data.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include <linux/uio.h>
  22. #include <linux/cleancache.h>
  23. #include <linux/sched/signal.h>
  24. #include "f2fs.h"
  25. #include "node.h"
  26. #include "segment.h"
  27. #include "trace.h"
  28. #include <trace/events/f2fs.h>
  29. #define NUM_PREALLOC_POST_READ_CTXS 128
  30. static struct kmem_cache *bio_post_read_ctx_cache;
  31. static mempool_t *bio_post_read_ctx_pool;
  32. static bool __is_cp_guaranteed(struct page *page)
  33. {
  34. struct address_space *mapping = page->mapping;
  35. struct inode *inode;
  36. struct f2fs_sb_info *sbi;
  37. if (!mapping)
  38. return false;
  39. inode = mapping->host;
  40. sbi = F2FS_I_SB(inode);
  41. if (inode->i_ino == F2FS_META_INO(sbi) ||
  42. inode->i_ino == F2FS_NODE_INO(sbi) ||
  43. S_ISDIR(inode->i_mode) ||
  44. (S_ISREG(inode->i_mode) &&
  45. is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
  46. is_cold_data(page))
  47. return true;
  48. return false;
  49. }
  50. /* postprocessing steps for read bios */
  51. enum bio_post_read_step {
  52. STEP_INITIAL = 0,
  53. STEP_DECRYPT,
  54. };
  55. struct bio_post_read_ctx {
  56. struct bio *bio;
  57. struct work_struct work;
  58. unsigned int cur_step;
  59. unsigned int enabled_steps;
  60. };
  61. static void __read_end_io(struct bio *bio)
  62. {
  63. struct page *page;
  64. struct bio_vec *bv;
  65. int i;
  66. bio_for_each_segment_all(bv, bio, i) {
  67. page = bv->bv_page;
  68. /* PG_error was set if any post_read step failed */
  69. if (bio->bi_status || PageError(page)) {
  70. ClearPageUptodate(page);
  71. SetPageError(page);
  72. } else {
  73. SetPageUptodate(page);
  74. }
  75. unlock_page(page);
  76. }
  77. if (bio->bi_private)
  78. mempool_free(bio->bi_private, bio_post_read_ctx_pool);
  79. bio_put(bio);
  80. }
  81. static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
  82. static void decrypt_work(struct work_struct *work)
  83. {
  84. struct bio_post_read_ctx *ctx =
  85. container_of(work, struct bio_post_read_ctx, work);
  86. fscrypt_decrypt_bio(ctx->bio);
  87. bio_post_read_processing(ctx);
  88. }
  89. static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
  90. {
  91. switch (++ctx->cur_step) {
  92. case STEP_DECRYPT:
  93. if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
  94. INIT_WORK(&ctx->work, decrypt_work);
  95. fscrypt_enqueue_decrypt_work(&ctx->work);
  96. return;
  97. }
  98. ctx->cur_step++;
  99. /* fall-through */
  100. default:
  101. __read_end_io(ctx->bio);
  102. }
  103. }
  104. static bool f2fs_bio_post_read_required(struct bio *bio)
  105. {
  106. return bio->bi_private && !bio->bi_status;
  107. }
  108. static void f2fs_read_end_io(struct bio *bio)
  109. {
  110. #ifdef CONFIG_F2FS_FAULT_INJECTION
  111. if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
  112. f2fs_show_injection_info(FAULT_IO);
  113. bio->bi_status = BLK_STS_IOERR;
  114. }
  115. #endif
  116. if (f2fs_bio_post_read_required(bio)) {
  117. struct bio_post_read_ctx *ctx = bio->bi_private;
  118. ctx->cur_step = STEP_INITIAL;
  119. bio_post_read_processing(ctx);
  120. return;
  121. }
  122. __read_end_io(bio);
  123. }
  124. static void f2fs_write_end_io(struct bio *bio)
  125. {
  126. struct f2fs_sb_info *sbi = bio->bi_private;
  127. struct bio_vec *bvec;
  128. int i;
  129. bio_for_each_segment_all(bvec, bio, i) {
  130. struct page *page = bvec->bv_page;
  131. enum count_type type = WB_DATA_TYPE(page);
  132. if (IS_DUMMY_WRITTEN_PAGE(page)) {
  133. set_page_private(page, (unsigned long)NULL);
  134. ClearPagePrivate(page);
  135. unlock_page(page);
  136. mempool_free(page, sbi->write_io_dummy);
  137. if (unlikely(bio->bi_status))
  138. f2fs_stop_checkpoint(sbi, true);
  139. continue;
  140. }
  141. fscrypt_pullback_bio_page(&page, true);
  142. if (unlikely(bio->bi_status)) {
  143. mapping_set_error(page->mapping, -EIO);
  144. if (type == F2FS_WB_CP_DATA)
  145. f2fs_stop_checkpoint(sbi, true);
  146. }
  147. f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
  148. page->index != nid_of_node(page));
  149. dec_page_count(sbi, type);
  150. clear_cold_data(page);
  151. end_page_writeback(page);
  152. }
  153. if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
  154. wq_has_sleeper(&sbi->cp_wait))
  155. wake_up(&sbi->cp_wait);
  156. bio_put(bio);
  157. }
  158. /*
  159. * Return true, if pre_bio's bdev is same as its target device.
  160. */
  161. struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
  162. block_t blk_addr, struct bio *bio)
  163. {
  164. struct block_device *bdev = sbi->sb->s_bdev;
  165. int i;
  166. for (i = 0; i < sbi->s_ndevs; i++) {
  167. if (FDEV(i).start_blk <= blk_addr &&
  168. FDEV(i).end_blk >= blk_addr) {
  169. blk_addr -= FDEV(i).start_blk;
  170. bdev = FDEV(i).bdev;
  171. break;
  172. }
  173. }
  174. if (bio) {
  175. bio_set_dev(bio, bdev);
  176. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  177. }
  178. return bdev;
  179. }
  180. int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
  181. {
  182. int i;
  183. for (i = 0; i < sbi->s_ndevs; i++)
  184. if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
  185. return i;
  186. return 0;
  187. }
  188. static bool __same_bdev(struct f2fs_sb_info *sbi,
  189. block_t blk_addr, struct bio *bio)
  190. {
  191. struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
  192. return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
  193. }
  194. /*
  195. * Low-level block read/write IO operations.
  196. */
  197. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  198. struct writeback_control *wbc,
  199. int npages, bool is_read,
  200. enum page_type type, enum temp_type temp)
  201. {
  202. struct bio *bio;
  203. bio = f2fs_bio_alloc(sbi, npages, true);
  204. f2fs_target_device(sbi, blk_addr, bio);
  205. if (is_read) {
  206. bio->bi_end_io = f2fs_read_end_io;
  207. bio->bi_private = NULL;
  208. } else {
  209. bio->bi_end_io = f2fs_write_end_io;
  210. bio->bi_private = sbi;
  211. bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
  212. }
  213. if (wbc)
  214. wbc_init_bio(wbc, bio);
  215. return bio;
  216. }
  217. static inline void __submit_bio(struct f2fs_sb_info *sbi,
  218. struct bio *bio, enum page_type type)
  219. {
  220. if (!is_read_io(bio_op(bio))) {
  221. unsigned int start;
  222. if (type != DATA && type != NODE)
  223. goto submit_io;
  224. if (f2fs_sb_has_blkzoned(sbi->sb) && current->plug)
  225. blk_finish_plug(current->plug);
  226. start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
  227. start %= F2FS_IO_SIZE(sbi);
  228. if (start == 0)
  229. goto submit_io;
  230. /* fill dummy pages */
  231. for (; start < F2FS_IO_SIZE(sbi); start++) {
  232. struct page *page =
  233. mempool_alloc(sbi->write_io_dummy,
  234. GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
  235. f2fs_bug_on(sbi, !page);
  236. SetPagePrivate(page);
  237. set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
  238. lock_page(page);
  239. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
  240. f2fs_bug_on(sbi, 1);
  241. }
  242. /*
  243. * In the NODE case, we lose next block address chain. So, we
  244. * need to do checkpoint in f2fs_sync_file.
  245. */
  246. if (type == NODE)
  247. set_sbi_flag(sbi, SBI_NEED_CP);
  248. }
  249. submit_io:
  250. if (is_read_io(bio_op(bio)))
  251. trace_f2fs_submit_read_bio(sbi->sb, type, bio);
  252. else
  253. trace_f2fs_submit_write_bio(sbi->sb, type, bio);
  254. submit_bio(bio);
  255. }
  256. static void __submit_merged_bio(struct f2fs_bio_info *io)
  257. {
  258. struct f2fs_io_info *fio = &io->fio;
  259. if (!io->bio)
  260. return;
  261. bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
  262. if (is_read_io(fio->op))
  263. trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
  264. else
  265. trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
  266. __submit_bio(io->sbi, io->bio, fio->type);
  267. io->bio = NULL;
  268. }
  269. static bool __has_merged_page(struct f2fs_bio_info *io,
  270. struct inode *inode, nid_t ino, pgoff_t idx)
  271. {
  272. struct bio_vec *bvec;
  273. struct page *target;
  274. int i;
  275. if (!io->bio)
  276. return false;
  277. if (!inode && !ino)
  278. return true;
  279. bio_for_each_segment_all(bvec, io->bio, i) {
  280. if (bvec->bv_page->mapping)
  281. target = bvec->bv_page;
  282. else
  283. target = fscrypt_control_page(bvec->bv_page);
  284. if (idx != target->index)
  285. continue;
  286. if (inode && inode == target->mapping->host)
  287. return true;
  288. if (ino && ino == ino_of_node(target))
  289. return true;
  290. }
  291. return false;
  292. }
  293. static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
  294. nid_t ino, pgoff_t idx, enum page_type type)
  295. {
  296. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  297. enum temp_type temp;
  298. struct f2fs_bio_info *io;
  299. bool ret = false;
  300. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  301. io = sbi->write_io[btype] + temp;
  302. down_read(&io->io_rwsem);
  303. ret = __has_merged_page(io, inode, ino, idx);
  304. up_read(&io->io_rwsem);
  305. /* TODO: use HOT temp only for meta pages now. */
  306. if (ret || btype == META)
  307. break;
  308. }
  309. return ret;
  310. }
  311. static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
  312. enum page_type type, enum temp_type temp)
  313. {
  314. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  315. struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
  316. down_write(&io->io_rwsem);
  317. /* change META to META_FLUSH in the checkpoint procedure */
  318. if (type >= META_FLUSH) {
  319. io->fio.type = META_FLUSH;
  320. io->fio.op = REQ_OP_WRITE;
  321. io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
  322. if (!test_opt(sbi, NOBARRIER))
  323. io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  324. }
  325. __submit_merged_bio(io);
  326. up_write(&io->io_rwsem);
  327. }
  328. static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
  329. struct inode *inode, nid_t ino, pgoff_t idx,
  330. enum page_type type, bool force)
  331. {
  332. enum temp_type temp;
  333. if (!force && !has_merged_page(sbi, inode, ino, idx, type))
  334. return;
  335. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  336. __f2fs_submit_merged_write(sbi, type, temp);
  337. /* TODO: use HOT temp only for meta pages now. */
  338. if (type >= META)
  339. break;
  340. }
  341. }
  342. void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
  343. {
  344. __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
  345. }
  346. void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
  347. struct inode *inode, nid_t ino, pgoff_t idx,
  348. enum page_type type)
  349. {
  350. __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
  351. }
  352. void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
  353. {
  354. f2fs_submit_merged_write(sbi, DATA);
  355. f2fs_submit_merged_write(sbi, NODE);
  356. f2fs_submit_merged_write(sbi, META);
  357. }
  358. /*
  359. * Fill the locked page with data located in the block address.
