node.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. /*
  2. * fs/f2fs/node.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. /* start node id of a node block dedicated to the given node id */
  12. #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13. /* node block offset on the NAT area dedicated to the given start node id */
  14. #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
  15. /* # of pages to perform synchronous readahead before building free nids */
  16. #define FREE_NID_PAGES 8
  17. #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  18. #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
  19. /* maximum readahead size for node during getting data blocks */
  20. #define MAX_RA_NODE 128
  21. /* control the memory footprint threshold (10MB per 1GB ram) */
  22. #define DEF_RAM_THRESHOLD 1
  23. /* control dirty nats ratio threshold (default: 10% over max nid count) */
  24. #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
  25. /* control total # of nats */
  26. #define DEF_NAT_CACHE_THRESHOLD 100000
  27. /* vector size for gang look-up from nat cache that consists of radix tree */
  28. #define NATVEC_SIZE 64
  29. #define SETVEC_SIZE 32
  30. /* return value for read_node_page */
  31. #define LOCKED_PAGE 1
  32. /* For flag in struct node_info */
  33. enum {
  34. IS_CHECKPOINTED, /* is it checkpointed before? */
  35. HAS_FSYNCED_INODE, /* is the inode fsynced before? */
  36. HAS_LAST_FSYNC, /* has the latest node fsync mark? */
  37. IS_DIRTY, /* this nat entry is dirty? */
  38. IS_PREALLOC, /* nat entry is preallocated */
  39. };
  40. /*
  41. * For node information
  42. */
  43. struct node_info {
  44. nid_t nid; /* node id */
  45. nid_t ino; /* inode number of the node's owner */
  46. block_t blk_addr; /* block address of the node */
  47. unsigned char version; /* version of the node */
  48. unsigned char flag; /* for node information bits */
  49. };
  50. struct nat_entry {
  51. struct list_head list; /* for clean or dirty nat list */
  52. struct node_info ni; /* in-memory node information */
  53. };
  54. #define nat_get_nid(nat) ((nat)->ni.nid)
  55. #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
  56. #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
  57. #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
  58. #define nat_get_ino(nat) ((nat)->ni.ino)
  59. #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
  60. #define nat_get_version(nat) ((nat)->ni.version)
  61. #define nat_set_version(nat, v) ((nat)->ni.version = (v))
  62. #define inc_node_version(version) (++(version))
  63. static inline void copy_node_info(struct node_info *dst,
  64. struct node_info *src)
  65. {
  66. dst->nid = src->nid;
  67. dst->ino = src->ino;
  68. dst->blk_addr = src->blk_addr;
  69. dst->version = src->version;
  70. /* should not copy flag here */
  71. }
  72. static inline void set_nat_flag(struct nat_entry *ne,
  73. unsigned int type, bool set)
  74. {
  75. unsigned char mask = 0x01 << type;
  76. if (set)
  77. ne->ni.flag |= mask;
  78. else
  79. ne->ni.flag &= ~mask;
  80. }
  81. static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  82. {
  83. unsigned char mask = 0x01 << type;
  84. return ne->ni.flag & mask;
  85. }
  86. static inline void nat_reset_flag(struct nat_entry *ne)
  87. {
  88. /* these states can be set only after checkpoint was done */
  89. set_nat_flag(ne, IS_CHECKPOINTED, true);
  90. set_nat_flag(ne, HAS_FSYNCED_INODE, false);
  91. set_nat_flag(ne, HAS_LAST_FSYNC, true);
  92. }
  93. static inline void node_info_from_raw_nat(struct node_info *ni,
  94. struct f2fs_nat_entry *raw_ne)
  95. {
  96. ni->ino = le32_to_cpu(raw_ne->ino);
  97. ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
  98. ni->version = raw_ne->version;
  99. }
  100. static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
  101. struct node_info *ni)
  102. {
  103. raw_ne->ino = cpu_to_le32(ni->ino);
  104. raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
  105. raw_ne->version = ni->version;
  106. }
  107. static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
  108. {
  109. return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
  110. NM_I(sbi)->dirty_nats_ratio / 100;
  111. }
  112. static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
  113. {
  114. return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
  115. }
  116. enum mem_type {
  117. FREE_NIDS, /* indicates the free nid list */
  118. NAT_ENTRIES, /* indicates the cached nat entry */
  119. DIRTY_DENTS, /* indicates dirty dentry pages */
  120. INO_ENTRIES, /* indicates inode entries */
  121. EXTENT_CACHE, /* indicates extent cache */
  122. INMEM_PAGES, /* indicates inmemory pages */
  123. BASE_CHECK, /* check kernel status */
  124. };
  125. struct nat_entry_set {
  126. struct list_head set_list; /* link with other nat sets */
  127. struct list_head entry_list; /* link with dirty nat entries */
  128. nid_t set; /* set number*/
  129. unsigned int entry_cnt; /* the # of nat entries in set */
  130. };
  131. struct free_nid {
