file.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/uio.h>
  24. #include <linux/uuid.h>
  25. #include <linux/file.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "xattr.h"
  30. #include "acl.h"
  31. #include "gc.h"
  32. #include "trace.h"
  33. #include <trace/events/f2fs.h>
  34. static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  35. {
  36. struct inode *inode = file_inode(vmf->vma->vm_file);
  37. vm_fault_t ret;
  38. down_read(&F2FS_I(inode)->i_mmap_sem);
  39. ret = filemap_fault(vmf);
  40. up_read(&F2FS_I(inode)->i_mmap_sem);
  41. return ret;
  42. }
  43. static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  44. {
  45. struct page *page = vmf->page;
  46. struct inode *inode = file_inode(vmf->vma->vm_file);
  47. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  48. struct dnode_of_data dn;
  49. int err;
  50. if (unlikely(f2fs_cp_error(sbi))) {
  51. err = -EIO;
  52. goto err;
  53. }
  54. sb_start_pagefault(inode->i_sb);
  55. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  56. /* block allocation */
  57. f2fs_lock_op(sbi);
  58. set_new_dnode(&dn, inode, NULL, NULL, 0);
  59. err = f2fs_reserve_block(&dn, page->index);
  60. if (err) {
  61. f2fs_unlock_op(sbi);
  62. goto out;
  63. }
  64. f2fs_put_dnode(&dn);
  65. f2fs_unlock_op(sbi);
  66. f2fs_balance_fs(sbi, dn.node_changed);
  67. file_update_time(vmf->vma->vm_file);
  68. down_read(&F2FS_I(inode)->i_mmap_sem);
  69. lock_page(page);
  70. if (unlikely(page->mapping != inode->i_mapping ||
  71. page_offset(page) > i_size_read(inode) ||
  72. !PageUptodate(page))) {
  73. unlock_page(page);
  74. err = -EFAULT;
  75. goto out_sem;
  76. }
  77. /*
  78. * check to see if the page is mapped already (no holes)
  79. */
  80. if (PageMappedToDisk(page))
  81. goto mapped;
  82. /* page is wholly or partially inside EOF */
  83. if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  84. i_size_read(inode)) {
  85. loff_t offset;
  86. offset = i_size_read(inode) & ~PAGE_MASK;
  87. zero_user_segment(page, offset, PAGE_SIZE);
  88. }
  89. set_page_dirty(page);
  90. if (!PageUptodate(page))
  91. SetPageUptodate(page);
  92. f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
  93. trace_f2fs_vm_page_mkwrite(page, DATA);
  94. mapped:
  95. /* fill the page */
  96. f2fs_wait_on_page_writeback(page, DATA, false);
  97. /* wait for GCed page writeback via META_MAPPING */
  98. if (f2fs_post_read_required(inode))
  99. f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
  100. out_sem:
  101. up_read(&F2FS_I(inode)->i_mmap_sem);
  102. out:
  103. sb_end_pagefault(inode->i_sb);
  104. f2fs_update_time(sbi, REQ_TIME);
  105. err:
  106. return block_page_mkwrite_return(err);
  107. }
  108. static const struct vm_operations_struct f2fs_file_vm_ops = {
  109. .fault = f2fs_filemap_fault,
  110. .map_pages = filemap_map_pages,
  111. .page_mkwrite = f2fs_vm_page_mkwrite,
  112. };
  113. static int get_parent_ino(struct inode *inode, nid_t *pino)
  114. {
  115. struct dentry *dentry;
  116. inode = igrab(inode);
  117. dentry = d_find_any_alias(inode);
  118. iput(inode);
  119. if (!dentry)
  120. return 0;
  121. *pino = parent_ino(dentry);
  122. dput(dentry);
  123. return 1;
  124. }
  125. static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
  126. {
  127. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  128. enum cp_reason_type cp_reason = CP_NO_NEEDED;
  129. if (!S_ISREG(inode->i_mode))
  130. cp_reason = CP_NON_REGULAR;
  131. else if (inode->i_nlink != 1)
  132. cp_reason = CP_HARDLINK;
  133. else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
  134. cp_reason = CP_SB_NEED_CP;
  135. else if (file_wrong_pino(inode))
  136. cp_reason = CP_WRONG_PINO;
  137. else if (!f2fs_space_for_roll_forward(sbi))
  138. cp_reason = CP_NO_SPC_ROLL;
  139. else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  140. cp_reason = CP_NODE_NEED_CP;
  141. else if (test_opt(sbi, FASTBOOT))
  142. cp_reason = CP_FASTBOOT_MODE;
  143. else if (F2FS_OPTION(sbi).active_logs == 2)
  144. cp_reason = CP_SPEC_LOG_NUM;
  145. else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
  146. f2fs_need_dentry_mark(sbi, inode->i_ino) &&
  147. f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
  148. TRANS_DIR_INO))
  149. cp_reason = CP_RECOVER_DIR;
  150. return cp_reason;
  151. }
  152. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  153. {
  154. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  155. bool ret = false;
  156. /* But we need to avoid that there are some inode updates */
  157. if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
  158. ret = true;
  159. f2fs_put_page(i, 0);
  160. return ret;
  161. }
  162. static void try_to_fix_pino(struct inode *inode)
  163. {
  164. struct f2fs_inode_info *fi = F2FS_I(inode);
  165. nid_t pino;
  166. down_write(&fi->i_sem);
  167. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  168. get_parent_ino(inode, &pino)) {
  169. f2fs_i_pino_write(inode, pino);
  170. file_got_pino(inode);
  171. }
  172. up_write(&fi->i_sem);
  173. }
  174. static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
  175. int datasync, bool atomic)
  176. {
  177. struct inode *inode = file->f_mapping->host;
  178. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  179. nid_t ino = inode->i_ino;
  180. int ret = 0;
  181. enum cp_reason_type cp_reason = 0;
  182. struct writeback_control wbc = {
  183. .sync_mode = WB_SYNC_ALL,
  184. .nr_to_write = LONG_MAX,
  185. .for_reclaim = 0,
  186. };
  187. if (unlikely(f2fs_readonly(inode->i_sb)))
  188. return 0;
  189. trace_f2fs_sync_file_enter(inode);
  190. /* if fdatasync is triggered, let's do in-place-update */
  191. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  192. set_inode_flag(inode, FI_NEED_IPU);
  193. ret = file_write_and_wait_range(file, start, end);
  194. clear_inode_flag(inode, FI_NEED_IPU);
  195. if (ret) {
  196. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  197. return ret;
  198. }
  199. /* if the inode is dirty, let's recover all the time */
  200. if (!f2fs_skip_inode_update(inode, datasync)) {
  201. f2fs_write_inode(inode, NULL);
  202. goto go_write;
  203. }
  204. /*
  205. * if there is no written data, don't waste time to write recovery info.
  206. */
  207. if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
  208. !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
  209. /* it may call write_inode just prior to fsync */
  210. if (need_inode_page_update(sbi, ino))
  211. goto go_write;
  212. if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
  213. f2fs_exist_written_data(sbi, ino, UPDATE_INO))
  214. goto flush_out;
  215. goto out;
  216. }
  217. go_write:
  218. /*
  219. * Both of fdatasync() and fsync() are able to be recovered from
  220. * sudden-power-off.
  221. */
  222. down_read(&F2FS_I(inode)->i_sem);
  223. cp_reason = need_do_checkpoint(inode);
  224. up_read(&F2FS_I(inode)->i_sem);
  225. if (cp_reason) {
  226. /* all the dirty node pages should be flushed for POR */
  227. ret = f2fs_sync_fs(inode->i_sb, 1);
  228. /*
  229. * We've secured consistency through sync_fs. Following pino
  230. * will be used only for fsynced inodes after checkpoint.
  231. */
  232. try_to_fix_pino(inode);
  233. clear_inode_flag(inode, FI_APPEND_WRITE);
  234. clear_inode_flag(inode, FI_UPDATE_WRITE);
  235. goto out;
  236. }
  237. sync_nodes:
  238. atomic_inc(&sbi->wb_sync_req[NODE]);
  239. ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic);
  240. atomic_dec(&sbi->wb_sync_req[NODE]);
  241. if (ret)
  242. goto out;
  243. /* if cp_error was enabled, we should avoid infinite loop */
  244. if (unlikely(f2fs_cp_error(sbi))) {
  245. ret = -EIO;
  246. goto out;
  247. }
  248. if (f2fs_need_inode_block_update(sbi, ino)) {
  249. f2fs_mark_inode_dirty_sync(inode, true);
  250. f2fs_write_inode(inode, NULL);
  251. goto sync_nodes;
  252. }
  253. /*
  254. * If it's atomic_write, it's just fine to keep write ordering. So
  255. * here we don't need to wait for node write completion, since we use
  256. * node chain which serializes node blocks. If one of node writes are
  257. * reordered, we can see simply broken chain, resulting in stopping
  258. * roll-forward recovery. It means we'll recover all or none node blocks
  259. * given fsync mark.