  360. * A caller needs to unlock the page on failure.
  361. */
  362. int f2fs_submit_page_bio(struct f2fs_io_info *fio)
  363. {
  364. struct bio *bio;
  365. struct page *page = fio->encrypted_page ?
  366. fio->encrypted_page : fio->page;
  367. verify_block_addr(fio, fio->new_blkaddr);
  368. trace_f2fs_submit_page_bio(page, fio);
  369. f2fs_trace_ios(fio, 0);
  370. /* Allocate a new bio */
  371. bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
  372. 1, is_read_io(fio->op), fio->type, fio->temp);
  373. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  374. bio_put(bio);
  375. return -EFAULT;
  376. }
  377. bio_set_op_attrs(bio, fio->op, fio->op_flags);
  378. __submit_bio(fio->sbi, bio, fio->type);
  379. if (!is_read_io(fio->op))
  380. inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
  381. return 0;
  382. }
  383. void f2fs_submit_page_write(struct f2fs_io_info *fio)
  384. {
  385. struct f2fs_sb_info *sbi = fio->sbi;
  386. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  387. struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
  388. struct page *bio_page;
  389. f2fs_bug_on(sbi, is_read_io(fio->op));
  390. down_write(&io->io_rwsem);
  391. next:
  392. if (fio->in_list) {
  393. spin_lock(&io->io_lock);
  394. if (list_empty(&io->io_list)) {
  395. spin_unlock(&io->io_lock);
  396. goto out;
  397. }
  398. fio = list_first_entry(&io->io_list,
  399. struct f2fs_io_info, list);
  400. list_del(&fio->list);
  401. spin_unlock(&io->io_lock);
  402. }
  403. if (is_valid_blkaddr(fio->old_blkaddr))
  404. verify_block_addr(fio, fio->old_blkaddr);
  405. verify_block_addr(fio, fio->new_blkaddr);
  406. bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  407. /* set submitted = true as a return value */
  408. fio->submitted = true;
  409. inc_page_count(sbi, WB_DATA_TYPE(bio_page));
  410. if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
  411. (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
  412. !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
  413. __submit_merged_bio(io);
  414. alloc_new:
  415. if (io->bio == NULL) {
  416. if ((fio->type == DATA || fio->type == NODE) &&
  417. fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
  418. dec_page_count(sbi, WB_DATA_TYPE(bio_page));
  419. fio->retry = true;
  420. goto skip;
  421. }
  422. io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
  423. BIO_MAX_PAGES, false,
  424. fio->type, fio->temp);
  425. io->fio = *fio;
  426. }
  427. if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
  428. __submit_merged_bio(io);
  429. goto alloc_new;
  430. }
  431. if (fio->io_wbc)
  432. wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
  433. io->last_block_in_bio = fio->new_blkaddr;
  434. f2fs_trace_ios(fio, 0);
  435. trace_f2fs_submit_page_write(fio->page, fio);
  436. skip:
  437. if (fio->in_list)
  438. goto next;
  439. out:
  440. up_write(&io->io_rwsem);
  441. }
  442. static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
  443. unsigned nr_pages)
  444. {
  445. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  446. struct bio *bio;
  447. struct bio_post_read_ctx *ctx;
  448. unsigned int post_read_steps = 0;
  449. bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
  450. if (!bio)
  451. return ERR_PTR(-ENOMEM);
  452. f2fs_target_device(sbi, blkaddr, bio);
  453. bio->bi_end_io = f2fs_read_end_io;
  454. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  455. if (f2fs_encrypted_file(inode))
  456. post_read_steps |= 1 << STEP_DECRYPT;
  457. if (post_read_steps) {
  458. ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
  459. if (!ctx) {
  460. bio_put(bio);
  461. return ERR_PTR(-ENOMEM);
  462. }
  463. ctx->bio = bio;
  464. ctx->enabled_steps = post_read_steps;
  465. bio->bi_private = ctx;
  466. /* wait the page to be moved by cleaning */
  467. f2fs_wait_on_block_writeback(sbi, blkaddr);
  468. }
  469. return bio;
  470. }
  471. /* This can handle encryption stuffs */
  472. static int f2fs_submit_page_read(struct inode *inode, struct page *page,
  473. block_t blkaddr)
  474. {
  475. struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
  476. if (IS_ERR(bio))
  477. return PTR_ERR(bio);
  478. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  479. bio_put(bio);
  480. return -EFAULT;
  481. }
  482. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  483. return 0;
  484. }
  485. static void __set_data_blkaddr(struct dnode_of_data *dn)
  486. {
  487. struct f2fs_node *rn = F2FS_NODE(dn->node_page);
  488. __le32 *addr_array;
  489. int base = 0;
  490. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  491. base = get_extra_isize(dn->inode);
  492. /* Get physical address of data block */
  493. addr_array = blkaddr_in_node(rn);
  494. addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  495. }
  496. /*
  497. * Lock ordering for the change of data block address:
  498. * ->data_page
  499. * ->node_page
  500. * update block addresses in the node page
  501. */
  502. void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
  503. {
  504. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  505. __set_data_blkaddr(dn);
  506. if (set_page_dirty(dn->node_page))
  507. dn->node_changed = true;
  508. }
  509. void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
  510. {
  511. dn->data_blkaddr = blkaddr;
  512. f2fs_set_data_blkaddr(dn);
  513. f2fs_update_extent_cache(dn);
  514. }
  515. /* dn->ofs_in_node will be returned with up-to-date last block pointer */
  516. int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
  517. {
  518. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  519. int err;
  520. if (!count)
  521. return 0;
  522. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  523. return -EPERM;
  524. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  525. return err;
  526. trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
  527. dn->ofs_in_node, count);
  528. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  529. for (; count > 0; dn->ofs_in_node++) {
  530. block_t blkaddr = datablock_addr(dn->inode,
  531. dn->node_page, dn->ofs_in_node);
  532. if (blkaddr == NULL_ADDR) {
  533. dn->data_blkaddr = NEW_ADDR;
  534. __set_data_blkaddr(dn);
  535. count--;
  536. }
  537. }
  538. if (set_page_dirty(dn->node_page))
  539. dn->node_changed = true;
  540. return 0;
  541. }
  542. /* Should keep dn->ofs_in_node unchanged */
  543. int f2fs_reserve_new_block(struct dnode_of_data *dn)
  544. {
  545. unsigned int ofs_in_node = dn->ofs_in_node;
  546. int ret;
  547. ret = f2fs_reserve_new_blocks(dn, 1);
  548. dn->ofs_in_node = ofs_in_node;
  549. return ret;
  550. }
  551. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  552. {
  553. bool need_put = dn->inode_page ? false : true;
  554. int err;
  555. err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
  556. if (err)
  557. return err;
  558. if (dn->data_blkaddr == NULL_ADDR)
  559. err = f2fs_reserve_new_block(dn);
  560. if (err || need_put)
  561. f2fs_put_dnode(dn);
  562. return err;
  563. }
  564. int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
  565. {
  566. struct extent_info ei = {0,0,0};
  567. struct inode *inode = dn->inode;
  568. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  569. dn->data_blkaddr = ei.blk + index - ei.fofs;
  570. return 0;
  571. }
  572. return f2fs_reserve_block(dn, index);
  573. }
  574. struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
  575. int op_flags, bool for_write)
  576. {
  577. struct address_space *mapping = inode->i_mapping;
  578. struct dnode_of_data dn;
  579. struct page *page;
  580. struct extent_info ei = {0,0,0};
  581. int err;
  582. page = f2fs_grab_cache_page(mapping, index, for_write);
  583. if (!page)
  584. return ERR_PTR(-ENOMEM);
  585. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  586. dn.data_blkaddr = ei.blk + index - ei.fofs;
  587. goto got_it;
  588. }
  589. set_new_dnode(&dn, inode, NULL, NULL, 0);
  590. err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
  591. if (err)
  592. goto put_err;
  593. f2fs_put_dnode(&dn);
  594. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  595. err = -ENOENT;
  596. goto put_err;
  597. }
  598. got_it:
  599. if (PageUptodate(page)) {
  600. unlock_page(page);
  601. return page;
  602. }
  603. /*
  604. * A new dentry page is allocated but not able to be written, since its
  605. * new inode page couldn't be allocated due to -ENOSPC.
  606. * In such the case, its blkaddr can be remained as NEW_ADDR.
  607. * see, f2fs_add_link -> f2fs_get_new_data_page ->
  608. * f2fs_init_inode_metadata.
