2120. * -- buffered io
  2121. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2122. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2123. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2124. * WRITE_LIFE_NONE " "
  2125. * WRITE_LIFE_MEDIUM " "
  2126. * WRITE_LIFE_LONG " "
  2127. *
  2128. * -- direct io
  2129. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2130. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2131. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2132. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2133. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2134. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2135. *
  2136. * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
  2137. *
  2138. * User F2FS Block
  2139. * ---- ---- -----
  2140. * META WRITE_LIFE_MEDIUM;
  2141. * HOT_NODE WRITE_LIFE_NOT_SET
  2142. * WARM_NODE "
  2143. * COLD_NODE WRITE_LIFE_NONE
  2144. * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
  2145. * extension list " "
  2146. *
  2147. * -- buffered io
  2148. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2149. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2150. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
  2151. * WRITE_LIFE_NONE " "
  2152. * WRITE_LIFE_MEDIUM " "
  2153. * WRITE_LIFE_LONG " "
  2154. *
  2155. * -- direct io
  2156. * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
  2157. * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
  2158. * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
  2159. * WRITE_LIFE_NONE " WRITE_LIFE_NONE
  2160. * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
  2161. * WRITE_LIFE_LONG " WRITE_LIFE_LONG
  2162. */
  2163. enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
  2164. enum page_type type, enum temp_type temp)
  2165. {
  2166. if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
  2167. if (type == DATA) {
  2168. if (temp == WARM)
  2169. return WRITE_LIFE_NOT_SET;
  2170. else if (temp == HOT)
  2171. return WRITE_LIFE_SHORT;
  2172. else if (temp == COLD)
  2173. return WRITE_LIFE_EXTREME;
  2174. } else {
  2175. return WRITE_LIFE_NOT_SET;
  2176. }
  2177. } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
  2178. if (type == DATA) {
  2179. if (temp == WARM)
  2180. return WRITE_LIFE_LONG;
  2181. else if (temp == HOT)
  2182. return WRITE_LIFE_SHORT;
  2183. else if (temp == COLD)
  2184. return WRITE_LIFE_EXTREME;
  2185. } else if (type == NODE) {
  2186. if (temp == WARM || temp == HOT)
  2187. return WRITE_LIFE_NOT_SET;
  2188. else if (temp == COLD)
  2189. return WRITE_LIFE_NONE;
  2190. } else if (type == META) {
  2191. return WRITE_LIFE_MEDIUM;
  2192. }
  2193. }
  2194. return WRITE_LIFE_NOT_SET;
  2195. }
  2196. static int __get_segment_type_2(struct f2fs_io_info *fio)
  2197. {
  2198. if (fio->type == DATA)
  2199. return CURSEG_HOT_DATA;
  2200. else
  2201. return CURSEG_HOT_NODE;
  2202. }
  2203. static int __get_segment_type_4(struct f2fs_io_info *fio)
  2204. {
  2205. if (fio->type == DATA) {
  2206. struct inode *inode = fio->page->mapping->host;
  2207. if (S_ISDIR(inode->i_mode))
  2208. return CURSEG_HOT_DATA;
  2209. else
  2210. return CURSEG_COLD_DATA;
  2211. } else {
  2212. if (IS_DNODE(fio->page) && is_cold_node(fio->page))
  2213. return CURSEG_WARM_NODE;
  2214. else
  2215. return CURSEG_COLD_NODE;
  2216. }
  2217. }
  2218. static int __get_segment_type_6(struct f2fs_io_info *fio)
  2219. {
  2220. if (fio->type == DATA) {
  2221. struct inode *inode = fio->page->mapping->host;
  2222. if (is_cold_data(fio->page) || file_is_cold(inode))
  2223. return CURSEG_COLD_DATA;
  2224. if (file_is_hot(inode) ||
  2225. is_inode_flag_set(inode, FI_HOT_DATA) ||
  2226. is_inode_flag_set(inode, FI_ATOMIC_FILE) ||
  2227. is_inode_flag_set(inode, FI_VOLATILE_FILE))
  2228. return CURSEG_HOT_DATA;
  2229. return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
  2230. } else {
  2231. if (IS_DNODE(fio->page))
  2232. return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
  2233. CURSEG_HOT_NODE;
  2234. return CURSEG_COLD_NODE;
  2235. }
  2236. }
  2237. static int __get_segment_type(struct f2fs_io_info *fio)
  2238. {
  2239. int type = 0;
  2240. switch (F2FS_OPTION(fio->sbi).active_logs) {
  2241. case 2:
  2242. type = __get_segment_type_2(fio);
  2243. break;
  2244. case 4:
  2245. type = __get_segment_type_4(fio);
  2246. break;
  2247. case 6:
  2248. type = __get_segment_type_6(fio);
  2249. break;
  2250. default:
  2251. f2fs_bug_on(fio->sbi, true);
  2252. }
  2253. if (IS_HOT(type))
  2254. fio->temp = HOT;
  2255. else if (IS_WARM(type))
  2256. fio->temp = WARM;
  2257. else
  2258. fio->temp = COLD;
  2259. return type;
  2260. }
  2261. void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  2262. block_t old_blkaddr, block_t *new_blkaddr,
  2263. struct f2fs_summary *sum, int type,
  2264. struct f2fs_io_info *fio, bool add_list)
  2265. {
  2266. struct sit_info *sit_i = SIT_I(sbi);
  2267. struct curseg_info *curseg = CURSEG_I(sbi, type);
  2268. down_read(&SM_I(sbi)->curseg_lock);
  2269. mutex_lock(&curseg->curseg_mutex);
  2270. down_write(&sit_i->sentry_lock);
  2271. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  2272. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  2273. /*
  2274. * __add_sum_entry should be resided under the curseg_mutex
  2275. * because, this function updates a summary entry in the
  2276. * current summary block.
  2277. */
  2278. __add_sum_entry(sbi, type, sum);
  2279. __refresh_next_blkoff(sbi, curseg);
  2280. stat_inc_block_count(sbi, curseg);
  2281. /*
  2282. * SIT information should be updated before segment allocation,
  2283. * since SSR needs latest valid block information.
