inline.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. /*
  2. * fs/f2fs/inline.c
  3. * Copyright (c) 2013, Intel Corporation
  4. * Authors: Huajun Li <huajun.li@intel.com>
  5. * Haicheng Li <haicheng.li@intel.com>
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/f2fs_fs.h>
  12. #include "f2fs.h"
  13. #include "node.h"
  14. bool f2fs_may_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA(inode))
  21. return false;
  22. if (f2fs_post_read_required(inode))
  23. return false;
  24. return true;
  25. }
  26. bool f2fs_may_inline_dentry(struct inode *inode)
  27. {
  28. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  29. return false;
  30. if (!S_ISDIR(inode->i_mode))
  31. return false;
  32. return true;
  33. }
  34. void f2fs_do_read_inline_data(struct page *page, struct page *ipage)
  35. {
  36. struct inode *inode = page->mapping->host;
  37. void *src_addr, *dst_addr;
  38. if (PageUptodate(page))
  39. return;
  40. f2fs_bug_on(F2FS_P_SB(page), page->index);
  41. zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
  42. /* Copy the whole inline data block */
  43. src_addr = inline_data_addr(inode, ipage);
  44. dst_addr = kmap_atomic(page);
  45. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  46. flush_dcache_page(page);
  47. kunmap_atomic(dst_addr);
  48. if (!PageUptodate(page))
  49. SetPageUptodate(page);
  50. }
  51. void f2fs_truncate_inline_inode(struct inode *inode,
  52. struct page *ipage, u64 from)
  53. {
  54. void *addr;
  55. if (from >= MAX_INLINE_DATA(inode))
  56. return;
  57. addr = inline_data_addr(inode, ipage);
  58. f2fs_wait_on_page_writeback(ipage, NODE, true);
  59. memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
  60. set_page_dirty(ipage);
  61. if (from == 0)
  62. clear_inode_flag(inode, FI_DATA_EXIST);
  63. }
  64. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  65. {
  66. struct page *ipage;
  67. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  68. if (IS_ERR(ipage)) {
  69. unlock_page(page);
  70. return PTR_ERR(ipage);
  71. }
  72. if (!f2fs_has_inline_data(inode)) {
  73. f2fs_put_page(ipage, 1);
  74. return -EAGAIN;
  75. }
  76. if (page->index)
  77. zero_user_segment(page, 0, PAGE_SIZE);
  78. else
  79. f2fs_do_read_inline_data(page, ipage);
  80. if (!PageUptodate(page))
  81. SetPageUptodate(page);
  82. f2fs_put_page(ipage, 1);
  83. unlock_page(page);
  84. return 0;
  85. }
  86. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  87. {
  88. struct f2fs_io_info fio = {
  89. .sbi = F2FS_I_SB(dn->inode),
  90. .ino = dn->inode->i_ino,
  91. .type = DATA,
  92. .op = REQ_OP_WRITE,
  93. .op_flags = REQ_SYNC | REQ_PRIO,
  94. .page = page,
  95. .encrypted_page = NULL,
  96. .io_type = FS_DATA_IO,
  97. };
  98. int dirty, err;
  99. if (!f2fs_exist_data(dn->inode))
  100. goto clear_out;
  101. err = f2fs_reserve_block(dn, 0);
  102. if (err)
  103. return err;
  104. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  105. f2fs_do_read_inline_data(page, dn->inode_page);
  106. set_page_dirty(page);
