checkpoint.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *f2fs_inode_entry_slab;
  26. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27. {
  28. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  29. if (!end_io)
  30. f2fs_flush_merged_writes(sbi);
  31. }
  32. /*
  33. * We guarantee no failure on the returned page.
  34. */
  35. struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  36. {
  37. struct address_space *mapping = META_MAPPING(sbi);
  38. struct page *page = NULL;
  39. repeat:
  40. page = f2fs_grab_cache_page(mapping, index, false);
  41. if (!page) {
  42. cond_resched();
  43. goto repeat;
  44. }
  45. f2fs_wait_on_page_writeback(page, META, true);
  46. if (!PageUptodate(page))
  47. SetPageUptodate(page);
  48. return page;
  49. }
  50. /*
  51. * We guarantee no failure on the returned page.
  52. */
  53. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  54. bool is_meta)
  55. {
  56. struct address_space *mapping = META_MAPPING(sbi);
  57. struct page *page;
  58. struct f2fs_io_info fio = {
  59. .sbi = sbi,
  60. .type = META,
  61. .op = REQ_OP_READ,
  62. .op_flags = REQ_META | REQ_PRIO,
  63. .old_blkaddr = index,
  64. .new_blkaddr = index,
  65. .encrypted_page = NULL,
  66. .is_meta = is_meta,
  67. };
  68. if (unlikely(!is_meta))
  69. fio.op_flags &= ~REQ_META;
  70. repeat:
  71. page = f2fs_grab_cache_page(mapping, index, false);
  72. if (!page) {
  73. cond_resched();
  74. goto repeat;
  75. }
  76. if (PageUptodate(page))
  77. goto out;
  78. fio.page = page;
  79. if (f2fs_submit_page_bio(&fio)) {
  80. f2fs_put_page(page, 1);
  81. goto repeat;
  82. }
  83. lock_page(page);
  84. if (unlikely(page->mapping != mapping)) {
  85. f2fs_put_page(page, 1);
  86. goto repeat;
  87. }
  88. /*
  89. * if there is any IO error when accessing device, make our filesystem
  90. * readonly and make sure do not write checkpoint with non-uptodate
  91. * meta page.
  92. */
  93. if (unlikely(!PageUptodate(page))) {
  94. memset(page_address(page), 0, PAGE_SIZE);
  95. f2fs_stop_checkpoint(sbi, false);
  96. }
  97. out:
  98. return page;
  99. }
  100. struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  101. {
  102. return __get_meta_page(sbi, index, true);
  103. }
  104. /* for POR only */
  105. struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  106. {
  107. return __get_meta_page(sbi, index, false);
  108. }
  109. bool f2fs_is_valid_meta_blkaddr(struct f2fs_sb_info *sbi,
  110. block_t blkaddr, int type)
  111. {
  112. switch (type) {
  113. case META_NAT:
  114. break;
  115. case META_SIT:
  116. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  117. return false;
  118. break;
  119. case META_SSA:
  120. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  121. blkaddr < SM_I(sbi)->ssa_blkaddr))
  122. return false;
  123. break;
  124. case META_CP:
  125. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  126. blkaddr < __start_cp_addr(sbi)))
  127. return false;
  128. break;
  129. case META_POR:
  130. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  131. blkaddr < MAIN_BLKADDR(sbi)))
  132. return false;
  133. break;
  134. default:
  135. BUG();
  136. }
  137. return true;
  138. }
  139. /*
  140. * Readahead CP/NAT/SIT/SSA pages
  141. */
  142. int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  143. int type, bool sync)
  144. {
  145. struct page *page;
  146. block_t blkno = start;
  147. struct f2fs_io_info fio = {
  148. .sbi = sbi,
  149. .type = META,
  150. .op = REQ_OP_READ,
  151. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  152. .encrypted_page = NULL,
  153. .in_list = false,
  154. .is_meta = (type != META_POR),
  155. };
  156. struct blk_plug plug;
  157. if (unlikely(type == META_POR))
  158. fio.op_flags &= ~REQ_META;
  159. blk_start_plug(&plug);
  160. for (; nrpages-- > 0; blkno++) {
  161. if (!f2fs_is_valid_meta_blkaddr(sbi, blkno, type))
  162. goto out;
  163. switch (type) {
  164. case META_NAT:
  165. if (unlikely(blkno >=
  166. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  167. blkno = 0;
  168. /* get nat block addr */
  169. fio.new_blkaddr = current_nat_addr(sbi,
  170. blkno * NAT_ENTRY_PER_BLOCK);
  171. break;
  172. case META_SIT:
  173. /* get sit block addr */
  174. fio.new_blkaddr = current_sit_addr(sbi,
  175. blkno * SIT_ENTRY_PER_BLOCK);
  176. break;
  177. case META_SSA:
  178. case META_CP:
  179. case META_POR:
  180. fio.new_blkaddr = blkno;
  181. break;
  182. default:
  183. BUG();
  184. }
  185. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  186. fio.new_blkaddr, false);
  187. if (!page)
  188. continue;
  189. if (PageUptodate(page)) {
  190. f2fs_put_page(page, 1);
  191. continue;
  192. }
  193. fio.page = page;
  194. f2fs_submit_page_bio(&fio);
  195. f2fs_put_page(page, 0);
  196. }
  197. out:
  198. blk_finish_plug(&plug);
  199. return blkno - start;
  200. }
  201. void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  202. {