  2284. */
  2285. update_sit_entry(sbi, *new_blkaddr, 1);
  2286. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2287. update_sit_entry(sbi, old_blkaddr, -1);
  2288. if (!__has_curseg_space(sbi, type))
  2289. sit_i->s_ops->allocate_segment(sbi, type, false);
  2290. /*
  2291. * segment dirty status should be updated after segment allocation,
  2292. * so we just need to update status only one time after previous
  2293. * segment being closed.
  2294. */
  2295. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2296. locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
  2297. up_write(&sit_i->sentry_lock);
  2298. if (page && IS_NODESEG(type)) {
  2299. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  2300. f2fs_inode_chksum_set(sbi, page);
  2301. }
  2302. if (add_list) {
  2303. struct f2fs_bio_info *io;
  2304. INIT_LIST_HEAD(&fio->list);
  2305. fio->in_list = true;
  2306. fio->retry = false;
  2307. io = sbi->write_io[fio->type] + fio->temp;
  2308. spin_lock(&io->io_lock);
  2309. list_add_tail(&fio->list, &io->io_list);
  2310. spin_unlock(&io->io_lock);
  2311. }
  2312. mutex_unlock(&curseg->curseg_mutex);
  2313. up_read(&SM_I(sbi)->curseg_lock);
  2314. }
  2315. static void update_device_state(struct f2fs_io_info *fio)
  2316. {
  2317. struct f2fs_sb_info *sbi = fio->sbi;
  2318. unsigned int devidx;
  2319. if (!sbi->s_ndevs)
  2320. return;
  2321. devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
  2322. /* update device state for fsync */
  2323. f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
  2324. /* update device state for checkpoint */
  2325. if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
  2326. spin_lock(&sbi->dev_lock);
  2327. f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
  2328. spin_unlock(&sbi->dev_lock);
  2329. }
  2330. }
  2331. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  2332. {
  2333. int type = __get_segment_type(fio);
  2334. bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
  2335. if (keep_order)
  2336. down_read(&fio->sbi->io_order_lock);
  2337. reallocate:
  2338. f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  2339. &fio->new_blkaddr, sum, type, fio, true);
  2340. /* writeout dirty page into bdev */
  2341. f2fs_submit_page_write(fio);
  2342. if (fio->retry) {
  2343. fio->old_blkaddr = fio->new_blkaddr;
  2344. goto reallocate;
  2345. }
  2346. update_device_state(fio);
  2347. if (keep_order)
  2348. up_read(&fio->sbi->io_order_lock);
  2349. }
  2350. void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
  2351. enum iostat_type io_type)
  2352. {
  2353. struct f2fs_io_info fio = {
  2354. .sbi = sbi,
  2355. .type = META,
  2356. .temp = HOT,
  2357. .op = REQ_OP_WRITE,
  2358. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  2359. .old_blkaddr = page->index,
  2360. .new_blkaddr = page->index,
  2361. .page = page,
  2362. .encrypted_page = NULL,
  2363. .in_list = false,
  2364. };
  2365. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  2366. fio.op_flags &= ~REQ_META;
  2367. set_page_writeback(page);
  2368. ClearPageError(page);
  2369. f2fs_submit_page_write(&fio);
  2370. f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
  2371. }
  2372. void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  2373. {
  2374. struct f2fs_summary sum;
  2375. set_summary(&sum, nid, 0, 0);
  2376. do_write_page(&sum, fio);
  2377. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2378. }
  2379. void f2fs_outplace_write_data(struct dnode_of_data *dn,
  2380. struct f2fs_io_info *fio)
  2381. {
  2382. struct f2fs_sb_info *sbi = fio->sbi;
  2383. struct f2fs_summary sum;
  2384. struct node_info ni;
  2385. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  2386. f2fs_get_node_info(sbi, dn->nid, &ni);
  2387. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  2388. do_write_page(&sum, fio);
  2389. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  2390. f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
  2391. }
  2392. int f2fs_inplace_write_data(struct f2fs_io_info *fio)
  2393. {
  2394. int err;
  2395. struct f2fs_sb_info *sbi = fio->sbi;
  2396. fio->new_blkaddr = fio->old_blkaddr;
  2397. /* i/o temperature is needed for passing down write hints */
  2398. __get_segment_type(fio);
  2399. f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
  2400. GET_SEGNO(sbi, fio->new_blkaddr))->type));
  2401. stat_inc_inplace_blocks(fio->sbi);
  2402. err = f2fs_submit_page_bio(fio);
  2403. if (!err)
  2404. update_device_state(fio);
  2405. f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
  2406. return err;
  2407. }
  2408. static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
  2409. unsigned int segno)
  2410. {
  2411. int i;
  2412. for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
  2413. if (CURSEG_I(sbi, i)->segno == segno)
  2414. break;
  2415. }
  2416. return i;
  2417. }
  2418. void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  2419. block_t old_blkaddr, block_t new_blkaddr,
  2420. bool recover_curseg, bool recover_newaddr)
  2421. {
  2422. struct sit_info *sit_i = SIT_I(sbi);
  2423. struct curseg_info *curseg;
  2424. unsigned int segno, old_cursegno;
  2425. struct seg_entry *se;
  2426. int type;
  2427. unsigned short old_blkoff;
  2428. segno = GET_SEGNO(sbi, new_blkaddr);
  2429. se = get_seg_entry(sbi, segno);
  2430. type = se->type;
  2431. down_write(&SM_I(sbi)->curseg_lock);
  2432. if (!recover_curseg) {
  2433. /* for recovery flow */
  2434. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  2435. if (old_blkaddr == NULL_ADDR)
  2436. type = CURSEG_COLD_DATA;
  2437. else
  2438. type = CURSEG_WARM_DATA;
  2439. }
  2440. } else {
  2441. if (IS_CURSEG(sbi, segno)) {
  2442. /* se->type is volatile as SSR allocation */
  2443. type = __f2fs_get_curseg(sbi, segno);
  2444. f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
  2445. } else {
  2446. type = CURSEG_WARM_DATA;
  2447. }
  2448. }
  2449. f2fs_bug_on(sbi, !IS_DATASEG(type));
  2450. curseg = CURSEG_I(sbi, type);
  2451. mutex_lock(&curseg->curseg_mutex);
  2452. down_write(&sit_i->sentry_lock);
  2453. old_cursegno = curseg->segno;
  2454. old_blkoff = curseg->next_blkoff;
  2455. /* change the current segment */
  2456. if (segno != curseg->segno) {
  2457. curseg->next_segno = segno;
  2458. change_curseg(sbi, type);
  2459. }
  2460. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  2461. __add_sum_entry(sbi, type, sum);
  2462. if (!recover_curseg || recover_newaddr)
  2463. update_sit_entry(sbi, new_blkaddr, 1);
  2464. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  2465. update_sit_entry(sbi, old_blkaddr, -1);