  609. */
  610. if (dn.data_blkaddr == NEW_ADDR) {
  611. zero_user_segment(page, 0, PAGE_SIZE);
  612. if (!PageUptodate(page))
  613. SetPageUptodate(page);
  614. unlock_page(page);
  615. return page;
  616. }
  617. err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
  618. if (err)
  619. goto put_err;
  620. return page;
  621. put_err:
  622. f2fs_put_page(page, 1);
  623. return ERR_PTR(err);
  624. }
  625. struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
  626. {
  627. struct address_space *mapping = inode->i_mapping;
  628. struct page *page;
  629. page = find_get_page(mapping, index);
  630. if (page && PageUptodate(page))
  631. return page;
  632. f2fs_put_page(page, 0);
  633. page = f2fs_get_read_data_page(inode, index, 0, false);
  634. if (IS_ERR(page))
  635. return page;
  636. if (PageUptodate(page))
  637. return page;
  638. wait_on_page_locked(page);
  639. if (unlikely(!PageUptodate(page))) {
  640. f2fs_put_page(page, 0);
  641. return ERR_PTR(-EIO);
  642. }
  643. return page;
  644. }
  645. /*
  646. * If it tries to access a hole, return an error.
  647. * Because, the callers, functions in dir.c and GC, should be able to know
  648. * whether this page exists or not.
  649. */
  650. struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
  651. bool for_write)
  652. {
  653. struct address_space *mapping = inode->i_mapping;
  654. struct page *page;
  655. repeat:
  656. page = f2fs_get_read_data_page(inode, index, 0, for_write);
  657. if (IS_ERR(page))
  658. return page;
  659. /* wait for read completion */
  660. lock_page(page);
  661. if (unlikely(page->mapping != mapping)) {
  662. f2fs_put_page(page, 1);
  663. goto repeat;
  664. }
  665. if (unlikely(!PageUptodate(page))) {
  666. f2fs_put_page(page, 1);
  667. return ERR_PTR(-EIO);
  668. }
  669. return page;
  670. }
  671. /*
  672. * Caller ensures that this data page is never allocated.
  673. * A new zero-filled data page is allocated in the page cache.
  674. *
  675. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  676. * f2fs_unlock_op().
  677. * Note that, ipage is set only by make_empty_dir, and if any error occur,
  678. * ipage should be released by this function.
  679. */
  680. struct page *f2fs_get_new_data_page(struct inode *inode,
  681. struct page *ipage, pgoff_t index, bool new_i_size)
  682. {
  683. struct address_space *mapping = inode->i_mapping;
  684. struct page *page;
  685. struct dnode_of_data dn;
  686. int err;
  687. page = f2fs_grab_cache_page(mapping, index, true);
  688. if (!page) {
  689. /*
  690. * before exiting, we should make sure ipage will be released
  691. * if any error occur.
  692. */
  693. f2fs_put_page(ipage, 1);
  694. return ERR_PTR(-ENOMEM);
  695. }
  696. set_new_dnode(&dn, inode, ipage, NULL, 0);
  697. err = f2fs_reserve_block(&dn, index);
  698. if (err) {
  699. f2fs_put_page(page, 1);
  700. return ERR_PTR(err);
  701. }
  702. if (!ipage)
  703. f2fs_put_dnode(&dn);
  704. if (PageUptodate(page))
  705. goto got_it;
  706. if (dn.data_blkaddr == NEW_ADDR) {
  707. zero_user_segment(page, 0, PAGE_SIZE);
  708. if (!PageUptodate(page))
  709. SetPageUptodate(page);
  710. } else {
  711. f2fs_put_page(page, 1);
  712. /* if ipage exists, blkaddr should be NEW_ADDR */
  713. f2fs_bug_on(F2FS_I_SB(inode), ipage);
  714. page = f2fs_get_lock_data_page(inode, index, true);
  715. if (IS_ERR(page))
  716. return page;
  717. }
  718. got_it:
  719. if (new_i_size && i_size_read(inode) <
  720. ((loff_t)(index + 1) << PAGE_SHIFT))
  721. f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
  722. return page;
  723. }
  724. static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
  725. {
  726. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  727. struct f2fs_summary sum;
  728. struct node_info ni;
  729. pgoff_t fofs;
  730. blkcnt_t count = 1;
  731. int err;
  732. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  733. return -EPERM;
  734. dn->data_blkaddr = datablock_addr(dn->inode,
  735. dn->node_page, dn->ofs_in_node);
  736. if (dn->data_blkaddr == NEW_ADDR)
  737. goto alloc;
  738. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  739. return err;
  740. alloc:
  741. f2fs_get_node_info(sbi, dn->nid, &ni);
  742. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  743. f2fs_allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
  744. &sum, seg_type, NULL, false);
  745. f2fs_set_data_blkaddr(dn);
  746. /* update i_size */
  747. fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
  748. dn->ofs_in_node;
  749. if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
  750. f2fs_i_size_write(dn->inode,
  751. ((loff_t)(fofs + 1) << PAGE_SHIFT));
  752. return 0;
  753. }
  754. int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
  755. {
  756. struct inode *inode = file_inode(iocb->ki_filp);
  757. struct f2fs_map_blocks map;
  758. int flag;
  759. int err = 0;
  760. bool direct_io = iocb->ki_flags & IOCB_DIRECT;
  761. /* convert inline data for Direct I/O*/
  762. if (direct_io) {
  763. err = f2fs_convert_inline_inode(inode);
  764. if (err)
  765. return err;
  766. }
  767. if (is_inode_flag_set(inode, FI_NO_PREALLOC))
  768. return 0;
  769. map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
  770. map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
  771. if (map.m_len > map.m_lblk)
  772. map.m_len -= map.m_lblk;
  773. else
  774. map.m_len = 0;
  775. map.m_next_pgofs = NULL;
  776. map.m_next_extent = NULL;
  777. map.m_seg_type = NO_CHECK_TYPE;
  778. if (direct_io) {
  779. map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
  780. flag = f2fs_force_buffered_io(inode, WRITE) ?
  781. F2FS_GET_BLOCK_PRE_AIO :
  782. F2FS_GET_BLOCK_PRE_DIO;
  783. goto map_blocks;
  784. }
  785. if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
  786. err = f2fs_convert_inline_inode(inode);
  787. if (err)
  788. return err;
  789. }
  790. if (f2fs_has_inline_data(inode))
  791. return err;
  792. flag = F2FS_GET_BLOCK_PRE_AIO;
  793. map_blocks:
  794. err = f2fs_map_blocks(inode, &map, 1, flag);
  795. if (map.m_len > 0 && err == -ENOSPC) {
  796. if (!direct_io)
  797. set_inode_flag(inode, FI_NO_PREALLOC);
  798. err = 0;
  799. }
  800. return err;
  801. }
  802. static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
  803. {
  804. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  805. if (lock)
  806. down_read(&sbi->node_change);
  807. else
  808. up_read(&sbi->node_change);
  809. } else {
  810. if (lock)
  811. f2fs_lock_op(sbi);
  812. else
  813. f2fs_unlock_op(sbi);
  814. }
  815. }
  816. /*
  817. * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
  818. * f2fs_map_blocks structure.
  819. * If original data blocks are allocated, then give them to blockdev.
  820. * Otherwise,
  821. * a. preallocate requested block addresses
  822. * b. do not use extent cache for better performance
  823. * c. give the block addresses to blockdev
  824. */
  825. int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
  826. int create, int flag)
  827. {
  828. unsigned int maxblocks = map->m_len;
  829. struct dnode_of_data dn;
  830. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  831. int mode = create ? ALLOC_NODE : LOOKUP_NODE;
  832. pgoff_t pgofs, end_offset, end;
  833. int err = 0, ofs = 1;
  834. unsigned int ofs_in_node, last_ofs_in_node;
  835. blkcnt_t prealloc;
  836. struct extent_info ei = {0,0,0};
  837. block_t blkaddr;
  838. unsigned int start_pgofs;
  839. if (!maxblocks)
  840. return 0;
  841. map->m_len = 0;
  842. map->m_flags = 0;
  843. /* it only supports block size == page size */
  844. pgofs = (pgoff_t)map->m_lblk;
  845. end = pgofs + maxblocks;
  846. if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  847. map->m_pblk = ei.blk + pgofs - ei.fofs;
  848. map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
  849. map->m_flags = F2FS_MAP_MAPPED;
  850. if (map->m_next_extent)
  851. *map->m_next_extent = pgofs + map->m_len;
  852. goto out;
  853. }
  854. next_dnode:
  855. if (create)
  856. __do_map_lock(sbi, flag, true);
  857. /* When reading holes, we need its node page */
  858. set_new_dnode(&dn, inode, NULL, NULL, 0);
  859. err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
  860. if (err) {
  861. if (flag == F2FS_GET_BLOCK_BMAP)
  862. map->m_pblk = 0;
  863. if (err == -ENOENT) {
  864. err = 0;
  865. if (map->m_next_pgofs)
  866. *map->m_next_pgofs =
  867. f2fs_get_next_page_offset(&dn, pgofs);
  868. if (map->m_next_extent)
  869. *map->m_next_extent =
  870. f2fs_get_next_page_offset(&dn, pgofs);
  871. }
  872. goto unlock_out;
  873. }
  874. start_pgofs = pgofs;
  875. prealloc = 0;
  876. last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
  877. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  878. next_block:
  879. blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
  880. if (!is_valid_blkaddr(blkaddr)) {
  881. if (create) {
  882. if (unlikely(f2fs_cp_error(sbi))) {
  883. err = -EIO;
  884. goto sync_out;
  885. }
  886. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  887. if (blkaddr == NULL_ADDR) {
  888. prealloc++;
  889. last_ofs_in_node = dn.ofs_in_node;
  890. }
  891. } else {
  892. err = __allocate_data_block(&dn,
  893. map->m_seg_type);
  894. if (!err)
  895. set_inode_flag(inode, FI_APPEND_WRITE);
  896. }
  897. if (err)
  898. goto sync_out;
  899. map->m_flags |= F2FS_MAP_NEW;
  900. blkaddr = dn.data_blkaddr;
  901. } else {
  902. if (flag == F2FS_GET_BLOCK_BMAP) {