  107. /* clear dirty state */
  108. dirty = clear_page_dirty_for_io(page);
  109. /* write data page to try to make data consistent */
  110. set_page_writeback(page);
  111. ClearPageError(page);
  112. fio.old_blkaddr = dn->data_blkaddr;
  113. set_inode_flag(dn->inode, FI_HOT_DATA);
  114. f2fs_outplace_write_data(dn, &fio);
  115. f2fs_wait_on_page_writeback(page, DATA, true);
  116. if (dirty) {
  117. inode_dec_dirty_pages(dn->inode);
  118. f2fs_remove_dirty_inode(dn->inode);
  119. }
  120. /* this converted inline_data should be recovered. */
  121. set_inode_flag(dn->inode, FI_APPEND_WRITE);
  122. /* clear inline data and flag after data writeback */
  123. f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0);
  124. clear_inline_node(dn->inode_page);
  125. clear_out:
  126. stat_dec_inline_inode(dn->inode);
  127. clear_inode_flag(dn->inode, FI_INLINE_DATA);
  128. f2fs_put_dnode(dn);
  129. return 0;
  130. }
  131. int f2fs_convert_inline_inode(struct inode *inode)
  132. {
  133. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  134. struct dnode_of_data dn;
  135. struct page *ipage, *page;
  136. int err = 0;
  137. if (!f2fs_has_inline_data(inode))
  138. return 0;
  139. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  140. if (!page)
  141. return -ENOMEM;
  142. f2fs_lock_op(sbi);
  143. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  144. if (IS_ERR(ipage)) {
  145. err = PTR_ERR(ipage);
  146. goto out;
  147. }
  148. set_new_dnode(&dn, inode, ipage, ipage, 0);
  149. if (f2fs_has_inline_data(inode))
  150. err = f2fs_convert_inline_page(&dn, page);
  151. f2fs_put_dnode(&dn);
  152. out:
  153. f2fs_unlock_op(sbi);
  154. f2fs_put_page(page, 1);
  155. f2fs_balance_fs(sbi, dn.node_changed);
  156. return err;
  157. }
  158. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  159. {
  160. void *src_addr, *dst_addr;
  161. struct dnode_of_data dn;
  162. int err;
  163. set_new_dnode(&dn, inode, NULL, NULL, 0);
  164. err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  165. if (err)
  166. return err;
  167. if (!f2fs_has_inline_data(inode)) {
  168. f2fs_put_dnode(&dn);
  169. return -EAGAIN;
  170. }
  171. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  172. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
  173. src_addr = kmap_atomic(page);
  174. dst_addr = inline_data_addr(inode, dn.inode_page);
  175. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  176. kunmap_atomic(src_addr);
  177. set_page_dirty(dn.inode_page);
  178. f2fs_clear_radix_tree_dirty_tag(page);
  179. set_inode_flag(inode, FI_APPEND_WRITE);
  180. set_inode_flag(inode, FI_DATA_EXIST);
  181. clear_inline_node(dn.inode_page);
  182. f2fs_put_dnode(&dn);
  183. return 0;
  184. }
  185. bool f2fs_recover_inline_data(struct inode *inode, struct page *npage)
  186. {
  187. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  188. struct f2fs_inode *ri = NULL;
  189. void *src_addr, *dst_addr;
  190. struct page *ipage;
  191. /*
  192. * The inline_data recovery policy is as follows.