  260. */
  261. if (!atomic) {
  262. ret = f2fs_wait_on_node_pages_writeback(sbi, ino);
  263. if (ret)
  264. goto out;
  265. }
  266. /* once recovery info is written, don't need to tack this */
  267. f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
  268. clear_inode_flag(inode, FI_APPEND_WRITE);
  269. flush_out:
  270. if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
  271. ret = f2fs_issue_flush(sbi, inode->i_ino);
  272. if (!ret) {
  273. f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
  274. clear_inode_flag(inode, FI_UPDATE_WRITE);
  275. f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
  276. }
  277. f2fs_update_time(sbi, REQ_TIME);
  278. out:
  279. trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
  280. f2fs_trace_ios(NULL, 1);
  281. return ret;
  282. }
  283. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  284. {
  285. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
  286. return -EIO;
  287. return f2fs_do_sync_file(file, start, end, datasync, false);
  288. }
  289. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  290. pgoff_t pgofs, int whence)
  291. {
  292. struct page *page;
  293. int nr_pages;
  294. if (whence != SEEK_DATA)
  295. return 0;
  296. /* find first dirty page index */
  297. nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
  298. 1, &page);
  299. if (!nr_pages)
  300. return ULONG_MAX;
  301. pgofs = page->index;
  302. put_page(page);
  303. return pgofs;
  304. }
  305. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  306. int whence)
  307. {
  308. switch (whence) {
  309. case SEEK_DATA:
  310. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  311. is_valid_blkaddr(blkaddr))
  312. return true;
  313. break;
  314. case SEEK_HOLE:
  315. if (blkaddr == NULL_ADDR)
  316. return true;
  317. break;
  318. }
  319. return false;
  320. }
  321. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  322. {
  323. struct inode *inode = file->f_mapping->host;
  324. loff_t maxbytes = inode->i_sb->s_maxbytes;
  325. struct dnode_of_data dn;
  326. pgoff_t pgofs, end_offset, dirty;
  327. loff_t data_ofs = offset;
  328. loff_t isize;
  329. int err = 0;
  330. inode_lock(inode);
  331. isize = i_size_read(inode);
  332. if (offset >= isize)
  333. goto fail;
  334. /* handle inline data case */
  335. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  336. if (whence == SEEK_HOLE)
  337. data_ofs = isize;
  338. goto found;
  339. }
  340. pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
  341. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  342. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  343. set_new_dnode(&dn, inode, NULL, NULL, 0);
  344. err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
  345. if (err && err != -ENOENT) {
  346. goto fail;
  347. } else if (err == -ENOENT) {
  348. /* direct node does not exists */
  349. if (whence == SEEK_DATA) {
  350. pgofs = f2fs_get_next_page_offset(&dn, pgofs);
  351. continue;
  352. } else {
  353. goto found;
  354. }
  355. }
  356. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  357. /* find data/hole in dnode block */
  358. for (; dn.ofs_in_node < end_offset;
  359. dn.ofs_in_node++, pgofs++,
  360. data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
  361. block_t blkaddr;
  362. blkaddr = datablock_addr(dn.inode,
  363. dn.node_page, dn.ofs_in_node);
  364. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  365. f2fs_put_dnode(&dn);
  366. goto found;
  367. }
  368. }
  369. f2fs_put_dnode(&dn);
  370. }
  371. if (whence == SEEK_DATA)
  372. goto fail;
  373. found:
  374. if (whence == SEEK_HOLE && data_ofs > isize)
  375. data_ofs = isize;
  376. inode_unlock(inode);
  377. return vfs_setpos(file, data_ofs, maxbytes);
  378. fail:
  379. inode_unlock(inode);
  380. return -ENXIO;
  381. }
  382. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  383. {
  384. struct inode *inode = file->f_mapping->host;
  385. loff_t maxbytes = inode->i_sb->s_maxbytes;
  386. switch (whence) {
  387. case SEEK_SET:
  388. case SEEK_CUR:
  389. case SEEK_END:
  390. return generic_file_llseek_size(file, offset, whence,
  391. maxbytes, i_size_read(inode));
  392. case SEEK_DATA:
  393. case SEEK_HOLE:
  394. if (offset < 0)
  395. return -ENXIO;
  396. return f2fs_seek_block(file, offset, whence);
  397. }
  398. return -EINVAL;
  399. }
  400. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  401. {
  402. struct inode *inode = file_inode(file);
  403. int err;
  404. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  405. return -EIO;
  406. /* we don't need to use inline_data strictly */
  407. err = f2fs_convert_inline_inode(inode);
  408. if (err)
  409. return err;
  410. file_accessed(file);
  411. vma->vm_ops = &f2fs_file_vm_ops;
  412. return 0;
  413. }
  414. static int f2fs_file_open(struct inode *inode, struct file *filp)
  415. {
  416. int err = fscrypt_file_open(inode, filp);
  417. if (err)
  418. return err;
  419. filp->f_mode |= FMODE_NOWAIT;
  420. return dquot_file_open(inode, filp);
  421. }
  422. void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  423. {
  424. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  425. struct f2fs_node *raw_node;
  426. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  427. __le32 *addr;
  428. int base = 0;
  429. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  430. base = get_extra_isize(dn->inode);
  431. raw_node = F2FS_NODE(dn->node_page);
  432. addr = blkaddr_in_node(raw_node) + base + ofs;
  433. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  434. block_t blkaddr = le32_to_cpu(*addr);
  435. if (blkaddr == NULL_ADDR)
  436. continue;
  437. dn->data_blkaddr = NULL_ADDR;
  438. f2fs_set_data_blkaddr(dn);
  439. f2fs_invalidate_blocks(sbi, blkaddr);
  440. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  441. clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
  442. nr_free++;
  443. }
  444. if (nr_free) {
  445. pgoff_t fofs;
  446. /*
  447. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  448. * we will invalidate all blkaddr in the whole range.
  449. */
  450. fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
  451. dn->inode) + ofs;
  452. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  453. dec_valid_block_count(sbi, dn->inode, nr_free);
  454. }
  455. dn->ofs_in_node = ofs;
  456. f2fs_update_time(sbi, REQ_TIME);
  457. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  458. dn->ofs_in_node, nr_free);
  459. }
  460. void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
  461. {
  462. f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  463. }
  464. static int truncate_partial_data_page(struct inode *inode, u64 from,
  465. bool cache_only)
  466. {
  467. loff_t offset = from & (PAGE_SIZE - 1);
  468. pgoff_t index = from >> PAGE_SHIFT;
  469. struct address_space *mapping = inode->i_mapping;
  470. struct page *page;
  471. if (!offset && !cache_only)
  472. return 0;
  473. if (cache_only) {
  474. page = find_lock_page(mapping, index);
  475. if (page && PageUptodate(page))
  476. goto truncate_out;
  477. f2fs_put_page(page, 1);
  478. return 0;
  479. }
  480. page = f2fs_get_lock_data_page(inode, index, true);
  481. if (IS_ERR(page))
  482. return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
  483. truncate_out:
  484. f2fs_wait_on_page_writeback(page, DATA, true);
  485. zero_user(page, offset, PAGE_SIZE - offset);
  486. /* An encrypted inode should have a key and truncate the last page. */
  487. f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
  488. if (!cache_only)
  489. set_page_dirty(page);
  490. f2fs_put_page(page, 1);
  491. return 0;
  492. }
  493. int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
  494. {
  495. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  496. struct dnode_of_data dn;
  497. pgoff_t free_from;
  498. int count = 0, err = 0;
  499. struct page *ipage;
  500. bool truncate_page = false;
  501. trace_f2fs_truncate_blocks_enter(inode, from);
  502. free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
  503. if (free_from >= sbi->max_file_blocks)
  504. goto free_partial;
  505. if (lock)
  506. f2fs_lock_op(sbi);
  507. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  508. if (IS_ERR(ipage)) {
  509. err = PTR_ERR(ipage);
  510. goto out;
  511. }
  512. if (f2fs_has_inline_data(inode)) {
  513. f2fs_truncate_inline_inode(inode, ipage, from);
  514. f2fs_put_page(ipage, 1);
  515. truncate_page = true;
  516. goto out;
  517. }
  518. set_new_dnode(&dn, inode, ipage, NULL, 0);
  519. err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
  520. if (err) {
  521. if (err == -ENOENT)
  522. goto free_next;
  523. goto out;
  524. }
  525. count = ADDRS_PER_PAGE(dn.node_page, inode);
  526. count -= dn.ofs_in_node;
  527. f2fs_bug_on(sbi, count < 0);
  528. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  529. f2fs_truncate_data_blocks_range(&dn, count);
  530. free_from += count;
  531. }
  532. f2fs_put_dnode(&dn);
  533. free_next:
  534. err = f2fs_truncate_inode_blocks(inode, free_from);
  535. out:
  536. if (lock)
  537. f2fs_unlock_op(sbi);
  538. free_partial:
  539. /* lastly zero out the first data page */
  540. if (!err)
  541. err = truncate_partial_data_page(inode, from, truncate_page);
  542. trace_f2fs_truncate_blocks_exit(inode, err);
  543. return err;
  544. }
  545. int f2fs_truncate(struct inode *inode)
  546. {
  547. int err;
  548. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  549. return -EIO;
  550. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  551. S_ISLNK(inode->i_mode)))
  552. return 0;
  553. trace_f2fs_truncate(inode);
  554. #ifdef CONFIG_F2FS_FAULT_INJECTION
  555. if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
  556. f2fs_show_injection_info(FAULT_TRUNCATE);
  557. return -EIO;
  558. }
  559. #endif
  560. /* we should check inline_data size */
  561. if (!f2fs_may_inline_data(inode)) {
  562. err = f2fs_convert_inline_inode(inode);
  563. if (err)
  564. return err;
  565. }
  566. err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  567. if (err)
  568. return err;
  569. inode->i_mtime = inode->i_ctime = current_time(inode);
  570. f2fs_mark_inode_dirty_sync(inode, false);
  571. return 0;
  572. }
  573. int f2fs_getattr(const struct path *path, struct kstat *stat,
  574. u32 request_mask, unsigned int query_flags)
  575. {
  576. struct inode *inode = d_inode(path->dentry);
  577. struct f2fs_inode_info *fi = F2FS_I(inode);
  578. struct f2fs_inode *ri;
  579. unsigned int flags;
  580. if (f2fs_has_extra_attr(inode) &&
  581. f2fs_sb_has_inode_crtime(inode->i_sb) &&
  582. F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
  583. stat->result_mask |= STATX_BTIME;
  584. stat->btime.tv_sec = fi->i_crtime.tv_sec;
  585. stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
  586. }
  587. flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
  588. if (flags & F2FS_APPEND_FL)
  589. stat->attributes |= STATX_ATTR_APPEND;
  590. if (flags & F2FS_COMPR_FL)
  591. stat->attributes |= STATX_ATTR_COMPRESSED;
  592. if (f2fs_encrypted_inode(inode))
  593. stat->attributes |= STATX_ATTR_ENCRYPTED;
  594. if (flags & F2FS_IMMUTABLE_FL)
  595. stat->attributes |= STATX_ATTR_IMMUTABLE;
  596. if (flags & F2FS_NODUMP_FL)
  597. stat->attributes |= STATX_ATTR_NODUMP;
  598. stat->attributes_mask |= (STATX_ATTR_APPEND |
  599. STATX_ATTR_COMPRESSED |
  600. STATX_ATTR_ENCRYPTED |
  601. STATX_ATTR_IMMUTABLE |
  602. STATX_ATTR_NODUMP);
  603. generic_fillattr(inode, stat);
  604. /* we need to show initial sectors used for inline_data/dentries */
  605. if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
  606. f2fs_has_inline_dentry(inode))
  607. stat->blocks += (stat->size + 511) >> 9;
  608. return 0;
  609. }
  610. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  611. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  612. {
  613. unsigned int ia_valid = attr->ia_valid;
  614. if (ia_valid & ATTR_UID)
  615. inode->i_uid = attr->ia_uid;
  616. if (ia_valid & ATTR_GID)
  617. inode->i_gid = attr->ia_gid;
  618. if (ia_valid & ATTR_ATIME)
  619. inode->i_atime = timespec64_trunc(attr->ia_atime,
  620. inode->i_sb->s_time_gran);
  621. if (ia_valid & ATTR_MTIME)
  622. inode->i_mtime = timespec64_trunc(attr->ia_mtime,
  623. inode->i_sb->s_time_gran);
  624. if (ia_valid & ATTR_CTIME)
  625. inode->i_ctime = timespec64_trunc(attr->ia_ctime,
  626. inode->i_sb->s_time_gran);
  627. if (ia_valid & ATTR_MODE) {
  628. umode_t mode = attr->ia_mode;
  629. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  630. mode &= ~S_ISGID;
  631. set_acl_inode(inode, mode);
  632. }
  633. }
  634. #else
  635. #define __setattr_copy setattr_copy
  636. #endif
  637. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  638. {
  639. struct inode *inode = d_inode(dentry);
  640. int err;
  641. bool size_changed = false;
  642. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  643. return -EIO;
  644. err = setattr_prepare(dentry, attr);
  645. if (err)
  646. return err;
  647. err = fscrypt_prepare_setattr(dentry, attr);
  648. if (err)
  649. return err;
  650. if (is_quota_modification(inode, attr)) {
  651. err = dquot_initialize(inode);
  652. if (err)
  653. return err;
  654. }
  655. if ((attr->ia_valid & ATTR_UID &&
  656. !uid_eq(attr->ia_uid, inode->i_uid)) ||
  657. (attr->ia_valid & ATTR_GID &&
  658. !gid_eq(attr->ia_gid, inode->i_gid))) {
  659. err = dquot_transfer(inode, attr);
  660. if (err)
  661. return err;
  662. }
  663. if (attr->ia_valid & ATTR_SIZE) {
  664. if (attr->ia_size <= i_size_read(inode)) {
  665. down_write(&F2FS_I(inode)->i_mmap_sem);
  666. truncate_setsize(inode, attr->ia_size);
  667. err = f2fs_truncate(inode);
  668. up_write(&F2FS_I(inode)->i_mmap_sem);
  669. if (err)
  670. return err;
  671. } else {
  672. /*
  673. * do not trim all blocks after i_size if target size is
  674. * larger than i_size.