  903. map->m_pblk = 0;
  904. goto sync_out;
  905. }
  906. if (flag == F2FS_GET_BLOCK_PRECACHE)
  907. goto sync_out;
  908. if (flag == F2FS_GET_BLOCK_FIEMAP &&
  909. blkaddr == NULL_ADDR) {
  910. if (map->m_next_pgofs)
  911. *map->m_next_pgofs = pgofs + 1;
  912. goto sync_out;
  913. }
  914. if (flag != F2FS_GET_BLOCK_FIEMAP) {
  915. /* for defragment case */
  916. if (map->m_next_pgofs)
  917. *map->m_next_pgofs = pgofs + 1;
  918. goto sync_out;
  919. }
  920. }
  921. }
  922. if (flag == F2FS_GET_BLOCK_PRE_AIO)
  923. goto skip;
  924. if (map->m_len == 0) {
  925. /* preallocated unwritten block should be mapped for fiemap. */
  926. if (blkaddr == NEW_ADDR)
  927. map->m_flags |= F2FS_MAP_UNWRITTEN;
  928. map->m_flags |= F2FS_MAP_MAPPED;
  929. map->m_pblk = blkaddr;
  930. map->m_len = 1;
  931. } else if ((map->m_pblk != NEW_ADDR &&
  932. blkaddr == (map->m_pblk + ofs)) ||
  933. (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
  934. flag == F2FS_GET_BLOCK_PRE_DIO) {
  935. ofs++;
  936. map->m_len++;
  937. } else {
  938. goto sync_out;
  939. }
  940. skip:
  941. dn.ofs_in_node++;
  942. pgofs++;
  943. /* preallocate blocks in batch for one dnode page */
  944. if (flag == F2FS_GET_BLOCK_PRE_AIO &&
  945. (pgofs == end || dn.ofs_in_node == end_offset)) {
  946. dn.ofs_in_node = ofs_in_node;
  947. err = f2fs_reserve_new_blocks(&dn, prealloc);
  948. if (err)
  949. goto sync_out;
  950. map->m_len += dn.ofs_in_node - ofs_in_node;
  951. if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
  952. err = -ENOSPC;
  953. goto sync_out;
  954. }
  955. dn.ofs_in_node = end_offset;
  956. }
  957. if (pgofs >= end)
  958. goto sync_out;
  959. else if (dn.ofs_in_node < end_offset)
  960. goto next_block;
  961. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  962. if (map->m_flags & F2FS_MAP_MAPPED) {
  963. unsigned int ofs = start_pgofs - map->m_lblk;
  964. f2fs_update_extent_cache_range(&dn,
  965. start_pgofs, map->m_pblk + ofs,
  966. map->m_len - ofs);
  967. }
  968. }
  969. f2fs_put_dnode(&dn);
  970. if (create) {
  971. __do_map_lock(sbi, flag, false);
  972. f2fs_balance_fs(sbi, dn.node_changed);
  973. }
  974. goto next_dnode;
  975. sync_out:
  976. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  977. if (map->m_flags & F2FS_MAP_MAPPED) {
  978. unsigned int ofs = start_pgofs - map->m_lblk;
  979. f2fs_update_extent_cache_range(&dn,
  980. start_pgofs, map->m_pblk + ofs,
  981. map->m_len - ofs);
  982. }
  983. if (map->m_next_extent)
  984. *map->m_next_extent = pgofs + 1;
  985. }
  986. f2fs_put_dnode(&dn);
  987. unlock_out:
  988. if (create) {
  989. __do_map_lock(sbi, flag, false);
  990. f2fs_balance_fs(sbi, dn.node_changed);
  991. }
  992. out:
  993. trace_f2fs_map_blocks(inode, map, err);
  994. return err;
  995. }
  996. bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
  997. {
  998. struct f2fs_map_blocks map;
  999. block_t last_lblk;
  1000. int err;
  1001. if (pos + len > i_size_read(inode))
  1002. return false;
  1003. map.m_lblk = F2FS_BYTES_TO_BLK(pos);
  1004. map.m_next_pgofs = NULL;
  1005. map.m_next_extent = NULL;
  1006. map.m_seg_type = NO_CHECK_TYPE;
  1007. last_lblk = F2FS_BLK_ALIGN(pos + len);
  1008. while (map.m_lblk < last_lblk) {
  1009. map.m_len = last_lblk - map.m_lblk;
  1010. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
  1011. if (err || map.m_len == 0)
  1012. return false;
  1013. map.m_lblk += map.m_len;
  1014. }
  1015. return true;
  1016. }
  1017. static int __get_data_block(struct inode *inode, sector_t iblock,
  1018. struct buffer_head *bh, int create, int flag,
  1019. pgoff_t *next_pgofs, int seg_type)
  1020. {
  1021. struct f2fs_map_blocks map;
  1022. int err;
  1023. map.m_lblk = iblock;
  1024. map.m_len = bh->b_size >> inode->i_blkbits;
  1025. map.m_next_pgofs = next_pgofs;
  1026. map.m_next_extent = NULL;
  1027. map.m_seg_type = seg_type;
  1028. err = f2fs_map_blocks(inode, &map, create, flag);
  1029. if (!err) {
  1030. map_bh(bh, inode->i_sb, map.m_pblk);
  1031. bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
  1032. bh->b_size = (u64)map.m_len << inode->i_blkbits;
  1033. }
  1034. return err;
  1035. }
  1036. static int get_data_block(struct inode *inode, sector_t iblock,
  1037. struct buffer_head *bh_result, int create, int flag,
  1038. pgoff_t *next_pgofs)
  1039. {
  1040. return __get_data_block(inode, iblock, bh_result, create,
  1041. flag, next_pgofs,
  1042. NO_CHECK_TYPE);
  1043. }
  1044. static int get_data_block_dio(struct inode *inode, sector_t iblock,
  1045. struct buffer_head *bh_result, int create)
  1046. {
  1047. return __get_data_block(inode, iblock, bh_result, create,
  1048. F2FS_GET_BLOCK_DEFAULT, NULL,
  1049. f2fs_rw_hint_to_seg_type(
  1050. inode->i_write_hint));
  1051. }
  1052. static int get_data_block_bmap(struct inode *inode, sector_t iblock,
  1053. struct buffer_head *bh_result, int create)
  1054. {
  1055. /* Block number less than F2FS MAX BLOCKS */
  1056. if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
  1057. return -EFBIG;
  1058. return __get_data_block(inode, iblock, bh_result, create,
  1059. F2FS_GET_BLOCK_BMAP, NULL,
  1060. NO_CHECK_TYPE);
  1061. }
  1062. static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
  1063. {
  1064. return (offset >> inode->i_blkbits);
  1065. }
  1066. static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
  1067. {
  1068. return (blk << inode->i_blkbits);
  1069. }
  1070. static int f2fs_xattr_fiemap(struct inode *inode,
  1071. struct fiemap_extent_info *fieinfo)
  1072. {
  1073. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1074. struct page *page;
  1075. struct node_info ni;
  1076. __u64 phys = 0, len;
  1077. __u32 flags;
  1078. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  1079. int err = 0;
  1080. if (f2fs_has_inline_xattr(inode)) {
  1081. int offset;
  1082. page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
  1083. inode->i_ino, false);
  1084. if (!page)
  1085. return -ENOMEM;
  1086. f2fs_get_node_info(sbi, inode->i_ino, &ni);
  1087. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1088. offset = offsetof(struct f2fs_inode, i_addr) +
  1089. sizeof(__le32) * (DEF_ADDRS_PER_INODE -
  1090. get_inline_xattr_addrs(inode));
  1091. phys += offset;
  1092. len = inline_xattr_size(inode);
  1093. f2fs_put_page(page, 1);
  1094. flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
  1095. if (!xnid)
  1096. flags |= FIEMAP_EXTENT_LAST;
  1097. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1098. if (err || err == 1)
  1099. return err;
  1100. }
  1101. if (xnid) {
  1102. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
  1103. if (!page)
  1104. return -ENOMEM;
  1105. f2fs_get_node_info(sbi, xnid, &ni);
  1106. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1107. len = inode->i_sb->s_blocksize;
  1108. f2fs_put_page(page, 1);
  1109. flags = FIEMAP_EXTENT_LAST;
  1110. }
  1111. if (phys)
  1112. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1113. return (err < 0 ? err : 0);
  1114. }
  1115. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  1116. u64 start, u64 len)
  1117. {
  1118. struct buffer_head map_bh;
  1119. sector_t start_blk, last_blk;
  1120. pgoff_t next_pgofs;
  1121. u64 logical = 0, phys = 0, size = 0;
  1122. u32 flags = 0;
  1123. int ret = 0;
  1124. if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
  1125. ret = f2fs_precache_extents(inode);
  1126. if (ret)
  1127. return ret;
  1128. }
  1129. ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
  1130. if (ret)
  1131. return ret;
  1132. inode_lock(inode);
  1133. if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
  1134. ret = f2fs_xattr_fiemap(inode, fieinfo);
  1135. goto out;
  1136. }
  1137. if (f2fs_has_inline_data(inode)) {
  1138. ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
  1139. if (ret != -EAGAIN)
  1140. goto out;
  1141. }
  1142. if (logical_to_blk(inode, len) == 0)
  1143. len = blk_to_logical(inode, 1);
  1144. start_blk = logical_to_blk(inode, start);
  1145. last_blk = logical_to_blk(inode, start + len - 1);
  1146. next:
  1147. memset(&map_bh, 0, sizeof(struct buffer_head));
  1148. map_bh.b_size = len;
  1149. ret = get_data_block(inode, start_blk, &map_bh, 0,
  1150. F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
  1151. if (ret)
  1152. goto out;
  1153. /* HOLE */
  1154. if (!buffer_mapped(&map_bh)) {
  1155. start_blk = next_pgofs;
  1156. if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
  1157. F2FS_I_SB(inode)->max_file_blocks))
  1158. goto prep_next;
  1159. flags |= FIEMAP_EXTENT_LAST;
  1160. }
  1161. if (size) {
  1162. if (f2fs_encrypted_inode(inode))
  1163. flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
  1164. ret = fiemap_fill_next_extent(fieinfo, logical,
  1165. phys, size, flags);
  1166. }
  1167. if (start_blk > last_blk || ret)
  1168. goto out;
  1169. logical = blk_to_logical(inode, start_blk);
  1170. phys = blk_to_logical(inode, map_bh.b_blocknr);
  1171. size = map_bh.b_size;
  1172. flags = 0;
  1173. if (buffer_unwritten(&map_bh))
  1174. flags = FIEMAP_EXTENT_UNWRITTEN;
  1175. start_blk += logical_to_blk(inode, size);
  1176. prep_next:
  1177. cond_resched();
  1178. if (fatal_signal_pending(current))
  1179. ret = -EINTR;
  1180. else
  1181. goto next;
  1182. out:
  1183. if (ret == 1)
  1184. ret = 0;
  1185. inode_unlock(inode);
  1186. return ret;
  1187. }
  1188. /*
  1189. * This function was originally taken from fs/mpage.c, and customized for f2fs.