  193. * [prev.] [next] of inline_data flag
  194. * o o -> recover inline_data
  195. * o x -> remove inline_data, and then recover data blocks
  196. * x o -> remove inline_data, and then recover inline_data
  197. * x x -> recover data blocks
  198. */
  199. if (IS_INODE(npage))
  200. ri = F2FS_INODE(npage);
  201. if (f2fs_has_inline_data(inode) &&
  202. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  203. process_inline:
  204. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  205. f2fs_bug_on(sbi, IS_ERR(ipage));
  206. f2fs_wait_on_page_writeback(ipage, NODE, true);
  207. src_addr = inline_data_addr(inode, npage);
  208. dst_addr = inline_data_addr(inode, ipage);
  209. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  210. set_inode_flag(inode, FI_INLINE_DATA);
  211. set_inode_flag(inode, FI_DATA_EXIST);
  212. set_page_dirty(ipage);
  213. f2fs_put_page(ipage, 1);
  214. return true;
  215. }
  216. if (f2fs_has_inline_data(inode)) {
  217. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  218. f2fs_bug_on(sbi, IS_ERR(ipage));
  219. f2fs_truncate_inline_inode(inode, ipage, 0);
  220. clear_inode_flag(inode, FI_INLINE_DATA);
  221. f2fs_put_page(ipage, 1);
  222. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  223. if (f2fs_truncate_blocks(inode, 0, false))
  224. return false;
  225. goto process_inline;
  226. }
  227. return false;
  228. }
  229. struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
  230. struct fscrypt_name *fname, struct page **res_page)
  231. {
  232. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  233. struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
  234. struct f2fs_dir_entry *de;
  235. struct f2fs_dentry_ptr d;
  236. struct page *ipage;
  237. void *inline_dentry;
  238. f2fs_hash_t namehash;
  239. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  240. if (IS_ERR(ipage)) {
  241. *res_page = ipage;
  242. return NULL;
  243. }
  244. namehash = f2fs_dentry_hash(&name, fname);
  245. inline_dentry = inline_data_addr(dir, ipage);
  246. make_dentry_ptr_inline(dir, &d, inline_dentry);
  247. de = f2fs_find_target_dentry(fname, namehash, NULL, &d);
  248. unlock_page(ipage);
  249. if (de)
  250. *res_page = ipage;
  251. else
  252. f2fs_put_page(ipage, 0);
  253. return de;
  254. }
  255. int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
  256. struct page *ipage)
  257. {
  258. struct f2fs_dentry_ptr d;
  259. void *inline_dentry;
  260. inline_dentry = inline_data_addr(inode, ipage);
  261. make_dentry_ptr_inline(inode, &d, inline_dentry);
  262. f2fs_do_make_empty_dir(inode, parent, &d);
  263. set_page_dirty(ipage);
  264. /* update i_size to MAX_INLINE_DATA */
  265. if (i_size_read(inode) < MAX_INLINE_DATA(inode))
  266. f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
  267. return 0;
  268. }
  269. /*
  270. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  271. * release ipage in this function.
  272. */
  273. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  274. void *inline_dentry)
  275. {
  276. struct page *page;
  277. struct dnode_of_data dn;
  278. struct f2fs_dentry_block *dentry_blk;
  279. struct f2fs_dentry_ptr src, dst;
  280. int err;
  281. page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
  282. if (!page) {
  283. f2fs_put_page(ipage, 1);
  284. return -ENOMEM;
  285. }
  286. set_new_dnode(&dn, dir, ipage, NULL, 0);
  287. err = f2fs_reserve_block(&dn, 0);
  288. if (err)
  289. goto out;
  290. f2fs_wait_on_page_writeback(page, DATA, true);
  291. dentry_blk = page_address(page);
  292. make_dentry_ptr_inline(dir, &src, inline_dentry);
  293. make_dentry_ptr_block(dir, &dst, dentry_blk);
  294. /* copy data from inline dentry block to new dentry block */
  295. memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
  296. memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
  297. /*
  298. * we do not need to zero out remainder part of dentry and filename
  299. * field, since we have used bitmap for marking the usage status of
  300. * them, besides, we can also ignore copying/zeroing reserved space
  301. * of dentry block, because them haven't been used so far.