  203. struct page *page;
  204. bool readahead = false;
  205. page = find_get_page(META_MAPPING(sbi), index);
  206. if (!page || !PageUptodate(page))
  207. readahead = true;
  208. f2fs_put_page(page, 0);
  209. if (readahead)
  210. f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
  211. }
  212. static int __f2fs_write_meta_page(struct page *page,
  213. struct writeback_control *wbc,
  214. enum iostat_type io_type)
  215. {
  216. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  217. trace_f2fs_writepage(page, META);
  218. if (unlikely(f2fs_cp_error(sbi))) {
  219. dec_page_count(sbi, F2FS_DIRTY_META);
  220. unlock_page(page);
  221. return 0;
  222. }
  223. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  224. goto redirty_out;
  225. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  226. goto redirty_out;
  227. f2fs_do_write_meta_page(sbi, page, io_type);
  228. dec_page_count(sbi, F2FS_DIRTY_META);
  229. if (wbc->for_reclaim)
  230. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  231. 0, page->index, META);
  232. unlock_page(page);
  233. if (unlikely(f2fs_cp_error(sbi)))
  234. f2fs_submit_merged_write(sbi, META);
  235. return 0;
  236. redirty_out:
  237. redirty_page_for_writepage(wbc, page);
  238. return AOP_WRITEPAGE_ACTIVATE;
  239. }
  240. static int f2fs_write_meta_page(struct page *page,
  241. struct writeback_control *wbc)
  242. {
  243. return __f2fs_write_meta_page(page, wbc, FS_META_IO);
  244. }
  245. static int f2fs_write_meta_pages(struct address_space *mapping,
  246. struct writeback_control *wbc)
  247. {
  248. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  249. long diff, written;
  250. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  251. goto skip_write;
  252. /* collect a number of dirty meta pages and write together */
  253. if (wbc->for_kupdate ||
  254. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  255. goto skip_write;
  256. /* if locked failed, cp will flush dirty pages instead */
  257. if (!mutex_trylock(&sbi->cp_mutex))
  258. goto skip_write;
  259. trace_f2fs_writepages(mapping->host, wbc, META);
  260. diff = nr_pages_to_write(sbi, META, wbc);
  261. written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
  262. mutex_unlock(&sbi->cp_mutex);
  263. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  264. return 0;
  265. skip_write:
  266. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  267. trace_f2fs_writepages(mapping->host, wbc, META);
  268. return 0;
  269. }
  270. long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  271. long nr_to_write, enum iostat_type io_type)
  272. {
  273. struct address_space *mapping = META_MAPPING(sbi);
  274. pgoff_t index = 0, prev = ULONG_MAX;
  275. struct pagevec pvec;
  276. long nwritten = 0;
  277. int nr_pages;
  278. struct writeback_control wbc = {
  279. .for_reclaim = 0,
  280. };
  281. struct blk_plug plug;
  282. pagevec_init(&pvec);
  283. blk_start_plug(&plug);
  284. while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  285. PAGECACHE_TAG_DIRTY))) {
  286. int i;
  287. for (i = 0; i < nr_pages; i++) {
  288. struct page *page = pvec.pages[i];
  289. if (prev == ULONG_MAX)
  290. prev = page->index - 1;
  291. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  292. pagevec_release(&pvec);
  293. goto stop;
  294. }
  295. lock_page(page);
  296. if (unlikely(page->mapping != mapping)) {
  297. continue_unlock:
  298. unlock_page(page);
  299. continue;
  300. }
  301. if (!PageDirty(page)) {
  302. /* someone wrote it for us */
  303. goto continue_unlock;
  304. }
  305. f2fs_wait_on_page_writeback(page, META, true);
  306. BUG_ON(PageWriteback(page));
  307. if (!clear_page_dirty_for_io(page))
  308. goto continue_unlock;
  309. if (__f2fs_write_meta_page(page, &wbc, io_type)) {
  310. unlock_page(page);
  311. break;
  312. }
  313. nwritten++;
  314. prev = page->index;
  315. if (unlikely(nwritten >= nr_to_write))
  316. break;
  317. }
  318. pagevec_release(&pvec);
  319. cond_resched();
  320. }
  321. stop:
  322. if (nwritten)
  323. f2fs_submit_merged_write(sbi, type);
  324. blk_finish_plug(&plug);
  325. return nwritten;
  326. }
  327. static int f2fs_set_meta_page_dirty(struct page *page)
  328. {
  329. trace_f2fs_set_page_dirty(page, META);
  330. if (!PageUptodate(page))
  331. SetPageUptodate(page);
  332. if (!PageDirty(page)) {
  333. __set_page_dirty_nobuffers(page);
  334. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  335. SetPagePrivate(page);
  336. f2fs_trace_pid(page);
  337. return 1;
  338. }
  339. return 0;
  340. }
  341. const struct address_space_operations f2fs_meta_aops = {
  342. .writepage = f2fs_write_meta_page,
  343. .writepages = f2fs_write_meta_pages,
  344. .set_page_dirty = f2fs_set_meta_page_dirty,
  345. .invalidatepage = f2fs_invalidate_page,
  346. .releasepage = f2fs_release_page,
  347. #ifdef CONFIG_MIGRATION
  348. .migratepage = f2fs_migrate_page,