  1190. * Major change was from block_size == page_size in f2fs by default.
  1191. */
  1192. static int f2fs_mpage_readpages(struct address_space *mapping,
  1193. struct list_head *pages, struct page *page,
  1194. unsigned nr_pages)
  1195. {
  1196. struct bio *bio = NULL;
  1197. sector_t last_block_in_bio = 0;
  1198. struct inode *inode = mapping->host;
  1199. const unsigned blkbits = inode->i_blkbits;
  1200. const unsigned blocksize = 1 << blkbits;
  1201. sector_t block_in_file;
  1202. sector_t last_block;
  1203. sector_t last_block_in_file;
  1204. sector_t block_nr;
  1205. struct f2fs_map_blocks map;
  1206. map.m_pblk = 0;
  1207. map.m_lblk = 0;
  1208. map.m_len = 0;
  1209. map.m_flags = 0;
  1210. map.m_next_pgofs = NULL;
  1211. map.m_next_extent = NULL;
  1212. map.m_seg_type = NO_CHECK_TYPE;
  1213. for (; nr_pages; nr_pages--) {
  1214. if (pages) {
  1215. page = list_last_entry(pages, struct page, lru);
  1216. prefetchw(&page->flags);
  1217. list_del(&page->lru);
  1218. if (add_to_page_cache_lru(page, mapping,
  1219. page->index,
  1220. readahead_gfp_mask(mapping)))
  1221. goto next_page;
  1222. }
  1223. block_in_file = (sector_t)page->index;
  1224. last_block = block_in_file + nr_pages;
  1225. last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
  1226. blkbits;
  1227. if (last_block > last_block_in_file)
  1228. last_block = last_block_in_file;
  1229. /*
  1230. * Map blocks using the previous result first.
  1231. */
  1232. if ((map.m_flags & F2FS_MAP_MAPPED) &&
  1233. block_in_file > map.m_lblk &&
  1234. block_in_file < (map.m_lblk + map.m_len))
  1235. goto got_it;
  1236. /*
  1237. * Then do more f2fs_map_blocks() calls until we are
  1238. * done with this page.
  1239. */
  1240. map.m_flags = 0;
  1241. if (block_in_file < last_block) {
  1242. map.m_lblk = block_in_file;
  1243. map.m_len = last_block - block_in_file;
  1244. if (f2fs_map_blocks(inode, &map, 0,
  1245. F2FS_GET_BLOCK_DEFAULT))
  1246. goto set_error_page;
  1247. }
  1248. got_it:
  1249. if ((map.m_flags & F2FS_MAP_MAPPED)) {
  1250. block_nr = map.m_pblk + block_in_file - map.m_lblk;
  1251. SetPageMappedToDisk(page);
  1252. if (!PageUptodate(page) && !cleancache_get_page(page)) {
  1253. SetPageUptodate(page);
  1254. goto confused;
  1255. }
  1256. } else {
  1257. zero_user_segment(page, 0, PAGE_SIZE);
  1258. if (!PageUptodate(page))
  1259. SetPageUptodate(page);
  1260. unlock_page(page);
  1261. goto next_page;
  1262. }
  1263. /*
  1264. * This page will go to BIO. Do we need to send this
  1265. * BIO off first?
  1266. */
  1267. if (bio && (last_block_in_bio != block_nr - 1 ||
  1268. !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
  1269. submit_and_realloc:
  1270. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1271. bio = NULL;
  1272. }
  1273. if (bio == NULL) {
  1274. bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
  1275. if (IS_ERR(bio)) {
  1276. bio = NULL;
  1277. goto set_error_page;
  1278. }
  1279. }
  1280. if (bio_add_page(bio, page, blocksize, 0) < blocksize)
  1281. goto submit_and_realloc;
  1282. last_block_in_bio = block_nr;
  1283. goto next_page;
  1284. set_error_page:
  1285. SetPageError(page);
  1286. zero_user_segment(page, 0, PAGE_SIZE);
  1287. unlock_page(page);
  1288. goto next_page;
  1289. confused:
  1290. if (bio) {
  1291. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1292. bio = NULL;
  1293. }
  1294. unlock_page(page);
  1295. next_page:
  1296. if (pages)
  1297. put_page(page);
  1298. }
  1299. BUG_ON(pages && !list_empty(pages));
  1300. if (bio)
  1301. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1302. return 0;
  1303. }
  1304. static int f2fs_read_data_page(struct file *file, struct page *page)
  1305. {
  1306. struct inode *inode = page->mapping->host;
  1307. int ret = -EAGAIN;
  1308. trace_f2fs_readpage(page, DATA);
  1309. /* If the file has inline data, try to read it directly */
  1310. if (f2fs_has_inline_data(inode))
  1311. ret = f2fs_read_inline_data(inode, page);
  1312. if (ret == -EAGAIN)
  1313. ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
  1314. return ret;
  1315. }
  1316. static int f2fs_read_data_pages(struct file *file,
  1317. struct address_space *mapping,
  1318. struct list_head *pages, unsigned nr_pages)
  1319. {
  1320. struct inode *inode = mapping->host;
  1321. struct page *page = list_last_entry(pages, struct page, lru);
  1322. trace_f2fs_readpages(inode, page, nr_pages);
  1323. /* If the file has inline data, skip readpages */
  1324. if (f2fs_has_inline_data(inode))
  1325. return 0;
  1326. return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
  1327. }
  1328. static int encrypt_one_page(struct f2fs_io_info *fio)
  1329. {
  1330. struct inode *inode = fio->page->mapping->host;
  1331. gfp_t gfp_flags = GFP_NOFS;
  1332. if (!f2fs_encrypted_file(inode))
  1333. return 0;
  1334. /* wait for GCed page writeback via META_MAPPING */
  1335. f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
  1336. retry_encrypt:
  1337. fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
  1338. PAGE_SIZE, 0, fio->page->index, gfp_flags);
  1339. if (!IS_ERR(fio->encrypted_page))
  1340. return 0;
  1341. /* flush pending IOs and wait for a while in the ENOMEM case */
  1342. if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
  1343. f2fs_flush_merged_writes(fio->sbi);
  1344. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1345. gfp_flags |= __GFP_NOFAIL;
  1346. goto retry_encrypt;
  1347. }
  1348. return PTR_ERR(fio->encrypted_page);
  1349. }
  1350. static inline bool check_inplace_update_policy(struct inode *inode,
  1351. struct f2fs_io_info *fio)
  1352. {
  1353. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1354. unsigned int policy = SM_I(sbi)->ipu_policy;
  1355. if (policy & (0x1 << F2FS_IPU_FORCE))
  1356. return true;
  1357. if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
  1358. return true;
  1359. if (policy & (0x1 << F2FS_IPU_UTIL) &&
  1360. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  1361. return true;
  1362. if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
  1363. utilization(sbi) > SM_I(sbi)->min_ipu_util)
  1364. return true;
  1365. /*
  1366. * IPU for rewrite async pages
  1367. */
  1368. if (policy & (0x1 << F2FS_IPU_ASYNC) &&
  1369. fio && fio->op == REQ_OP_WRITE &&
  1370. !(fio->op_flags & REQ_SYNC) &&
  1371. !f2fs_encrypted_inode(inode))
  1372. return true;
  1373. /* this is only set during fdatasync */
  1374. if (policy & (0x1 << F2FS_IPU_FSYNC) &&
  1375. is_inode_flag_set(inode, FI_NEED_IPU))
  1376. return true;
  1377. return false;
  1378. }
  1379. bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
  1380. {
  1381. if (f2fs_is_pinned_file(inode))
  1382. return true;
  1383. /* if this is cold file, we should overwrite to avoid fragmentation */
  1384. if (file_is_cold(inode))
  1385. return true;
  1386. return check_inplace_update_policy(inode, fio);
  1387. }
  1388. bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
  1389. {
  1390. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1391. if (test_opt(sbi, LFS))
  1392. return true;
  1393. if (S_ISDIR(inode->i_mode))
  1394. return true;
  1395. if (f2fs_is_atomic_file(inode))
  1396. return true;
  1397. if (fio) {
  1398. if (is_cold_data(fio->page))
  1399. return true;
  1400. if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
  1401. return true;
  1402. }
  1403. return false;
  1404. }
  1405. static inline bool need_inplace_update(struct f2fs_io_info *fio)
  1406. {
  1407. struct inode *inode = fio->page->mapping->host;
  1408. if (f2fs_should_update_outplace(inode, fio))
  1409. return false;
  1410. return f2fs_should_update_inplace(inode, fio);
  1411. }
  1412. int f2fs_do_write_data_page(struct f2fs_io_info *fio)
  1413. {
  1414. struct page *page = fio->page;
  1415. struct inode *inode = page->mapping->host;
  1416. struct dnode_of_data dn;
  1417. struct extent_info ei = {0,0,0};
  1418. bool ipu_force = false;
  1419. int err = 0;
  1420. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1421. if (need_inplace_update(fio) &&
  1422. f2fs_lookup_extent_cache(inode, page->index, &ei)) {
  1423. fio->old_blkaddr = ei.blk + page->index - ei.fofs;
  1424. if (is_valid_blkaddr(fio->old_blkaddr)) {
  1425. ipu_force = true;
  1426. fio->need_lock = LOCK_DONE;
  1427. goto got_it;
  1428. }
  1429. }
  1430. /* Deadlock due to between page->lock and f2fs_lock_op */
  1431. if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
  1432. return -EAGAIN;
  1433. err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  1434. if (err)
  1435. goto out;
  1436. fio->old_blkaddr = dn.data_blkaddr;
  1437. /* This page is already truncated */
  1438. if (fio->old_blkaddr == NULL_ADDR) {
  1439. ClearPageUptodate(page);
  1440. goto out_writepage;
  1441. }
  1442. got_it:
  1443. /*
  1444. * If current allocation needs SSR,
  1445. * it had better in-place writes for updated data.