  675. */
  676. down_write(&F2FS_I(inode)->i_mmap_sem);
  677. truncate_setsize(inode, attr->ia_size);
  678. up_write(&F2FS_I(inode)->i_mmap_sem);
  679. /* should convert inline inode here */
  680. if (!f2fs_may_inline_data(inode)) {
  681. err = f2fs_convert_inline_inode(inode);
  682. if (err)
  683. return err;
  684. }
  685. inode->i_mtime = inode->i_ctime = current_time(inode);
  686. }
  687. down_write(&F2FS_I(inode)->i_sem);
  688. F2FS_I(inode)->last_disk_size = i_size_read(inode);
  689. up_write(&F2FS_I(inode)->i_sem);
  690. size_changed = true;
  691. }
  692. __setattr_copy(inode, attr);
  693. if (attr->ia_valid & ATTR_MODE) {
  694. err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
  695. if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
  696. inode->i_mode = F2FS_I(inode)->i_acl_mode;
  697. clear_inode_flag(inode, FI_ACL_MODE);
  698. }
  699. }
  700. /* file size may changed here */
  701. f2fs_mark_inode_dirty_sync(inode, size_changed);
  702. /* inode change will produce dirty node pages flushed by checkpoint */
  703. f2fs_balance_fs(F2FS_I_SB(inode), true);
  704. return err;
  705. }
  706. const struct inode_operations f2fs_file_inode_operations = {
  707. .getattr = f2fs_getattr,
  708. .setattr = f2fs_setattr,
  709. .get_acl = f2fs_get_acl,
  710. .set_acl = f2fs_set_acl,
  711. #ifdef CONFIG_F2FS_FS_XATTR
  712. .listxattr = f2fs_listxattr,
  713. #endif
  714. .fiemap = f2fs_fiemap,
  715. };
  716. static int fill_zero(struct inode *inode, pgoff_t index,
  717. loff_t start, loff_t len)
  718. {
  719. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  720. struct page *page;
  721. if (!len)
  722. return 0;
  723. f2fs_balance_fs(sbi, true);
  724. f2fs_lock_op(sbi);
  725. page = f2fs_get_new_data_page(inode, NULL, index, false);
  726. f2fs_unlock_op(sbi);
  727. if (IS_ERR(page))
  728. return PTR_ERR(page);
  729. f2fs_wait_on_page_writeback(page, DATA, true);
  730. zero_user(page, start, len);
  731. set_page_dirty(page);
  732. f2fs_put_page(page, 1);
  733. return 0;
  734. }
  735. int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  736. {
  737. int err;
  738. while (pg_start < pg_end) {
  739. struct dnode_of_data dn;
  740. pgoff_t end_offset, count;
  741. set_new_dnode(&dn, inode, NULL, NULL, 0);
  742. err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  743. if (err) {
  744. if (err == -ENOENT) {
  745. pg_start = f2fs_get_next_page_offset(&dn,
  746. pg_start);
  747. continue;
  748. }
  749. return err;
  750. }
  751. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  752. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  753. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  754. f2fs_truncate_data_blocks_range(&dn, count);
  755. f2fs_put_dnode(&dn);
  756. pg_start += count;
  757. }
  758. return 0;
  759. }
  760. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  761. {
  762. pgoff_t pg_start, pg_end;
  763. loff_t off_start, off_end;
  764. int ret;
  765. ret = f2fs_convert_inline_inode(inode);
  766. if (ret)
  767. return ret;
  768. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  769. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  770. off_start = offset & (PAGE_SIZE - 1);
  771. off_end = (offset + len) & (PAGE_SIZE - 1);
  772. if (pg_start == pg_end) {
  773. ret = fill_zero(inode, pg_start, off_start,
  774. off_end - off_start);
  775. if (ret)
  776. return ret;
  777. } else {
  778. if (off_start) {
  779. ret = fill_zero(inode, pg_start++, off_start,
  780. PAGE_SIZE - off_start);
  781. if (ret)
  782. return ret;
  783. }
  784. if (off_end) {
  785. ret = fill_zero(inode, pg_end, 0, off_end);
  786. if (ret)
  787. return ret;
  788. }
  789. if (pg_start < pg_end) {
  790. struct address_space *mapping = inode->i_mapping;
  791. loff_t blk_start, blk_end;
  792. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  793. f2fs_balance_fs(sbi, true);
  794. blk_start = (loff_t)pg_start << PAGE_SHIFT;
  795. blk_end = (loff_t)pg_end << PAGE_SHIFT;
  796. down_write(&F2FS_I(inode)->i_mmap_sem);
  797. truncate_inode_pages_range(mapping, blk_start,
  798. blk_end - 1);
  799. f2fs_lock_op(sbi);
  800. ret = f2fs_truncate_hole(inode, pg_start, pg_end);
  801. f2fs_unlock_op(sbi);
  802. up_write(&F2FS_I(inode)->i_mmap_sem);
  803. }
  804. }
  805. return ret;
  806. }
  807. static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
  808. int *do_replace, pgoff_t off, pgoff_t len)
  809. {
  810. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  811. struct dnode_of_data dn;
  812. int ret, done, i;
  813. next_dnode:
  814. set_new_dnode(&dn, inode, NULL, NULL, 0);
  815. ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
  816. if (ret && ret != -ENOENT) {
  817. return ret;
  818. } else if (ret == -ENOENT) {
  819. if (dn.max_level == 0)
  820. return -ENOENT;
  821. done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
  822. blkaddr += done;
  823. do_replace += done;
  824. goto next;
  825. }
  826. done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
  827. dn.ofs_in_node, len);
  828. for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
  829. *blkaddr = datablock_addr(dn.inode,
  830. dn.node_page, dn.ofs_in_node);
  831. if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
  832. if (test_opt(sbi, LFS)) {
  833. f2fs_put_dnode(&dn);
  834. return -ENOTSUPP;
  835. }
  836. /* do not invalidate this block address */
  837. f2fs_update_data_blkaddr(&dn, NULL_ADDR);
  838. *do_replace = 1;
  839. }
  840. }
  841. f2fs_put_dnode(&dn);
  842. next:
  843. len -= done;
  844. off += done;
  845. if (len)
  846. goto next_dnode;
  847. return 0;
  848. }
  849. static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
  850. int *do_replace, pgoff_t off, int len)
  851. {
  852. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  853. struct dnode_of_data dn;
  854. int ret, i;
  855. for (i = 0; i < len; i++, do_replace++, blkaddr++) {
  856. if (*do_replace == 0)
  857. continue;
  858. set_new_dnode(&dn, inode, NULL, NULL, 0);
  859. ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
  860. if (ret) {
  861. dec_valid_block_count(sbi, inode, 1);
  862. f2fs_invalidate_blocks(sbi, *blkaddr);
  863. } else {
  864. f2fs_update_data_blkaddr(&dn, *blkaddr);
  865. }
  866. f2fs_put_dnode(&dn);
  867. }
  868. return 0;
  869. }
  870. static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
  871. block_t *blkaddr, int *do_replace,
  872. pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
  873. {
  874. struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
  875. pgoff_t i = 0;
  876. int ret;
  877. while (i < len) {
  878. if (blkaddr[i] == NULL_ADDR && !full) {
  879. i++;
  880. continue;
  881. }
  882. if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
  883. struct dnode_of_data dn;
  884. struct node_info ni;
  885. size_t new_size;
  886. pgoff_t ilen;
  887. set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
  888. ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
  889. if (ret)
  890. return ret;
  891. f2fs_get_node_info(sbi, dn.nid, &ni);
  892. ilen = min((pgoff_t)
  893. ADDRS_PER_PAGE(dn.node_page, dst_inode) -
  894. dn.ofs_in_node, len - i);
  895. do {
  896. dn.data_blkaddr = datablock_addr(dn.inode,
  897. dn.node_page, dn.ofs_in_node);
  898. f2fs_truncate_data_blocks_range(&dn, 1);
  899. if (do_replace[i]) {
  900. f2fs_i_blocks_write(src_inode,
  901. 1, false, false);
  902. f2fs_i_blocks_write(dst_inode,
  903. 1, true, false);
  904. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  905. blkaddr[i], ni.version, true, false);
  906. do_replace[i] = 0;
  907. }
  908. dn.ofs_in_node++;
  909. i++;
  910. new_size = (dst + i) << PAGE_SHIFT;
  911. if (dst_inode->i_size < new_size)
  912. f2fs_i_size_write(dst_inode, new_size);
  913. } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
  914. f2fs_put_dnode(&dn);
  915. } else {
  916. struct page *psrc, *pdst;
  917. psrc = f2fs_get_lock_data_page(src_inode,
  918. src + i, true);
  919. if (IS_ERR(psrc))
  920. return PTR_ERR(psrc);
  921. pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
  922. true);
  923. if (IS_ERR(pdst)) {
  924. f2fs_put_page(psrc, 1);
  925. return PTR_ERR(pdst);
  926. }
  927. f2fs_copy_page(psrc, pdst);
  928. set_page_dirty(pdst);
  929. f2fs_put_page(pdst, 1);
  930. f2fs_put_page(psrc, 1);
  931. ret = f2fs_truncate_hole(src_inode,
  932. src + i, src + i + 1);
  933. if (ret)
  934. return ret;
  935. i++;
  936. }
  937. }
  938. return 0;
  939. }
  940. static int __exchange_data_block(struct inode *src_inode,
  941. struct inode *dst_inode, pgoff_t src, pgoff_t dst,
  942. pgoff_t len, bool full)
  943. {
  944. block_t *src_blkaddr;
  945. int *do_replace;
  946. pgoff_t olen;
  947. int ret;
  948. while (len) {
  949. olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
  950. src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  951. array_size(olen, sizeof(block_t)),
  952. GFP_KERNEL);
  953. if (!src_blkaddr)
  954. return -ENOMEM;
  955. do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
  956. array_size(olen, sizeof(int)),
  957. GFP_KERNEL);
  958. if (!do_replace) {
  959. kvfree(src_blkaddr);
  960. return -ENOMEM;
  961. }
  962. ret = __read_out_blkaddrs(src_inode, src_blkaddr,
  963. do_replace, src, olen);
  964. if (ret)
  965. goto roll_back;
  966. ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
  967. do_replace, src, dst, olen, full);
  968. if (ret)
  969. goto roll_back;
  970. src += olen;
  971. dst += olen;
  972. len -= olen;
  973. kvfree(src_blkaddr);
  974. kvfree(do_replace);
  975. }
  976. return 0;
  977. roll_back:
  978. __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
  979. kvfree(src_blkaddr);
  980. kvfree(do_replace);
  981. return ret;
  982. }
  983. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  984. {
  985. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  986. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  987. int ret;
  988. f2fs_balance_fs(sbi, true);
  989. f2fs_lock_op(sbi);
  990. f2fs_drop_extent_tree(inode);
  991. ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
  992. f2fs_unlock_op(sbi);
  993. return ret;
  994. }
  995. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  996. {
  997. pgoff_t pg_start, pg_end;
  998. loff_t new_size;
  999. int ret;
  1000. if (offset + len >= i_size_read(inode))
  1001. return -EINVAL;
  1002. /* collapse range should be aligned to block size of f2fs. */
  1003. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1004. return -EINVAL;
  1005. ret = f2fs_convert_inline_inode(inode);
  1006. if (ret)
  1007. return ret;
  1008. pg_start = offset >> PAGE_SHIFT;
  1009. pg_end = (offset + len) >> PAGE_SHIFT;
  1010. /* avoid gc operation during block exchange */
  1011. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1012. down_write(&F2FS_I(inode)->i_mmap_sem);
  1013. /* write out all dirty pages from offset */
  1014. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1015. if (ret)
  1016. goto out_unlock;
  1017. truncate_pagecache(inode, offset);
  1018. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  1019. if (ret)
  1020. goto out_unlock;
  1021. /* write out all moved pages, if possible */
  1022. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1023. truncate_pagecache(inode, offset);
  1024. new_size = i_size_read(inode) - len;
  1025. truncate_pagecache(inode, new_size);
  1026. ret = f2fs_truncate_blocks(inode, new_size, true);
  1027. if (!ret)
  1028. f2fs_i_size_write(inode, new_size);
  1029. out_unlock:
  1030. up_write(&F2FS_I(inode)->i_mmap_sem);
  1031. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1032. return ret;
  1033. }
  1034. static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
  1035. pgoff_t end)
  1036. {
  1037. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1038. pgoff_t index = start;
  1039. unsigned int ofs_in_node = dn->ofs_in_node;
  1040. blkcnt_t count = 0;
  1041. int ret;
  1042. for (; index < end; index++, dn->ofs_in_node++) {
  1043. if (datablock_addr(dn->inode, dn->node_page,
  1044. dn->ofs_in_node) == NULL_ADDR)
  1045. count++;
  1046. }
  1047. dn->ofs_in_node = ofs_in_node;
  1048. ret = f2fs_reserve_new_blocks(dn, count);
  1049. if (ret)
  1050. return ret;
  1051. dn->ofs_in_node = ofs_in_node;
  1052. for (index = start; index < end; index++, dn->ofs_in_node++) {
  1053. dn->data_blkaddr = datablock_addr(dn->inode,
  1054. dn->node_page, dn->ofs_in_node);
  1055. /*
  1056. * f2fs_reserve_new_blocks will not guarantee entire block
  1057. * allocation.