  349. #endif
  350. };
  351. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
  352. unsigned int devidx, int type)
  353. {
  354. struct inode_management *im = &sbi->im[type];
  355. struct ino_entry *e, *tmp;
  356. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  357. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  358. spin_lock(&im->ino_lock);
  359. e = radix_tree_lookup(&im->ino_root, ino);
  360. if (!e) {
  361. e = tmp;
  362. if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
  363. f2fs_bug_on(sbi, 1);
  364. memset(e, 0, sizeof(struct ino_entry));
  365. e->ino = ino;
  366. list_add_tail(&e->list, &im->ino_list);
  367. if (type != ORPHAN_INO)
  368. im->ino_num++;
  369. }
  370. if (type == FLUSH_INO)
  371. f2fs_set_bit(devidx, (char *)&e->dirty_device);
  372. spin_unlock(&im->ino_lock);
  373. radix_tree_preload_end();
  374. if (e != tmp)
  375. kmem_cache_free(ino_entry_slab, tmp);
  376. }
  377. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  378. {
  379. struct inode_management *im = &sbi->im[type];
  380. struct ino_entry *e;
  381. spin_lock(&im->ino_lock);
  382. e = radix_tree_lookup(&im->ino_root, ino);
  383. if (e) {
  384. list_del(&e->list);
  385. radix_tree_delete(&im->ino_root, ino);
  386. im->ino_num--;
  387. spin_unlock(&im->ino_lock);
  388. kmem_cache_free(ino_entry_slab, e);
  389. return;
  390. }
  391. spin_unlock(&im->ino_lock);
  392. }
  393. void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  394. {
  395. /* add new dirty ino entry into list */
  396. __add_ino_entry(sbi, ino, 0, type);
  397. }
  398. void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  399. {
  400. /* remove dirty ino entry from list */
  401. __remove_ino_entry(sbi, ino, type);
  402. }
  403. /* mode should be APPEND_INO or UPDATE_INO */
  404. bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  405. {
  406. struct inode_management *im = &sbi->im[mode];
  407. struct ino_entry *e;
  408. spin_lock(&im->ino_lock);
  409. e = radix_tree_lookup(&im->ino_root, ino);
  410. spin_unlock(&im->ino_lock);
  411. return e ? true : false;
  412. }
  413. void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  414. {
  415. struct ino_entry *e, *tmp;
  416. int i;
  417. for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
  418. struct inode_management *im = &sbi->im[i];
  419. spin_lock(&im->ino_lock);
  420. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  421. list_del(&e->list);
  422. radix_tree_delete(&im->ino_root, e->ino);
  423. kmem_cache_free(ino_entry_slab, e);
  424. im->ino_num--;
  425. }
  426. spin_unlock(&im->ino_lock);
  427. }
  428. }
  429. void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  430. unsigned int devidx, int type)
  431. {
  432. __add_ino_entry(sbi, ino, devidx, type);
  433. }
  434. bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
  435. unsigned int devidx, int type)
  436. {
  437. struct inode_management *im = &sbi->im[type];
  438. struct ino_entry *e;
  439. bool is_dirty = false;
  440. spin_lock(&im->ino_lock);
  441. e = radix_tree_lookup(&im->ino_root, ino);
  442. if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
  443. is_dirty = true;
  444. spin_unlock(&im->ino_lock);
  445. return is_dirty;
  446. }
  447. int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
  448. {
  449. struct inode_management *im = &sbi->im[ORPHAN_INO];
  450. int err = 0;
  451. spin_lock(&im->ino_lock);
  452. #ifdef CONFIG_F2FS_FAULT_INJECTION
  453. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  454. spin_unlock(&im->ino_lock);
  455. f2fs_show_injection_info(FAULT_ORPHAN);
  456. return -ENOSPC;
  457. }
  458. #endif
  459. if (unlikely(im->ino_num >= sbi->max_orphans))
  460. err = -ENOSPC;
  461. else
  462. im->ino_num++;
  463. spin_unlock(&im->ino_lock);
  464. return err;
  465. }
  466. void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
  467. {
  468. struct inode_management *im = &sbi->im[ORPHAN_INO];
  469. spin_lock(&im->ino_lock);
  470. f2fs_bug_on(sbi, im->ino_num == 0);
  471. im->ino_num--;
  472. spin_unlock(&im->ino_lock);
  473. }
  474. void f2fs_add_orphan_inode(struct inode *inode)
  475. {
  476. /* add new orphan ino entry into list */
  477. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
  478. f2fs_update_inode_page(inode);
  479. }
  480. void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  481. {
  482. /* remove orphan entry from orphan list */
  483. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  484. }
  485. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  486. {
  487. struct inode *inode;
  488. struct node_info ni;
  489. int err = f2fs_acquire_orphan_inode(sbi);
  490. if (err)
  491. goto err_out;
  492. __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
  493. inode = f2fs_iget_retry(sbi->sb, ino);
  494. if (IS_ERR(inode)) {
  495. /*
  496. * there should be a bug that we can't find the entry
  497. * to orphan inode.