  1446. */
  1447. if (ipu_force || (is_valid_blkaddr(fio->old_blkaddr) &&
  1448. need_inplace_update(fio))) {
  1449. err = encrypt_one_page(fio);
  1450. if (err)
  1451. goto out_writepage;
  1452. set_page_writeback(page);
  1453. ClearPageError(page);
  1454. f2fs_put_dnode(&dn);
  1455. if (fio->need_lock == LOCK_REQ)
  1456. f2fs_unlock_op(fio->sbi);
  1457. err = f2fs_inplace_write_data(fio);
  1458. trace_f2fs_do_write_data_page(fio->page, IPU);
  1459. set_inode_flag(inode, FI_UPDATE_WRITE);
  1460. return err;
  1461. }
  1462. if (fio->need_lock == LOCK_RETRY) {
  1463. if (!f2fs_trylock_op(fio->sbi)) {
  1464. err = -EAGAIN;
  1465. goto out_writepage;
  1466. }
  1467. fio->need_lock = LOCK_REQ;
  1468. }
  1469. err = encrypt_one_page(fio);
  1470. if (err)
  1471. goto out_writepage;
  1472. set_page_writeback(page);
  1473. ClearPageError(page);
  1474. /* LFS mode write path */
  1475. f2fs_outplace_write_data(&dn, fio);
  1476. trace_f2fs_do_write_data_page(page, OPU);
  1477. set_inode_flag(inode, FI_APPEND_WRITE);
  1478. if (page->index == 0)
  1479. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  1480. out_writepage:
  1481. f2fs_put_dnode(&dn);
  1482. out:
  1483. if (fio->need_lock == LOCK_REQ)
  1484. f2fs_unlock_op(fio->sbi);
  1485. return err;
  1486. }
  1487. static int __write_data_page(struct page *page, bool *submitted,
  1488. struct writeback_control *wbc,
  1489. enum iostat_type io_type)
  1490. {
  1491. struct inode *inode = page->mapping->host;
  1492. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1493. loff_t i_size = i_size_read(inode);
  1494. const pgoff_t end_index = ((unsigned long long) i_size)
  1495. >> PAGE_SHIFT;
  1496. loff_t psize = (page->index + 1) << PAGE_SHIFT;
  1497. unsigned offset = 0;
  1498. bool need_balance_fs = false;
  1499. int err = 0;
  1500. struct f2fs_io_info fio = {
  1501. .sbi = sbi,
  1502. .ino = inode->i_ino,
  1503. .type = DATA,
  1504. .op = REQ_OP_WRITE,
  1505. .op_flags = wbc_to_write_flags(wbc),
  1506. .old_blkaddr = NULL_ADDR,
  1507. .page = page,
  1508. .encrypted_page = NULL,
  1509. .submitted = false,
  1510. .need_lock = LOCK_RETRY,
  1511. .io_type = io_type,
  1512. .io_wbc = wbc,
  1513. };
  1514. trace_f2fs_writepage(page, DATA);
  1515. /* we should bypass data pages to proceed the kworkder jobs */
  1516. if (unlikely(f2fs_cp_error(sbi))) {
  1517. mapping_set_error(page->mapping, -EIO);
  1518. /*
  1519. * don't drop any dirty dentry pages for keeping lastest
  1520. * directory structure.
  1521. */
  1522. if (S_ISDIR(inode->i_mode))
  1523. goto redirty_out;
  1524. goto out;
  1525. }
  1526. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1527. goto redirty_out;
  1528. if (page->index < end_index)
  1529. goto write;
  1530. /*
  1531. * If the offset is out-of-range of file size,
  1532. * this page does not have to be written to disk.
  1533. */
  1534. offset = i_size & (PAGE_SIZE - 1);
  1535. if ((page->index >= end_index + 1) || !offset)
  1536. goto out;
  1537. zero_user_segment(page, offset, PAGE_SIZE);
  1538. write:
  1539. if (f2fs_is_drop_cache(inode))
  1540. goto out;
  1541. /* we should not write 0'th page having journal header */
  1542. if (f2fs_is_volatile_file(inode) && (!page->index ||
  1543. (!wbc->for_reclaim &&
  1544. f2fs_available_free_memory(sbi, BASE_CHECK))))
  1545. goto redirty_out;
  1546. /* Dentry blocks are controlled by checkpoint */
  1547. if (S_ISDIR(inode->i_mode)) {
  1548. fio.need_lock = LOCK_DONE;
  1549. err = f2fs_do_write_data_page(&fio);
  1550. goto done;
  1551. }
  1552. if (!wbc->for_reclaim)
  1553. need_balance_fs = true;
  1554. else if (has_not_enough_free_secs(sbi, 0, 0))
  1555. goto redirty_out;
  1556. else
  1557. set_inode_flag(inode, FI_HOT_DATA);
  1558. err = -EAGAIN;
  1559. if (f2fs_has_inline_data(inode)) {
  1560. err = f2fs_write_inline_data(inode, page);
  1561. if (!err)
  1562. goto out;
  1563. }
  1564. if (err == -EAGAIN) {
  1565. err = f2fs_do_write_data_page(&fio);
  1566. if (err == -EAGAIN) {
  1567. fio.need_lock = LOCK_REQ;
  1568. err = f2fs_do_write_data_page(&fio);
  1569. }
  1570. }
  1571. if (err) {
  1572. file_set_keep_isize(inode);
  1573. } else {
  1574. down_write(&F2FS_I(inode)->i_sem);
  1575. if (F2FS_I(inode)->last_disk_size < psize)
  1576. F2FS_I(inode)->last_disk_size = psize;
  1577. up_write(&F2FS_I(inode)->i_sem);
  1578. }
  1579. done:
  1580. if (err && err != -ENOENT)
  1581. goto redirty_out;
  1582. out:
  1583. inode_dec_dirty_pages(inode);
  1584. if (err)
  1585. ClearPageUptodate(page);
  1586. if (wbc->for_reclaim) {
  1587. f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
  1588. clear_inode_flag(inode, FI_HOT_DATA);
  1589. f2fs_remove_dirty_inode(inode);
  1590. submitted = NULL;
  1591. }
  1592. unlock_page(page);
  1593. if (!S_ISDIR(inode->i_mode))
  1594. f2fs_balance_fs(sbi, need_balance_fs);
  1595. if (unlikely(f2fs_cp_error(sbi))) {
  1596. f2fs_submit_merged_write(sbi, DATA);
  1597. submitted = NULL;
  1598. }
  1599. if (submitted)
  1600. *submitted = fio.submitted;
  1601. return 0;
  1602. redirty_out:
  1603. redirty_page_for_writepage(wbc, page);
  1604. /*
  1605. * pageout() in MM traslates EAGAIN, so calls handle_write_error()
  1606. * -> mapping_set_error() -> set_bit(AS_EIO, ...).
  1607. * file_write_and_wait_range() will see EIO error, which is critical
  1608. * to return value of fsync() followed by atomic_write failure to user.
  1609. */
  1610. if (!err || wbc->for_reclaim)
  1611. return AOP_WRITEPAGE_ACTIVATE;
  1612. unlock_page(page);
  1613. return err;
  1614. }
  1615. static int f2fs_write_data_page(struct page *page,
  1616. struct writeback_control *wbc)
  1617. {
  1618. return __write_data_page(page, NULL, wbc, FS_DATA_IO);
  1619. }
  1620. /*
  1621. * This function was copied from write_cche_pages from mm/page-writeback.c.
  1622. * The major change is making write step of cold data page separately from
  1623. * warm/hot data page.
  1624. */
  1625. static int f2fs_write_cache_pages(struct address_space *mapping,
  1626. struct writeback_control *wbc,
  1627. enum iostat_type io_type)
  1628. {
  1629. int ret = 0;
  1630. int done = 0;
  1631. struct pagevec pvec;
  1632. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1633. int nr_pages;
  1634. pgoff_t uninitialized_var(writeback_index);
  1635. pgoff_t index;
  1636. pgoff_t end; /* Inclusive */
  1637. pgoff_t done_index;
  1638. pgoff_t last_idx = ULONG_MAX;
  1639. int cycled;
  1640. int range_whole = 0;
  1641. int tag;
  1642. pagevec_init(&pvec);
  1643. if (get_dirty_pages(mapping->host) <=
  1644. SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
  1645. set_inode_flag(mapping->host, FI_HOT_DATA);
  1646. else
  1647. clear_inode_flag(mapping->host, FI_HOT_DATA);
  1648. if (wbc->range_cyclic) {
  1649. writeback_index = mapping->writeback_index; /* prev offset */
  1650. index = writeback_index;
  1651. if (index == 0)
  1652. cycled = 1;
  1653. else
  1654. cycled = 0;
  1655. end = -1;
  1656. } else {
  1657. index = wbc->range_start >> PAGE_SHIFT;
  1658. end = wbc->range_end >> PAGE_SHIFT;
  1659. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1660. range_whole = 1;
  1661. cycled = 1; /* ignore range_cyclic tests */
  1662. }
  1663. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1664. tag = PAGECACHE_TAG_TOWRITE;
  1665. else
  1666. tag = PAGECACHE_TAG_DIRTY;
  1667. retry:
  1668. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1669. tag_pages_for_writeback(mapping, index, end);
  1670. done_index = index;
  1671. while (!done && (index <= end)) {
  1672. int i;
  1673. nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
  1674. tag);
  1675. if (nr_pages == 0)
  1676. break;
  1677. for (i = 0; i < nr_pages; i++) {
  1678. struct page *page = pvec.pages[i];
  1679. bool submitted = false;
  1680. /* give a priority to WB_SYNC threads */
  1681. if (atomic_read(&sbi->wb_sync_req[DATA]) &&
  1682. wbc->sync_mode == WB_SYNC_NONE) {
  1683. done = 1;
  1684. break;
  1685. }
  1686. done_index = page->index;
  1687. retry_write:
  1688. lock_page(page);
  1689. if (unlikely(page->mapping != mapping)) {
  1690. continue_unlock:
  1691. unlock_page(page);
  1692. continue;
  1693. }
  1694. if (!PageDirty(page)) {
  1695. /* someone wrote it for us */
  1696. goto continue_unlock;
  1697. }
  1698. if (PageWriteback(page)) {
  1699. if (wbc->sync_mode != WB_SYNC_NONE)
  1700. f2fs_wait_on_page_writeback(page,
  1701. DATA, true);
  1702. else
  1703. goto continue_unlock;
  1704. }
  1705. BUG_ON(PageWriteback(page));
  1706. if (!clear_page_dirty_for_io(page))
  1707. goto continue_unlock;
  1708. ret = __write_data_page(page, &submitted, wbc, io_type);
  1709. if (unlikely(ret)) {
  1710. /*
  1711. * keep nr_to_write, since vfs uses this to
  1712. * get # of written pages.