  2466. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  2467. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  2468. locate_dirty_segment(sbi, old_cursegno);
  2469. if (recover_curseg) {
  2470. if (old_cursegno != curseg->segno) {
  2471. curseg->next_segno = old_cursegno;
  2472. change_curseg(sbi, type);
  2473. }
  2474. curseg->next_blkoff = old_blkoff;
  2475. }
  2476. up_write(&sit_i->sentry_lock);
  2477. mutex_unlock(&curseg->curseg_mutex);
  2478. up_write(&SM_I(sbi)->curseg_lock);
  2479. }
  2480. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  2481. block_t old_addr, block_t new_addr,
  2482. unsigned char version, bool recover_curseg,
  2483. bool recover_newaddr)
  2484. {
  2485. struct f2fs_summary sum;
  2486. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  2487. f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
  2488. recover_curseg, recover_newaddr);
  2489. f2fs_update_data_blkaddr(dn, new_addr);
  2490. }
  2491. void f2fs_wait_on_page_writeback(struct page *page,
  2492. enum page_type type, bool ordered)
  2493. {
  2494. if (PageWriteback(page)) {
  2495. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  2496. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  2497. 0, page->index, type);
  2498. if (ordered)
  2499. wait_on_page_writeback(page);
  2500. else
  2501. wait_for_stable_page(page);
  2502. }
  2503. }
  2504. void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
  2505. {
  2506. struct page *cpage;
  2507. if (!is_valid_blkaddr(blkaddr))
  2508. return;
  2509. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  2510. if (cpage) {
  2511. f2fs_wait_on_page_writeback(cpage, DATA, true);
  2512. f2fs_put_page(cpage, 1);
  2513. }
  2514. }
  2515. static void read_compacted_summaries(struct f2fs_sb_info *sbi)
  2516. {
  2517. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2518. struct curseg_info *seg_i;
  2519. unsigned char *kaddr;
  2520. struct page *page;
  2521. block_t start;
  2522. int i, j, offset;
  2523. start = start_sum_block(sbi);
  2524. page = f2fs_get_meta_page(sbi, start++);
  2525. kaddr = (unsigned char *)page_address(page);
  2526. /* Step 1: restore nat cache */
  2527. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2528. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  2529. /* Step 2: restore sit cache */
  2530. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2531. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  2532. offset = 2 * SUM_JOURNAL_SIZE;
  2533. /* Step 3: restore summary entries */
  2534. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2535. unsigned short blk_off;
  2536. unsigned int segno;
  2537. seg_i = CURSEG_I(sbi, i);
  2538. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  2539. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  2540. seg_i->next_segno = segno;
  2541. reset_curseg(sbi, i, 0);
  2542. seg_i->alloc_type = ckpt->alloc_type[i];
  2543. seg_i->next_blkoff = blk_off;
  2544. if (seg_i->alloc_type == SSR)
  2545. blk_off = sbi->blocks_per_seg;
  2546. for (j = 0; j < blk_off; j++) {
  2547. struct f2fs_summary *s;
  2548. s = (struct f2fs_summary *)(kaddr + offset);
  2549. seg_i->sum_blk->entries[j] = *s;
  2550. offset += SUMMARY_SIZE;
  2551. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  2552. SUM_FOOTER_SIZE)
  2553. continue;
  2554. f2fs_put_page(page, 1);
  2555. page = NULL;
  2556. page = f2fs_get_meta_page(sbi, start++);
  2557. kaddr = (unsigned char *)page_address(page);
  2558. offset = 0;
  2559. }
  2560. }
  2561. f2fs_put_page(page, 1);
  2562. }
  2563. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  2564. {
  2565. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2566. struct f2fs_summary_block *sum;
  2567. struct curseg_info *curseg;
  2568. struct page *new;
  2569. unsigned short blk_off;
  2570. unsigned int segno = 0;
  2571. block_t blk_addr = 0;
  2572. /* get segment number and block addr */
  2573. if (IS_DATASEG(type)) {
  2574. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  2575. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  2576. CURSEG_HOT_DATA]);
  2577. if (__exist_node_summaries(sbi))
  2578. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  2579. else
  2580. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  2581. } else {
  2582. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  2583. CURSEG_HOT_NODE]);
  2584. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  2585. CURSEG_HOT_NODE]);
  2586. if (__exist_node_summaries(sbi))
  2587. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  2588. type - CURSEG_HOT_NODE);
  2589. else
  2590. blk_addr = GET_SUM_BLOCK(sbi, segno);
  2591. }
  2592. new = f2fs_get_meta_page(sbi, blk_addr);
  2593. sum = (struct f2fs_summary_block *)page_address(new);
  2594. if (IS_NODESEG(type)) {
  2595. if (__exist_node_summaries(sbi)) {
  2596. struct f2fs_summary *ns = &sum->entries[0];
  2597. int i;
  2598. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  2599. ns->version = 0;
  2600. ns->ofs_in_node = 0;
  2601. }
  2602. } else {
  2603. f2fs_restore_node_summary(sbi, segno, sum);
  2604. }
  2605. }
  2606. /* set uncompleted segment to curseg */
  2607. curseg = CURSEG_I(sbi, type);
  2608. mutex_lock(&curseg->curseg_mutex);
  2609. /* update journal info */
  2610. down_write(&curseg->journal_rwsem);
  2611. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  2612. up_write(&curseg->journal_rwsem);
  2613. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  2614. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  2615. curseg->next_segno = segno;
  2616. reset_curseg(sbi, type, 0);
  2617. curseg->alloc_type = ckpt->alloc_type[type];
  2618. curseg->next_blkoff = blk_off;
  2619. mutex_unlock(&curseg->curseg_mutex);
  2620. f2fs_put_page(new, 1);
  2621. return 0;
  2622. }
  2623. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2624. {
  2625. struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
  2626. struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
  2627. int type = CURSEG_HOT_DATA;
  2628. int err;
  2629. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2630. int npages = f2fs_npages_for_summary_flush(sbi, true);
  2631. if (npages >= 2)
  2632. f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2633. META_CP, true);
  2634. /* restore for compacted data summary */
  2635. read_compacted_summaries(sbi);
  2636. type = CURSEG_HOT_NODE;
  2637. }
  2638. if (__exist_node_summaries(sbi))
  2639. f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2640. NR_CURSEG_TYPE - type, META_CP, true);
  2641. for (; type <= CURSEG_COLD_NODE; type++) {
  2642. err = read_normal_summaries(sbi, type);