  498. */
  499. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  500. return PTR_ERR(inode);
  501. }
  502. err = dquot_initialize(inode);
  503. if (err) {
  504. iput(inode);
  505. goto err_out;
  506. }
  507. clear_nlink(inode);
  508. /* truncate all the data during iput */
  509. iput(inode);
  510. f2fs_get_node_info(sbi, ino, &ni);
  511. /* ENOMEM was fully retried in f2fs_evict_inode. */
  512. if (ni.blk_addr != NULL_ADDR) {
  513. err = -EIO;
  514. goto err_out;
  515. }
  516. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  517. return 0;
  518. err_out:
  519. set_sbi_flag(sbi, SBI_NEED_FSCK);
  520. f2fs_msg(sbi->sb, KERN_WARNING,
  521. "%s: orphan failed (ino=%x), run fsck to fix.",
  522. __func__, ino);
  523. return err;
  524. }
  525. int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
  526. {
  527. block_t start_blk, orphan_blocks, i, j;
  528. unsigned int s_flags = sbi->sb->s_flags;
  529. int err = 0;
  530. #ifdef CONFIG_QUOTA
  531. int quota_enabled;
  532. #endif
  533. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  534. return 0;
  535. if (s_flags & SB_RDONLY) {
  536. f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
  537. sbi->sb->s_flags &= ~SB_RDONLY;
  538. }
  539. #ifdef CONFIG_QUOTA
  540. /* Needed for iput() to work correctly and not trash data */
  541. sbi->sb->s_flags |= SB_ACTIVE;
  542. /* Turn on quotas so that they are updated correctly */
  543. quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
  544. #endif
  545. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  546. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  547. f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  548. for (i = 0; i < orphan_blocks; i++) {
  549. struct page *page = f2fs_get_meta_page(sbi, start_blk + i);
  550. struct f2fs_orphan_block *orphan_blk;
  551. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  552. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  553. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  554. err = recover_orphan_inode(sbi, ino);
  555. if (err) {
  556. f2fs_put_page(page, 1);
  557. goto out;
  558. }
  559. }
  560. f2fs_put_page(page, 1);
  561. }
  562. /* clear Orphan Flag */
  563. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  564. out:
  565. #ifdef CONFIG_QUOTA
  566. /* Turn quotas off */
  567. if (quota_enabled)
  568. f2fs_quota_off_umount(sbi->sb);
  569. #endif
  570. sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
  571. return err;
  572. }
  573. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  574. {
  575. struct list_head *head;
  576. struct f2fs_orphan_block *orphan_blk = NULL;
  577. unsigned int nentries = 0;
  578. unsigned short index = 1;
  579. unsigned short orphan_blocks;
  580. struct page *page = NULL;
  581. struct ino_entry *orphan = NULL;
  582. struct inode_management *im = &sbi->im[ORPHAN_INO];
  583. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  584. /*
  585. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  586. * orphan inode operations are covered under f2fs_lock_op().
  587. * And, spin_lock should be avoided due to page operations below.
  588. */
  589. head = &im->ino_list;
  590. /* loop for each orphan inode entry and write them in Jornal block */
  591. list_for_each_entry(orphan, head, list) {
  592. if (!page) {
  593. page = f2fs_grab_meta_page(sbi, start_blk++);
  594. orphan_blk =
  595. (struct f2fs_orphan_block *)page_address(page);
  596. memset(orphan_blk, 0, sizeof(*orphan_blk));
  597. }
  598. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  599. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  600. /*
  601. * an orphan block is full of 1020 entries,
  602. * then we need to flush current orphan blocks
  603. * and bring another one in memory
  604. */
  605. orphan_blk->blk_addr = cpu_to_le16(index);
  606. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  607. orphan_blk->entry_count = cpu_to_le32(nentries);
  608. set_page_dirty(page);
  609. f2fs_put_page(page, 1);
  610. index++;
  611. nentries = 0;
  612. page = NULL;
  613. }
  614. }
  615. if (page) {
  616. orphan_blk->blk_addr = cpu_to_le16(index);
  617. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  618. orphan_blk->entry_count = cpu_to_le32(nentries);
  619. set_page_dirty(page);
  620. f2fs_put_page(page, 1);
  621. }
  622. }
  623. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  624. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  625. unsigned long long *version)
  626. {
  627. unsigned long blk_size = sbi->blocksize;
  628. size_t crc_offset = 0;
  629. __u32 crc = 0;
  630. *cp_page = f2fs_get_meta_page(sbi, cp_addr);
  631. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  632. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  633. if (crc_offset > (blk_size - sizeof(__le32))) {
  634. f2fs_msg(sbi->sb, KERN_WARNING,
  635. "invalid crc_offset: %zu", crc_offset);
  636. return -EINVAL;
  637. }
  638. crc = cur_cp_crc(*cp_block);
  639. if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
  640. f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
  641. return -EINVAL;
  642. }
  643. *version = cur_cp_version(*cp_block);
  644. return 0;
  645. }
  646. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  647. block_t cp_addr, unsigned long long *version)
  648. {
  649. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  650. struct f2fs_checkpoint *cp_block = NULL;
  651. unsigned long long cur_version = 0, pre_version = 0;
  652. int err;
  653. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  654. &cp_page_1, version);