  1713. */
  1714. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1715. unlock_page(page);
  1716. ret = 0;
  1717. continue;
  1718. } else if (ret == -EAGAIN) {
  1719. ret = 0;
  1720. if (wbc->sync_mode == WB_SYNC_ALL) {
  1721. cond_resched();
  1722. congestion_wait(BLK_RW_ASYNC,
  1723. HZ/50);
  1724. goto retry_write;
  1725. }
  1726. continue;
  1727. }
  1728. done_index = page->index + 1;
  1729. done = 1;
  1730. break;
  1731. } else if (submitted) {
  1732. last_idx = page->index;
  1733. }
  1734. if (--wbc->nr_to_write <= 0 &&
  1735. wbc->sync_mode == WB_SYNC_NONE) {
  1736. done = 1;
  1737. break;
  1738. }
  1739. }
  1740. pagevec_release(&pvec);
  1741. cond_resched();
  1742. }
  1743. if (!cycled && !done) {
  1744. cycled = 1;
  1745. index = 0;
  1746. end = writeback_index - 1;
  1747. goto retry;
  1748. }
  1749. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1750. mapping->writeback_index = done_index;
  1751. if (last_idx != ULONG_MAX)
  1752. f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
  1753. 0, last_idx, DATA);
  1754. return ret;
  1755. }
  1756. static int __f2fs_write_data_pages(struct address_space *mapping,
  1757. struct writeback_control *wbc,
  1758. enum iostat_type io_type)
  1759. {
  1760. struct inode *inode = mapping->host;
  1761. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1762. struct blk_plug plug;
  1763. int ret;
  1764. /* deal with chardevs and other special file */
  1765. if (!mapping->a_ops->writepage)
  1766. return 0;
  1767. /* skip writing if there is no dirty page in this inode */
  1768. if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
  1769. return 0;
  1770. /* during POR, we don't need to trigger writepage at all. */
  1771. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1772. goto skip_write;
  1773. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1774. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1775. f2fs_available_free_memory(sbi, DIRTY_DENTS))
  1776. goto skip_write;
  1777. /* skip writing during file defragment */
  1778. if (is_inode_flag_set(inode, FI_DO_DEFRAG))
  1779. goto skip_write;
  1780. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1781. /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
  1782. if (wbc->sync_mode == WB_SYNC_ALL)
  1783. atomic_inc(&sbi->wb_sync_req[DATA]);
  1784. else if (atomic_read(&sbi->wb_sync_req[DATA]))
  1785. goto skip_write;
  1786. blk_start_plug(&plug);
  1787. ret = f2fs_write_cache_pages(mapping, wbc, io_type);
  1788. blk_finish_plug(&plug);
  1789. if (wbc->sync_mode == WB_SYNC_ALL)
  1790. atomic_dec(&sbi->wb_sync_req[DATA]);
  1791. /*
  1792. * if some pages were truncated, we cannot guarantee its mapping->host
  1793. * to detect pending bios.
  1794. */
  1795. f2fs_remove_dirty_inode(inode);
  1796. return ret;
  1797. skip_write:
  1798. wbc->pages_skipped += get_dirty_pages(inode);
  1799. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1800. return 0;
  1801. }
  1802. static int f2fs_write_data_pages(struct address_space *mapping,
  1803. struct writeback_control *wbc)
  1804. {
  1805. struct inode *inode = mapping->host;
  1806. return __f2fs_write_data_pages(mapping, wbc,
  1807. F2FS_I(inode)->cp_task == current ?
  1808. FS_CP_DATA_IO : FS_DATA_IO);
  1809. }
  1810. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1811. {
  1812. struct inode *inode = mapping->host;
  1813. loff_t i_size = i_size_read(inode);
  1814. if (to > i_size) {
  1815. down_write(&F2FS_I(inode)->i_mmap_sem);
  1816. truncate_pagecache(inode, i_size);
  1817. f2fs_truncate_blocks(inode, i_size, true);
  1818. up_write(&F2FS_I(inode)->i_mmap_sem);
  1819. }
  1820. }
  1821. static int prepare_write_begin(struct f2fs_sb_info *sbi,
  1822. struct page *page, loff_t pos, unsigned len,
  1823. block_t *blk_addr, bool *node_changed)
  1824. {
  1825. struct inode *inode = page->mapping->host;
  1826. pgoff_t index = page->index;
  1827. struct dnode_of_data dn;
  1828. struct page *ipage;
  1829. bool locked = false;
  1830. struct extent_info ei = {0,0,0};
  1831. int err = 0;
  1832. /*
  1833. * we already allocated all the blocks, so we don't need to get
  1834. * the block addresses when there is no need to fill the page.
  1835. */
  1836. if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
  1837. !is_inode_flag_set(inode, FI_NO_PREALLOC))
  1838. return 0;
  1839. if (f2fs_has_inline_data(inode) ||
  1840. (pos & PAGE_MASK) >= i_size_read(inode)) {
  1841. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
  1842. locked = true;
  1843. }
  1844. restart:
  1845. /* check inline_data */
  1846. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  1847. if (IS_ERR(ipage)) {
  1848. err = PTR_ERR(ipage);
  1849. goto unlock_out;
  1850. }
  1851. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1852. if (f2fs_has_inline_data(inode)) {
  1853. if (pos + len <= MAX_INLINE_DATA(inode)) {
  1854. f2fs_do_read_inline_data(page, ipage);
  1855. set_inode_flag(inode, FI_DATA_EXIST);
  1856. if (inode->i_nlink)
  1857. set_inline_node(ipage);
  1858. } else {
  1859. err = f2fs_convert_inline_page(&dn, page);
  1860. if (err)
  1861. goto out;
  1862. if (dn.data_blkaddr == NULL_ADDR)
  1863. err = f2fs_get_block(&dn, index);
  1864. }
  1865. } else if (locked) {
  1866. err = f2fs_get_block(&dn, index);
  1867. } else {
  1868. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  1869. dn.data_blkaddr = ei.blk + index - ei.fofs;
  1870. } else {
  1871. /* hole case */
  1872. err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
  1873. if (err || dn.data_blkaddr == NULL_ADDR) {
  1874. f2fs_put_dnode(&dn);
  1875. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
  1876. true);
  1877. locked = true;
  1878. goto restart;
  1879. }
  1880. }
  1881. }
  1882. /* convert_inline_page can make node_changed */
  1883. *blk_addr = dn.data_blkaddr;
  1884. *node_changed = dn.node_changed;
  1885. out:
  1886. f2fs_put_dnode(&dn);
  1887. unlock_out:
  1888. if (locked)
  1889. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
  1890. return err;
  1891. }
  1892. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1893. loff_t pos, unsigned len, unsigned flags,
  1894. struct page **pagep, void **fsdata)
  1895. {
  1896. struct inode *inode = mapping->host;
  1897. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1898. struct page *page = NULL;
  1899. pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
  1900. bool need_balance = false, drop_atomic = false;
  1901. block_t blkaddr = NULL_ADDR;
  1902. int err = 0;
  1903. trace_f2fs_write_begin(inode, pos, len, flags);
  1904. if (f2fs_is_atomic_file(inode) &&
  1905. !f2fs_available_free_memory(sbi, INMEM_PAGES)) {
  1906. err = -ENOMEM;
  1907. drop_atomic = true;
  1908. goto fail;
  1909. }
  1910. /*
  1911. * We should check this at this moment to avoid deadlock on inode page
  1912. * and #0 page. The locking rule for inline_data conversion should be:
  1913. * lock_page(page #0) -> lock_page(inode_page)
  1914. */
  1915. if (index != 0) {
  1916. err = f2fs_convert_inline_inode(inode);
  1917. if (err)
  1918. goto fail;
  1919. }
  1920. repeat:
  1921. /*
  1922. * Do not use grab_cache_page_write_begin() to avoid deadlock due to
  1923. * wait_for_stable_page. Will wait that below with our IO control.
  1924. */
  1925. page = f2fs_pagecache_get_page(mapping, index,
  1926. FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
  1927. if (!page) {
  1928. err = -ENOMEM;
  1929. goto fail;
  1930. }
  1931. *pagep = page;
  1932. err = prepare_write_begin(sbi, page, pos, len,
  1933. &blkaddr, &need_balance);
  1934. if (err)
  1935. goto fail;
  1936. if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
  1937. unlock_page(page);
  1938. f2fs_balance_fs(sbi, true);
  1939. lock_page(page);
  1940. if (page->mapping != mapping) {
  1941. /* The page got truncated from under us */
  1942. f2fs_put_page(page, 1);
  1943. goto repeat;
  1944. }
  1945. }
  1946. f2fs_wait_on_page_writeback(page, DATA, false);
  1947. /* wait for GCed page writeback via META_MAPPING */
  1948. if (f2fs_post_read_required(inode))
  1949. f2fs_wait_on_block_writeback(sbi, blkaddr);
  1950. if (len == PAGE_SIZE || PageUptodate(page))
  1951. return 0;
  1952. if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
  1953. zero_user_segment(page, len, PAGE_SIZE);
  1954. return 0;
  1955. }
  1956. if (blkaddr == NEW_ADDR) {
  1957. zero_user_segment(page, 0, PAGE_SIZE);
  1958. SetPageUptodate(page);
  1959. } else {
  1960. err = f2fs_submit_page_read(inode, page, blkaddr);
  1961. if (err)
  1962. goto fail;
  1963. lock_page(page);
  1964. if (unlikely(page->mapping != mapping)) {
  1965. f2fs_put_page(page, 1);
  1966. goto repeat;
  1967. }
  1968. if (unlikely(!PageUptodate(page))) {
  1969. err = -EIO;
  1970. goto fail;
  1971. }
  1972. }
  1973. return 0;
  1974. fail:
  1975. f2fs_put_page(page, 1);
  1976. f2fs_write_failed(mapping, pos + len);
  1977. if (drop_atomic)
  1978. f2fs_drop_inmem_pages_all(sbi, false);
  1979. return err;
  1980. }
  1981. static int f2fs_write_end(struct file *file,
  1982. struct address_space *mapping,
  1983. loff_t pos, unsigned len, unsigned copied,
  1984. struct page *page, void *fsdata)
  1985. {
  1986. struct inode *inode = page->mapping->host;
  1987. trace_f2fs_write_end(inode, pos, len, copied);
  1988. /*
  1989. * This should be come from len == PAGE_SIZE, and we expect copied
  1990. * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
  1991. * let generic_perform_write() try to copy data again through copied=0.