  302. */
  303. memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
  304. memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
  305. if (!PageUptodate(page))
  306. SetPageUptodate(page);
  307. set_page_dirty(page);
  308. /* clear inline dir and flag after data writeback */
  309. f2fs_truncate_inline_inode(dir, ipage, 0);
  310. stat_dec_inline_dir(dir);
  311. clear_inode_flag(dir, FI_INLINE_DENTRY);
  312. f2fs_i_depth_write(dir, 1);
  313. if (i_size_read(dir) < PAGE_SIZE)
  314. f2fs_i_size_write(dir, PAGE_SIZE);
  315. out:
  316. f2fs_put_page(page, 1);
  317. return err;
  318. }
  319. static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
  320. {
  321. struct f2fs_dentry_ptr d;
  322. unsigned long bit_pos = 0;
  323. int err = 0;
  324. make_dentry_ptr_inline(dir, &d, inline_dentry);
  325. while (bit_pos < d.max) {
  326. struct f2fs_dir_entry *de;
  327. struct qstr new_name;
  328. nid_t ino;
  329. umode_t fake_mode;
  330. if (!test_bit_le(bit_pos, d.bitmap)) {
  331. bit_pos++;
  332. continue;
  333. }
  334. de = &d.dentry[bit_pos];
  335. if (unlikely(!de->name_len)) {
  336. bit_pos++;
  337. continue;
  338. }
  339. new_name.name = d.filename[bit_pos];
  340. new_name.len = le16_to_cpu(de->name_len);
  341. ino = le32_to_cpu(de->ino);
  342. fake_mode = f2fs_get_de_type(de) << S_SHIFT;
  343. err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
  344. ino, fake_mode);
  345. if (err)
  346. goto punch_dentry_pages;
  347. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  348. }
  349. return 0;
  350. punch_dentry_pages:
  351. truncate_inode_pages(&dir->i_data, 0);
  352. f2fs_truncate_blocks(dir, 0, false);
  353. f2fs_remove_dirty_inode(dir);
  354. return err;
  355. }
  356. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  357. void *inline_dentry)
  358. {
  359. void *backup_dentry;
  360. int err;
  361. backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
  362. MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
  363. if (!backup_dentry) {
  364. f2fs_put_page(ipage, 1);
  365. return -ENOMEM;
  366. }
  367. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
  368. f2fs_truncate_inline_inode(dir, ipage, 0);
  369. unlock_page(ipage);
  370. err = f2fs_add_inline_entries(dir, backup_dentry);
  371. if (err)
  372. goto recover;
  373. lock_page(ipage);
  374. stat_dec_inline_dir(dir);
  375. clear_inode_flag(dir, FI_INLINE_DENTRY);
  376. kfree(backup_dentry);
  377. return 0;
  378. recover:
  379. lock_page(ipage);
  380. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
  381. f2fs_i_depth_write(dir, 0);
  382. f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
  383. set_page_dirty(ipage);
  384. f2fs_put_page(ipage, 1);
  385. kfree(backup_dentry);
  386. return err;
  387. }
  388. static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
  389. void *inline_dentry)
  390. {
  391. if (!F2FS_I(dir)->i_dir_level)
  392. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  393. else
  394. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  395. }
  396. int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
  397. const struct qstr *orig_name,
  398. struct inode *inode, nid_t ino, umode_t mode)
  399. {
  400. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  401. struct page *ipage;
  402. unsigned int bit_pos;
  403. f2fs_hash_t name_hash;
  404. void *inline_dentry = NULL;
  405. struct f2fs_dentry_ptr d;
  406. int slots = GET_DENTRY_SLOTS(new_name->len);
  407. struct page *page = NULL;
  408. int err = 0;
  409. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  410. if (IS_ERR(ipage))
  411. return PTR_ERR(ipage);
  412. inline_dentry = inline_data_addr(dir, ipage);
  413. make_dentry_ptr_inline(dir, &d, inline_dentry);
  414. bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
  415. if (bit_pos >= d.max) {
  416. err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
  417. if (err)
  418. return err;
  419. err = -EAGAIN;
  420. goto out;
  421. }