  2643. if (err)
  2644. return err;
  2645. }
  2646. /* sanity check for summary blocks */
  2647. if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
  2648. sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
  2649. return -EINVAL;
  2650. return 0;
  2651. }
  2652. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2653. {
  2654. struct page *page;
  2655. unsigned char *kaddr;
  2656. struct f2fs_summary *summary;
  2657. struct curseg_info *seg_i;
  2658. int written_size = 0;
  2659. int i, j;
  2660. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2661. kaddr = (unsigned char *)page_address(page);
  2662. memset(kaddr, 0, PAGE_SIZE);
  2663. /* Step 1: write nat cache */
  2664. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2665. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2666. written_size += SUM_JOURNAL_SIZE;
  2667. /* Step 2: write sit cache */
  2668. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2669. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2670. written_size += SUM_JOURNAL_SIZE;
  2671. /* Step 3: write summary entries */
  2672. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2673. unsigned short blkoff;
  2674. seg_i = CURSEG_I(sbi, i);
  2675. if (sbi->ckpt->alloc_type[i] == SSR)
  2676. blkoff = sbi->blocks_per_seg;
  2677. else
  2678. blkoff = curseg_blkoff(sbi, i);
  2679. for (j = 0; j < blkoff; j++) {
  2680. if (!page) {
  2681. page = f2fs_grab_meta_page(sbi, blkaddr++);
  2682. kaddr = (unsigned char *)page_address(page);
  2683. memset(kaddr, 0, PAGE_SIZE);
  2684. written_size = 0;
  2685. }
  2686. summary = (struct f2fs_summary *)(kaddr + written_size);
  2687. *summary = seg_i->sum_blk->entries[j];
  2688. written_size += SUMMARY_SIZE;
  2689. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2690. SUM_FOOTER_SIZE)
  2691. continue;
  2692. set_page_dirty(page);
  2693. f2fs_put_page(page, 1);
  2694. page = NULL;
  2695. }
  2696. }
  2697. if (page) {
  2698. set_page_dirty(page);
  2699. f2fs_put_page(page, 1);
  2700. }
  2701. }
  2702. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2703. block_t blkaddr, int type)
  2704. {
  2705. int i, end;
  2706. if (IS_DATASEG(type))
  2707. end = type + NR_CURSEG_DATA_TYPE;
  2708. else
  2709. end = type + NR_CURSEG_NODE_TYPE;
  2710. for (i = type; i < end; i++)
  2711. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2712. }
  2713. void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2714. {
  2715. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2716. write_compacted_summaries(sbi, start_blk);
  2717. else
  2718. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2719. }
  2720. void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2721. {
  2722. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2723. }
  2724. int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2725. unsigned int val, int alloc)
  2726. {
  2727. int i;
  2728. if (type == NAT_JOURNAL) {
  2729. for (i = 0; i < nats_in_cursum(journal); i++) {
  2730. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2731. return i;
  2732. }
  2733. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2734. return update_nats_in_cursum(journal, 1);
  2735. } else if (type == SIT_JOURNAL) {
  2736. for (i = 0; i < sits_in_cursum(journal); i++)
  2737. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2738. return i;
  2739. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2740. return update_sits_in_cursum(journal, 1);
  2741. }
  2742. return -1;
  2743. }
  2744. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2745. unsigned int segno)
  2746. {
  2747. return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
  2748. }
  2749. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2750. unsigned int start)
  2751. {
  2752. struct sit_info *sit_i = SIT_I(sbi);
  2753. struct page *page;
  2754. pgoff_t src_off, dst_off;
  2755. src_off = current_sit_addr(sbi, start);
  2756. dst_off = next_sit_addr(sbi, src_off);
  2757. page = f2fs_grab_meta_page(sbi, dst_off);
  2758. seg_info_to_sit_page(sbi, page, start);
  2759. set_page_dirty(page);
  2760. set_to_next_sit(sit_i, start);
  2761. return page;
  2762. }
  2763. static struct sit_entry_set *grab_sit_entry_set(void)
  2764. {
  2765. struct sit_entry_set *ses =
  2766. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2767. ses->entry_cnt = 0;
  2768. INIT_LIST_HEAD(&ses->set_list);
  2769. return ses;
  2770. }
  2771. static void release_sit_entry_set(struct sit_entry_set *ses)
  2772. {
  2773. list_del(&ses->set_list);
  2774. kmem_cache_free(sit_entry_set_slab, ses);
  2775. }
  2776. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2777. struct list_head *head)
  2778. {
  2779. struct sit_entry_set *next = ses;
  2780. if (list_is_last(&ses->set_list, head))
  2781. return;
  2782. list_for_each_entry_continue(next, head, set_list)
  2783. if (ses->entry_cnt <= next->entry_cnt)
  2784. break;
  2785. list_move_tail(&ses->set_list, &next->set_list);
  2786. }
  2787. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2788. {
  2789. struct sit_entry_set *ses;
  2790. unsigned int start_segno = START_SEGNO(segno);
  2791. list_for_each_entry(ses, head, set_list) {
  2792. if (ses->start_segno == start_segno) {
  2793. ses->entry_cnt++;
  2794. adjust_sit_entry_set(ses, head);
  2795. return;
  2796. }
  2797. }
  2798. ses = grab_sit_entry_set();
  2799. ses->start_segno = start_segno;
  2800. ses->entry_cnt++;
  2801. list_add(&ses->set_list, head);
  2802. }
  2803. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2804. {
  2805. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2806. struct list_head *set_list = &sm_info->sit_entry_set;
  2807. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2808. unsigned int segno;
  2809. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2810. add_sit_entry(segno, set_list);
  2811. }
  2812. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2813. {
  2814. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2815. struct f2fs_journal *journal = curseg->journal;
  2816. int i;
  2817. down_write(&curseg->journal_rwsem);
  2818. for (i = 0; i < sits_in_cursum(journal); i++) {
  2819. unsigned int segno;
  2820. bool dirtied;
  2821. segno = le32_to_cpu(segno_in_journal(journal, i));
  2822. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2823. if (!dirtied)
  2824. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2825. }
  2826. update_sits_in_cursum(journal, -i);
  2827. up_write(&curseg->journal_rwsem);
  2828. }
  2829. /*
  2830. * CP calls this function, which flushes SIT entries including sit_journal,
  2831. * and moves prefree segs to free segs.