  1058. */
  1059. if (dn->data_blkaddr == NULL_ADDR) {
  1060. ret = -ENOSPC;
  1061. break;
  1062. }
  1063. if (dn->data_blkaddr != NEW_ADDR) {
  1064. f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
  1065. dn->data_blkaddr = NEW_ADDR;
  1066. f2fs_set_data_blkaddr(dn);
  1067. }
  1068. }
  1069. f2fs_update_extent_cache_range(dn, start, 0, index - start);
  1070. return ret;
  1071. }
  1072. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  1073. int mode)
  1074. {
  1075. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1076. struct address_space *mapping = inode->i_mapping;
  1077. pgoff_t index, pg_start, pg_end;
  1078. loff_t new_size = i_size_read(inode);
  1079. loff_t off_start, off_end;
  1080. int ret = 0;
  1081. ret = inode_newsize_ok(inode, (len + offset));
  1082. if (ret)
  1083. return ret;
  1084. ret = f2fs_convert_inline_inode(inode);
  1085. if (ret)
  1086. return ret;
  1087. down_write(&F2FS_I(inode)->i_mmap_sem);
  1088. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  1089. if (ret)
  1090. goto out_sem;
  1091. truncate_pagecache_range(inode, offset, offset + len - 1);
  1092. pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
  1093. pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
  1094. off_start = offset & (PAGE_SIZE - 1);
  1095. off_end = (offset + len) & (PAGE_SIZE - 1);
  1096. if (pg_start == pg_end) {
  1097. ret = fill_zero(inode, pg_start, off_start,
  1098. off_end - off_start);
  1099. if (ret)
  1100. goto out_sem;
  1101. new_size = max_t(loff_t, new_size, offset + len);
  1102. } else {
  1103. if (off_start) {
  1104. ret = fill_zero(inode, pg_start++, off_start,
  1105. PAGE_SIZE - off_start);
  1106. if (ret)
  1107. goto out_sem;
  1108. new_size = max_t(loff_t, new_size,
  1109. (loff_t)pg_start << PAGE_SHIFT);
  1110. }
  1111. for (index = pg_start; index < pg_end;) {
  1112. struct dnode_of_data dn;
  1113. unsigned int end_offset;
  1114. pgoff_t end;
  1115. f2fs_lock_op(sbi);
  1116. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1117. ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
  1118. if (ret) {
  1119. f2fs_unlock_op(sbi);
  1120. goto out;
  1121. }
  1122. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  1123. end = min(pg_end, end_offset - dn.ofs_in_node + index);
  1124. ret = f2fs_do_zero_range(&dn, index, end);
  1125. f2fs_put_dnode(&dn);
  1126. f2fs_unlock_op(sbi);
  1127. f2fs_balance_fs(sbi, dn.node_changed);
  1128. if (ret)
  1129. goto out;
  1130. index = end;
  1131. new_size = max_t(loff_t, new_size,
  1132. (loff_t)index << PAGE_SHIFT);
  1133. }
  1134. if (off_end) {
  1135. ret = fill_zero(inode, pg_end, 0, off_end);
  1136. if (ret)
  1137. goto out;
  1138. new_size = max_t(loff_t, new_size, offset + len);
  1139. }
  1140. }
  1141. out:
  1142. if (new_size > i_size_read(inode)) {
  1143. if (mode & FALLOC_FL_KEEP_SIZE)
  1144. file_set_keep_isize(inode);
  1145. else
  1146. f2fs_i_size_write(inode, new_size);
  1147. }
  1148. out_sem:
  1149. up_write(&F2FS_I(inode)->i_mmap_sem);
  1150. return ret;
  1151. }
  1152. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  1153. {
  1154. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1155. pgoff_t nr, pg_start, pg_end, delta, idx;
  1156. loff_t new_size;
  1157. int ret = 0;
  1158. new_size = i_size_read(inode) + len;
  1159. ret = inode_newsize_ok(inode, new_size);
  1160. if (ret)
  1161. return ret;
  1162. if (offset >= i_size_read(inode))
  1163. return -EINVAL;
  1164. /* insert range should be aligned to block size of f2fs. */
  1165. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  1166. return -EINVAL;
  1167. ret = f2fs_convert_inline_inode(inode);
  1168. if (ret)
  1169. return ret;
  1170. f2fs_balance_fs(sbi, true);
  1171. /* avoid gc operation during block exchange */
  1172. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1173. down_write(&F2FS_I(inode)->i_mmap_sem);
  1174. ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
  1175. if (ret)
  1176. goto out;
  1177. /* write out all dirty pages from offset */
  1178. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1179. if (ret)
  1180. goto out;
  1181. truncate_pagecache(inode, offset);
  1182. pg_start = offset >> PAGE_SHIFT;
  1183. pg_end = (offset + len) >> PAGE_SHIFT;
  1184. delta = pg_end - pg_start;
  1185. idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  1186. while (!ret && idx > pg_start) {
  1187. nr = idx - pg_start;
  1188. if (nr > delta)
  1189. nr = delta;
  1190. idx -= nr;
  1191. f2fs_lock_op(sbi);
  1192. f2fs_drop_extent_tree(inode);
  1193. ret = __exchange_data_block(inode, inode, idx,
  1194. idx + delta, nr, false);
  1195. f2fs_unlock_op(sbi);
  1196. }
  1197. /* write out all moved pages, if possible */
  1198. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  1199. truncate_pagecache(inode, offset);
  1200. if (!ret)
  1201. f2fs_i_size_write(inode, new_size);
  1202. out:
  1203. up_write(&F2FS_I(inode)->i_mmap_sem);
  1204. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1205. return ret;
  1206. }
  1207. static int expand_inode_data(struct inode *inode, loff_t offset,
  1208. loff_t len, int mode)
  1209. {
  1210. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1211. struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
  1212. .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
  1213. pgoff_t pg_end;
  1214. loff_t new_size = i_size_read(inode);
  1215. loff_t off_end;
  1216. int err;
  1217. err = inode_newsize_ok(inode, (len + offset));
  1218. if (err)
  1219. return err;
  1220. err = f2fs_convert_inline_inode(inode);
  1221. if (err)
  1222. return err;
  1223. f2fs_balance_fs(sbi, true);
  1224. pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
  1225. off_end = (offset + len) & (PAGE_SIZE - 1);
  1226. map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
  1227. map.m_len = pg_end - map.m_lblk;
  1228. if (off_end)
  1229. map.m_len++;
  1230. err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
  1231. if (err) {
  1232. pgoff_t last_off;
  1233. if (!map.m_len)
  1234. return err;
  1235. last_off = map.m_lblk + map.m_len - 1;
  1236. /* update new size to the failed position */
  1237. new_size = (last_off == pg_end) ? offset + len :
  1238. (loff_t)(last_off + 1) << PAGE_SHIFT;
  1239. } else {
  1240. new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
  1241. }
  1242. if (new_size > i_size_read(inode)) {
  1243. if (mode & FALLOC_FL_KEEP_SIZE)
  1244. file_set_keep_isize(inode);
  1245. else
  1246. f2fs_i_size_write(inode, new_size);
  1247. }
  1248. return err;
  1249. }
  1250. static long f2fs_fallocate(struct file *file, int mode,
  1251. loff_t offset, loff_t len)
  1252. {
  1253. struct inode *inode = file_inode(file);
  1254. long ret = 0;
  1255. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  1256. return -EIO;
  1257. /* f2fs only support ->fallocate for regular file */
  1258. if (!S_ISREG(inode->i_mode))
  1259. return -EINVAL;
  1260. if (f2fs_encrypted_inode(inode) &&
  1261. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1262. return -EOPNOTSUPP;
  1263. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1264. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1265. FALLOC_FL_INSERT_RANGE))
  1266. return -EOPNOTSUPP;
  1267. inode_lock(inode);
  1268. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1269. if (offset >= inode->i_size)
  1270. goto out;
  1271. ret = punch_hole(inode, offset, len);
  1272. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1273. ret = f2fs_collapse_range(inode, offset, len);
  1274. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1275. ret = f2fs_zero_range(inode, offset, len, mode);
  1276. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1277. ret = f2fs_insert_range(inode, offset, len);
  1278. } else {
  1279. ret = expand_inode_data(inode, offset, len, mode);
  1280. }
  1281. if (!ret) {
  1282. inode->i_mtime = inode->i_ctime = current_time(inode);
  1283. f2fs_mark_inode_dirty_sync(inode, false);
  1284. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1285. }
  1286. out:
  1287. inode_unlock(inode);
  1288. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1289. return ret;
  1290. }
  1291. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1292. {
  1293. /*
  1294. * f2fs_relase_file is called at every close calls. So we should
  1295. * not drop any inmemory pages by close called by other process.