  132. struct list_head list; /* for free node id list */
  133. nid_t nid; /* node id */
  134. int state; /* in use or not: FREE_NID or PREALLOC_NID */
  135. };
  136. static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  137. {
  138. struct f2fs_nm_info *nm_i = NM_I(sbi);
  139. struct free_nid *fnid;
  140. spin_lock(&nm_i->nid_list_lock);
  141. if (nm_i->nid_cnt[FREE_NID] <= 0) {
  142. spin_unlock(&nm_i->nid_list_lock);
  143. return;
  144. }
  145. fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
  146. *nid = fnid->nid;
  147. spin_unlock(&nm_i->nid_list_lock);
  148. }
  149. /*
  150. * inline functions
  151. */
  152. static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
  153. {
  154. struct f2fs_nm_info *nm_i = NM_I(sbi);
  155. #ifdef CONFIG_F2FS_CHECK_FS
  156. if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
  157. nm_i->bitmap_size))
  158. f2fs_bug_on(sbi, 1);
  159. #endif
  160. memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
  161. }
  162. static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
  163. {
  164. struct f2fs_nm_info *nm_i = NM_I(sbi);
  165. pgoff_t block_off;
  166. pgoff_t block_addr;
  167. /*
  168. * block_off = segment_off * 512 + off_in_segment
  169. * OLD = (segment_off * 512) * 2 + off_in_segment
  170. * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
  171. */
  172. block_off = NAT_BLOCK_OFFSET(start);
  173. block_addr = (pgoff_t)(nm_i->nat_blkaddr +
  174. (block_off << 1) -
  175. (block_off & (sbi->blocks_per_seg - 1)));
  176. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  177. block_addr += sbi->blocks_per_seg;
  178. return block_addr;
  179. }
  180. static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
  181. pgoff_t block_addr)
  182. {
  183. struct f2fs_nm_info *nm_i = NM_I(sbi);
  184. block_addr -= nm_i->nat_blkaddr;
  185. block_addr ^= 1 << sbi->log_blocks_per_seg;
  186. return block_addr + nm_i->nat_blkaddr;
  187. }
  188. static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
  189. {
  190. unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
  191. f2fs_change_bit(block_off, nm_i->nat_bitmap);
  192. #ifdef CONFIG_F2FS_CHECK_FS
  193. f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
  194. #endif
  195. }
  196. static inline nid_t ino_of_node(struct page *node_page)
  197. {
  198. struct f2fs_node *rn = F2FS_NODE(node_page);
  199. return le32_to_cpu(rn->footer.ino);
  200. }
  201. static inline nid_t nid_of_node(struct page *node_page)
  202. {
  203. struct f2fs_node *rn = F2FS_NODE(node_page);
  204. return le32_to_cpu(rn->footer.nid);
  205. }
  206. static inline unsigned int ofs_of_node(struct page *node_page)
  207. {
  208. struct f2fs_node *rn = F2FS_NODE(node_page);
  209. unsigned flag = le32_to_cpu(rn->footer.flag);
  210. return flag >> OFFSET_BIT_SHIFT;
  211. }
  212. static inline __u64 cpver_of_node(struct page *node_page)
  213. {
  214. struct f2fs_node *rn = F2FS_NODE(node_page);
  215. return le64_to_cpu(rn->footer.cp_ver);
  216. }
  217. static inline block_t next_blkaddr_of_node(struct page *node_page)
  218. {
  219. struct f2fs_node *rn = F2FS_NODE(node_page);
  220. return le32_to_cpu(rn->footer.next_blkaddr);
  221. }
  222. static inline void fill_node_footer(struct page *page, nid_t nid,
  223. nid_t ino, unsigned int ofs, bool reset)
  224. {
  225. struct f2fs_node *rn = F2FS_NODE(page);
  226. unsigned int old_flag = 0;
  227. if (reset)
  228. memset(rn, 0, sizeof(*rn));
  229. else
  230. old_flag = le32_to_cpu(rn->footer.flag);
  231. rn->footer.nid = cpu_to_le32(nid);
  232. rn->footer.ino = cpu_to_le32(ino);
  233. /* should remain old flag bits such as COLD_BIT_SHIFT */
  234. rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
  235. (old_flag & OFFSET_BIT_MASK));
  236. }
  237. static inline void copy_node_footer(struct page *dst, struct page *src)
  238. {
  239. struct f2fs_node *src_rn = F2FS_NODE(src);
  240. struct f2fs_node *dst_rn = F2FS_NODE(dst);
  241. memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
  242. }
  243. static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
  244. {
  245. struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
  246. struct f2fs_node *rn = F2FS_NODE(page);
  247. __u64 cp_ver = cur_cp_version(ckpt);
  248. if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
  249. cp_ver |= (cur_cp_crc(ckpt) << 32);
  250. rn->footer.cp_ver = cpu_to_le64(cp_ver);
  251. rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
  252. }
  253. static inline bool is_recoverable_dnode(struct page *page)
  254. {
  255. struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
  256. __u64 cp_ver = cur_cp_version(ckpt);
  257. /* Don't care crc part, if fsck.f2fs sets it. */
  258. if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
  259. return (cp_ver << 32) == (cpver_of_node(page) << 32);
  260. if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
  261. cp_ver |= (cur_cp_crc(ckpt) << 32);
  262. return cp_ver == cpver_of_node(page);
  263. }
  264. /*
  265. * f2fs assigns the following node offsets described as (num).