  2832. */
  2833. void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2834. {
  2835. struct sit_info *sit_i = SIT_I(sbi);
  2836. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2837. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2838. struct f2fs_journal *journal = curseg->journal;
  2839. struct sit_entry_set *ses, *tmp;
  2840. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2841. bool to_journal = true;
  2842. struct seg_entry *se;
  2843. down_write(&sit_i->sentry_lock);
  2844. if (!sit_i->dirty_sentries)
  2845. goto out;
  2846. /*
  2847. * add and account sit entries of dirty bitmap in sit entry
  2848. * set temporarily
  2849. */
  2850. add_sits_in_set(sbi);
  2851. /*
  2852. * if there are no enough space in journal to store dirty sit
  2853. * entries, remove all entries from journal and add and account
  2854. * them in sit entry set.
  2855. */
  2856. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2857. remove_sits_in_journal(sbi);
  2858. /*
  2859. * there are two steps to flush sit entries:
  2860. * #1, flush sit entries to journal in current cold data summary block.
  2861. * #2, flush sit entries to sit page.
  2862. */
  2863. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2864. struct page *page = NULL;
  2865. struct f2fs_sit_block *raw_sit = NULL;
  2866. unsigned int start_segno = ses->start_segno;
  2867. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2868. (unsigned long)MAIN_SEGS(sbi));
  2869. unsigned int segno = start_segno;
  2870. if (to_journal &&
  2871. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2872. to_journal = false;
  2873. if (to_journal) {
  2874. down_write(&curseg->journal_rwsem);
  2875. } else {
  2876. page = get_next_sit_page(sbi, start_segno);
  2877. raw_sit = page_address(page);
  2878. }
  2879. /* flush dirty sit entries in region of current sit set */
  2880. for_each_set_bit_from(segno, bitmap, end) {
  2881. int offset, sit_offset;
  2882. se = get_seg_entry(sbi, segno);
  2883. #ifdef CONFIG_F2FS_CHECK_FS
  2884. if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
  2885. SIT_VBLOCK_MAP_SIZE))
  2886. f2fs_bug_on(sbi, 1);
  2887. #endif
  2888. /* add discard candidates */
  2889. if (!(cpc->reason & CP_DISCARD)) {
  2890. cpc->trim_start = segno;
  2891. add_discard_addrs(sbi, cpc, false);
  2892. }
  2893. if (to_journal) {
  2894. offset = f2fs_lookup_journal_in_cursum(journal,
  2895. SIT_JOURNAL, segno, 1);
  2896. f2fs_bug_on(sbi, offset < 0);
  2897. segno_in_journal(journal, offset) =
  2898. cpu_to_le32(segno);
  2899. seg_info_to_raw_sit(se,
  2900. &sit_in_journal(journal, offset));
  2901. check_block_count(sbi, segno,
  2902. &sit_in_journal(journal, offset));
  2903. } else {
  2904. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2905. seg_info_to_raw_sit(se,
  2906. &raw_sit->entries[sit_offset]);
  2907. check_block_count(sbi, segno,
  2908. &raw_sit->entries[sit_offset]);
  2909. }
  2910. __clear_bit(segno, bitmap);
  2911. sit_i->dirty_sentries--;
  2912. ses->entry_cnt--;
  2913. }
  2914. if (to_journal)
  2915. up_write(&curseg->journal_rwsem);
  2916. else
  2917. f2fs_put_page(page, 1);
  2918. f2fs_bug_on(sbi, ses->entry_cnt);
  2919. release_sit_entry_set(ses);
  2920. }
  2921. f2fs_bug_on(sbi, !list_empty(head));
  2922. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2923. out:
  2924. if (cpc->reason & CP_DISCARD) {
  2925. __u64 trim_start = cpc->trim_start;
  2926. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2927. add_discard_addrs(sbi, cpc, false);
  2928. cpc->trim_start = trim_start;
  2929. }
  2930. up_write(&sit_i->sentry_lock);
  2931. set_prefree_as_free_segments(sbi);
  2932. }
  2933. static int build_sit_info(struct f2fs_sb_info *sbi)
  2934. {
  2935. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2936. struct sit_info *sit_i;
  2937. unsigned int sit_segs, start;
  2938. char *src_bitmap;
  2939. unsigned int bitmap_size;
  2940. /* allocate memory for SIT information */
  2941. sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
  2942. if (!sit_i)
  2943. return -ENOMEM;
  2944. SM_I(sbi)->sit_info = sit_i;
  2945. sit_i->sentries =
  2946. f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
  2947. MAIN_SEGS(sbi)),
  2948. GFP_KERNEL);
  2949. if (!sit_i->sentries)
  2950. return -ENOMEM;
  2951. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2952. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
  2953. GFP_KERNEL);
  2954. if (!sit_i->dirty_sentries_bitmap)
  2955. return -ENOMEM;
  2956. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2957. sit_i->sentries[start].cur_valid_map
  2958. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2959. sit_i->sentries[start].ckpt_valid_map
  2960. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2961. if (!sit_i->sentries[start].cur_valid_map ||
  2962. !sit_i->sentries[start].ckpt_valid_map)
  2963. return -ENOMEM;
  2964. #ifdef CONFIG_F2FS_CHECK_FS
  2965. sit_i->sentries[start].cur_valid_map_mir
  2966. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2967. if (!sit_i->sentries[start].cur_valid_map_mir)
  2968. return -ENOMEM;
  2969. #endif
  2970. if (f2fs_discard_en(sbi)) {
  2971. sit_i->sentries[start].discard_map
  2972. = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
  2973. GFP_KERNEL);
  2974. if (!sit_i->sentries[start].discard_map)
  2975. return -ENOMEM;
  2976. }
  2977. }
  2978. sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2979. if (!sit_i->tmp_map)
  2980. return -ENOMEM;
  2981. if (sbi->segs_per_sec > 1) {
  2982. sit_i->sec_entries =