  1296. */
  1297. if (!(filp->f_mode & FMODE_WRITE) ||
  1298. atomic_read(&inode->i_writecount) != 1)
  1299. return 0;
  1300. /* some remained atomic pages should discarded */
  1301. if (f2fs_is_atomic_file(inode))
  1302. f2fs_drop_inmem_pages(inode);
  1303. if (f2fs_is_volatile_file(inode)) {
  1304. set_inode_flag(inode, FI_DROP_CACHE);
  1305. filemap_fdatawrite(inode->i_mapping);
  1306. clear_inode_flag(inode, FI_DROP_CACHE);
  1307. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1308. stat_dec_volatile_write(inode);
  1309. }
  1310. return 0;
  1311. }
  1312. static int f2fs_file_flush(struct file *file, fl_owner_t id)
  1313. {
  1314. struct inode *inode = file_inode(file);
  1315. /*
  1316. * If the process doing a transaction is crashed, we should do
  1317. * roll-back. Otherwise, other reader/write can see corrupted database
  1318. * until all the writers close its file. Since this should be done
  1319. * before dropping file lock, it needs to do in ->flush.
  1320. */
  1321. if (f2fs_is_atomic_file(inode) &&
  1322. F2FS_I(inode)->inmem_task == current)
  1323. f2fs_drop_inmem_pages(inode);
  1324. return 0;
  1325. }
  1326. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1327. {
  1328. struct inode *inode = file_inode(filp);
  1329. struct f2fs_inode_info *fi = F2FS_I(inode);
  1330. unsigned int flags = fi->i_flags;
  1331. if (file_is_encrypt(inode))
  1332. flags |= F2FS_ENCRYPT_FL;
  1333. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
  1334. flags |= F2FS_INLINE_DATA_FL;
  1335. flags &= F2FS_FL_USER_VISIBLE;
  1336. return put_user(flags, (int __user *)arg);
  1337. }
  1338. static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
  1339. {
  1340. struct f2fs_inode_info *fi = F2FS_I(inode);
  1341. unsigned int oldflags;
  1342. /* Is it quota file? Do not allow user to mess with it */
  1343. if (IS_NOQUOTA(inode))
  1344. return -EPERM;
  1345. flags = f2fs_mask_flags(inode->i_mode, flags);
  1346. oldflags = fi->i_flags;
  1347. if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
  1348. if (!capable(CAP_LINUX_IMMUTABLE))
  1349. return -EPERM;
  1350. flags = flags & F2FS_FL_USER_MODIFIABLE;
  1351. flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
  1352. fi->i_flags = flags;
  1353. if (fi->i_flags & F2FS_PROJINHERIT_FL)
  1354. set_inode_flag(inode, FI_PROJ_INHERIT);
  1355. else
  1356. clear_inode_flag(inode, FI_PROJ_INHERIT);
  1357. inode->i_ctime = current_time(inode);
  1358. f2fs_set_inode_flags(inode);
  1359. f2fs_mark_inode_dirty_sync(inode, false);
  1360. return 0;
  1361. }
  1362. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1363. {
  1364. struct inode *inode = file_inode(filp);
  1365. unsigned int flags;
  1366. int ret;
  1367. if (!inode_owner_or_capable(inode))
  1368. return -EACCES;
  1369. if (get_user(flags, (int __user *)arg))
  1370. return -EFAULT;
  1371. ret = mnt_want_write_file(filp);
  1372. if (ret)
  1373. return ret;
  1374. inode_lock(inode);
  1375. ret = __f2fs_ioc_setflags(inode, flags);
  1376. inode_unlock(inode);
  1377. mnt_drop_write_file(filp);
  1378. return ret;
  1379. }
  1380. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1381. {
  1382. struct inode *inode = file_inode(filp);
  1383. return put_user(inode->i_generation, (int __user *)arg);
  1384. }
  1385. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1386. {
  1387. struct inode *inode = file_inode(filp);
  1388. int ret;
  1389. if (!inode_owner_or_capable(inode))
  1390. return -EACCES;
  1391. if (!S_ISREG(inode->i_mode))
  1392. return -EINVAL;
  1393. ret = mnt_want_write_file(filp);
  1394. if (ret)
  1395. return ret;
  1396. inode_lock(inode);
  1397. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1398. if (f2fs_is_atomic_file(inode))
  1399. goto out;
  1400. ret = f2fs_convert_inline_inode(inode);
  1401. if (ret)
  1402. goto out;
  1403. if (!get_dirty_pages(inode))
  1404. goto skip_flush;
  1405. f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
  1406. "Unexpected flush for atomic writes: ino=%lu, npages=%u",
  1407. inode->i_ino, get_dirty_pages(inode));
  1408. ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
  1409. if (ret)
  1410. goto out;
  1411. skip_flush:
  1412. set_inode_flag(inode, FI_ATOMIC_FILE);
  1413. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1414. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1415. F2FS_I(inode)->inmem_task = current;
  1416. stat_inc_atomic_write(inode);
  1417. stat_update_max_atomic_write(inode);
  1418. out:
  1419. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1420. inode_unlock(inode);
  1421. mnt_drop_write_file(filp);
  1422. return ret;
  1423. }
  1424. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1425. {
  1426. struct inode *inode = file_inode(filp);
  1427. int ret;
  1428. if (!inode_owner_or_capable(inode))
  1429. return -EACCES;
  1430. ret = mnt_want_write_file(filp);
  1431. if (ret)
  1432. return ret;
  1433. inode_lock(inode);
  1434. down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1435. if (f2fs_is_volatile_file(inode)) {
  1436. ret = -EINVAL;
  1437. goto err_out;
  1438. }
  1439. if (f2fs_is_atomic_file(inode)) {
  1440. ret = f2fs_commit_inmem_pages(inode);
  1441. if (ret)
  1442. goto err_out;
  1443. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1444. if (!ret) {
  1445. clear_inode_flag(inode, FI_ATOMIC_FILE);
  1446. F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
  1447. stat_dec_atomic_write(inode);
  1448. }
  1449. } else {
  1450. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
  1451. }
  1452. err_out:
  1453. if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
  1454. clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
  1455. ret = -EINVAL;
  1456. }
  1457. up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
  1458. inode_unlock(inode);
  1459. mnt_drop_write_file(filp);
  1460. return ret;
  1461. }
  1462. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1463. {
  1464. struct inode *inode = file_inode(filp);
  1465. int ret;
  1466. if (!inode_owner_or_capable(inode))
  1467. return -EACCES;
  1468. if (!S_ISREG(inode->i_mode))
  1469. return -EINVAL;
  1470. ret = mnt_want_write_file(filp);
  1471. if (ret)
  1472. return ret;
  1473. inode_lock(inode);
  1474. if (f2fs_is_volatile_file(inode))
  1475. goto out;
  1476. ret = f2fs_convert_inline_inode(inode);
  1477. if (ret)
  1478. goto out;
  1479. stat_inc_volatile_write(inode);
  1480. stat_update_max_volatile_write(inode);
  1481. set_inode_flag(inode, FI_VOLATILE_FILE);
  1482. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1483. out:
  1484. inode_unlock(inode);
  1485. mnt_drop_write_file(filp);
  1486. return ret;
  1487. }
  1488. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1489. {
  1490. struct inode *inode = file_inode(filp);
  1491. int ret;
  1492. if (!inode_owner_or_capable(inode))
  1493. return -EACCES;
  1494. ret = mnt_want_write_file(filp);
  1495. if (ret)
  1496. return ret;
  1497. inode_lock(inode);
  1498. if (!f2fs_is_volatile_file(inode))
  1499. goto out;
  1500. if (!f2fs_is_first_block_written(inode)) {
  1501. ret = truncate_partial_data_page(inode, 0, true);
  1502. goto out;
  1503. }
  1504. ret = punch_hole(inode, 0, F2FS_BLKSIZE);
  1505. out:
  1506. inode_unlock(inode);
  1507. mnt_drop_write_file(filp);
  1508. return ret;
  1509. }
  1510. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1511. {
  1512. struct inode *inode = file_inode(filp);
  1513. int ret;
  1514. if (!inode_owner_or_capable(inode))
  1515. return -EACCES;
  1516. ret = mnt_want_write_file(filp);
  1517. if (ret)
  1518. return ret;
  1519. inode_lock(inode);
  1520. if (f2fs_is_atomic_file(inode))
  1521. f2fs_drop_inmem_pages(inode);
  1522. if (f2fs_is_volatile_file(inode)) {
  1523. clear_inode_flag(inode, FI_VOLATILE_FILE);
  1524. stat_dec_volatile_write(inode);
  1525. ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
  1526. }
  1527. inode_unlock(inode);
  1528. mnt_drop_write_file(filp);
  1529. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1530. return ret;
  1531. }
  1532. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1533. {
  1534. struct inode *inode = file_inode(filp);
  1535. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1536. struct super_block *sb = sbi->sb;
  1537. __u32 in;
  1538. int ret;
  1539. if (!capable(CAP_SYS_ADMIN))
  1540. return -EPERM;
  1541. if (get_user(in, (__u32 __user *)arg))
  1542. return -EFAULT;
  1543. if (in != F2FS_GOING_DOWN_FULLSYNC) {
  1544. ret = mnt_want_write_file(filp);
  1545. if (ret)
  1546. return ret;
  1547. }
  1548. switch (in) {
  1549. case F2FS_GOING_DOWN_FULLSYNC:
  1550. sb = freeze_bdev(sb->s_bdev);
  1551. if (IS_ERR(sb)) {
  1552. ret = PTR_ERR(sb);
  1553. goto out;
  1554. }
  1555. if (sb) {
  1556. f2fs_stop_checkpoint(sbi, false);
  1557. thaw_bdev(sb->s_bdev, sb);
  1558. }
  1559. break;
  1560. case F2FS_GOING_DOWN_METASYNC:
  1561. /* do checkpoint only */
  1562. ret = f2fs_sync_fs(sb, 1);
  1563. if (ret)
  1564. goto out;
  1565. f2fs_stop_checkpoint(sbi, false);
  1566. break;
  1567. case F2FS_GOING_DOWN_NOSYNC:
  1568. f2fs_stop_checkpoint(sbi, false);
  1569. break;
  1570. case F2FS_GOING_DOWN_METAFLUSH:
  1571. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
  1572. f2fs_stop_checkpoint(sbi, false);
  1573. break;
  1574. default:
  1575. ret = -EINVAL;
  1576. goto out;
  1577. }
  1578. f2fs_stop_gc_thread(sbi);
  1579. f2fs_stop_discard_thread(sbi);
  1580. f2fs_drop_discard_cmd(sbi);
  1581. clear_opt(sbi, DISCARD);
  1582. f2fs_update_time(sbi, REQ_TIME);
  1583. out:
  1584. if (in != F2FS_GOING_DOWN_FULLSYNC)
  1585. mnt_drop_write_file(filp);
  1586. return ret;
  1587. }
  1588. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1589. {
  1590. struct inode *inode = file_inode(filp);
  1591. struct super_block *sb = inode->i_sb;
  1592. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1593. struct fstrim_range range;
  1594. int ret;
  1595. if (!capable(CAP_SYS_ADMIN))
  1596. return -EPERM;
  1597. if (!blk_queue_discard(q))
  1598. return -EOPNOTSUPP;
  1599. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1600. sizeof(range)))
  1601. return -EFAULT;
  1602. ret = mnt_want_write_file(filp);
  1603. if (ret)
  1604. return ret;
  1605. range.minlen = max((unsigned int)range.minlen,