  1992. */
  1993. if (!PageUptodate(page)) {
  1994. if (unlikely(copied != len))
  1995. copied = 0;
  1996. else
  1997. SetPageUptodate(page);
  1998. }
  1999. if (!copied)
  2000. goto unlock_out;
  2001. set_page_dirty(page);
  2002. if (pos + copied > i_size_read(inode))
  2003. f2fs_i_size_write(inode, pos + copied);
  2004. unlock_out:
  2005. f2fs_put_page(page, 1);
  2006. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  2007. return copied;
  2008. }
  2009. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  2010. loff_t offset)
  2011. {
  2012. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  2013. if (offset & blocksize_mask)
  2014. return -EINVAL;
  2015. if (iov_iter_alignment(iter) & blocksize_mask)
  2016. return -EINVAL;
  2017. return 0;
  2018. }
  2019. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  2020. {
  2021. struct address_space *mapping = iocb->ki_filp->f_mapping;
  2022. struct inode *inode = mapping->host;
  2023. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2024. size_t count = iov_iter_count(iter);
  2025. loff_t offset = iocb->ki_pos;
  2026. int rw = iov_iter_rw(iter);
  2027. int err;
  2028. enum rw_hint hint = iocb->ki_hint;
  2029. int whint_mode = F2FS_OPTION(sbi).whint_mode;
  2030. err = check_direct_IO(inode, iter, offset);
  2031. if (err)
  2032. return err;
  2033. if (f2fs_force_buffered_io(inode, rw))
  2034. return 0;
  2035. trace_f2fs_direct_IO_enter(inode, offset, count, rw);
  2036. if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
  2037. iocb->ki_hint = WRITE_LIFE_NOT_SET;
  2038. if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
  2039. if (iocb->ki_flags & IOCB_NOWAIT) {
  2040. iocb->ki_hint = hint;
  2041. err = -EAGAIN;
  2042. goto out;
  2043. }
  2044. down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
  2045. }
  2046. err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
  2047. up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
  2048. if (rw == WRITE) {
  2049. if (whint_mode == WHINT_MODE_OFF)
  2050. iocb->ki_hint = hint;
  2051. if (err > 0) {
  2052. f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
  2053. err);
  2054. set_inode_flag(inode, FI_UPDATE_WRITE);
  2055. } else if (err < 0) {
  2056. f2fs_write_failed(mapping, offset + count);
  2057. }
  2058. }
  2059. out:
  2060. trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
  2061. return err;
  2062. }
  2063. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  2064. unsigned int length)
  2065. {
  2066. struct inode *inode = page->mapping->host;
  2067. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2068. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  2069. (offset % PAGE_SIZE || length != PAGE_SIZE))
  2070. return;
  2071. if (PageDirty(page)) {
  2072. if (inode->i_ino == F2FS_META_INO(sbi)) {
  2073. dec_page_count(sbi, F2FS_DIRTY_META);
  2074. } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
  2075. dec_page_count(sbi, F2FS_DIRTY_NODES);
  2076. } else {
  2077. inode_dec_dirty_pages(inode);
  2078. f2fs_remove_dirty_inode(inode);
  2079. }
  2080. }
  2081. /* This is atomic written page, keep Private */
  2082. if (IS_ATOMIC_WRITTEN_PAGE(page))
  2083. return f2fs_drop_inmem_page(inode, page);
  2084. set_page_private(page, 0);
  2085. ClearPagePrivate(page);
  2086. }
  2087. int f2fs_release_page(struct page *page, gfp_t wait)
  2088. {
  2089. /* If this is dirty page, keep PagePrivate */
  2090. if (PageDirty(page))
  2091. return 0;
  2092. /* This is atomic written page, keep Private */
  2093. if (IS_ATOMIC_WRITTEN_PAGE(page))
  2094. return 0;
  2095. set_page_private(page, 0);
  2096. ClearPagePrivate(page);
  2097. return 1;
  2098. }
  2099. static int f2fs_set_data_page_dirty(struct page *page)
  2100. {
  2101. struct address_space *mapping = page->mapping;
  2102. struct inode *inode = mapping->host;
  2103. trace_f2fs_set_page_dirty(page, DATA);
  2104. if (!PageUptodate(page))
  2105. SetPageUptodate(page);
  2106. if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
  2107. if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
  2108. f2fs_register_inmem_page(inode, page);
  2109. return 1;
  2110. }
  2111. /*
  2112. * Previously, this page has been registered, we just
  2113. * return here.
  2114. */
  2115. return 0;
  2116. }
  2117. if (!PageDirty(page)) {
  2118. __set_page_dirty_nobuffers(page);
  2119. f2fs_update_dirty_page(inode, page);
  2120. return 1;
  2121. }
  2122. return 0;
  2123. }
  2124. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  2125. {
  2126. struct inode *inode = mapping->host;
  2127. if (f2fs_has_inline_data(inode))
  2128. return 0;
  2129. /* make sure allocating whole blocks */
  2130. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  2131. filemap_write_and_wait(mapping);
  2132. return generic_block_bmap(mapping, block, get_data_block_bmap);
  2133. }
  2134. #ifdef CONFIG_MIGRATION
  2135. #include <linux/migrate.h>
  2136. int f2fs_migrate_page(struct address_space *mapping,
  2137. struct page *newpage, struct page *page, enum migrate_mode mode)
  2138. {
  2139. int rc, extra_count;
  2140. struct f2fs_inode_info *fi = F2FS_I(mapping->host);
  2141. bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
  2142. BUG_ON(PageWriteback(page));
  2143. /* migrating an atomic written page is safe with the inmem_lock hold */
  2144. if (atomic_written) {
  2145. if (mode != MIGRATE_SYNC)
  2146. return -EBUSY;
  2147. if (!mutex_trylock(&fi->inmem_lock))
  2148. return -EAGAIN;
  2149. }
  2150. /*
  2151. * A reference is expected if PagePrivate set when move mapping,
  2152. * however F2FS breaks this for maintaining dirty page counts when
  2153. * truncating pages. So here adjusting the 'extra_count' make it work.
  2154. */
  2155. extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
  2156. rc = migrate_page_move_mapping(mapping, newpage,
  2157. page, NULL, mode, extra_count);
  2158. if (rc != MIGRATEPAGE_SUCCESS) {
  2159. if (atomic_written)
  2160. mutex_unlock(&fi->inmem_lock);
  2161. return rc;
  2162. }
  2163. if (atomic_written) {
  2164. struct inmem_pages *cur;
  2165. list_for_each_entry(cur, &fi->inmem_pages, list)
  2166. if (cur->page == page) {
  2167. cur->page = newpage;
  2168. break;
  2169. }
  2170. mutex_unlock(&fi->inmem_lock);
  2171. put_page(page);
  2172. get_page(newpage);
  2173. }
  2174. if (PagePrivate(page))
  2175. SetPagePrivate(newpage);
  2176. set_page_private(newpage, page_private(page));
  2177. if (mode != MIGRATE_SYNC_NO_COPY)
  2178. migrate_page_copy(newpage, page);
  2179. else
  2180. migrate_page_states(newpage, page);
  2181. return MIGRATEPAGE_SUCCESS;
  2182. }
  2183. #endif
  2184. const struct address_space_operations f2fs_dblock_aops = {
  2185. .readpage = f2fs_read_data_page,
  2186. .readpages = f2fs_read_data_pages,
  2187. .writepage = f2fs_write_data_page,
  2188. .writepages = f2fs_write_data_pages,
  2189. .write_begin = f2fs_write_begin,
  2190. .write_end = f2fs_write_end,
  2191. .set_page_dirty = f2fs_set_data_page_dirty,
  2192. .invalidatepage = f2fs_invalidate_page,
  2193. .releasepage = f2fs_release_page,
  2194. .direct_IO = f2fs_direct_IO,
  2195. .bmap = f2fs_bmap,
  2196. #ifdef CONFIG_MIGRATION
  2197. .migratepage = f2fs_migrate_page,
  2198. #endif
  2199. };
  2200. void f2fs_clear_radix_tree_dirty_tag(struct page *page)
  2201. {
  2202. struct address_space *mapping = page_mapping(page);
  2203. unsigned long flags;
  2204. xa_lock_irqsave(&mapping->i_pages, flags);
  2205. radix_tree_tag_clear(&mapping->i_pages, page_index(page),
  2206. PAGECACHE_TAG_DIRTY);
  2207. xa_unlock_irqrestore(&mapping->i_pages, flags);
  2208. }
  2209. int __init f2fs_init_post_read_processing(void)
  2210. {
  2211. bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
  2212. if (!bio_post_read_ctx_cache)
  2213. goto fail;
  2214. bio_post_read_ctx_pool =
  2215. mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
  2216. bio_post_read_ctx_cache);
  2217. if (!bio_post_read_ctx_pool)
  2218. goto fail_free_cache;
  2219. return 0;
  2220. fail_free_cache:
  2221. kmem_cache_destroy(bio_post_read_ctx_cache);
  2222. fail:
  2223. return -ENOMEM;
  2224. }
  2225. void __exit f2fs_destroy_post_read_processing(void)
  2226. {
  2227. mempool_destroy(bio_post_read_ctx_pool);
  2228. kmem_cache_destroy(bio_post_read_ctx_cache);
  2229. }