  2983. f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
  2984. MAIN_SECS(sbi)),
  2985. GFP_KERNEL);
  2986. if (!sit_i->sec_entries)
  2987. return -ENOMEM;
  2988. }
  2989. /* get information related with SIT */
  2990. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2991. /* setup SIT bitmap from ckeckpoint pack */
  2992. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2993. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2994. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2995. if (!sit_i->sit_bitmap)
  2996. return -ENOMEM;
  2997. #ifdef CONFIG_F2FS_CHECK_FS
  2998. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2999. if (!sit_i->sit_bitmap_mir)
  3000. return -ENOMEM;
  3001. #endif
  3002. /* init SIT information */
  3003. sit_i->s_ops = &default_salloc_ops;
  3004. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  3005. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  3006. sit_i->written_valid_blocks = 0;
  3007. sit_i->bitmap_size = bitmap_size;
  3008. sit_i->dirty_sentries = 0;
  3009. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  3010. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  3011. sit_i->mounted_time = ktime_get_real_seconds();
  3012. init_rwsem(&sit_i->sentry_lock);
  3013. return 0;
  3014. }
  3015. static int build_free_segmap(struct f2fs_sb_info *sbi)
  3016. {
  3017. struct free_segmap_info *free_i;
  3018. unsigned int bitmap_size, sec_bitmap_size;
  3019. /* allocate memory for free segmap information */
  3020. free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
  3021. if (!free_i)
  3022. return -ENOMEM;
  3023. SM_I(sbi)->free_info = free_i;
  3024. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3025. free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
  3026. if (!free_i->free_segmap)
  3027. return -ENOMEM;
  3028. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3029. free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
  3030. if (!free_i->free_secmap)
  3031. return -ENOMEM;
  3032. /* set all segments as dirty temporarily */
  3033. memset(free_i->free_segmap, 0xff, bitmap_size);
  3034. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  3035. /* init free segmap information */
  3036. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  3037. free_i->free_segments = 0;
  3038. free_i->free_sections = 0;
  3039. spin_lock_init(&free_i->segmap_lock);
  3040. return 0;
  3041. }
  3042. static int build_curseg(struct f2fs_sb_info *sbi)
  3043. {
  3044. struct curseg_info *array;
  3045. int i;
  3046. array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
  3047. GFP_KERNEL);
  3048. if (!array)
  3049. return -ENOMEM;
  3050. SM_I(sbi)->curseg_array = array;
  3051. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3052. mutex_init(&array[i].curseg_mutex);
  3053. array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
  3054. if (!array[i].sum_blk)
  3055. return -ENOMEM;
  3056. init_rwsem(&array[i].journal_rwsem);
  3057. array[i].journal = f2fs_kzalloc(sbi,
  3058. sizeof(struct f2fs_journal), GFP_KERNEL);
  3059. if (!array[i].journal)
  3060. return -ENOMEM;
  3061. array[i].segno = NULL_SEGNO;
  3062. array[i].next_blkoff = 0;
  3063. }
  3064. return restore_curseg_summaries(sbi);
  3065. }
  3066. static int build_sit_entries(struct f2fs_sb_info *sbi)
  3067. {
  3068. struct sit_info *sit_i = SIT_I(sbi);
  3069. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  3070. struct f2fs_journal *journal = curseg->journal;
  3071. struct seg_entry *se;
  3072. struct f2fs_sit_entry sit;
  3073. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  3074. unsigned int i, start, end;
  3075. unsigned int readed, start_blk = 0;
  3076. int err = 0;
  3077. block_t total_node_blocks = 0;
  3078. do {
  3079. readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  3080. META_SIT, true);
  3081. start = start_blk * sit_i->sents_per_block;
  3082. end = (start_blk + readed) * sit_i->sents_per_block;
  3083. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  3084. struct f2fs_sit_block *sit_blk;
  3085. struct page *page;
  3086. se = &sit_i->sentries[start];
  3087. page = get_current_sit_page(sbi, start);
  3088. sit_blk = (struct f2fs_sit_block *)page_address(page);
  3089. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  3090. f2fs_put_page(page, 1);
  3091. err = check_block_count(sbi, start, &sit);
  3092. if (err)
  3093. return err;
  3094. seg_info_from_raw_sit(se, &sit);
  3095. if (IS_NODESEG(se->type))
  3096. total_node_blocks += se->valid_blocks;
  3097. /* build discard map only one time */
  3098. if (f2fs_discard_en(sbi)) {
  3099. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3100. memset(se->discard_map, 0xff,
  3101. SIT_VBLOCK_MAP_SIZE);
  3102. } else {
  3103. memcpy(se->discard_map,
  3104. se->cur_valid_map,
  3105. SIT_VBLOCK_MAP_SIZE);
  3106. sbi->discard_blks +=
  3107. sbi->blocks_per_seg -
  3108. se->valid_blocks;
  3109. }
  3110. }
  3111. if (sbi->segs_per_sec > 1)
  3112. get_sec_entry(sbi, start)->valid_blocks +=
  3113. se->valid_blocks;
  3114. }
  3115. start_blk += readed;
  3116. } while (start_blk < sit_blk_cnt);
  3117. down_read(&curseg->journal_rwsem);
  3118. for (i = 0; i < sits_in_cursum(journal); i++) {
  3119. unsigned int old_valid_blocks;
  3120. start = le32_to_cpu(segno_in_journal(journal, i));
  3121. if (start >= MAIN_SEGS(sbi)) {
  3122. f2fs_msg(sbi->sb, KERN_ERR,
  3123. "Wrong journal entry on segno %u",
  3124. start);
  3125. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3126. err = -EINVAL;
  3127. break;
  3128. }