  1606. q->limits.discard_granularity);
  1607. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1608. mnt_drop_write_file(filp);
  1609. if (ret < 0)
  1610. return ret;
  1611. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1612. sizeof(range)))
  1613. return -EFAULT;
  1614. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1615. return 0;
  1616. }
  1617. static bool uuid_is_nonzero(__u8 u[16])
  1618. {
  1619. int i;
  1620. for (i = 0; i < 16; i++)
  1621. if (u[i])
  1622. return true;
  1623. return false;
  1624. }
  1625. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1626. {
  1627. struct inode *inode = file_inode(filp);
  1628. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1629. return -EOPNOTSUPP;
  1630. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1631. return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
  1632. }
  1633. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1634. {
  1635. if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
  1636. return -EOPNOTSUPP;
  1637. return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
  1638. }
  1639. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1640. {
  1641. struct inode *inode = file_inode(filp);
  1642. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1643. int err;
  1644. if (!f2fs_sb_has_encrypt(inode->i_sb))
  1645. return -EOPNOTSUPP;
  1646. err = mnt_want_write_file(filp);
  1647. if (err)
  1648. return err;
  1649. down_write(&sbi->sb_lock);
  1650. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1651. goto got_it;
  1652. /* update superblock with uuid */
  1653. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1654. err = f2fs_commit_super(sbi, false);
  1655. if (err) {
  1656. /* undo new data */
  1657. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1658. goto out_err;
  1659. }
  1660. got_it:
  1661. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1662. 16))
  1663. err = -EFAULT;
  1664. out_err:
  1665. up_write(&sbi->sb_lock);
  1666. mnt_drop_write_file(filp);
  1667. return err;
  1668. }
  1669. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1670. {
  1671. struct inode *inode = file_inode(filp);
  1672. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1673. __u32 sync;
  1674. int ret;
  1675. if (!capable(CAP_SYS_ADMIN))
  1676. return -EPERM;
  1677. if (get_user(sync, (__u32 __user *)arg))
  1678. return -EFAULT;
  1679. if (f2fs_readonly(sbi->sb))
  1680. return -EROFS;
  1681. ret = mnt_want_write_file(filp);
  1682. if (ret)
  1683. return ret;
  1684. if (!sync) {
  1685. if (!mutex_trylock(&sbi->gc_mutex)) {
  1686. ret = -EBUSY;
  1687. goto out;
  1688. }
  1689. } else {
  1690. mutex_lock(&sbi->gc_mutex);
  1691. }
  1692. ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
  1693. out:
  1694. mnt_drop_write_file(filp);
  1695. return ret;
  1696. }
  1697. static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
  1698. {
  1699. struct inode *inode = file_inode(filp);
  1700. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1701. struct f2fs_gc_range range;
  1702. u64 end;
  1703. int ret;
  1704. if (!capable(CAP_SYS_ADMIN))
  1705. return -EPERM;
  1706. if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
  1707. sizeof(range)))
  1708. return -EFAULT;
  1709. if (f2fs_readonly(sbi->sb))
  1710. return -EROFS;
  1711. end = range.start + range.len;
  1712. if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
  1713. return -EINVAL;
  1714. }
  1715. ret = mnt_want_write_file(filp);
  1716. if (ret)
  1717. return ret;
  1718. do_more:
  1719. if (!range.sync) {
  1720. if (!mutex_trylock(&sbi->gc_mutex)) {
  1721. ret = -EBUSY;
  1722. goto out;
  1723. }
  1724. } else {
  1725. mutex_lock(&sbi->gc_mutex);
  1726. }
  1727. ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
  1728. range.start += sbi->blocks_per_seg;
  1729. if (range.start <= end)
  1730. goto do_more;
  1731. out:
  1732. mnt_drop_write_file(filp);
  1733. return ret;
  1734. }
  1735. static int f2fs_ioc_f2fs_write_checkpoint(struct file *filp, unsigned long arg)
  1736. {
  1737. struct inode *inode = file_inode(filp);
  1738. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1739. int ret;
  1740. if (!capable(CAP_SYS_ADMIN))
  1741. return -EPERM;
  1742. if (f2fs_readonly(sbi->sb))
  1743. return -EROFS;
  1744. ret = mnt_want_write_file(filp);
  1745. if (ret)
  1746. return ret;
  1747. ret = f2fs_sync_fs(sbi->sb, 1);
  1748. mnt_drop_write_file(filp);
  1749. return ret;
  1750. }
  1751. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1752. struct file *filp,
  1753. struct f2fs_defragment *range)
  1754. {
  1755. struct inode *inode = file_inode(filp);
  1756. struct f2fs_map_blocks map = { .m_next_extent = NULL,
  1757. .m_seg_type = NO_CHECK_TYPE };
  1758. struct extent_info ei = {0, 0, 0};
  1759. pgoff_t pg_start, pg_end, next_pgofs;
  1760. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1761. unsigned int total = 0, sec_num;
  1762. block_t blk_end = 0;
  1763. bool fragmented = false;
  1764. int err;
  1765. /* if in-place-update policy is enabled, don't waste time here */
  1766. if (f2fs_should_update_inplace(inode, NULL))
  1767. return -EINVAL;
  1768. pg_start = range->start >> PAGE_SHIFT;
  1769. pg_end = (range->start + range->len) >> PAGE_SHIFT;
  1770. f2fs_balance_fs(sbi, true);
  1771. inode_lock(inode);
  1772. /* writeback all dirty pages in the range */
  1773. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1774. range->start + range->len - 1);
  1775. if (err)
  1776. goto out;
  1777. /*
  1778. * lookup mapping info in extent cache, skip defragmenting if physical
  1779. * block addresses are continuous.
  1780. */
  1781. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1782. if (ei.fofs + ei.len >= pg_end)
  1783. goto out;
  1784. }
  1785. map.m_lblk = pg_start;
  1786. map.m_next_pgofs = &next_pgofs;
  1787. /*
  1788. * lookup mapping info in dnode page cache, skip defragmenting if all
  1789. * physical block addresses are continuous even if there are hole(s)
  1790. * in logical blocks.
  1791. */
  1792. while (map.m_lblk < pg_end) {
  1793. map.m_len = pg_end - map.m_lblk;
  1794. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1795. if (err)
  1796. goto out;
  1797. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1798. map.m_lblk = next_pgofs;
  1799. continue;
  1800. }
  1801. if (blk_end && blk_end != map.m_pblk)
  1802. fragmented = true;
  1803. /* record total count of block that we're going to move */
  1804. total += map.m_len;
  1805. blk_end = map.m_pblk + map.m_len;
  1806. map.m_lblk += map.m_len;
  1807. }
  1808. if (!fragmented)
  1809. goto out;
  1810. sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
  1811. /*
  1812. * make sure there are enough free section for LFS allocation, this can
  1813. * avoid defragment running in SSR mode when free section are allocated
  1814. * intensively
  1815. */
  1816. if (has_not_enough_free_secs(sbi, 0, sec_num)) {
  1817. err = -EAGAIN;
  1818. goto out;
  1819. }
  1820. map.m_lblk = pg_start;
  1821. map.m_len = pg_end - pg_start;
  1822. total = 0;
  1823. while (map.m_lblk < pg_end) {
  1824. pgoff_t idx;
  1825. int cnt = 0;
  1826. do_map:
  1827. map.m_len = pg_end - map.m_lblk;
  1828. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1829. if (err)
  1830. goto clear_out;
  1831. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1832. map.m_lblk = next_pgofs;
  1833. continue;
  1834. }
  1835. set_inode_flag(inode, FI_DO_DEFRAG);
  1836. idx = map.m_lblk;
  1837. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1838. struct page *page;
  1839. page = f2fs_get_lock_data_page(inode, idx, true);
  1840. if (IS_ERR(page)) {
  1841. err = PTR_ERR(page);
  1842. goto clear_out;
  1843. }
  1844. set_page_dirty(page);
  1845. f2fs_put_page(page, 1);
  1846. idx++;
  1847. cnt++;
  1848. total++;
  1849. }
  1850. map.m_lblk = idx;
  1851. if (idx < pg_end && cnt < blk_per_seg)
  1852. goto do_map;
  1853. clear_inode_flag(inode, FI_DO_DEFRAG);
  1854. err = filemap_fdatawrite(inode->i_mapping);
  1855. if (err)
  1856. goto out;
  1857. }
  1858. clear_out:
  1859. clear_inode_flag(inode, FI_DO_DEFRAG);
  1860. out:
  1861. inode_unlock(inode);
  1862. if (!err)
  1863. range->len = (u64)total << PAGE_SHIFT;
  1864. return err;
  1865. }
  1866. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1867. {
  1868. struct inode *inode = file_inode(filp);
  1869. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1870. struct f2fs_defragment range;
  1871. int err;
  1872. if (!capable(CAP_SYS_ADMIN))
  1873. return -EPERM;
  1874. if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
  1875. return -EINVAL;
  1876. if (f2fs_readonly(sbi->sb))
  1877. return -EROFS;
  1878. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1879. sizeof(range)))
  1880. return -EFAULT;
  1881. /* verify alignment of offset & size */
  1882. if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
  1883. return -EINVAL;
  1884. if (unlikely((range.start + range.len) >> PAGE_SHIFT >
  1885. sbi->max_file_blocks))
  1886. return -EINVAL;
  1887. err = mnt_want_write_file(filp);
  1888. if (err)
  1889. return err;
  1890. err = f2fs_defragment_range(sbi, filp, &range);
  1891. mnt_drop_write_file(filp);
  1892. f2fs_update_time(sbi, REQ_TIME);
  1893. if (err < 0)
  1894. return err;
  1895. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1896. sizeof(range)))
  1897. return -EFAULT;
  1898. return 0;
  1899. }
  1900. static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
  1901. struct file *file_out, loff_t pos_out, size_t len)
  1902. {
  1903. struct inode *src = file_inode(file_in);
  1904. struct inode *dst = file_inode(file_out);
  1905. struct f2fs_sb_info *sbi = F2FS_I_SB(src);
  1906. size_t olen = len, dst_max_i_size = 0;
  1907. size_t dst_osize;
  1908. int ret;
  1909. if (file_in->f_path.mnt != file_out->f_path.mnt ||
  1910. src->i_sb != dst->i_sb)
  1911. return -EXDEV;
  1912. if (unlikely(f2fs_readonly(src->i_sb)))
  1913. return -EROFS;
  1914. if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
  1915. return -EINVAL;
  1916. if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
  1917. return -EOPNOTSUPP;
  1918. if (src == dst) {
  1919. if (pos_in == pos_out)
  1920. return 0;