  655. if (err)
  656. goto invalid_cp1;
  657. pre_version = *version;
  658. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  659. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  660. &cp_page_2, version);
  661. if (err)
  662. goto invalid_cp2;
  663. cur_version = *version;
  664. if (cur_version == pre_version) {
  665. *version = cur_version;
  666. f2fs_put_page(cp_page_2, 1);
  667. return cp_page_1;
  668. }
  669. invalid_cp2:
  670. f2fs_put_page(cp_page_2, 1);
  671. invalid_cp1:
  672. f2fs_put_page(cp_page_1, 1);
  673. return NULL;
  674. }
  675. int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
  676. {
  677. struct f2fs_checkpoint *cp_block;
  678. struct f2fs_super_block *fsb = sbi->raw_super;
  679. struct page *cp1, *cp2, *cur_page;
  680. unsigned long blk_size = sbi->blocksize;
  681. unsigned long long cp1_version = 0, cp2_version = 0;
  682. unsigned long long cp_start_blk_no;
  683. unsigned int cp_blks = 1 + __cp_payload(sbi);
  684. block_t cp_blk_no;
  685. int i;
  686. sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
  687. GFP_KERNEL);
  688. if (!sbi->ckpt)
  689. return -ENOMEM;
  690. /*
  691. * Finding out valid cp block involves read both
  692. * sets( cp pack1 and cp pack 2)
  693. */
  694. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  695. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  696. /* The second checkpoint pack should start at the next segment */
  697. cp_start_blk_no += ((unsigned long long)1) <<
  698. le32_to_cpu(fsb->log_blocks_per_seg);
  699. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  700. if (cp1 && cp2) {
  701. if (ver_after(cp2_version, cp1_version))
  702. cur_page = cp2;
  703. else
  704. cur_page = cp1;
  705. } else if (cp1) {
  706. cur_page = cp1;
  707. } else if (cp2) {
  708. cur_page = cp2;
  709. } else {
  710. goto fail_no_cp;
  711. }
  712. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  713. memcpy(sbi->ckpt, cp_block, blk_size);
  714. /* Sanity checking of checkpoint */
  715. if (f2fs_sanity_check_ckpt(sbi))
  716. goto free_fail_no_cp;
  717. if (cur_page == cp1)
  718. sbi->cur_cp_pack = 1;
  719. else
  720. sbi->cur_cp_pack = 2;
  721. if (cp_blks <= 1)
  722. goto done;
  723. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  724. if (cur_page == cp2)
  725. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  726. for (i = 1; i < cp_blks; i++) {
  727. void *sit_bitmap_ptr;
  728. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  729. cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
  730. sit_bitmap_ptr = page_address(cur_page);
  731. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  732. f2fs_put_page(cur_page, 1);
  733. }
  734. done:
  735. f2fs_put_page(cp1, 1);
  736. f2fs_put_page(cp2, 1);
  737. return 0;
  738. free_fail_no_cp:
  739. f2fs_put_page(cp1, 1);
  740. f2fs_put_page(cp2, 1);
  741. fail_no_cp:
  742. kfree(sbi->ckpt);
  743. return -EINVAL;
  744. }
  745. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  746. {
  747. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  748. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  749. if (is_inode_flag_set(inode, flag))
  750. return;
  751. set_inode_flag(inode, flag);
  752. if (!f2fs_is_volatile_file(inode))
  753. list_add_tail(&F2FS_I(inode)->dirty_list,
  754. &sbi->inode_list[type]);
  755. stat_inc_dirty_inode(sbi, type);
  756. }
  757. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  758. {
  759. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  760. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  761. return;
  762. list_del_init(&F2FS_I(inode)->dirty_list);
  763. clear_inode_flag(inode, flag);
  764. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  765. }
  766. void f2fs_update_dirty_page(struct inode *inode, struct page *page)
  767. {
  768. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  769. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  770. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  771. !S_ISLNK(inode->i_mode))
  772. return;
  773. spin_lock(&sbi->inode_lock[type]);
  774. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  775. __add_dirty_inode(inode, type);
  776. inode_inc_dirty_pages(inode);
  777. spin_unlock(&sbi->inode_lock[type]);
  778. SetPagePrivate(page);
  779. f2fs_trace_pid(page);
  780. }
  781. void f2fs_remove_dirty_inode(struct inode *inode)
  782. {
  783. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  784. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  785. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  786. !S_ISLNK(inode->i_mode))
  787. return;
  788. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  789. return;
  790. spin_lock(&sbi->inode_lock[type]);
  791. __remove_dirty_inode(inode, type);
  792. spin_unlock(&sbi->inode_lock[type]);
  793. }
  794. int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  795. {
  796. struct list_head *head;
  797. struct inode *inode;
  798. struct f2fs_inode_info *fi;
  799. bool is_dir = (type == DIR_INODE);
  800. unsigned long ino = 0;
  801. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  802. get_pages(sbi, is_dir ?
  803. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  804. retry:
  805. if (unlikely(f2fs_cp_error(sbi)))
  806. return -EIO;
  807. spin_lock(&sbi->inode_lock[type]);
  808. head = &sbi->inode_list[type];
  809. if (list_empty(head)) {
  810. spin_unlock(&sbi->inode_lock[type]);
  811. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  812. get_pages(sbi, is_dir ?