  3129. se = &sit_i->sentries[start];
  3130. sit = sit_in_journal(journal, i);
  3131. old_valid_blocks = se->valid_blocks;
  3132. if (IS_NODESEG(se->type))
  3133. total_node_blocks -= old_valid_blocks;
  3134. err = check_block_count(sbi, start, &sit);
  3135. if (err)
  3136. break;
  3137. seg_info_from_raw_sit(se, &sit);
  3138. if (IS_NODESEG(se->type))
  3139. total_node_blocks += se->valid_blocks;
  3140. if (f2fs_discard_en(sbi)) {
  3141. if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
  3142. memset(se->discard_map, 0xff,
  3143. SIT_VBLOCK_MAP_SIZE);
  3144. } else {
  3145. memcpy(se->discard_map, se->cur_valid_map,
  3146. SIT_VBLOCK_MAP_SIZE);
  3147. sbi->discard_blks += old_valid_blocks;
  3148. sbi->discard_blks -= se->valid_blocks;
  3149. }
  3150. }
  3151. if (sbi->segs_per_sec > 1) {
  3152. get_sec_entry(sbi, start)->valid_blocks +=
  3153. se->valid_blocks;
  3154. get_sec_entry(sbi, start)->valid_blocks -=
  3155. old_valid_blocks;
  3156. }
  3157. }
  3158. up_read(&curseg->journal_rwsem);
  3159. if (!err && total_node_blocks != valid_node_count(sbi)) {
  3160. f2fs_msg(sbi->sb, KERN_ERR,
  3161. "SIT is corrupted node# %u vs %u",
  3162. total_node_blocks, valid_node_count(sbi));
  3163. set_sbi_flag(sbi, SBI_NEED_FSCK);
  3164. err = -EINVAL;
  3165. }
  3166. return err;
  3167. }
  3168. static void init_free_segmap(struct f2fs_sb_info *sbi)
  3169. {
  3170. unsigned int start;
  3171. int type;
  3172. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3173. struct seg_entry *sentry = get_seg_entry(sbi, start);
  3174. if (!sentry->valid_blocks)
  3175. __set_free(sbi, start);
  3176. else
  3177. SIT_I(sbi)->written_valid_blocks +=
  3178. sentry->valid_blocks;
  3179. }
  3180. /* set use the current segments */
  3181. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  3182. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  3183. __set_test_and_inuse(sbi, curseg_t->segno);
  3184. }
  3185. }
  3186. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  3187. {
  3188. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3189. struct free_segmap_info *free_i = FREE_I(sbi);
  3190. unsigned int segno = 0, offset = 0;
  3191. unsigned short valid_blocks;
  3192. while (1) {
  3193. /* find dirty segment based on free segmap */
  3194. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  3195. if (segno >= MAIN_SEGS(sbi))
  3196. break;
  3197. offset = segno + 1;
  3198. valid_blocks = get_valid_blocks(sbi, segno, false);
  3199. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  3200. continue;
  3201. if (valid_blocks > sbi->blocks_per_seg) {
  3202. f2fs_bug_on(sbi, 1);
  3203. continue;
  3204. }
  3205. mutex_lock(&dirty_i->seglist_lock);
  3206. __locate_dirty_segment(sbi, segno, DIRTY);
  3207. mutex_unlock(&dirty_i->seglist_lock);
  3208. }
  3209. }
  3210. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  3211. {
  3212. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3213. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  3214. dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
  3215. if (!dirty_i->victim_secmap)
  3216. return -ENOMEM;
  3217. return 0;
  3218. }
  3219. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  3220. {
  3221. struct dirty_seglist_info *dirty_i;
  3222. unsigned int bitmap_size, i;
  3223. /* allocate memory for dirty segments list information */
  3224. dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
  3225. GFP_KERNEL);
  3226. if (!dirty_i)
  3227. return -ENOMEM;
  3228. SM_I(sbi)->dirty_info = dirty_i;
  3229. mutex_init(&dirty_i->seglist_lock);
  3230. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  3231. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  3232. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
  3233. GFP_KERNEL);
  3234. if (!dirty_i->dirty_segmap[i])
  3235. return -ENOMEM;
  3236. }
  3237. init_dirty_segmap(sbi);
  3238. return init_victim_secmap(sbi);
  3239. }
  3240. /*
  3241. * Update min, max modified time for cost-benefit GC algorithm
  3242. */
  3243. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  3244. {
  3245. struct sit_info *sit_i = SIT_I(sbi);
  3246. unsigned int segno;
  3247. down_write(&sit_i->sentry_lock);
  3248. sit_i->min_mtime = ULLONG_MAX;
  3249. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  3250. unsigned int i;
  3251. unsigned long long mtime = 0;
  3252. for (i = 0; i < sbi->segs_per_sec; i++)
  3253. mtime += get_seg_entry(sbi, segno + i)->mtime;
  3254. mtime = div_u64(mtime, sbi->segs_per_sec);
  3255. if (sit_i->min_mtime > mtime)
  3256. sit_i->min_mtime = mtime;
  3257. }
  3258. sit_i->max_mtime = get_mtime(sbi, false);
  3259. up_write(&sit_i->sentry_lock);
  3260. }
  3261. int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
  3262. {
  3263. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  3264. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  3265. struct f2fs_sm_info *sm_info;
  3266. int err;
  3267. sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
  3268. if (!sm_info)
  3269. return -ENOMEM;
  3270. /* init sm info */
  3271. sbi->sm_info = sm_info;
  3272. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  3273. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  3274. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  3275. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  3276. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  3277. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  3278. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  3279. sm_info->rec_prefree_segments = sm_info->main_segments *