  1921. if (pos_out > pos_in && pos_out < pos_in + len)
  1922. return -EINVAL;
  1923. }
  1924. inode_lock(src);
  1925. down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  1926. if (src != dst) {
  1927. ret = -EBUSY;
  1928. if (!inode_trylock(dst))
  1929. goto out;
  1930. if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) {
  1931. inode_unlock(dst);
  1932. goto out;
  1933. }
  1934. }
  1935. ret = -EINVAL;
  1936. if (pos_in + len > src->i_size || pos_in + len < pos_in)
  1937. goto out_unlock;
  1938. if (len == 0)
  1939. olen = len = src->i_size - pos_in;
  1940. if (pos_in + len == src->i_size)
  1941. len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
  1942. if (len == 0) {
  1943. ret = 0;
  1944. goto out_unlock;
  1945. }
  1946. dst_osize = dst->i_size;
  1947. if (pos_out + olen > dst->i_size)
  1948. dst_max_i_size = pos_out + olen;
  1949. /* verify the end result is block aligned */
  1950. if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
  1951. !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
  1952. !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
  1953. goto out_unlock;
  1954. ret = f2fs_convert_inline_inode(src);
  1955. if (ret)
  1956. goto out_unlock;
  1957. ret = f2fs_convert_inline_inode(dst);
  1958. if (ret)
  1959. goto out_unlock;
  1960. /* write out all dirty pages from offset */
  1961. ret = filemap_write_and_wait_range(src->i_mapping,
  1962. pos_in, pos_in + len);
  1963. if (ret)
  1964. goto out_unlock;
  1965. ret = filemap_write_and_wait_range(dst->i_mapping,
  1966. pos_out, pos_out + len);
  1967. if (ret)
  1968. goto out_unlock;
  1969. f2fs_balance_fs(sbi, true);
  1970. f2fs_lock_op(sbi);
  1971. ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
  1972. pos_out >> F2FS_BLKSIZE_BITS,
  1973. len >> F2FS_BLKSIZE_BITS, false);
  1974. if (!ret) {
  1975. if (dst_max_i_size)
  1976. f2fs_i_size_write(dst, dst_max_i_size);
  1977. else if (dst_osize != dst->i_size)
  1978. f2fs_i_size_write(dst, dst_osize);
  1979. }
  1980. f2fs_unlock_op(sbi);
  1981. out_unlock:
  1982. if (src != dst) {
  1983. up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
  1984. inode_unlock(dst);
  1985. }
  1986. out:
  1987. up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
  1988. inode_unlock(src);
  1989. return ret;
  1990. }
  1991. static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
  1992. {
  1993. struct f2fs_move_range range;
  1994. struct fd dst;
  1995. int err;
  1996. if (!(filp->f_mode & FMODE_READ) ||
  1997. !(filp->f_mode & FMODE_WRITE))
  1998. return -EBADF;
  1999. if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
  2000. sizeof(range)))
  2001. return -EFAULT;
  2002. dst = fdget(range.dst_fd);
  2003. if (!dst.file)
  2004. return -EBADF;
  2005. if (!(dst.file->f_mode & FMODE_WRITE)) {
  2006. err = -EBADF;
  2007. goto err_out;
  2008. }
  2009. err = mnt_want_write_file(filp);
  2010. if (err)
  2011. goto err_out;
  2012. err = f2fs_move_file_range(filp, range.pos_in, dst.file,
  2013. range.pos_out, range.len);
  2014. mnt_drop_write_file(filp);
  2015. if (err)
  2016. goto err_out;
  2017. if (copy_to_user((struct f2fs_move_range __user *)arg,
  2018. &range, sizeof(range)))
  2019. err = -EFAULT;
  2020. err_out:
  2021. fdput(dst);
  2022. return err;
  2023. }
  2024. static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
  2025. {
  2026. struct inode *inode = file_inode(filp);
  2027. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2028. struct sit_info *sm = SIT_I(sbi);
  2029. unsigned int start_segno = 0, end_segno = 0;
  2030. unsigned int dev_start_segno = 0, dev_end_segno = 0;
  2031. struct f2fs_flush_device range;
  2032. int ret;
  2033. if (!capable(CAP_SYS_ADMIN))
  2034. return -EPERM;
  2035. if (f2fs_readonly(sbi->sb))
  2036. return -EROFS;
  2037. if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
  2038. sizeof(range)))
  2039. return -EFAULT;
  2040. if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
  2041. sbi->segs_per_sec != 1) {
  2042. f2fs_msg(sbi->sb, KERN_WARNING,
  2043. "Can't flush %u in %d for segs_per_sec %u != 1\n",
  2044. range.dev_num, sbi->s_ndevs,
  2045. sbi->segs_per_sec);
  2046. return -EINVAL;
  2047. }
  2048. ret = mnt_want_write_file(filp);
  2049. if (ret)
  2050. return ret;
  2051. if (range.dev_num != 0)
  2052. dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
  2053. dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
  2054. start_segno = sm->last_victim[FLUSH_DEVICE];
  2055. if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
  2056. start_segno = dev_start_segno;
  2057. end_segno = min(start_segno + range.segments, dev_end_segno);
  2058. while (start_segno < end_segno) {
  2059. if (!mutex_trylock(&sbi->gc_mutex)) {
  2060. ret = -EBUSY;
  2061. goto out;
  2062. }
  2063. sm->last_victim[GC_CB] = end_segno + 1;
  2064. sm->last_victim[GC_GREEDY] = end_segno + 1;
  2065. sm->last_victim[ALLOC_NEXT] = end_segno + 1;
  2066. ret = f2fs_gc(sbi, true, true, start_segno);
  2067. if (ret == -EAGAIN)
  2068. ret = 0;
  2069. else if (ret < 0)
  2070. break;
  2071. start_segno++;
  2072. }
  2073. out:
  2074. mnt_drop_write_file(filp);
  2075. return ret;
  2076. }
  2077. static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
  2078. {
  2079. struct inode *inode = file_inode(filp);
  2080. u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
  2081. /* Must validate to set it with SQLite behavior in Android. */
  2082. sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
  2083. return put_user(sb_feature, (u32 __user *)arg);
  2084. }
  2085. #ifdef CONFIG_QUOTA
  2086. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2087. {
  2088. struct inode *inode = file_inode(filp);
  2089. struct f2fs_inode_info *fi = F2FS_I(inode);
  2090. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2091. struct super_block *sb = sbi->sb;
  2092. struct dquot *transfer_to[MAXQUOTAS] = {};
  2093. struct page *ipage;
  2094. kprojid_t kprojid;
  2095. int err;
  2096. if (!f2fs_sb_has_project_quota(sb)) {
  2097. if (projid != F2FS_DEF_PROJID)
  2098. return -EOPNOTSUPP;
  2099. else
  2100. return 0;
  2101. }
  2102. if (!f2fs_has_extra_attr(inode))
  2103. return -EOPNOTSUPP;
  2104. kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
  2105. if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
  2106. return 0;
  2107. err = mnt_want_write_file(filp);
  2108. if (err)
  2109. return err;
  2110. err = -EPERM;
  2111. inode_lock(inode);
  2112. /* Is it quota file? Do not allow user to mess with it */
  2113. if (IS_NOQUOTA(inode))
  2114. goto out_unlock;
  2115. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  2116. if (IS_ERR(ipage)) {
  2117. err = PTR_ERR(ipage);
  2118. goto out_unlock;
  2119. }
  2120. if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
  2121. i_projid)) {
  2122. err = -EOVERFLOW;
  2123. f2fs_put_page(ipage, 1);
  2124. goto out_unlock;
  2125. }
  2126. f2fs_put_page(ipage, 1);
  2127. err = dquot_initialize(inode);
  2128. if (err)
  2129. goto out_unlock;
  2130. transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
  2131. if (!IS_ERR(transfer_to[PRJQUOTA])) {
  2132. err = __dquot_transfer(inode, transfer_to);
  2133. dqput(transfer_to[PRJQUOTA]);
  2134. if (err)
  2135. goto out_dirty;
  2136. }
  2137. F2FS_I(inode)->i_projid = kprojid;
  2138. inode->i_ctime = current_time(inode);
  2139. out_dirty:
  2140. f2fs_mark_inode_dirty_sync(inode, true);
  2141. out_unlock:
  2142. inode_unlock(inode);
  2143. mnt_drop_write_file(filp);
  2144. return err;
  2145. }
  2146. #else
  2147. static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
  2148. {
  2149. if (projid != F2FS_DEF_PROJID)
  2150. return -EOPNOTSUPP;
  2151. return 0;
  2152. }
  2153. #endif
  2154. /* Transfer internal flags to xflags */
  2155. static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
  2156. {
  2157. __u32 xflags = 0;
  2158. if (iflags & F2FS_SYNC_FL)
  2159. xflags |= FS_XFLAG_SYNC;
  2160. if (iflags & F2FS_IMMUTABLE_FL)
  2161. xflags |= FS_XFLAG_IMMUTABLE;
  2162. if (iflags & F2FS_APPEND_FL)
  2163. xflags |= FS_XFLAG_APPEND;
  2164. if (iflags & F2FS_NODUMP_FL)
  2165. xflags |= FS_XFLAG_NODUMP;
  2166. if (iflags & F2FS_NOATIME_FL)
  2167. xflags |= FS_XFLAG_NOATIME;
  2168. if (iflags & F2FS_PROJINHERIT_FL)
  2169. xflags |= FS_XFLAG_PROJINHERIT;
  2170. return xflags;
  2171. }
  2172. #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
  2173. FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
  2174. FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
  2175. /* Transfer xflags flags to internal */
  2176. static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
  2177. {
  2178. unsigned long iflags = 0;
  2179. if (xflags & FS_XFLAG_SYNC)
  2180. iflags |= F2FS_SYNC_FL;
  2181. if (xflags & FS_XFLAG_IMMUTABLE)
  2182. iflags |= F2FS_IMMUTABLE_FL;
  2183. if (xflags & FS_XFLAG_APPEND)
  2184. iflags |= F2FS_APPEND_FL;
  2185. if (xflags & FS_XFLAG_NODUMP)
  2186. iflags |= F2FS_NODUMP_FL;
  2187. if (xflags & FS_XFLAG_NOATIME)
  2188. iflags |= F2FS_NOATIME_FL;
  2189. if (xflags & FS_XFLAG_PROJINHERIT)
  2190. iflags |= F2FS_PROJINHERIT_FL;
  2191. return iflags;
  2192. }
  2193. static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
  2194. {
  2195. struct inode *inode = file_inode(filp);
  2196. struct f2fs_inode_info *fi = F2FS_I(inode);
  2197. struct fsxattr fa;
  2198. memset(&fa, 0, sizeof(struct fsxattr));
  2199. fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
  2200. F2FS_FL_USER_VISIBLE);
  2201. if (f2fs_sb_has_project_quota(inode->i_sb))
  2202. fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
  2203. fi->i_projid);
  2204. if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
  2205. return -EFAULT;
  2206. return 0;
  2207. }
  2208. static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
  2209. {
  2210. struct inode *inode = file_inode(filp);
  2211. struct f2fs_inode_info *fi = F2FS_I(inode);
  2212. struct fsxattr fa;
  2213. unsigned int flags;
  2214. int err;
  2215. if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
  2216. return -EFAULT;
  2217. /* Make sure caller has proper permission */
  2218. if (!inode_owner_or_capable(inode))
  2219. return -EACCES;
  2220. if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