  813. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  814. return 0;
  815. }
  816. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  817. inode = igrab(&fi->vfs_inode);
  818. spin_unlock(&sbi->inode_lock[type]);
  819. if (inode) {
  820. unsigned long cur_ino = inode->i_ino;
  821. if (is_dir)
  822. F2FS_I(inode)->cp_task = current;
  823. filemap_fdatawrite(inode->i_mapping);
  824. if (is_dir)
  825. F2FS_I(inode)->cp_task = NULL;
  826. iput(inode);
  827. /* We need to give cpu to another writers. */
  828. if (ino == cur_ino) {
  829. congestion_wait(BLK_RW_ASYNC, HZ/50);
  830. cond_resched();
  831. } else {
  832. ino = cur_ino;
  833. }
  834. } else {
  835. /*
  836. * We should submit bio, since it exists several
  837. * wribacking dentry pages in the freeing inode.
  838. */
  839. f2fs_submit_merged_write(sbi, DATA);
  840. cond_resched();
  841. }
  842. goto retry;
  843. }
  844. int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  845. {
  846. struct list_head *head = &sbi->inode_list[DIRTY_META];
  847. struct inode *inode;
  848. struct f2fs_inode_info *fi;
  849. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  850. while (total--) {
  851. if (unlikely(f2fs_cp_error(sbi)))
  852. return -EIO;
  853. spin_lock(&sbi->inode_lock[DIRTY_META]);
  854. if (list_empty(head)) {
  855. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  856. return 0;
  857. }
  858. fi = list_first_entry(head, struct f2fs_inode_info,
  859. gdirty_list);
  860. inode = igrab(&fi->vfs_inode);
  861. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  862. if (inode) {
  863. sync_inode_metadata(inode, 0);
  864. /* it's on eviction */
  865. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  866. f2fs_update_inode_page(inode);
  867. iput(inode);
  868. }
  869. }
  870. return 0;
  871. }
  872. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  873. {
  874. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  875. struct f2fs_nm_info *nm_i = NM_I(sbi);
  876. nid_t last_nid = nm_i->next_scan_nid;
  877. next_free_nid(sbi, &last_nid);
  878. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  879. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  880. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  881. ckpt->next_free_nid = cpu_to_le32(last_nid);
  882. }
  883. /*
  884. * Freeze all the FS-operations for checkpoint.
  885. */
  886. static int block_operations(struct f2fs_sb_info *sbi)
  887. {
  888. struct writeback_control wbc = {
  889. .sync_mode = WB_SYNC_ALL,
  890. .nr_to_write = LONG_MAX,
  891. .for_reclaim = 0,
  892. };
  893. struct blk_plug plug;
  894. int err = 0;
  895. blk_start_plug(&plug);
  896. retry_flush_dents:
  897. f2fs_lock_all(sbi);
  898. /* write all the dirty dentry pages */
  899. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  900. f2fs_unlock_all(sbi);
  901. err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
  902. if (err)
  903. goto out;
  904. cond_resched();
  905. goto retry_flush_dents;
  906. }
  907. /*
  908. * POR: we should ensure that there are no dirty node pages
  909. * until finishing nat/sit flush. inode->i_blocks can be updated.
  910. */
  911. down_write(&sbi->node_change);
  912. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  913. up_write(&sbi->node_change);
  914. f2fs_unlock_all(sbi);
  915. err = f2fs_sync_inode_meta(sbi);
  916. if (err)
  917. goto out;
  918. cond_resched();
  919. goto retry_flush_dents;
  920. }
  921. retry_flush_nodes:
  922. down_write(&sbi->node_write);
  923. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  924. up_write(&sbi->node_write);
  925. atomic_inc(&sbi->wb_sync_req[NODE]);
  926. err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
  927. atomic_dec(&sbi->wb_sync_req[NODE]);
  928. if (err) {
  929. up_write(&sbi->node_change);
  930. f2fs_unlock_all(sbi);
  931. goto out;
  932. }
  933. cond_resched();
  934. goto retry_flush_nodes;
  935. }
  936. /*
  937. * sbi->node_change is used only for AIO write_begin path which produces
  938. * dirty node blocks and some checkpoint values by block allocation.
  939. */
  940. __prepare_cp_block(sbi);
  941. up_write(&sbi->node_change);
  942. out:
  943. blk_finish_plug(&plug);
  944. return err;
  945. }
  946. static void unblock_operations(struct f2fs_sb_info *sbi)
  947. {
  948. up_write(&sbi->node_write);
  949. f2fs_unlock_all(sbi);
  950. }
  951. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  952. {
  953. DEFINE_WAIT(wait);
  954. for (;;) {
  955. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  956. if (!get_pages(sbi, F2FS_WB_CP_DATA))
  957. break;
  958. io_schedule_timeout(5*HZ);
  959. }
  960. finish_wait(&sbi->cp_wait, &wait);
  961. }
  962. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  963. {
  964. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  965. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  966. unsigned long flags;
  967. spin_lock_irqsave(&sbi->cp_lock, flags);
  968. if ((cpc->reason & CP_UMOUNT) &&
  969. le32_to_cpu(ckpt->cp_pack_total_block_count) >
  970. sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
  971. disable_nat_bits(sbi, false);
  972. if (cpc->reason & CP_TRIMMED)
  973. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  974. else
  975. __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  976. if (cpc->reason & CP_UMOUNT)
  977. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  978. else
  979. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  980. if (cpc->reason & CP_FASTBOOT)
  981. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  982. else
  983. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  984. if (orphan_num)
  985. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  986. else
  987. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  988. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  989. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  990. /* set this flag to activate crc|cp_ver for recovery */
  991. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  992. __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
  993. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  994. }
  995. static void commit_checkpoint(struct f2fs_sb_info *sbi,
  996. void *src, block_t blk_addr)
  997. {
  998. struct writeback_control wbc = {
  999. .for_reclaim = 0,
  1000. };
  1001. /*
  1002. * pagevec_lookup_tag and lock_page again will take
  1003. * some extra time. Therefore, f2fs_update_meta_pages and
  1004. * f2fs_sync_meta_pages are combined in this function.