  266. * N = NIDS_PER_BLOCK
  267. *
  268. * Inode block (0)
  269. * |- direct node (1)
  270. * |- direct node (2)
  271. * |- indirect node (3)
  272. * | `- direct node (4 => 4 + N - 1)
  273. * |- indirect node (4 + N)
  274. * | `- direct node (5 + N => 5 + 2N - 1)
  275. * `- double indirect node (5 + 2N)
  276. * `- indirect node (6 + 2N)
  277. * `- direct node
  278. * ......
  279. * `- indirect node ((6 + 2N) + x(N + 1))
  280. * `- direct node
  281. * ......
  282. * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
  283. * `- direct node
  284. */
  285. static inline bool IS_DNODE(struct page *node_page)
  286. {
  287. unsigned int ofs = ofs_of_node(node_page);
  288. if (f2fs_has_xattr_block(ofs))
  289. return true;
  290. if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
  291. ofs == 5 + 2 * NIDS_PER_BLOCK)
  292. return false;
  293. if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
  294. ofs -= 6 + 2 * NIDS_PER_BLOCK;
  295. if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
  296. return false;
  297. }
  298. return true;
  299. }
  300. static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
  301. {
  302. struct f2fs_node *rn = F2FS_NODE(p);
  303. f2fs_wait_on_page_writeback(p, NODE, true);
  304. if (i)
  305. rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
  306. else
  307. rn->in.nid[off] = cpu_to_le32(nid);
  308. return set_page_dirty(p);
  309. }
  310. static inline nid_t get_nid(struct page *p, int off, bool i)
  311. {
  312. struct f2fs_node *rn = F2FS_NODE(p);
  313. if (i)
  314. return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
  315. return le32_to_cpu(rn->in.nid[off]);
  316. }
  317. /*
  318. * Coldness identification:
  319. * - Mark cold files in f2fs_inode_info
  320. * - Mark cold node blocks in their node footer
  321. * - Mark cold data pages in page cache
  322. */
  323. static inline int is_cold_data(struct page *page)
  324. {
  325. return PageChecked(page);
  326. }
  327. static inline void set_cold_data(struct page *page)
  328. {
  329. SetPageChecked(page);
  330. }
  331. static inline void clear_cold_data(struct page *page)
  332. {
  333. ClearPageChecked(page);
  334. }
  335. static inline int is_node(struct page *page, int type)
  336. {
  337. struct f2fs_node *rn = F2FS_NODE(page);
  338. return le32_to_cpu(rn->footer.flag) & (1 << type);
  339. }
  340. #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
  341. #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
  342. #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
  343. static inline int is_inline_node(struct page *page)
  344. {
  345. return PageChecked(page);
  346. }
  347. static inline void set_inline_node(struct page *page)
  348. {
  349. SetPageChecked(page);
  350. }
  351. static inline void clear_inline_node(struct page *page)
  352. {
  353. ClearPageChecked(page);
  354. }
  355. static inline void set_cold_node(struct page *page, bool is_dir)
  356. {
  357. struct f2fs_node *rn = F2FS_NODE(page);
  358. unsigned int flag = le32_to_cpu(rn->footer.flag);
  359. if (is_dir)
  360. flag &= ~(0x1 << COLD_BIT_SHIFT);
  361. else
  362. flag |= (0x1 << COLD_BIT_SHIFT);
  363. rn->footer.flag = cpu_to_le32(flag);
  364. }
  365. static inline void set_mark(struct page *page, int mark, int type)
  366. {
  367. struct f2fs_node *rn = F2FS_NODE(page);
  368. unsigned int flag = le32_to_cpu(rn->footer.flag);
  369. if (mark)
  370. flag |= (0x1 << type);
  371. else
  372. flag &= ~(0x1 << type);
  373. rn->footer.flag = cpu_to_le32(flag);
  374. }
  375. #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
  376. #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)