  2221. return -EOPNOTSUPP;
  2222. flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
  2223. if (f2fs_mask_flags(inode->i_mode, flags) != flags)
  2224. return -EOPNOTSUPP;
  2225. err = mnt_want_write_file(filp);
  2226. if (err)
  2227. return err;
  2228. inode_lock(inode);
  2229. flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
  2230. (flags & F2FS_FL_XFLAG_VISIBLE);
  2231. err = __f2fs_ioc_setflags(inode, flags);
  2232. inode_unlock(inode);
  2233. mnt_drop_write_file(filp);
  2234. if (err)
  2235. return err;
  2236. err = f2fs_ioc_setproject(filp, fa.fsx_projid);
  2237. if (err)
  2238. return err;
  2239. return 0;
  2240. }
  2241. int f2fs_pin_file_control(struct inode *inode, bool inc)
  2242. {
  2243. struct f2fs_inode_info *fi = F2FS_I(inode);
  2244. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2245. /* Use i_gc_failures for normal file as a risk signal. */
  2246. if (inc)
  2247. f2fs_i_gc_failures_write(inode,
  2248. fi->i_gc_failures[GC_FAILURE_PIN] + 1);
  2249. if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
  2250. f2fs_msg(sbi->sb, KERN_WARNING,
  2251. "%s: Enable GC = ino %lx after %x GC trials\n",
  2252. __func__, inode->i_ino,
  2253. fi->i_gc_failures[GC_FAILURE_PIN]);
  2254. clear_inode_flag(inode, FI_PIN_FILE);
  2255. return -EAGAIN;
  2256. }
  2257. return 0;
  2258. }
  2259. static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
  2260. {
  2261. struct inode *inode = file_inode(filp);
  2262. __u32 pin;
  2263. int ret = 0;
  2264. if (!inode_owner_or_capable(inode))
  2265. return -EACCES;
  2266. if (get_user(pin, (__u32 __user *)arg))
  2267. return -EFAULT;
  2268. if (!S_ISREG(inode->i_mode))
  2269. return -EINVAL;
  2270. if (f2fs_readonly(F2FS_I_SB(inode)->sb))
  2271. return -EROFS;
  2272. ret = mnt_want_write_file(filp);
  2273. if (ret)
  2274. return ret;
  2275. inode_lock(inode);
  2276. if (f2fs_should_update_outplace(inode, NULL)) {
  2277. ret = -EINVAL;
  2278. goto out;
  2279. }
  2280. if (!pin) {
  2281. clear_inode_flag(inode, FI_PIN_FILE);
  2282. F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 1;
  2283. goto done;
  2284. }
  2285. if (f2fs_pin_file_control(inode, false)) {
  2286. ret = -EAGAIN;
  2287. goto out;
  2288. }
  2289. ret = f2fs_convert_inline_inode(inode);
  2290. if (ret)
  2291. goto out;
  2292. set_inode_flag(inode, FI_PIN_FILE);
  2293. ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2294. done:
  2295. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2296. out:
  2297. inode_unlock(inode);
  2298. mnt_drop_write_file(filp);
  2299. return ret;
  2300. }
  2301. static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
  2302. {
  2303. struct inode *inode = file_inode(filp);
  2304. __u32 pin = 0;
  2305. if (is_inode_flag_set(inode, FI_PIN_FILE))
  2306. pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
  2307. return put_user(pin, (u32 __user *)arg);
  2308. }
  2309. int f2fs_precache_extents(struct inode *inode)
  2310. {
  2311. struct f2fs_inode_info *fi = F2FS_I(inode);
  2312. struct f2fs_map_blocks map;
  2313. pgoff_t m_next_extent;
  2314. loff_t end;
  2315. int err;
  2316. if (is_inode_flag_set(inode, FI_NO_EXTENT))
  2317. return -EOPNOTSUPP;
  2318. map.m_lblk = 0;
  2319. map.m_next_pgofs = NULL;
  2320. map.m_next_extent = &m_next_extent;
  2321. map.m_seg_type = NO_CHECK_TYPE;
  2322. end = F2FS_I_SB(inode)->max_file_blocks;
  2323. while (map.m_lblk < end) {
  2324. map.m_len = end - map.m_lblk;
  2325. down_write(&fi->i_gc_rwsem[WRITE]);
  2326. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
  2327. up_write(&fi->i_gc_rwsem[WRITE]);
  2328. if (err)
  2329. return err;
  2330. map.m_lblk = m_next_extent;
  2331. }
  2332. return err;
  2333. }
  2334. static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
  2335. {
  2336. return f2fs_precache_extents(file_inode(filp));
  2337. }
  2338. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  2339. {
  2340. if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
  2341. return -EIO;
  2342. switch (cmd) {
  2343. case F2FS_IOC_GETFLAGS:
  2344. return f2fs_ioc_getflags(filp, arg);
  2345. case F2FS_IOC_SETFLAGS:
  2346. return f2fs_ioc_setflags(filp, arg);
  2347. case F2FS_IOC_GETVERSION:
  2348. return f2fs_ioc_getversion(filp, arg);
  2349. case F2FS_IOC_START_ATOMIC_WRITE:
  2350. return f2fs_ioc_start_atomic_write(filp);
  2351. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2352. return f2fs_ioc_commit_atomic_write(filp);
  2353. case F2FS_IOC_START_VOLATILE_WRITE:
  2354. return f2fs_ioc_start_volatile_write(filp);
  2355. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2356. return f2fs_ioc_release_volatile_write(filp);
  2357. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2358. return f2fs_ioc_abort_volatile_write(filp);
  2359. case F2FS_IOC_SHUTDOWN:
  2360. return f2fs_ioc_shutdown(filp, arg);
  2361. case FITRIM:
  2362. return f2fs_ioc_fitrim(filp, arg);
  2363. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2364. return f2fs_ioc_set_encryption_policy(filp, arg);
  2365. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2366. return f2fs_ioc_get_encryption_policy(filp, arg);
  2367. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2368. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  2369. case F2FS_IOC_GARBAGE_COLLECT:
  2370. return f2fs_ioc_gc(filp, arg);
  2371. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2372. return f2fs_ioc_gc_range(filp, arg);
  2373. case F2FS_IOC_WRITE_CHECKPOINT:
  2374. return f2fs_ioc_f2fs_write_checkpoint(filp, arg);
  2375. case F2FS_IOC_DEFRAGMENT:
  2376. return f2fs_ioc_defragment(filp, arg);
  2377. case F2FS_IOC_MOVE_RANGE:
  2378. return f2fs_ioc_move_range(filp, arg);
  2379. case F2FS_IOC_FLUSH_DEVICE:
  2380. return f2fs_ioc_flush_device(filp, arg);
  2381. case F2FS_IOC_GET_FEATURES:
  2382. return f2fs_ioc_get_features(filp, arg);
  2383. case F2FS_IOC_FSGETXATTR:
  2384. return f2fs_ioc_fsgetxattr(filp, arg);
  2385. case F2FS_IOC_FSSETXATTR:
  2386. return f2fs_ioc_fssetxattr(filp, arg);
  2387. case F2FS_IOC_GET_PIN_FILE:
  2388. return f2fs_ioc_get_pin_file(filp, arg);
  2389. case F2FS_IOC_SET_PIN_FILE:
  2390. return f2fs_ioc_set_pin_file(filp, arg);
  2391. case F2FS_IOC_PRECACHE_EXTENTS:
  2392. return f2fs_ioc_precache_extents(filp, arg);
  2393. default:
  2394. return -ENOTTY;
  2395. }
  2396. }
  2397. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  2398. {
  2399. struct file *file = iocb->ki_filp;
  2400. struct inode *inode = file_inode(file);
  2401. ssize_t ret;
  2402. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
  2403. return -EIO;
  2404. if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
  2405. return -EINVAL;
  2406. if (!inode_trylock(inode)) {
  2407. if (iocb->ki_flags & IOCB_NOWAIT)
  2408. return -EAGAIN;
  2409. inode_lock(inode);
  2410. }
  2411. ret = generic_write_checks(iocb, from);
  2412. if (ret > 0) {
  2413. bool preallocated = false;
  2414. size_t target_size = 0;
  2415. int err;
  2416. if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
  2417. set_inode_flag(inode, FI_NO_PREALLOC);
  2418. if ((iocb->ki_flags & IOCB_NOWAIT) &&
  2419. (iocb->ki_flags & IOCB_DIRECT)) {
  2420. if (!f2fs_overwrite_io(inode, iocb->ki_pos,
  2421. iov_iter_count(from)) ||
  2422. f2fs_has_inline_data(inode) ||
  2423. f2fs_force_buffered_io(inode, WRITE)) {
  2424. clear_inode_flag(inode,
  2425. FI_NO_PREALLOC);
  2426. inode_unlock(inode);
  2427. return -EAGAIN;
  2428. }
  2429. } else {
  2430. preallocated = true;
  2431. target_size = iocb->ki_pos + iov_iter_count(from);
  2432. err = f2fs_preallocate_blocks(iocb, from);
  2433. if (err) {
  2434. clear_inode_flag(inode, FI_NO_PREALLOC);
  2435. inode_unlock(inode);
  2436. return err;
  2437. }
  2438. }
  2439. ret = __generic_file_write_iter(iocb, from);
  2440. clear_inode_flag(inode, FI_NO_PREALLOC);
  2441. /* if we couldn't write data, we should deallocate blocks. */
  2442. if (preallocated && i_size_read(inode) < target_size)
  2443. f2fs_truncate(inode);
  2444. if (ret > 0)
  2445. f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
  2446. }
  2447. inode_unlock(inode);
  2448. if (ret > 0)
  2449. ret = generic_write_sync(iocb, ret);
  2450. return ret;
  2451. }
  2452. #ifdef CONFIG_COMPAT
  2453. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2454. {
  2455. switch (cmd) {
  2456. case F2FS_IOC32_GETFLAGS:
  2457. cmd = F2FS_IOC_GETFLAGS;
  2458. break;
  2459. case F2FS_IOC32_SETFLAGS:
  2460. cmd = F2FS_IOC_SETFLAGS;
  2461. break;
  2462. case F2FS_IOC32_GETVERSION:
  2463. cmd = F2FS_IOC_GETVERSION;
  2464. break;
  2465. case F2FS_IOC_START_ATOMIC_WRITE:
  2466. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  2467. case F2FS_IOC_START_VOLATILE_WRITE:
  2468. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  2469. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  2470. case F2FS_IOC_SHUTDOWN:
  2471. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  2472. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  2473. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  2474. case F2FS_IOC_GARBAGE_COLLECT:
  2475. case F2FS_IOC_GARBAGE_COLLECT_RANGE:
  2476. case F2FS_IOC_WRITE_CHECKPOINT:
  2477. case F2FS_IOC_DEFRAGMENT:
  2478. case F2FS_IOC_MOVE_RANGE:
  2479. case F2FS_IOC_FLUSH_DEVICE:
  2480. case F2FS_IOC_GET_FEATURES:
  2481. case F2FS_IOC_FSGETXATTR:
  2482. case F2FS_IOC_FSSETXATTR:
  2483. case F2FS_IOC_GET_PIN_FILE:
  2484. case F2FS_IOC_SET_PIN_FILE:
  2485. case F2FS_IOC_PRECACHE_EXTENTS:
  2486. break;
  2487. default:
  2488. return -ENOIOCTLCMD;
  2489. }
  2490. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  2491. }
  2492. #endif
  2493. const struct file_operations f2fs_file_operations = {
  2494. .llseek = f2fs_llseek,
  2495. .read_iter = generic_file_read_iter,
  2496. .write_iter = f2fs_file_write_iter,
  2497. .open = f2fs_file_open,
  2498. .release = f2fs_release_file,
  2499. .mmap = f2fs_file_mmap,
  2500. .flush = f2fs_file_flush,
  2501. .fsync = f2fs_sync_file,
  2502. .fallocate = f2fs_fallocate,
  2503. .unlocked_ioctl = f2fs_ioctl,
  2504. #ifdef CONFIG_COMPAT
  2505. .compat_ioctl = f2fs_compat_ioctl,
  2506. #endif
  2507. .splice_read = generic_file_splice_read,
  2508. .splice_write = iter_file_splice_write,
  2509. };