  1005. */
  1006. struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
  1007. int err;
  1008. memcpy(page_address(page), src, PAGE_SIZE);
  1009. set_page_dirty(page);
  1010. f2fs_wait_on_page_writeback(page, META, true);
  1011. f2fs_bug_on(sbi, PageWriteback(page));
  1012. if (unlikely(!clear_page_dirty_for_io(page)))
  1013. f2fs_bug_on(sbi, 1);
  1014. /* writeout cp pack 2 page */
  1015. err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
  1016. f2fs_bug_on(sbi, err);
  1017. f2fs_put_page(page, 0);
  1018. /* submit checkpoint (with barrier if NOBARRIER is not set) */
  1019. f2fs_submit_merged_write(sbi, META_FLUSH);
  1020. }
  1021. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1022. {
  1023. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1024. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1025. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
  1026. block_t start_blk;
  1027. unsigned int data_sum_blocks, orphan_blocks;
  1028. __u32 crc32 = 0;
  1029. int i;
  1030. int cp_payload_blks = __cp_payload(sbi);
  1031. struct super_block *sb = sbi->sb;
  1032. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  1033. u64 kbytes_written;
  1034. int err;
  1035. /* Flush all the NAT/SIT pages */
  1036. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1037. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1038. if (unlikely(f2fs_cp_error(sbi)))
  1039. return -EIO;
  1040. }
  1041. /*
  1042. * modify checkpoint
  1043. * version number is already updated
  1044. */
  1045. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
  1046. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  1047. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  1048. ckpt->cur_node_segno[i] =
  1049. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  1050. ckpt->cur_node_blkoff[i] =
  1051. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  1052. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  1053. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  1054. }
  1055. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  1056. ckpt->cur_data_segno[i] =
  1057. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  1058. ckpt->cur_data_blkoff[i] =
  1059. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  1060. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  1061. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  1062. }
  1063. /* 2 cp + n data seg summary + orphan inode blocks */
  1064. data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
  1065. spin_lock_irqsave(&sbi->cp_lock, flags);
  1066. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  1067. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1068. else
  1069. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  1070. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  1071. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  1072. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  1073. orphan_blocks);
  1074. if (__remain_node_summaries(cpc->reason))
  1075. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  1076. cp_payload_blks + data_sum_blocks +
  1077. orphan_blocks + NR_CURSEG_NODE_TYPE);
  1078. else
  1079. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1080. cp_payload_blks + data_sum_blocks +
  1081. orphan_blocks);
  1082. /* update ckpt flag for checkpoint */
  1083. update_ckpt_flags(sbi, cpc);
  1084. /* update SIT/NAT bitmap */
  1085. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  1086. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  1087. crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
  1088. *((__le32 *)((unsigned char *)ckpt +
  1089. le32_to_cpu(ckpt->checksum_offset)))
  1090. = cpu_to_le32(crc32);
  1091. start_blk = __start_cp_next_addr(sbi);
  1092. /* write nat bits */
  1093. if (enabled_nat_bits(sbi, cpc)) {
  1094. __u64 cp_ver = cur_cp_version(ckpt);
  1095. block_t blk;
  1096. cp_ver |= ((__u64)crc32 << 32);
  1097. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  1098. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  1099. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  1100. f2fs_update_meta_page(sbi, nm_i->nat_bits +
  1101. (i << F2FS_BLKSIZE_BITS), blk + i);
  1102. /* Flush all the NAT BITS pages */
  1103. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1104. f2fs_sync_meta_pages(sbi, META, LONG_MAX,
  1105. FS_CP_META_IO);
  1106. if (unlikely(f2fs_cp_error(sbi)))
  1107. return -EIO;
  1108. }
  1109. }
  1110. /* write out checkpoint buffer at block 0 */
  1111. f2fs_update_meta_page(sbi, ckpt, start_blk++);
  1112. for (i = 1; i < 1 + cp_payload_blks; i++)
  1113. f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1114. start_blk++);
  1115. if (orphan_num) {
  1116. write_orphan_inodes(sbi, start_blk);
  1117. start_blk += orphan_blocks;
  1118. }
  1119. f2fs_write_data_summaries(sbi, start_blk);
  1120. start_blk += data_sum_blocks;
  1121. /* Record write statistics in the hot node summary */
  1122. kbytes_written = sbi->kbytes_written;
  1123. if (sb->s_bdev->bd_part)
  1124. kbytes_written += BD_PART_WRITTEN(sbi);
  1125. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1126. if (__remain_node_summaries(cpc->reason)) {
  1127. f2fs_write_node_summaries(sbi, start_blk);
  1128. start_blk += NR_CURSEG_NODE_TYPE;
  1129. }
  1130. /* update user_block_counts */
  1131. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1132. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1133. /* Here, we have one bio having CP pack except cp pack 2 page */
  1134. f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1135. /* wait for previous submitted meta pages writeback */
  1136. wait_on_all_pages_writeback(sbi);
  1137. if (unlikely(f2fs_cp_error(sbi)))
  1138. return -EIO;
  1139. /* flush all device cache */
  1140. err = f2fs_flush_device_cache(sbi);
  1141. if (err)
  1142. return err;
  1143. /* barrier and flush checkpoint cp pack 2 page if it can */
  1144. commit_checkpoint(sbi, ckpt, start_blk);
  1145. wait_on_all_pages_writeback(sbi);
  1146. f2fs_release_ino_entry(sbi, false);
  1147. if (unlikely(f2fs_cp_error(sbi)))
  1148. return -EIO;
  1149. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1150. clear_sbi_flag(sbi, SBI_NEED_CP);
  1151. __set_cp_next_pack(sbi);
  1152. /*
  1153. * redirty superblock if metadata like node page or inode cache is
  1154. * updated during writing checkpoint.