  3280. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  3281. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  3282. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  3283. if (!test_opt(sbi, LFS))
  3284. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  3285. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  3286. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  3287. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  3288. sm_info->min_ssr_sections = reserved_sections(sbi);
  3289. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  3290. init_rwsem(&sm_info->curseg_lock);
  3291. if (!f2fs_readonly(sbi->sb)) {
  3292. err = f2fs_create_flush_cmd_control(sbi);
  3293. if (err)
  3294. return err;
  3295. }
  3296. err = create_discard_cmd_control(sbi);
  3297. if (err)
  3298. return err;
  3299. err = build_sit_info(sbi);
  3300. if (err)
  3301. return err;
  3302. err = build_free_segmap(sbi);
  3303. if (err)
  3304. return err;
  3305. err = build_curseg(sbi);
  3306. if (err)
  3307. return err;
  3308. /* reinit free segmap based on SIT */
  3309. err = build_sit_entries(sbi);
  3310. if (err)
  3311. return err;
  3312. init_free_segmap(sbi);
  3313. err = build_dirty_segmap(sbi);
  3314. if (err)
  3315. return err;
  3316. init_min_max_mtime(sbi);
  3317. return 0;
  3318. }
  3319. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  3320. enum dirty_type dirty_type)
  3321. {
  3322. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3323. mutex_lock(&dirty_i->seglist_lock);
  3324. kvfree(dirty_i->dirty_segmap[dirty_type]);
  3325. dirty_i->nr_dirty[dirty_type] = 0;
  3326. mutex_unlock(&dirty_i->seglist_lock);
  3327. }
  3328. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  3329. {
  3330. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3331. kvfree(dirty_i->victim_secmap);
  3332. }
  3333. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  3334. {
  3335. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  3336. int i;
  3337. if (!dirty_i)
  3338. return;
  3339. /* discard pre-free/dirty segments list */
  3340. for (i = 0; i < NR_DIRTY_TYPE; i++)
  3341. discard_dirty_segmap(sbi, i);
  3342. destroy_victim_secmap(sbi);
  3343. SM_I(sbi)->dirty_info = NULL;
  3344. kfree(dirty_i);
  3345. }
  3346. static void destroy_curseg(struct f2fs_sb_info *sbi)
  3347. {
  3348. struct curseg_info *array = SM_I(sbi)->curseg_array;
  3349. int i;
  3350. if (!array)
  3351. return;
  3352. SM_I(sbi)->curseg_array = NULL;
  3353. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  3354. kfree(array[i].sum_blk);
  3355. kfree(array[i].journal);
  3356. }
  3357. kfree(array);
  3358. }
  3359. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  3360. {
  3361. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  3362. if (!free_i)
  3363. return;
  3364. SM_I(sbi)->free_info = NULL;
  3365. kvfree(free_i->free_segmap);
  3366. kvfree(free_i->free_secmap);
  3367. kfree(free_i);
  3368. }
  3369. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  3370. {
  3371. struct sit_info *sit_i = SIT_I(sbi);
  3372. unsigned int start;
  3373. if (!sit_i)
  3374. return;
  3375. if (sit_i->sentries) {
  3376. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  3377. kfree(sit_i->sentries[start].cur_valid_map);
  3378. #ifdef CONFIG_F2FS_CHECK_FS
  3379. kfree(sit_i->sentries[start].cur_valid_map_mir);
  3380. #endif
  3381. kfree(sit_i->sentries[start].ckpt_valid_map);
  3382. kfree(sit_i->sentries[start].discard_map);
  3383. }
  3384. }
  3385. kfree(sit_i->tmp_map);
  3386. kvfree(sit_i->sentries);
  3387. kvfree(sit_i->sec_entries);
  3388. kvfree(sit_i->dirty_sentries_bitmap);
  3389. SM_I(sbi)->sit_info = NULL;
  3390. kfree(sit_i->sit_bitmap);
  3391. #ifdef CONFIG_F2FS_CHECK_FS
  3392. kfree(sit_i->sit_bitmap_mir);
  3393. #endif
  3394. kfree(sit_i);
  3395. }
  3396. void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
  3397. {
  3398. struct f2fs_sm_info *sm_info = SM_I(sbi);
  3399. if (!sm_info)
  3400. return;
  3401. f2fs_destroy_flush_cmd_control(sbi, true);
  3402. destroy_discard_cmd_control(sbi);
  3403. destroy_dirty_segmap(sbi);
  3404. destroy_curseg(sbi);
  3405. destroy_free_segmap(sbi);
  3406. destroy_sit_info(sbi);
  3407. sbi->sm_info = NULL;
  3408. kfree(sm_info);
  3409. }
  3410. int __init f2fs_create_segment_manager_caches(void)
  3411. {
  3412. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  3413. sizeof(struct discard_entry));
  3414. if (!discard_entry_slab)
  3415. goto fail;
  3416. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  3417. sizeof(struct discard_cmd));
  3418. if (!discard_cmd_slab)
  3419. goto destroy_discard_entry;
  3420. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  3421. sizeof(struct sit_entry_set));
  3422. if (!sit_entry_set_slab)
  3423. goto destroy_discard_cmd;
  3424. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  3425. sizeof(struct inmem_pages));
  3426. if (!inmem_entry_slab)
  3427. goto destroy_sit_entry_set;
  3428. return 0;
  3429. destroy_sit_entry_set:
  3430. kmem_cache_destroy(sit_entry_set_slab);
  3431. destroy_discard_cmd:
  3432. kmem_cache_destroy(discard_cmd_slab);
  3433. destroy_discard_entry:
  3434. kmem_cache_destroy(discard_entry_slab);
  3435. fail:
  3436. return -ENOMEM;
  3437. }
  3438. void f2fs_destroy_segment_manager_caches(void)
  3439. {
  3440. kmem_cache_destroy(sit_entry_set_slab);
  3441. kmem_cache_destroy(discard_cmd_slab);
  3442. kmem_cache_destroy(discard_entry_slab);
  3443. kmem_cache_destroy(inmem_entry_slab);
  3444. }