  422. if (inode) {
  423. down_write(&F2FS_I(inode)->i_sem);
  424. page = f2fs_init_inode_metadata(inode, dir, new_name,
  425. orig_name, ipage);
  426. if (IS_ERR(page)) {
  427. err = PTR_ERR(page);
  428. goto fail;
  429. }
  430. }
  431. f2fs_wait_on_page_writeback(ipage, NODE, true);
  432. name_hash = f2fs_dentry_hash(new_name, NULL);
  433. f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
  434. set_page_dirty(ipage);
  435. /* we don't need to mark_inode_dirty now */
  436. if (inode) {
  437. f2fs_i_pino_write(inode, dir->i_ino);
  438. f2fs_put_page(page, 1);
  439. }
  440. f2fs_update_parent_metadata(dir, inode, 0);
  441. fail:
  442. if (inode)
  443. up_write(&F2FS_I(inode)->i_sem);
  444. out:
  445. f2fs_put_page(ipage, 1);
  446. return err;
  447. }
  448. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  449. struct inode *dir, struct inode *inode)
  450. {
  451. struct f2fs_dentry_ptr d;
  452. void *inline_dentry;
  453. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  454. unsigned int bit_pos;
  455. int i;
  456. lock_page(page);
  457. f2fs_wait_on_page_writeback(page, NODE, true);
  458. inline_dentry = inline_data_addr(dir, page);
  459. make_dentry_ptr_inline(dir, &d, inline_dentry);
  460. bit_pos = dentry - d.dentry;
  461. for (i = 0; i < slots; i++)
  462. __clear_bit_le(bit_pos + i, d.bitmap);
  463. set_page_dirty(page);
  464. f2fs_put_page(page, 1);
  465. dir->i_ctime = dir->i_mtime = current_time(dir);
  466. f2fs_mark_inode_dirty_sync(dir, false);
  467. if (inode)
  468. f2fs_drop_nlink(dir, inode);
  469. }
  470. bool f2fs_empty_inline_dir(struct inode *dir)
  471. {
  472. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  473. struct page *ipage;
  474. unsigned int bit_pos = 2;
  475. void *inline_dentry;
  476. struct f2fs_dentry_ptr d;
  477. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  478. if (IS_ERR(ipage))
  479. return false;
  480. inline_dentry = inline_data_addr(dir, ipage);
  481. make_dentry_ptr_inline(dir, &d, inline_dentry);
  482. bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
  483. f2fs_put_page(ipage, 1);
  484. if (bit_pos < d.max)
  485. return false;
  486. return true;
  487. }
  488. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  489. struct fscrypt_str *fstr)
  490. {
  491. struct inode *inode = file_inode(file);
  492. struct page *ipage = NULL;
  493. struct f2fs_dentry_ptr d;
  494. void *inline_dentry = NULL;
  495. int err;
  496. make_dentry_ptr_inline(inode, &d, inline_dentry);
  497. if (ctx->pos == d.max)
  498. return 0;
  499. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  500. if (IS_ERR(ipage))
  501. return PTR_ERR(ipage);
  502. inline_dentry = inline_data_addr(inode, ipage);
  503. make_dentry_ptr_inline(inode, &d, inline_dentry);
  504. err = f2fs_fill_dentries(ctx, &d, 0, fstr);
  505. if (!err)
  506. ctx->pos = d.max;
  507. f2fs_put_page(ipage, 1);
  508. return err < 0 ? err : 0;
  509. }
  510. int f2fs_inline_data_fiemap(struct inode *inode,
  511. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  512. {
  513. __u64 byteaddr, ilen;
  514. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  515. FIEMAP_EXTENT_LAST;
  516. struct node_info ni;
  517. struct page *ipage;
  518. int err = 0;
  519. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  520. if (IS_ERR(ipage))
  521. return PTR_ERR(ipage);
  522. if (!f2fs_has_inline_data(inode)) {
  523. err = -EAGAIN;
  524. goto out;
  525. }
  526. ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
  527. if (start >= ilen)
  528. goto out;
  529. if (start + len < ilen)
  530. ilen = start + len;
  531. ilen -= start;
  532. f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
  533. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  534. byteaddr += (char *)inline_data_addr(inode, ipage) -
  535. (char *)F2FS_INODE(ipage);
  536. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  537. out:
  538. f2fs_put_page(ipage, 1);
  539. return err;
  540. }