  1155. */
  1156. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1157. get_pages(sbi, F2FS_DIRTY_IMETA))
  1158. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1159. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1160. return 0;
  1161. }
  1162. /*
  1163. * We guarantee that this checkpoint procedure will not fail.
  1164. */
  1165. int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1166. {
  1167. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1168. unsigned long long ckpt_ver;
  1169. int err = 0;
  1170. mutex_lock(&sbi->cp_mutex);
  1171. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1172. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1173. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1174. goto out;
  1175. if (unlikely(f2fs_cp_error(sbi))) {
  1176. err = -EIO;
  1177. goto out;
  1178. }
  1179. if (f2fs_readonly(sbi->sb)) {
  1180. err = -EROFS;
  1181. goto out;
  1182. }
  1183. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1184. err = block_operations(sbi);
  1185. if (err)
  1186. goto out;
  1187. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1188. f2fs_flush_merged_writes(sbi);
  1189. /* this is the case of multiple fstrims without any changes */
  1190. if (cpc->reason & CP_DISCARD) {
  1191. if (!f2fs_exist_trim_candidates(sbi, cpc)) {
  1192. unblock_operations(sbi);
  1193. goto out;
  1194. }
  1195. if (NM_I(sbi)->dirty_nat_cnt == 0 &&
  1196. SIT_I(sbi)->dirty_sentries == 0 &&
  1197. prefree_segments(sbi) == 0) {
  1198. f2fs_flush_sit_entries(sbi, cpc);
  1199. f2fs_clear_prefree_segments(sbi, cpc);
  1200. unblock_operations(sbi);
  1201. goto out;
  1202. }
  1203. }
  1204. /*
  1205. * update checkpoint pack index
  1206. * Increase the version number so that
  1207. * SIT entries and seg summaries are written at correct place
  1208. */
  1209. ckpt_ver = cur_cp_version(ckpt);
  1210. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1211. /* write cached NAT/SIT entries to NAT/SIT area */
  1212. f2fs_flush_nat_entries(sbi, cpc);
  1213. f2fs_flush_sit_entries(sbi, cpc);
  1214. /* unlock all the fs_lock[] in do_checkpoint() */
  1215. err = do_checkpoint(sbi, cpc);
  1216. if (err)
  1217. f2fs_release_discard_addrs(sbi);
  1218. else
  1219. f2fs_clear_prefree_segments(sbi, cpc);
  1220. unblock_operations(sbi);
  1221. stat_inc_cp_count(sbi->stat_info);
  1222. if (cpc->reason & CP_RECOVERY)
  1223. f2fs_msg(sbi->sb, KERN_NOTICE,
  1224. "checkpoint: version = %llx", ckpt_ver);
  1225. /* do checkpoint periodically */
  1226. f2fs_update_time(sbi, CP_TIME);
  1227. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1228. out:
  1229. mutex_unlock(&sbi->cp_mutex);
  1230. return err;
  1231. }
  1232. void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
  1233. {
  1234. int i;
  1235. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1236. struct inode_management *im = &sbi->im[i];
  1237. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1238. spin_lock_init(&im->ino_lock);
  1239. INIT_LIST_HEAD(&im->ino_list);
  1240. im->ino_num = 0;
  1241. }
  1242. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1243. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  1244. F2FS_ORPHANS_PER_BLOCK;
  1245. }
  1246. int __init f2fs_create_checkpoint_caches(void)
  1247. {
  1248. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1249. sizeof(struct ino_entry));
  1250. if (!ino_entry_slab)
  1251. return -ENOMEM;
  1252. f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1253. sizeof(struct inode_entry));
  1254. if (!f2fs_inode_entry_slab) {
  1255. kmem_cache_destroy(ino_entry_slab);
  1256. return -ENOMEM;
  1257. }
  1258. return 0;
  1259. }
  1260. void f2fs_destroy_checkpoint_caches(void)
  1261. {
  1262. kmem_cache_destroy(ino_entry_slab);
  1263. kmem_cache_destroy(f2fs_inode_entry_slab);
  1264. }